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Abstract

We have explored the concept of mobile computational fluid dynamics (CFD) solving. Using the computa-
tional power of a smartphone we tried to generate real time simulations of relatively simple transient natural
convection problems in the laminar regime. The focus lies on finding a compromise between accuracy, speed
and stability: we want to make a real time mobile CFD solver that is as accurate as possible.

A JAVA application has been created that runs on Android. The SIMPLE algorithm has been implemented
in order to solve for the flow and heat transfer. The SIMPLE algorithm on the application was tested for
runtime performance and accuracy.

For a test problem, a real time simulation on a Nexus 5X has been realized with an accuracy of 5.4% on a
21×21 grid. Running the algorithm on a desktop gave a simulation 10 times faster than real time. Comparing
this algorithm to a version converted to MATLAB, gave similar solving speed. We concluded that the bot-
tleneck in the algorithm, solving matrix equations, could not be easily improved, because MATLAB solvers
perform quite optimal: a significantly faster CFD solver implementing the SIMPLE algorithm probably does
not exist.

Nevertheless, when trying to use the obtained results on water and air, we could not obtain any real time
solutions. It is up to further research to define restictions that can guarantee real time solutions for fluids.
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1
Introduction

Over the last six decades, computational power has increased enormously. In 1954 the IBM 704 was the first
mass-produced computer able to handle complex mathematics. With only 12000 floating point operations
per second (FLOPS), back then this was a whole achievement. Nowadays, the Tianhe-2 is the fastest super-
computer with 33,86 quadrillion FLOPS. This is a 1 trillion-fold (= 1012) increase in computer performance
[2]. In the meantime, smartphone performance has been increasing as well. A Samsung Galaxy S6, (altough
not being the newest model) one of the best performing smartphones, can do almost 35 billion FLOPS. So the
mobile phone is floating somewhere in the middle.

Furthermore, scientific computation has become more important than ever before: problems become
more complex and so do the methods to solve them. Moreover, obtaining solutions as quick as possible
is one of the challenges in the world of scientific computing. For example, if we want to generate a real
time solution of a physical time-dependent process, the computation time must be faster than the actual
physical time step. This is a rather interesting field of study, for the limits of solving power are really being
tested. Therefore, companies such as MATHWORKS can dominate the world of computer science, since their
algorithms can solve problems faster than most of the others.

In order to gain insight on the combination of processing capacity and solution generation limitation of
a mobile phone, we will test the mobile phone on scientific calculation capacity. In this study we will try to
make a real time mobile Computational Fluid Dynamics (CFD) solver. In particular we will be looking into a
specific class of problems considering fluid flow and heat transfer, for not every arbitrarily complex problem
will be real time realizable. The kind of problems we are going to solve can be characterized by the following
requirements:

1. Transient flow: Time-dependent problems are considered.

2. Laminar flow: Viscosity-dominated flow withouth any small scale vortices.

3. Incompressible flow: The density of a fluid parcel is assumed to be constant.

4. Buoyancy driven flow on a closed domain: Natural convection is the primary forcing mechanism.
Moreover, there is no incoming flow into the calculation domain, since the domain is closed.

5. The system satisfies the Boussinesq approximation: All fluid properties are assumed to be constant
except for the density in the buoyancy term.

6. Two dimensional flow on a rectangular domain: By dropping the third dimension from the problem,
the problem already becomes simpler1. By choosing a rectangular domain, mesh generation will be-
come easier.

7. Focus on water and air: For the sake of simplicity only water and air systems will be considered.

Our goal is to create a smartphone application which can solve problems following the requirements and
focussing on stability, speed and accuracy.

1In general, the number of cells N needed for a 2D problem is N 2/3, where N is the number of cells of a 3D problem.

1



2 1. Introduction

In Chapter 2 the phenomena of interest will be described in more detail along with the difficulties within
numerical mathematics. The SIMPLE algorithm will be introduced in Chapter 3 as a method for solving the
problem. Moreover, methods for finding the results in terms of simulation error and runtime performance,
will be discussed as well. The research results are discussed in Chapter 4 and the conclusions and recom-
mendations drawn from the results are stated in Chapter 5.



2
Theory

In this chapter the problem of interest will be stated in Section 2.1 along with a numerical method for solving
the problem in Section 2.2. In Section 2.3 the difficulties of the problem will be shown as well. These are
the bottlenecks and therefore the challenge for achieving the final goal: solving the flow, pressure and tem-
perature in real time constrained by the computational power of a smartphone. Finally, the error causes are
discussed in Section 2.4.

2.1. Problem description
2.1.1. Physical restrictions
In Chapter 1 seven requirements were discussed to limit the class of problems of interest. However, some
of these seven requirements can written down in a mathematically and physically more appropriate form.
Since these problems are flow and heat problems, requirement 1 states that the Navier Stokes equation and
the heat equation for unstationary problems are the governing equations.

Moreover, the Grashof number (Gr) is a non-dimensional number in fluid dynamics and heat transfer
which approximates the ratio of the buoyancy to viscous force acting on a fluid. Therefore, this number can
be related to requirement 2 and 4. Buoyancy-driven laminar flow in a side heated rectangular domain requires
[4]:

Gr = βg∆T L3

ν2 < 104, (2.1)

whereβ [K−1] is the thermal expansion coefficient, g [m/s2] is the acceleration due to gravity,∆T [K] is the
temperature difference of the extreme values on the boundary, L [m] is a characteristic length and ν [m2/s] is
the kinematic viscocity.

The third requirement states that the the velocity field is divergenceless:

∇·v = 0, (2.2)

where v the velocity vector.

Requirement 5 states that the Boussinesq approximation must be satisfied. This approximation states
that the material properties of the fluid are constant, except for the density. The change in density causing
the buoyancy forcing term in the equations is linearized. However, this approximation is only valid in its
validity region, which is defined as the set of combinations for L and ∆T giving a total error of at most 10%.
For every fluid at a certain temperature and pressure, the vadility region can be calculated [4]. For example,
when looking at water at T = 287 K (15◦C) and p = 1 atm, the validity region can be described by Equations

3



4 2. Theory
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Figure 2.1: The validation region of the Boussinesq approximation for water and air at T = 287 K and p = 1 atm. The red line indicates
the limit of the class of simple problems.

2.3a-2.3c. Equation 2.3d guarantees the laminarity requirement.

∆T ≤ 1.25 K (2.3a)

L ≤ 2.4 ·103 m (2.3b)

L

∆T
≤ 9.9 ·102 m/K (2.3c)

L3∆T < 1.02 ·10−4 m3K. (2.3d)

The resulting region limited by the red line in Figure 2.1a indicates the class of simple problems of interest for
water. For air similar results can be obtained (Figure 2.1b):

∆T ≤ 28.6 K (2.4a)

L ≤ 8.3 ·102 m (2.4b)

L

∆T
≤ 10.2 m/K (2.4c)

L3∆T < 8.50 ·10−5 m3K. (2.4d)

2.1.2. Governing equations
Once the Boussinesq approximation has been satisfied, the governing equations are known. The equations
of interest are [4]:

∇·v = 0 (2.5a)

∂u

∂t
+∇· (uv) = ν0∇2u − 1

ρ0

∂(p +ρ0g z)

∂x
(2.5b)

∂v

∂t
+∇· (vv) = ν0∇2v − 1

ρ0

∂(p +ρ0g z)

∂z
+β0g (T −T0) (2.5c)

∂T

∂t
+∇· (T v) = κ0∇2T, (2.5d)

where v [m/s] is the velocity vector in which u [m/s] is the velocity component in the horizontal x-direction
and v [m/s] is the velocity component in the vertical z-direction, ν0 [m2/s] is the kinematic viscosity, ρ0

[kg/m3] is the density, p +ρ0g z [Pa] is the hydrostatic pressure, β0 [K−1] is the thermal expansion coefficient,
T [K] is the temperature, T0 is the reference temperature andκ0 [m2/s] is the thermal diffusivity. The subscript
0 denotes the reference state (T0, p0) (with p0 a reference pressure) which determines the values for ν0, ρ0, β0

and κ0. Furthermore, the last term in Equation 2.5c is the linearized term representing the buoyancy force.



2.2. The Finite Volume Method 5

When introducing p̃ = p+ρ0g z
ρ0

and T̃ = T −T0, the resulting equations are1:

∇·v = 0 (2.6a)

∂u

∂t
+∇· (uv) = ν0∇2u − ∂p̃

∂x
(2.6b)

∂v

∂t
+∇· (vv) = ν0∇2v − ∂p̃

∂z
+β0g T̃ (2.6c)

∂T̃

∂t
+∇· (T̃ v) = κ0∇2T̃ (2.6d)

2.1.3. Non-dimensional numbers
Apart from the Grashof number introduced in 2.1.1 as [7]

Gr = buoyancy forces

viscous forces
= βg∆T L3

ν2 , (2.7)

other non-dimensional numbers play an important role.
The Prandtl number is defined as [7]

Pr =
(

hydrodynamic boundary layer thickness

thermal boundary layer thickness

)α
= ν

κ
(2.8)

for some α and says whether heat or momentum transport is dominant.
The Rayleigh number is defined as the product of the Gr and Pr [11]:

Ra = Gr ·Pr. (2.9)

Finally, the Nusselt number Nu is defined as [7]

Nu = total heat transfer

conductive heat transfer
= hL

k
, (2.10)

where h [W/m2] is the heat transfer coefficient and k [W/(mK)] is the thermal conductivity. This non-dimensional
number indicates the role of convective heat transport relative to conductive transport.

2.2. The Finite Volume Method
In the previous Section the problem has been properly defined. To solve the set of Equations 2.6 we will
discretize them using the Finite Volume Method (FVM).

In the following sections the concept of the FVM will be discussed along with how to handle the boundary
conditions, guidelines for convergence of the method and some difficulties of the problem and the method.

2.2.1. A short example
Consider the case of unsteady one-dimensional conduction for a material with a thermal diffusivity of κ
[m2/s]. The temperature is governed by

∂T

∂t
= ∂

∂x

(
κ
∂T

∂x

)
. (2.11)

The first step in solving the equation numerically, is choosing a grid. Since T lives in a one-dimensional
coordinate space, the domain is a line segment.

In Figure 2.2 P is the grid point of interest. W and E are the adjacent grid points. Each grid point lies
inside a control volume. For P, the control volume is the space between the interfaces w and e. The distance
between P and E is denoted as (δx)e and the distance between P and W as (δx)w . The control volume itself
has size ∆x.

Integrating Equation 2.11 from w to e and over the time interval from t to t +∆t gives

1Rewriting the equations to the non dimensional form shows that the parameters of interest are merely depending on Gr and Pr (or Ra
and Pr). This result will be discussed in the next chapter.
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PW E

(δx)w (δx)e

w e

∆x

Figure 2.2: A line segment on which the heat equation will be solved. Three gridpoints and the interfaces between the gridpoints are
shown as well as the distances between the grid points, (δx)w and (δx)e , and the control volume size ∆x.

∫ e

w

∫ t+∆t

t

∂T

∂t
dt dx =

∫ t+∆t

t

∫ e

w

∂

∂x

(
k
∂T

∂x

)
dx dt (2.12)

⇔
∫ e

w
T 1 −T 0 dx =

∫ t+∆t

t

(
k
∂T

∂x

)∣∣∣
e
−

(
k
∂T

∂x

)∣∣∣
w

dt , (2.13)

where the superscript 1 indicates t +∆t and the superscript 0 indicates t .
Evaluating the integrand in the right-hand side of Equation 2.13 with a piecewise linear profile between

W , P and E gives ∫ e

w
T 1 −T 0 dx =

∫ t+∆t

t

[
ke (TE −TP )

(δx)e
− kw (TP −TW )

(δx)w

]
dt , (2.14)

where ke and kw are the values for the thermal conductivity at interface e respectively w .
For evaluating the remaining integrals in Equation 2.14, profile assumptions have to be made for the two

integrands. Assume a constant profile with the value at P for the left-hand side. The evaluation of the right-
hand side integral can be done by proposing∫ t+∆t

t
Ti dt = [θT 1

i + (1−θ)T 0
i ]∆t , (2.15)

where θ ∈ [0,1]. The result is

∆x

∆t

(
T 1

P −T 0
P

)= θ[
ke (T 1

E −T 1
P )

(δx)e
− kw (T 1

P −T 1
W )

(δx)w

]
+ (1−θ)

[
ke (T 0

E −T 0
P )

(δx)e
− kw (T 0

P −T 0
W )

(δx)w

]
. (2.16)

Dropping the superscript 1 from the T ’s and remembering that a value of T without a superscript stands
for the new value, and rearranging Equation 2.16 gives

aP TP = aE [θTE + (1−θ)T 0
E ]+aW [θTW + (1−θ)T 0

W ]+ [a0
P − (1−θ)aE − (1−θ)aW ]T 0

P , (2.17)

where

aE = ke

(δx)e
(2.18a)

aW = kw

(δx)w
(2.18b)

a0
P = ∆x

∆t
(2.18c)

aP = θaE +θaW +a0
P (2.18d)

are the coefficients. Note that for every integral different profile assumptions have been made for T . This is
permitted and therefore one of the eases of this method.

Since the integration steps can be performed for every gridpoint on the domain, Equation 2.17 results in
a system of linear equations. When the boundary conditions are discretized in a similar way and a value for
θ has been chosen, the solution to the heat problem can be calculated using linear algebra. The boundary
discretization and a value for θ will be discussed in Sections 2.2.3 and 2.2.4.
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2.2.2. The theory
For the more general case, consider an operator L . We will be looking for a function φ that satisfies the inital
and boundary conditions and furthermore

L
[
φ

]= 0. (2.19)

Soφ satisfies a local balance which is determined by what kind of operator L is. Now, in order to solve for
φ numerically, the space is again split up in discrete control volumes that fill the entire domain2. A single grid
point is located inside each control volume. We want to know the value forφ at each grid point as a numerical
result of the Finite Volume Method. In order to accomplish this, profile assumptions have to be made. These
profile assumptions set the shape of the numerical approximation. Only the function values at the grid points
themselves remain unknown. This, however, can be solved in a similar way as done in the previous section.

Consider such a resulting piecewise function φ̄, a control volume V and a function WV such that

WV (x, t ) =
{

1 (x, t ) ∈V
0 (x, t ) ∉V

. (2.20)

Furthermore, since φ̄ probably will not satisfy Equation 2.19, we know that

L
[
φ̄

]= R 6= 0, (2.21)

where R is some residual term. Regardless, the shape of φ̄ is known, whereas the function values at the grid
points are not. So there is still some freedom in φ̄ to minimize the residual term. When the residual term is
multiplied by WV and integrated over the domain, the following requirement is claimed:∫ t

t0

Ñ
Ω

R(x, t )WV (x, t ) dx dt = 0. (2.22)

So instead of requiring the residual term to be zero, the integral over every control volume V has to be zero.
Using Equation 2.21 and writing V =VS × (t1, t1 +∆t ) gives∫ t1+∆t

t1

Ñ
VS

L
[
φ̄

]
dx dt = 0. (2.23)

In other words, a control volume overall balance is another way of interpreting the requirement. Once the
integrals have been evaluated, each control volume produces a linear equation for the grid point values and
each control volume represents a single value for φ̄. So integrating over every control volume V gives enough
equations to solve for the number of unknowns [8]. Furthermore, the resulting φ̄ has the property to satisfy
not only an overall balance, but a micro balance at every single control volume.

The resulting general form of the linear equations which arise from the control volume integral balance
for a certain quantity φ can always be written in the form

aPφP =∑
nb

anbφnb +b, (2.24)

where P is the grid point of interest, the summation is held over all the neighbouring control volumes and b
is the result of a discretized source, the collection of terms independent of the value for φ.

2.2.3. Boundary conditions
The application will be able to deal with two kinds of boundary conditions: Dirichlet and Neumann bound-
ary conditions3: the velocity equations have no slip boundary conditions (Dirichlet) and the temperature
equation has either insulated walls (Neumann) or walls with a known temperature (Dirichlet).

In order to derive the general form of the boundary equations a slight distinction has to be made already.
Later in Section 2.3.1 it will be shown that multiple grids are needed to prevent the solution from exerting
oscilatory behaviour. Therefore, we have multiple forms for the boundary equations. We will distinguish
between the cases where

2Note that domain is used in a general way: the temporal dimensions as well as the spatial dimensions have to be discretized.
3So other kinds of boundary conditions will not be implemented.
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B P

Figure 2.3: A grid point P adjacent to the boundary and a corresponding boundary cell with a grid point B at the boundary of the
calculation domain.

G PB

Figure 2.4: A grid point P at the boundary and a corresponding ghost cell with a grid point G outside the discretized domain.

• the boundary condition is implemented using a grid point that lies on the boundary;

• the boundary condition is implemented using a grid point which lies in a ghost cell outside the domain.

Consider the first case. The situation is sketched in Figure 2.3. This case is valid for the east and west
boundaries of u and for the north and south boundaries of v . Therefore, only Dirichlet boundary conditions
have to be considered. The resulting equation for the boundary condition is very straightforward:

aPφP = ∑
nb 6=B

anbφnb +aBφB +b (2.25)

⇒ aPφP = ∑
nb 6=B

anbφnb +b, (2.26)

because φB = 0. The subscript B denotes the boundary grid point.

Now, consider the second case. The situation is sketched in Figure 2.4. The control volume faces are in
line with the boundary. Therefore, a so-called ghost cell is placed for calculation purposes. This case applies
to every boundary of T̃ and for the remaining boundaries of u and v . For Dirichlet boundary conditions, the
known boundary value φB can be approximated by

φB = φG +φP

2
. (2.27)
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Rewriting gives

φG =−φP +2φB (2.28a)

⇒ aGφG =−aGφP +2aGφB . (2.28b)

Combining Equation 2.28b with Equation 2.24 gives

(aP +aG )φP = ∑
nb 6=G

anbφnb +2aGφB +b. (2.29)

Neumann boundary conditions (which will be used for T̃ only) can be approximated by

φG −φP

(δx)g
=∇φB · n̂, (2.30)

where n̂ is the unit normal vector pointing outwards the control volume. Rewriting gives

φG =φP + (δx)g∇φB · n̂ (2.31a)

⇒ aGφG = aGφP +aG (δx)g∇φB · n̂. (2.31b)

Combining Equation 2.31b with Equation 2.24 gives

(aP −aG )φP = ∑
nb 6=G

anbφnb +aG (δx)g∇φB · n̂ +b = ∑
nb 6=G

anbφnb +b, (2.32)

where zero gradient boundary conditions were used in the final equality.

2.2.4. Guidelines for consistency, stability and convergence
In order to construct a good numerical scheme, it is important that the result is a physically realistic solution.
Whether the numerical method is highly accurate or not, we at least want to ensure mass conservation and
avoid phenomena such as internal temperatures being higher than boundary values in the absence of an
interior source. Thus, we want the approximate solution to lie close to the exact solution and the solution
can be expected to become more accurate when a finer grid spacing and a smaller time step is used: we want
the solution to converge. Especially when being constrained to the computational power of a smartphone,
certain lower bounds on the grid spacing and the time step must be set in order to guarantee a realtime
simulation. Even for those lower bounds the numerical scheme must give reasonable solutions.

Convergence for linear schemes can often be verified using Lax’s Equivalence Theorem [10]. Consistency
and stability are the key to convergence. It says approximately that

• consistency guarantees the local truncation error (the error between the exact solution and the numer-
ical solution) to go to zero when the grid spacing and the time step do as well;

• stability guarantees the scheme to produce a bounded solution whenever the exact solution is bounded.

However, in practice problems do not necessarily meet the criteria imposed by the Lax Equivalence Theo-
rem due to nonlinearity (see Section 2.3). Even if they do, consistency and convergence can be hard to prove.
Therefore, our scheme will be built upon the idea of maximizing the possibilties for convergence. To accom-
plish this, Patankar [8] states four basic rules for numerical Finite Volume schemes. Two of these are useful
for our purposes:

Rule 1: Consistency at control volume faces
When a face is common to two adjacent control volumes, the flux across it must be represented by the same
expression in the discretization equations for the two control volumes.

Since the equations are conservation laws, the first rule sounds obvious. Heat or momentum leaving a
control volume must be identical to the heat of momentum entering the neighbouring cells. Looking at the
small example in Section 2.2.1, for the heat flux a linear profile was assumed. In this case the flux across the
cell face is indeed consistent. However, it can be checked that some higher order profiles (like a quadratic
profile) do not obey the first rule. Although a higher order estimate should give a more accurate description,
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divergence is more likely to occur in that case.

Rule 2: Positive coefficients
All coefficients {aP , anb} must always be positive.

The second rule is quite straightforward as well. Consider a gridpoint P . Assume the value for φ, the
variable of interest, increases in time in one or more neighbouring grid points of P . If all other conditions
remain unchanged, one might expect φP to increase as well. Since the coefficients function as weights, a
negative weight on an increasing value in a neighbour gridpoint can cause a decrease in P . Again unphysical
results arise. Therefore, the coefficients should all have the same sign (which is chosen to be positive).

Now, consider the example in Section 2.2.1 again. Choosing θ = 1 brings no problems at all, since all
coefficients are positive. This kind of schemes are called implicit since the new values for T at the neighbour
grid points are used to calculate TP . This coupled system of equations has to be solved simultaneously in
order to find all new values of T . The process of solving this system can be a challenge, since it is basically
a matrix inversion. Computationally this is harder than for example matrix multiplication, which is the case
when θ = 0 is chosen (this will be discussed in Section 2.3.5). Nevertheless, now the possibility arises that the
coefficient of T 0

P has a negative value. In order to satisfy rule 2

0 < a0
P −aE −aW = ∆x

∆t
− ke

(δx)e
− kw

(δx)w
≤ ∆x

∆t
−2

kmax

(δx)mi n
(2.33a)

⇔∆t < ∆x · (δx)mi n

2kmax
(2.33b)

must hold. Although an extra requirement is not ideal, computationally the solution to this scheme (called
an explicit scheme) is easier to calculate because the new value for T in every point can be found using old
values only, which are already known. Nevertheless, for the sake of stability and eventually convergence,
implicit schemes are preferred for our purposes.

2.3. Difficulties of the problem
The Finite Volume Method as described above sounds very promising. However, there are some difficulties
which have to be taken into account in order to get reasonable results. In the following sections the major dif-
ficulties are described and an indication for solving these difficulties will be worked out. In the next chapter,
an explicit way of tackling all these problems will be given in the form of suitable algebraic equations and an
algorithmic approach of the total problem.

2.3.1. Unphysical results for a single grid
Consider ∇ · v in Equation 2.6a and the ∇p̃ term in the combined Equations 2.6b and 2.6c. Suppose our
numerical method would calculate the values for u, v and p̃ in the same grid points. Now, discretization
could give unphysical results. The phenomenon of checkerboarding arises.

To see this, consider the one dimensional version of the terms: du
dx and dp̃

dx . Integrating over a control
volume covering gridpoint P gives

ue −uw = uE +uP

2
− uP +uW

2
= uE −uW

2
(2.34)

for u and

p̃e − p̃w = p̃E + p̃P

2
− p̃P + p̃W

2
= p̃E − p̃W

2
(2.35)

for p̃, if linear profiles are assumed and the control volume faced are assumed to be midway between the
grid points. Now consider the field in Figure 2.5. If the field were inserted in the discretization equations in

100 100 100500 500 500

Figure 2.5: A field with oscilatory behaviour.

Equations 2.34 and 2.35, the numerical method would see a divergenceless velocity field and a zero pressure
gradient. As we see, this is not the case. Furthermore, one can imagine that the higher dimensional case
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allows even more complex checkerboard patterned velocity and pressure fields. Therefore, a gigantic problem
has arisen.

This problem can be solved using a staggered grid [8]. Instead of solving the system of equations on one
grid, three grids shifted relative to each other are used. This is shown in Figure 2.6. The grid for the u velocity
is shifted in the horizontal direction and the grid of v in the vertical direction with respect to the regular grid.

Figure 2.6: Staggered locations for u and v . u =→, v =↑ and the other variables are located at the regular grid points. An example of the
control volumes in the different grids is also shown.

Now, the left hand side of Equation 2.34 (generalized to the higher dimensional case) can be used imme-
diately, velocities are stored in the faces of the regular grid. A similar result holds for the pressure.

2.3.2. Nonlinearity
When using nonlinear partial differential equations, the result of discretization is not a system of linear equa-
tions: the coefficients in the discretization equations are functions of the nonlinear variable. So in that way
solving the system of equations for φ requires the resulting values of φ for the coefficients. A problem arises,
which can be solved using iteration:

1. Start with an initial guess for φ for all grid points.

2. Assemble the coefficients for the nonlinear discretization equations. A linear system of equations is
obtained.

3. Solve the system of linear equations using the guessed values.

4. Use the new values as a better guess for φ and return to step 2 until the difference between the values
for the previous and the current iteration becomes sufficiently small.

The result of the iterative process, resembles the solution of the set of nonlinear equations. However, conver-
gence of the iterative process cannot be guaranteed [8], but a good numerical method maximizes the odds.
The basic rules stated in 2.2.4 help, but there are more strategies.

One such strategy is underrelaxation. As mentioned, iterative processes can diverge. This divergence can
be caused by abruptly changing values found at step 4 (compared to the old values) and therefore changing
coefficients in step 2 of the next iteration. This can aggravate the next iteration even more and divergence
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occurs. Especially for highly nonlinear equations numerical convergence can be hard to obtain. In this case
it would be useful to slow down changes.

Consider the general discretization of the form

aPφP =∑
nb

anbφnb +b. (2.36)

The new value for φ can be modified inserting the underrelaxation constant α ∈ [0,1] and the value of the
previous iteration φ∗

P :

φP =φ∗
P +α

(∑
nb anbφnb +b

aP
−φ∗

P

)
(2.37a)

⇔ aP

α
φP =∑

nb
anbφnb +b + (1−α)

aP

α
φ∗. (2.37b)

The resulting scheme is the system of equations in Equation 2.37b. The effect, however, can best be under-
stood investigating Equation 2.37a. Since α is chosen between 0 and 1, the new value for φ will be closer to
the previous one: changes are decelerated. However, when the solution convergences, we haveφ≈φ∗. So the
term between brackets in Equation 2.37a must be approximately zero and the non linear algebraic equations
are solved.

2.3.3. Representation of the continuity equation and the pressure-gradient term
The four governing equations of our problem, Equations 2.6, describe four variables which might be solv-
able4.

However, the system gives 3 criteria for the velocity field( Equation 2.6a-2.6c), but no direct equation for
pressure. Nevertheless, obtaining an equation for p̃ should be possible, since we have four equations and four
unknowns. In order to derive the equation for p̃ we take the divergence of Equation 2.6b and 2.6c. Writing
these equations in Cartesian tensor notation, the deriviation will be clearer:

∂

∂xi

(
∂vi

∂t
+ ∂

∂x j
(vi v j )

)
= ∂

∂xi

(
∂

∂x j

(
∂vi

∂x j

)
− ∂p̃

∂xi
+β0g T̃δi 2

)
, (2.38a)

⇔ ∂

∂t

∂vi

∂xi
+ ∂2

∂xi∂x j
(vi v j ) = ∂

∂x j

(
∂

∂x j

∂vi

∂xi

)
− ∂

∂xi

(
∂p̃

∂xi

)
+β0g

∂T̃

∂x2
. (2.38b)

In the expression above δi j is the Kronecker delta and i , j = 1,2 represent x and z. Now we know from Equa-

tion 2.6a that ∂vi
∂xi

≡∇·v = 0. This results in a Laplace equation for the pressure:

∇2p̃ =− ∂2

∂xi∂x j
(vi v j )+β0g

∂T̃

∂z
. (2.39)

The coupled system of equations, with the continuity equation replaced by Equation 2.39 could be used to
solve for the four variables. In practice another solving method is used for the problem, since this approach
(using an equation for pressure) contains even more nonlinearities: possibilities for divergence are again
created and this is not desirable.

In Section 3.4 of the next chapter, an algorithmic approach is introduced, which avoids the nonlinearities
of the pressure and therefore gives a more reliable scheme.

2.3.4. Boundary layer effects
Due to natural convection in the vicinity of the boundaries, boundary layer effects occur: a layer adjacent to
the wall arises in which the heat flow is higher than in the bulk5 and the velocity is smaller than in the bulk
due to the no slip boundary conditions.

For any numerical solution to give an accurate description, it is important to know what happens within
the boundary layer.

Therefore, we want to know how many grid cells we need in the boundary layer and the thickness of
the boundary layer. The minimum number of grid cells within the thermal boundary layer δT [m] can be
estimated by [9]

4Note, having four equations is necessary but not sufficient.
5This holds for fixed T at the wall only, not for insulated walls.
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N T
BL ≥


p

2aNu1/2Pr−3/4 A3/2π3/4, Pr < 3 ·10−4,p
2aNu1/2Pr−0.5355+0.033 log Pr, 3 ·10−4 ≤ Pr ≤ 1,p
2aNu1/2Pr−0.0355+0.033 log Pr, 1 < Pr ≤ 3,p
2aNu1/2E 3/2, Pr > 3,

(2.40)

while the minimum number of grid points in the kinetic boundary layer δu [m] is

N u
BL ≥


p

2aNu1/2Pr−1/4 A1/2π1/4, Pr < 3 ·10−4,p
2aNu1/2Pr−0.1785+0.011 log Pr, 3 ·10−4 ≤ Pr ≤ 1,p
2aNu1/2Pr0.3215+0.011 log Pr, 1 < Pr ≤ 3,p
2aNu1/2Pr1/3E 1/2, Pr > 3,

(2.41)

where a = 0,482, A = 0,332 and E = 0,982.
The boundary thicknesses can be found trough

δT

δu
=


A
p
πPr−1/2, Pr < 3 ·10−4,

Pr−0.357+0.22 log Pr, 3 ·10−4 ≤ Pr ≤ 3,
EPr−1/3, Pr > 3,

(2.42)

δu

L
=


0,5Nu−1Pr1/2 A−1π−1/2, Pr < 3 ·10−4,
0,5Nu−1Pr0.357−0.022 log Pr, 3 ·10−4 ≤ Pr ≤ 3,
0,5Nu−1Pr1/4E , Pr > 3.

(2.43)

The correlation for the Nu number for a vertical wall is used [3]:

Nu = 0.68+ 0.67 Ra1/4

[1+ (0.492/Pr)9/16]4/9
for Ra < 109. (2.44)

The resulting minimum number of cells along a boundary wall on a uniform grid is:

n ≥ max

(
L

δu
N u

BL ,
L

δT
N T

BL

)
. (2.45)

Considering water and air at T = 287 K (15◦C) and p = 1 atm: nwater ≥ 8 and nair ≥ 17.

2.3.5. The size of the matrices
As the number of grid cells has to be increased due to convergence and accuracy reasons, the number of linear
equations also increases and thus the matrices grow along in size. The problem with these large matrices is
that solving matrix equations regularly involves inverting the matrix, which becomes increasingly difficult
when the matrices become bigger.

Figure 2.7 shows that a typical solving time for a 1000×1000-matrix is about a third of a second for the
regular JAVA libraries (so excluding MTJ-N). Every iteration at least four matrix equations of a similar size have
to be solved6. At that rate, a realtime solution will not be realizable. Furthermore, it is unknown in advance
how many iterations are necessary.

Nevertheless, the sparse character of the matrices has not yet been used. Since most of the matrix ele-
ments are zero, sparse matrix algorithms can help. These algorithms can be split up into direct solvers and
iterative solvers. Iterative solvers can be optimized really well, but have the disadvantage of possible diver-
gence. Direct solvers do not have this disadvantage, but cannot always compete with iterative solvers in
terms of excecution time. In order to guarantee convergence, a direct solver will be used in our research: LU
decomposition.

The idea of LU decomposition is to split up a matrix A into a lower triangular matrix L and an upper
triangular matrix U of the same size such that

A = LU . (2.46)

Now, given a vector b and a system of equations

Ax = b ⇔ LU x = b, (2.47)

the solution x can be found in two logical steps:

6horizontal velocity, vertical velocity, pressure and temperature
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Figure 2.7: A JAVA benchmark for time it takes to solve a matrix equation for different matrix sizes. [1]

1. First, we solve Ly = b, which can be performed using forward substitution;

2. Second, we solve U x = y, which can be performed using backward substitution.

We will not discuss the LU decomposition algorithms here.

2.4. Accuracy
Finally, we will want to have an estimate for the error of the obtained solution. In order to give an error, the
cause of the error has to be inspected:

1. Integration error: Every integration over a control volume results in an error being made.

2. Interpolation error: Every probed value for the calculation of the coefficients through interpolation
results in an error being made.

3. Error due to nonlinearity: At a certain moment, the iteration for the nonlinearity truncates. An error
remains.

4. Error due to the Boussinesq approximation: The assumption that material properties of the fluid can
be kept constant, results in an error being made.

The total error is the result of the error contributions. Although this error is hard to estimate, we can guess
which of the four terms will give the biggest contribution. In general, the error of the Boussinesq approxima-
tion is small (within the region of validity), because varying fluid properties turn out to be not that big of an
influence [4]. The error shall thus mainly be determined by the mathematical limitations of the numerical
method.

These mathematical limitations can be tested when the results are compared to an analytical solution,
experiments or to other simulation data. For error estimation, a distance between a solution and our estimate
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solution has to be defined, which is done by choosing a metric. The relative error using ‖·‖2 is the chosen
metric. The error is defined as ‖â−a‖2

‖a‖2
, (2.48)

where â is the vector of estimated values on a set of grid points and a is the vector containing the correct
values on this specific set of grid points.

Repeating the simulation for multiple grid sizes gives a set of errors from which the order of the global
error can be deduced. Although this error is only valid for the particular problem for which a (numerical)
solution is already known, it can also give an indication about the global error of a different problem.





3
Method

In this chapter, a general overview of the possibilities and functionality of the application are described first in
Section 3.1. Then in Section 3.2, the resulting discretization equations obtained from the FVM are discussed.
These equations cannot be solved immediately. First, the initialization will be described in Section 3.3. Then,
an algorithmic approach, the SIMPLE algorithm, is discussed in Section 3.4 to obtain a solution. In Section
3.5, the method implementation in JAVA is discussed. Finally in Section 3.6, we will consider how we try to
find real time solutions with a JAVA script and estimate the accuracy. The comparison to MATLAB is also
discussed.

3.1. The application
In order to gain insight into the functionality of the application, a use case diagram of the application is shown
in Figure 3.1.

Mobile phone
Mobile phone

Set interior
boundary

Set L

Set bound-
ary condi-
tions for T

Choose T or
∇T · n̂ = 0

Solve for u,
v , p and T

Data display

user

Figure 3.1: The use case diagram for the mobile CFD solving application, where L is the length of the side of the LxL square in which a
solution is calculated.

The user input comprises the locations of internal boundaries, the characteristic length, boundary condi-
tions for T on the internal boundary points and on the edges of the domain. Then the user will be able to see

17
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the solution to his problem using coloured pixel map of the variables. The application itself should be able to
generate solutions in realtime for all physical variables.

3.2. Discretization
For a two dimensional grid with square cells (so ∆x = ∆z) the resulting set of linear equations for a general
quantity φ subject to an unsteady convection and diffusion equation is [8]:

aPφP = aEφE +aWφW +aNφN +aSφS +aP0φP0 +b, (3.1)

where

aE = ΓA

(
ue∆x

Γ

)
+max(−ue∆x,0) (3.2a)

aW = ΓA

(
uw∆x

Γ

)
+max(uw∆x,0) (3.2b)

aN = ΓA

(
vn∆x

Γ

)
+max(−vn∆x,0) (3.2c)

aS = ΓA

(
vs∆x

Γ

)
+max(vs∆x,0) (3.2d)

aP0 = ∆x2

∆t
(3.2e)

aP = aE +aW +aN +aS +aP0. (3.2f)

In the expressions above, Γ [m2/s] is the diffusion constant for the process of interest, the lower case sub-
scripts e, w,n and s denote the quantity value at the eastern, western, nothern and southern face of cell P and
A(ζ) is a function resulting from the kind of scheme that is used. The other variables were already introduced
in the previous chapter.

In our work, the hybrid discretization was used:

A(ζ) = max(0,1−0.5|ζ|). (3.3)

This scheme is an approximation of the analytical solution of the steady-state one dimensional convection-
diffusion equation. Note that A(ζ) ≥ 0 for all P . Therefore, all coefficients in Equation 3.1 will be positive and
Rule 1 of Section 2.2.4 is satisfied. Furthermore, it can be checked that also Rule 2 as well for this scheme.

The discretization equations for u, v , and T (the tilde for T and p and the subscript 0 below ν and κ

is dropped from now) can be obtained from Equation 3.1 applied to Equation 2.6b, 2.6c and 2.6d. A few
sidenotes have to be made first:

• For u and v underrelaxation as in Equation 2.37b with α is applied due to nonlinearity;

• Since a staggered grid was used, a grid point index like P and a face index (w for example) do not
represent the same location in all three resulting equations (See Figure 2.6). These indices only define
the locations in and around the unit cells of interest, which are thus shifted with respect to each other.
For these ambiguities a superscript u or v has been added to some quantities to avoid confusion.

The resulting discretization equations are1:

au
P

α
uP = au

E uE +au
W uW +au

N uN +au
S uS +au

P0uP0 + (1−α)

α
au

P ūP + (pu
w −pu

e )∆x (3.4a)

av
P

α
vP = av

E vE +av
W vW +av

N vN +av
S vS +av

P0vP0 + (1−α)

α
av

P v̄P + (pv
s −pv

n)∆x +βg TP∆x2 (3.4b)

aT
P TP = aT

E TE +aT
W TW +aT

N TN +aT
S TS +aT

P0TP0, (3.4c)

1Note that these are the equations for the problem in the interior domain. For the cells near the boundaries the equations must be
modified as done in Section 2.2.3.
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where

au
E = νA

(∣∣∣∣uu
e ∆x

ν

∣∣∣∣)+max(−uu
e ∆x,0) av

E = νA

(∣∣∣∣uv
e∆x

ν

∣∣∣∣)+max(−uv
e∆x,0)

av
W = νA

(∣∣∣∣uu
w∆x

ν

∣∣∣∣)+max(uu
w∆x,0) au

W = νA

(∣∣∣∣uv
w∆x

ν

∣∣∣∣)+max(uv
w∆x,0)

au
N = νA

(∣∣∣∣ vu
n∆x

ν

∣∣∣∣)+max(−vu
n∆x,0) av

N = νA

(∣∣∣∣ v v
n∆x

ν

∣∣∣∣)+max(−v v
n∆x,0)

au
S = νA

(∣∣∣∣ vu
s ∆x

ν

∣∣∣∣)+max(vu
s ∆x,0) av

S = νA

(∣∣∣∣ v v
s ∆x

ν

∣∣∣∣)+max(v v
s ∆x,0)

au
P0 =

∆x2

∆t
av

P0 =
∆x2

∆t
au

P = au
E +au

W +au
N +au

S +au
P0 av

P = av
E +av

W +av
N +av

S +av
P0

aT
E = κA

(∣∣∣∣ue∆x

κ

∣∣∣∣)+max(−ue∆x,0)

aT
W = κA

(∣∣∣∣uw∆x

κ

∣∣∣∣)+max(uw∆x,0)

aT
N = κA

(∣∣∣∣ vn∆x

κ

∣∣∣∣)+max(−vn∆x,0)
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S = κA

(∣∣∣∣ vs∆x

κ

∣∣∣∣)+max(vs∆x,0)

aT
P0 =

∆x2

∆t
aT

P = aT
E +aT

W +aT
N +aT

S +aT
P0

The temperature and pressure term in the equations have been found by the discretization of the source
term as follows

Integrating over the u grid
∫ t+∆t

t

∫ n

s

∫ e

w
−∂p

∂x
dxdzdt =−

∫ t+∆t

t

∫ n

s
p

∣∣∣e

w
dzdt = (pu

w −pu
e )∆x∆t (3.5)

Integrating over the v grid
∫ t+∆t

t

∫ e

w

∫ n

s
−∂p

∂z
dzdxdt =−

∫ t+∆t

t

∫ e

w
p

∣∣∣n

s
dxdt = (pv

s −pv
n)∆x∆t (3.6)

Integrating over the v grid
∫ t+∆t

t

∫ n

s

∫ e

w
βg T dxdzdt =βg TP∆x2∆t , (3.7)

where the ∆t term in all three equations drops out in the final discretization equations, bacause it is left in
the aP0 term after dividing the whole discretization equation by ∆t as done in Section 2.2.1. Furthermore,
piecewise constant profiles have been assumed by performing the final integration steps.

The remaining equation, the continuity equation (Equation 2.6a), does not contain p, but p is the last
unknown. In Section 3.4 a plan will be discussed in order to solve for this problem.

3.3. Initialization of the grids
When using the application, the user places walls inside the interior and sets the boundary conditions. The
grid points lying in this region will be the internal boundary points. As seen in Section 2.2.3, the cells near
these selected boundaries (and the regular boundaries at the edge of the screen) must satisfy other equations
than the interior cells. Therefore, the application must be able to know which cells are boundary cells and
which are not: it has to know which equations hold in each cell.

The total domain is rectangular and its cells are rectangular (square in fact) as well. Since the structure
is the same and repeated over the whole domain, an important advantage is that it turns out that the only
information needed to assemble all equations on all three grids is the set of interior boundary grid points of
the regular grid and information on the boundary conditions.
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3.3.1. The ordered set approach for the standard grid
To give an indication how this works, consider the grid in Figure 3.2. The interior boundary cells are filled
with a striped pattern and the interior cells are white. The boudary faces are thick black lines.

The cells are numbered in the way as shown in the figure (the black numbers) and form the initial grid
G∗. Next, the interior boundary cells are deleted from the full grid and the remaining set of numbers is sorted
from smallest to biggest. This set is called G . The index of the number in this ordered set of numbers is the
new number representing the location of the cell in the grid. These are the blue numbers starting at zero in
the figure2. This new numbering is the new representation of the standard grid, which is called lG . The l
stand for location.

N

E

S

W

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

0 1 2

3 4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19 20

Figure 3.2: A 5x5 grid with 4 striped interior boundary cells and 21 interior grid cells. The north, east, south and west directions are also
denoted.

For the algorithm to run, the coefficients of the linear equations must be calculated and the location of
these coefficients in the matrices must be known (because solving a set of linear equations implies solving a
matrix equation). So a distinction must be made in order to know whether a boundary equation or an interior
equation holds for a location in the grid. Therefore the grid is split up into twelve sets:

• The grid points with a boundary at the North side: lGN = (0,1,2,5,6,18).

• The grid points with a boundary at the East side: lGE = (1,2,7,9,11,13,15,20).

• The grid points with a boundary at the South side: lGS = (5,16,17,18,19,20).

• The grid points with a boundary at the West side: lGW = (0,2,3,8,10,12,14,16).

• The four sets which are complementary to the first four with respect to lG . These are called lGc
N , lGc

E ,
lGc

S and lGc
W . These are the sets Gc

I that are not adjacent to a boundary in the I direction. For example:
lGc

N = (3,4,7,8,9,10,11,12,13,14,15,16,17,19,20).

• The four sets of grid points which lie at the north, east, south and west side of the previous four. These
are called lGc+

N , lGc+
E , lGc+

S and lGc+
W . These are the sets that are obtained from a set Gc

I taking one step
into the I direction. For example: lGc+

N = (0,1,2,3,4,6,7,8,9,10,11,12,13,14,15).

The sets lGN , lGE , lGS , lGW , lGc
N , lGc

E , lGc
S and lGc

W can be used for making distictions when calculating
the coefficients and the sets lGc

N , lGc
E , lGc

S , lGc
W , lGc+

N , lGc+
E , lGc+

S and lGc+
W can be used when placing coef-

ficients in the matrix equations. Finally, the boundary vector can be calculated using the sets lGN , lGE , lGS

and lGW .

2JAVA is a zero based programming language, that is why we chose to start numbering at zero.
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3.3.2. The ordered set approach for the u-and v-grid
Consider the u-grid version of Figure 3.2, shown in Figure 3.3a. The numbering of the original grid G∗

u already
starts at the faces. In the same way as for the standard grid, a reduction can be made in order to form the u-
grid Gu . Then the new representation of this grid is the set of blue numbered cells, lGu . Again twelve sets are
needed in order to assemble the equations.

For the v-grid Gv a similar numbering (starting at the top boundary) can be initiated as for the u-grid.
The result of the example is shown in Figure 3.3b.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

0

1 2 3 4

5 6

7 8

9 10 11 12

(a) From the u-grid perspective.
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6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

0 1 2

3 4 5 6

7 8 9 10

11 12 13 14

(b) From the v-grid perspective.

Figure 3.3: The initialized regular grid from the u-and v-grid perspective.The boundaries are differently defined, since gray interior
boundary cells the regular grid are not adapting to other grids.

3.3.3. Images to the faces of the standard grid
In order to calculate the coefficients, the velocities on the boundary faces must be known (and listed in sets) as
well. Since every cell has a north, east, south and west side, for every direction there exists a bijection between
the gridpoints and the face in that direction. Now we can see why the sets were ordered: for simplicity it is
favourable if the bijective mapping perserves order.

The faces are split up twice. The first distinction is made between horizontal and vertical faces: the north
and south faces form the horizontal faces and the east and west faces form the vertical faces. The second
distinction is whether the faces are boundary faces or interior faces.

Consider the horizontal faces. These are numbered the same way as the v-grid. In terms of the original
(black) numbers the faces of interest are:

• The north faces which lie on the boundary: (1,2,5,8,9,23).

• The south faces which lie on the boundary: (13,26,27,28,29,30).

• The north faces which lie in the interior: (6,7,10,11,12,14,15,16,17,19,20,21,22,24,25).

• The south faces which lie in the interior: (6,7,10,11,12,14,15,16,17,19,20,21,22,24,25).

The north boundary faces will be denoted as Fn and the South boundary faces as Fs . The sorted set
obtained from the union between these two sets are the horizontal boundary faces Fhb . The locations of
the numbers in this set is the new representation of the north and south faces: lFn and l Fs . It can be seen
immediately that bijection between the gridpoints near a north boundary and its faces, f : lGN → lFn , is
given by f (lGN (i )) = lFn(i ): the i th index of the first set is directly linked to the i th face index due to order
perservation. The same can be done for the south boundary faces. The bijection between the interior faces is
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(a) The horizontal faces
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(b) The vertical faces

Figure 3.4: A 5x5 grid with 4 striped interior boundary cells and 21 interior grid cells. The horizontal faces are numbered left and the
vertical faces are numbered right.

in both cases (north respectively south) the direct link between the elements of lGc
N and lGv respectively lGc

S
and lGv with the same index3.

When using the u-grid for the horizontal faces, we find the horizontal boundary faces Fhb which is divided
into the East and West faces Fe and Fw .

Then, the total list of bijective images to the faces of the standard grid is:

lGN → lFn lGE → lFe lGS → lFs lGW → lFw

lGc
N → lGv lGc

E → lGu lGc
S → lGv lGc

W → lGu

Moreover, for the regular grid Dirichlet boundary conditions can hold for temperature. This is the part
where the boundary information becomes important (while the other ordered sets can be constructed with-
out any knowledge the boundary information). The boundary information tells which boundary faces have
Dirichlet like information. The northern, eastern, southern and western boundary faces can be reduced to
the sets l FnDi r ,lFeDi r ,lFsDi r and l FwDi r containing the indices of the faces where Dirichlet boundary con-
ditions hold. Due to the the bijection between the faces and the cells near the grid, as mentioned above, the
sets lGN Di r , lGEDi r , lGSDi r and lGW Di r can be obtained through taking the inverse image.

3.3.4. Images to the faces of the u-and v-grid
In the case of the u-and the v-grid, the situation is more complicated. One of the results is that we have more
possibilities for a cell to be a boundary cell than in the case of the standard grid.

Consider the u-grid. Note that the east and west faces do not have multiple possibilities: only the north
and south faces do. The different possibilities are shown in Figure 3.5. When calculating the coefficients for
the linear equations, the boundary conditions on the faces in the figure must be satisfied. Since u = 0 holds
on the boundaries for our research, all cases result in the same type of equation.

In the case of interior cells that are not near the boundary, the u and v values on the faces are obtained
through interpolation of the values from the previous iteration:

• The east face u-values are obtained as the average of the value at P and E with respect to the u-grid.

• The west face u-values are obtained as the average of the value at P and W with respect to the u-grid.

• The north face v-values are obtained as the average of the value at the northeast grid point and the
northwest grid point with respect to the u-grid.

3We will write A → B for the bijection between the elements of the same indices of A and B .
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1 2 3

Figure 3.5: The three cases for boundary cells at the north. The same holds for the south boundaries, when mirroring the images in the
horizontal plane.

• The south face v-values are obtained as the average of the value at the southeast grid point and the
southwest grid point with respect to the u-grid.

The interpolation of the north and south face can be understood through Figure 3.6.

PW E

N

S

NW NE

SESW

Figure 3.6: The interpolation of the boundary velocity on the u-grid: the average of the adjacent velocities. The v-grid is dashed.

The images from the lGu to lGv directing to the locations needed for interpolation can also be found
using sets. These are listed in Appendix A.

Now consider the v-grid. Contrary to the u-grid, at the east and west boundary faces more possibilities
become available. This is shown in Figure 3.7. Again the same type of equations arise for these cells due to the
boundary condition v = 0. A similar interpolation scheme for the velocities holds for this grid. Furtheremore,
the temperature is calculated through averaging the values at the north and the south face, as that is where
the T -values are saved.

3.4. An algorithmic approach: SIMPLE
In the previous chapter the difficulties of the set of equations were highlighted: unphysical results for a single
grid, nonlinearity, the continuity equation in combination with the pressure term and numerical limitations.
The algorithm used to solve the problem4 is known as SIMPLE, which stands for Semi-Implicit Method for
Pressure Linked Equations. The flowchart in Figure 3.8 is a short overview of this algorithm. The steps are
highlighted below [8].

4Note that the numerical limitations in Sections 2.3.4 and 2.3.5 are still not solved.
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1 2 3

Figure 3.7: The three cases for boundary cells at the east. The same holds for the west boundaries, when mirroring the images in the
vertical axis.

Step 1: Initialization
The first step in the algorithm is the initialization: setting up the framework for the algorithm to run. This has
been discussed in Section 3.3.

Step 2: t = t+∆t
As shown in Figure 3.8, there are two loops in the flowchart: one is the time iteration loop and the other loop
is the one guaranteeing that the values for u, v,T and p satisfy Equation 2.6. At this stage in the algorithm, the
next time step is initiated.

Step 3: Assemble and solve the equations for u∗ and v∗
The first step in the second loop of the SIMPLE algorithm is predicting a pressure, velocity and temperature
field. We need to do this in order to calculate the coefficients for the discretization equations. Since the
system starts at rest for our research, we can choose our initial condition, which gives zero everywhere as a
first guess. In the following iterations the results of the previous iteration will be used as predicted value for
the calculation of the coefficients. Notice that we are not solving the correct equations for u and v (which are
Equations 3.4a and 3.4b)5, but we are solving for the predicted values u∗ and v∗ using the equations:

au
P

α
u∗

P = au
E u∗

E +au
W u∗

W +au
N u∗

N +au
S u∗

S +au
P0uP0 + (1−α)

α
au

P ūP + (p̄u
w − p̄u

e )∆x (3.8a)

av
P

α
v∗

P = av
E v∗

E +av
W v∗

W +av
N v∗

N +av
S v∗

S +av
P0vP0 + (1−α)

α
av

P v̄P + (p̄v
s − p̄v

n)∆x +βg T̄P∆x2, (3.8b)

where the bars over the pressure and temperature denote that the values of the previous iteration (or the ini-
tial conditions in the case of the first iteration) are being used as predicted values.

Step 4: Pressure correction for ∇·v = 0
During this step of the algorithm, the value for the pressure is being improved. Let us propose that the correct
pressure is given by

p = p̄ +p ′, (3.9)

where p ′ is the pressure correction. Then we need to know how the velocity changes due to the correction.
We write

u = u∗+u′ v = v∗+ v ′, (3.10)

where u′ and v ′ are the velocity corrections. If we substract Equation 3.4a from Equation 3.8a, we have some-
thing of the form:

au
P

α
u′

P =∑
nb

anbu′
nb + (pu′

w −pu′
e )∆x. (3.11)

5The coefficients of the u and v equations need the current u and v values to solve for u and v
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Figure 3.8: A flowchart for the SIMPLE algorithm [5].

Now, the SIMPLE algorithm states that the
∑

anbu′
nb term is dropped. The result is:

au
P

α
u′

P = (pu′
w −pu′

e )∆x ⇔ u′
P = d u

P (pu′
w −pu′

e ), (3.12)

where we used α= 0.5 in our work and

d u
P = α∆x

au
P

. (3.13)

This can be done in a similar way for the vertical velocity v ′. The resulting equations u and v can be deduced
when rewriting Equation 3.10:

u = u∗+d u
P (pu′

w −pu′
e ) (3.14)

v = v∗+d v
P (pv ′

s −pv ′
n ) (3.15)

The remaining task is to find an equation for p ′. This equation can be obtained through the continuity equa-
tion:

∇·v = ∂u

∂x
+ ∂v

∂y
= 0. (3.16)

Discretizing this equation gives
ue −uw + vn − vs = 0 (3.17)

when integrating over a cell in the standard grid. Therefore, the subscripts which denote the locations are
again rewritten for the standard grid. This can be done using Figure 2.6 again. Filling in Equation 3.14 and
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Equation 3.15 gives
ap

P p ′
P = ap

E p ′
E +ap

W p ′
W +ap

N p ′
N +ap

S p ′
S +b, (3.18)

where

ap
E = d u

e (3.19a)

ap
W = d u

w (3.19b)

ap
N = d v

n (3.19c)

ap
S = d v

s (3.19d)

ap
P = ap

E +ap
W +ap

N +ap
S (3.19e)

b = u∗
w −u∗

e + v∗
s − v∗

n . (3.19f)

The boundary condition at all boundaries are zero valued Neumann boundary conditions, because at all
boundary walls the velocity is known (v = 0) for our work and therefore no correction is needed. From Equa-
tion 3.14 and Equation 3.15 then follows that the pressure differences must be zero and Neumann boundary
conditions with zero gradient arise.

Again underrelaxation will be used:
p = p∗+αp p ′. (3.20)

For our research, αp = 0.8 is chosen.
A problem with the obtained matrix equation is that there is a zero eigenvalue present due to the zero

gradient boundary condition and the symmetric character of the pressure correction matrix. The result is
that the pressure correction can become arbitrarily large. This can be solved by adjusting one single linear
equation: the equation of the upper left cell. This cell has two boundaries with Neumann boundary condi-
tions. Changing these to zero valued Dirichlet boundary conditions, removes the singularity. The resulting
equation for the upper left cell is:

c(aE +aS )p ′
P = aE p ′

E +aS p ′
S +b, (3.21)

where c À 1 and b as defined in Equation 3.19f. For our research we used c = 10000. Keeping the pressure of
the first cell equal to zero at all times can be done without loss of generality, for we are merely interested in
the pressure differences.

Step 5: Calculate u and v from new pressure
From Equation 3.14 and Equation 3.15 the new velocity field can be calculated. Note that this field is diver-
genceless.

Step 6: Assemble and solve the T-equation
Equation 3.4c can be assembled and solved, since the velocity field is now known.

Step 7: Converged?
At the end of every iteration in the second loop the result is a velocity field, a pressure distribution and a
temperature field that satisfies the heat equation with a small error margin. If this is the case, the whole set
of equations is solved and we have an solution for this time step. However, if this is not the case, the iteration
starts again at step 3. Thus we want to know when the solution can be considered converged.

We know the solution is converged, if the pressure correction is very small. Consider Equation 3.18. This
is actually a discretized version of a Laplace equation very similar to the result derived in Section 2.3.3. There-
fore, for the correction to be small, the source term must be small6. In the case of Equation 3.18, the value for
b in every gridpoint must be small. Let b be the vector containing all b-values. The criterium which will be
used is that the solution is converged whenever

‖b‖∞ = max(b) ¿ vrefL, (3.22)

where vref a characteristic velocity and L is a characteristic length. This criterium states that the maximum
velocity flux of a single cell is much smaller than a charachteristic flux.

6We are using the source and not the correction values themselves, because of the zero eigenvalue mentioned in step 4.
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For this situation studied in this work, the characteristic length is the height of the box. The characteristic
velocity is a velocity which is typical for the flow. Consider the nondimensional form of Equation 2.6c [11]:

∂v

∂t
+u

∂v

∂x
+v

∂v

∂z
=−∂p

∂z
+Pr

(
∂2v

∂x2 + ∂2v

∂z2

)
+RaPrT, (3.23)

where

x = x

L
z = z

L
u = uL

κ
v = vL

κ
t = tκ

L2

p = pL2

κ2 T = T −TC

∆T
Ra = gβ∆T L3

νκ
Pr = ν

κ

and TC [K] the temperature of the cold wall. Note that the hydrostatic pressure p already is divided by the
density. Furthermore, we see the non-dimensional numbers determining the flow are Ra and Pr.

Since buoyancy driven flow is being considered, the RaPrT term is mostly responsible for the advection
term. Therefore,

u
∂v

∂x
+v

∂v

∂z
' RaPrT ⇒ 2

v2
ref

Lref
' RaPrTref ⇒ vref '

√
RaPr

2
, (3.24)

where it was used that both Lref and Tref are of order 1. Using the definition of v and replacing the similarity
sign with an equality sign gives

vref =
√

RaPrκ2

2L2 =
√

gβ∆T L

2
(3.25)

as an estimate for the typical value for the velocity. Let f ∈ (0,1) then the convergence criterium states: if

‖b‖∞ < f

√
gβ∆T L3

2
(3.26)

is satisfied, then the solution has converged. f = 10−3 is used for the calculations in our work.

Step 8: Data display
After every converged iteration set, the solution is shown on the screen, e.g. a pixelmap for a selected quantity
of interest. Then the next iteration in the time loop starts and the loop starts again at step 2.

3.5. Implementing SIMPLE
In order to write an application, a programming language has to be chosen. JAVA will be used for program-
ming the application because of the library called LIBGDX. This library is designed for games on mobile
phone and functions as a platform which can compile the code in such a way that it can not only run on
Android (JAVA based), but also on iOS (C++ based) and on HTML based systems. Furthermore, a desktop
launcher is present as well, which allows for performing quick tests. Instead of deploying the code to Android
or iOS, you can run and debug the application from a laptop.

Since LIBGDX is only a framework, an additional Integrated Development Environment (IDE) in which
the code is written, is convenient. Android Studio was chosen for the following reasons:

• LIBGDX can be simply incorporated into this IDE;

• Android Studio has as built-in mobile phone emulator.

The second reason is the most important one. Since we have this emulator, the android version can be tested
without installing the code on a physical device via a cable all the time.

Nevertheless, there is a disadvantage to JAVA. As mentioned in Section 2.3.5, the real bottleneck of the
problem is the speed we can achieve. In other words the bottle neck is solving the linear equations. Unlike
MATLAB, JAVA does not have a standard backslash operator which chooses the optimal way to solve the
system of equations. We need to choose a linear algebra library which performs at least good enough to
enable us to generate a realtime solution.
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L = 1 mT = 1 K T =−1 K
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Figure 3.9: The problem investigated for the convergence check: a fluidum initially at T = 0 with ν = 10−4, κ = 10−4 and β = 10−4 is
situated within a cavity. The east wall of the cavity is cold, the west side is hot and the north and south walls are insulated. The values on
the blue line are compared to other simulation data.

PARRALLEL COLT is a collection of open source libraries for high performance scientific and technical
computing written in JAVA with a focus on multi-threaded algorithms. Furthermore, PARRALLEL COLT can
deal with large sparse matrices and perform quick LU decompositions, which is what we are looking for.
Whether the library can compete with MATLAB is investigated.

3.6. Testing SIMPLE
For analysing runtime and accuracy, a test problem will be the fundament of the investigation: consider a
fluidum initially at T = 0 K with ν= 10−4 m2/s, κ= 10−4 m2/s and β= 10−4 m2/s, situated within a cavity as in
Figure 3.9. The east wall of the cavity is cold, the west side is hot and the north and south walls are insulated.
Simulation data over the blue line at half height is known [11] and this region the algorithm will be tested for
accuracy.

Note that this problem has Gr= 2 ·105, but the result turns out to give a laminar solution. The idea is to
tackle a problem harder than other problems with smaller Gr number, but still obtain a real time solution.
From this result, we will try to derive problems for water and air which are real time solvable.

3.6.1. Runtime analysis
The runtime analysis is split up into two parts: comparing the JAVA script to the MATLAB script and investi-
gating for which time step sizes the script can give a real time result. In both cases the algorithm is running
and solving the test problem on a n ×n grid in the following way:

1. 50 time steps, starting at 0.02 s till 1.0 s with steps of 0.02 s, are considered.

2. For every step size, 20 consecutive time steps are being calculated. The durations are saved in a text
file.
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3. The runtime measurement for each step size is performed 3 times, because the cache memory being
full can disturb the measurements. Taking the median of the 3 measurements for a specific time step,
decreases the influence of the cache to the measurements.

4. The mean of the 20 resulting median values for each step size, estimates the average runtime τ [s] of
the SIMPLE algorithm for this step size. The standard deviation in the 20 medians στ [s] indicates the
inconsistency of the SIMPLE algorithm for this step size.

Real time analysis
The goal of the runtime analysis is finding time step sizes for which the SIMPLE algorithm on a mobile phone
can solve all physical variables on a n ×n grid real time. We will be looking for the biggest n for which a n ×n
grid gives a real time result for the test problem, so the accuracy of the solution is optimized as well. In our
work, we used a Nexus 5X (OS version 7.1.2) as the physical device.

Furthermore, we say a step size gives a real time simulation, if the runtime is smaller or equal to ∆t for
all runtimes (even the worst cases). Therefore, we deem a step size to give a real time solution, if τ+στ ≤∆t
holds.

Next, the optimal step size is the step size for which the ratio

r = τ

∆t
(3.27)

gives the minimum result and for which the uncertainty in the ratio is the smallest. The uncertainty in the
ratio is estimated by [6]:

σr = ∂r

∂τ
στ = στ

∆t
. (3.28)

The measurements are running on the Nexus 5X under two conditions: one time with other apps being
activated (mail, whatsapp and internet running on the background), thus testing under standard conditions,
and one time when all apps are closed, thus testing under optimal conditions. The testing continues until the
biggest n is found.

MATLAB vs JAVA

If the biggest n giving a real time solution to the test problem has been found, the next step is checking the
relative performance of compared to MATLAB: executing the runtime analysis for both the MATLAB and the
JAVA script indicates whether the MATLAB matrix solver and PARALLEL COLT LU solver have similar solving
times, e.g. whether we could look for another Java library or we cannot easily find better solvers. Measuring
the runtime for multiple step sizes and not for one step size only, removes the effect of implementation dif-
ferences that give a wrong view. The grid size for which the comparison is made, is be obtained from the real
time analysis.

3.6.2. Real time solutions for water and air systems
If a real time solution for the test system has been found for a certain step size ∆trt, we will try to extrapolate
the result to the case for water and air. Again, we want to have a suitable time step size. In our research, the
step size for water and air is obtained through the non-dimensional time of Equation 3.23: by taking the ratios
of the non-dimensional times of the fluidum of interest to the test fluid, the time step can be converted. The
conversion can be calculated via:

∆t = κtest

κ

(
L

Ltest

)2

∆trt = L2

κ
∆trt ·10−4 s. (3.29)

Furthermore, we want to get an indication which water and air problems are in real time solvable. There-
fore, a new restriction in the (∆T,L) plane in Figure 2.1 is estimated. Not every arbitrarily small time step will
give a real time solution, because every processor has a certain overhead for the script, a minimum time it
takes to process. If the minimum time is referred to as ∆tmin, the following restriction has to hold:

∆t ≥∆tmi n ⇒ L2 ≥ κ ∆tr t

∆tmi n
·104 m2 ⇔ L ≥

√
κ
∆tr t

∆tmi n
·102 m. (3.30)

The obtained area in the (∆T,L) plane is investigated for real time solutions and thus the estimations in
Equations 3.29 and 3.30 are checked.



30 3. Method

3.6.3. Error analysis
In order to check how accurate a generated (real time) solution is, the long term solution is compared to the
results of a different numerical method as explained in Section 2.4. Data from Wan [11] will be used to make
the comparison according to the error defined in Equation 2.48. This comparison data contains 9 vertical
velocity values at equidistant locations on the blue line in Figure 3.9.

Furtheremore, using the boundary layer calculations in Section 2.3.4, we find that n ≥ 29 should hold.
Depending on the real time results of the test fluid (and water and air) the accuracy around the estimated
minimum grid size and the grid size resulting from the real time analysis will be considered.
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Results

4.1. The profiled JAVA code
The profiling results of the JAVA code is shown in Figures 4.1 and 4.2. These consist of two important threads:
a thread solving a matrix equation and a thread initiating the time step and drawing the result. In these figures
the Invocation Count is the number of times the method is allocated, the Inclusive Time is the time spent in
this method and all methods called by this method and the Exclusive Time is the time spent in the allocated
method only for a single thread. We will be looking at the exclusive times, unless inclusive time is mentioned
explicitly.

In the result of the matrix solving thread in Figure 4.1, we see that most of the time in this thread (74.9%
inclusive time) is spent on the quickSolve method. This is the method which implements the LU solving
algorithm of the PARALLEL COLT library. All methods from lu till searchFromTo are part of the library1. There-
fore, we cannot gain any speed from this other than reducing the amount of invocations. The method which
comes second is size with 4.5% of the time. This method is used to get the sizes of the ordered sets (as defined
in Section 3.3). The effect of improving this method is neglegible compared to the matrix solving algorithm.

In the other thread in Figure 4.2, we see that most of the time is used by the doTimestep method. The time
spent in this method is mostly caused by for loops. The amount of for loops cannot be decreased easily, so
we will not discuss this method any further. Furthermore, the getQuick method2 and the coeffcall method
occupying a significant part of the thread time. However, only the first one could be reduced by rewriting
code, but the second one not, because the number of coefficients which are calculated by this method cannot
be reduced (and the code calculating it cannot be simplified). Thus optimally, only 13.6% could be gained for
this thread. For now, we have chosen not to rewrite the code for this thread, because the benifit will be small
compared to finding faster solvers.

We can conclude that the code is real time results can only be achieved through fast solvers.

4.2. Results of the runtime analysis
The real time analysis has been performed for a 21×21 grid, because this grid size turns out be the real time
limit for the Nexus 5X discussed in Section 3.6.1. The comparison between JAVA script compiled to the Nexus
5X, the MATLAB script and the JAVA script on the desktop application will be made in the following sections.
The requirement of the minimum number of 29×29 cells (Section 2.3.4) will be discussed in Section 4.4.

4.2.1. Real time simulation on mobile phone
Figure 4.3 shows the average runtime of the JAVA script compiled to the Nexus with other apps running on the
background (so under normal operating conditions). Figure 4.5 shows the runtime when only the solver is
running and other programs on the phone are turned off. The ratio of the simulated step size to the physical
step size is shown in Figure 4.4 and 4.6 (with other apps running on the background and without them). The
errorbars indicate the range of the time it takes to fulfill a time step in the runtime figures and the uncertainty
in the real time ratio in Figure 4.4 and 4.6.

1We can also see that the exclusive times of these methods sum op to approximately the inclusive time of quickSolve.
2Note that this method is allocated in both threads and thus has nothing to do with the matrix solving thread.
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Figure 4.1: The profiling results for the JAVA code for a the thread in which a matrix is solved. The percentages indicate the part of the
total time the script uses to excecute a method. The Invocation Count is the amount of times the method is allocated, the Inclusive Time
is the time spent in this method and all methods called by this method and the Exclusive Time is the time spent in the allocated method
only.

We see in Figure 4.3 and Figure 4.5 that there is an overhead, which causes the smallest time step not
to achieve the real time limit. However, when time steps become too big, a real time result is not realizable
either for two reasons: more iterations per time step are needed and the cache of the phone must be emptied
more often to make room for the new matrices, causing extra time and eventually inconsistency in runtime
(thus large error bars). This will become worse, since the chance of divergence grows as the time step grows.
We see that the real time limit can be achieved with and without extra apps running on the background by
choosing a time step size in the middle. ∆t = 0.1 s is the best choice for the time step for this grid size for two
reasons: Figure 4.4 and Figure 4.6 show that for this time step a real time solution is always possible and the
time it takes to fullfil a timestep is the most consistent (small error bar).

4.2.2. Runtime in MATLAB vs JAVA
Figure 4.7 shows the average runtime of the MATLAB script for different time steps. These results for the
JAVA script is shown in Figure 4.8. The real time ratios for both plots are shown in Figure 4.9 respectively 4.10.
Again, the errorbars are included in the plot to see the dispersion in the simulation time and the uncertainty
in the ratio. The shape of the runtime curves is quite similar. The only difference is that the MATLAB run-
times remain low longer as the JAVA runtimes start increasing from the start. This is caused by the way the
algorithms have been programmed and the way the cache memory is used by the two scripts. For example, in
the MATLAB script vectorization is used which is not possible in JAVA and some boundary vectors are being
calculated a little different in both scripts. Furthermore, note that JAVA is faster than MATLAB for small step
sizen, so MATLAB has more overhead.

Although profiling has not been excecuted on the MATLAB script, we can assume that the matrix solving
is the most time-demanding as for the case of the JAVA script. Therefore, we can conclude that our solver can
compete with MATLAB for a 21x21 grid. So the optimised solvers in MATLAB will probably give not very
much benefit for real time purposes.

4.3. A mobile real time CFD solver
So far we have seen that a real time solution is realizable for the test problem. For other problems, e.g. with
objects within the domain, the test problem can still be solved real time with the step size ∆tr t = 0.1 s. A
Nexus 5X emulator screenshot of the temperature simulation for the test system with additional insulated
walls in the interior is shown in Figure 4.11.

Nevertheless, the solver does not only work for the test problem, but for water and air at T = 287 K (15◦C)
and p = 1 atm as well. The only difference is the time step which has to be chosen. Using the time step scaling
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Figure 4.2: The profiling results for the JAVA code for a thread, which does initiates the time steps and draws the result to the screen. The
percentages indicate the part of the total time the script uses to excecute a method. The Invocation Count is the amount of times the
method is allocated, the Inclusive Time is the time spent in this method and all methods called by this method and the Exclusive Time is
the time spent in the allocated method only.

as mentioned in Section 3.6.2, we can rewrite the time step into a more suitable one:

∆t = L2

κ
·10−5 s. (4.1)

As we saw in Figures 4.3 and 4.5, the algorithm has an overhead. Therefore, not all systems will be solvable.
The class of real time solvable problems is bounded by a certain minimum time as mentioned in Section
3.6.2. Using Figure 4.3, the estimated bound is given by:

∆t ≥ 0.1 s ⇒ L ≥p
κ ·102 m. (4.2)

In the case of water, this inequality gives L ≥ 0.0369 m as a result. For air, the result is L ≥ 0.4488 m.
Comparing this new requirement with the class of simple problems, we see that air cannot be solved in

real time. The number of (∆T,L) combinations for water drops, but is should remain real time solvable for
the correct input.

Nevertheless, looking for (∆T,L) pairs within the laminar regime of water has not given any result yet3.
The assumption in Equation 4.2 does not seem to hold in the case of water and air. Especially for smaller
characteristic lengths, calculating a time step takes longer. Therefore, a correct view of the problem set for
which we can calculate the solution real time cannot be given. Finding a better estimate for the lower bound
is left for further research.

4.4. Results of the error analysis
The long term velocity solutions of the algorithm applied to the test problem are shown in Figures 4.12, 4.13
and 4.14. These are the solutions for a 11×11 grid, a 19×19 grid and a 29×29 grid. The result for a 21×21
grid is shown as well in Figure 4.15.

The expectation for the problem was that the grid needed at least an 29×29 grid (Section 3.6.3). In Figure
4.14 we can see that the boundary layer is indeed visible. For a too small grid such as an 11× 11 grid, we
can clearly see in Figure 4.12 that the boundary layer cannot be seen at all. For grids bigger than 19×19 the
boundary layer starts being visible. This can be seen in Figure 4.13. Although the cells adjacent to the east
and west boundary are only a little smaller than the bulk velocities, the velocities adjacent to the north and
south boundary do feel the boundary quite well: the result gives an acceptable approximation. From this grid
size the boundary layer starts being better visible. The results will be similar to result on the 29×29 grid. We
can see this as well for solution on the 21×21 grid, which was shown to be real time solvable.

3For air neither.
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Figure 4.3: The average runtime of the CFD calculation of the test problem on a 21×21 grid of the JAVA script on the Nexus 5X for different
step sizes with background CPU usage. The error bars indicate the range of the runtimes per stepsize and thus give an indication how
consistent the average actually is. The red line is the real time line: having runtimes below the line indicates a real time simulation.
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Figure 4.4: The results for the real time analysis on the Nexus 5X like Figure 4.3, but now for the ratio of the simulation to physical time.
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Figure 4.5: The average runtime of the CFD calculation of the test problem on a 21×21 grid of the JAVA script on the Nexus 5X for different
step sizes without background CPU usage. The error bars indicate the range of the runtimes per stepsize and thus give an indication how
consistent the average actually is. Again, the red line is the real time line.
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Figure 4.6: The results for the real time analysis on the Nexus 5X like Figure 4.5, but now for the ratio of the simulation to physical time.
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Figure 4.7: The average runtime of the CFD calculation of the MATLAB script for different step sizes. The error bars indicate the range
of the runtimes per stepsize and thus give an indication how consistent the average actually is.
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Figure 4.8: The average runtime of the CFD calculation of the JAVA script on the desktop for different step sizes. The error bars indicate
the range of the runtimes per stepsize and thus give an indication how consistendt the average actually is.
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Figure 4.9: The ratio of the average simulation time of the MATLAB script to physical timestep for different step sizes.
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Figure 4.10: The ratio of the average simulation time of the JAVA script to physical timestep for different step sizes.
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Figure 4.11: A screenshot of a running simulation of the test system. The south wall is hot (red), the north one is cold (blue) and the rest
of the walls along with the TU letters are insulated.

Now, for the estimation of the relative error in the real time solution and the relative error in the algorithm
in general, we are using the method described in Section 3.6.3. The relative errors of the long term solution
of n ×n grids are plotted in Figure 4.16. The n vary from 19 till 33 with step sizes of 2 and from 33 till 57 with
step sizes of 6. A quadratic polynomial fitted to the data is shown in Figure 4.16 as well. The fit is given by
e = 22.92∆x2.

We see that the error estimates lie around the fitted curve. For the errors of grids smaller than 29×29, a
little distortion could be expected, because the boundary layer is not quite there yet. However, for even larger
grids the same pattern in the relative error can be seen. We conclude that the boundary layer is not the cause,
because the distortion hold for bigger grids as well.

One reason for this phenomenon is that the solution does not seem to become stationary in the measure-
ment time: the solution oscillates around the the reference data. Figure 4.17 shows some of these oscillations.
Nevertheless, we can also see that the error has become quite steady. Therefore, we can conclude that the es-
timated error gives a reasonable view. From these results we can conclude that the relative error in the 21x21
grid is approximately 5.4% and the error decreases with order 2.
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Figure 4.12: The solution after long time of the test problem on a 11x11 grid.
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Figure 4.13: The solution after long time of the test problem on a 19x19 grid.
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Figure 4.14: The solution after long time of the test problem on a 29x29 grid.
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Figure 4.15: The solution after long time of the test problem on a 21x21 grid.
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Figure 4.16: The estimated error of the algorithm for different step sizes: the rightmost point stands for n = 19 and the rightmost one for
n = 57. A quadratic fit is shown as well.
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Figure 4.17: The relative distance between the simulated data and the reference data for all measured time steps and the grids with
n = 21, n = 25, n = 29, n = 45 and n = 57.





5
Conclusions and Recommendations

5.1. Conclusions
In order to make a CFD solver for a smartphone, a JAVA application has been made, which has been tested on
runtime performance and and accuracy. Our goal is to make a CFD solver that gives a real time solution with
highest possible accuracy.

In order to check whether the application could gain much more speed, the JAVA code has been profiled.
From the results, we found that the only way of improving the speed of the implemented algorithm is through
faster matrix solvers.

For the test problem, we were able to simulate real time on a Nexus 5X on a 21×21 grid with an accuracy of
5.4%, when using the SIMPLE algorithm solving the physical parameters. We also found an optimal time step
∆tr t = 0.1 s for the test problem. For bigger grids, a real time solution is not longer possible, but the relative
error decreases with second order.

Comparing the runtime of the JAVA script (for the test problem on a 21 × 21 grid) on desktop to code
converted to MATLAB, we found that the algorithms in JAVA and MATLAB have about the same solving
speed. MATLAB even had higher overhead. We concluded that the speed of a JAVA script cannot be improved
much, since the bottleneck in the solving speed is in the matrix solvers. These solvers have already been
optimized in MATLAB. Thus, a significantly faster CFD solver implementing the SIMPLE algorithm does
probably not exist.

For other problems with the test fluid and the obtained time step, real time solutions can be found as
well. The results have been extrapolated to the case of water and air. For air, finding real time solutions were
predicted to be impossible. For water, there should be problems that give real time solutions. Nevertheless,
when using the result extrapolated to laminar problems for water and air, we cannot find any real time results
when using the test geometries. Thus, we have not found a correct view of the set of problems which are real
time solvable.

Concluding, we have made a mobile CFD solver that can give real time results for a very specific problem.
The CFD solver works quite optimal for the SIMPLE algorithm. However, we did not succeed in generalizing
the result to water and air systems. The restrictions guaranteeing real time solutions remain unkown.

5.2. Recommendations
In further research, the restrictions for obtaining real time results can be explored. Instead of solving the
equations for physical parameters (Equations 2.6), a non-dimensional form should be considered. The set of
problems defined by the Ra and Pr numbers could be investigated for obtaining real time solutions. This will
give a more general view on real time solvability which could result in a better view on arbitrary fluids being
able to give real time results.
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A
Calculation of the ordered sets

Let A and B be ordered sets, sorted from smallest to biggest element, and n ∈N. In the following equations
the operations below are defined as follows:

1. C = A∪B = (c1,c2, ...,cm) where c j ∈ A or c j ∈ B and c j−1 < c j < c j+1;

2. C = A∩B = (c1,c2, ...,cm) where c j ∈ A and c j ∈ B and c j−1 < c j < c j+1;

3. C = A \ B = (c1,c2, ...,cm) where c j ∈ A and c j ∉ B and c j−1 < c j < c j+1;

4. A ◦n = (a1 ◦n, a2 ◦n, ..., am ◦n), where ◦ ∈ {+,−};

5. Assume |A| = |B |, then A ◦B = (a1 ◦b1, a2 ◦b2, ..., am ◦bm), where ◦ ∈ {+,−};

6. Assume B ⊆ A, then C = LOC(A,B) = (c1,c2, ...,cm) where ac j = b j and c j−1 < c j < c j+1;

7.
⌊ A

n

⌋= (
⌊ a1

n

⌋
,
⌊ a2

n

⌋
, ...,

⌊ am
n

⌋
).

The standard grid sets
The sets for the grid points
Consider the regular grid as in Figure A.1 (copied from Section 3.3). In general, the standar grid sets of interest
can be calculated through

I = { i | i is an internal boundary point}, (A.1a)

G = {1,2, ...,nx ·nz } \ I , (A.1b)

GN = (G ∩ (I +nx ))∪ ({1,2, ...,nx } \ I ), (A.1c)

GE = (G ∩ (I −1))∪ ({nx ,2 ·nx , ...,nx ·nz } \ I ), (A.1d)

GS = (G ∩ (I −nx ))∪ ({nx · (nz −1)+1,nx · (nz −1)+2, ...,nx ·nz } \ I ), (A.1e)

GW = (G ∩ (I +1))∪ ({1,nx +1, ...,nx · (nz −1)+1} \ I ). (A.1f)

The resulting locations are the sets

lG = {1,2, ..., |G|},

lGN = LOC(G ,GN ), lGc
N = lG \ lGN , lGc+

N = LOC(G ,Gc
N −nx ),

lGE = LOC(G ,GE ), lGc
E = lG \ lGE , lGc+

E = lGc
E +1,

lGS = LOC(G ,GS ), lGc
S = lG \ lGS , lGc+

S = LOC(G ,Gc
S +nx ),

lGW = LOC(G ,GW ), lGc
W = lG \ lGW , lGc+

W = lGc
W −1.
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Figure A.1: A 5x5 grid with 4 striped interior boundary cells and 21 interior grid cells. The north, east, south and west directions are also
denoted.

The sets for the horizontal boundary faces
Consider the horizontal faces as in A.2a. The sets of interest, the horizontal faces, can be calculated through

Fn =GN , (A.2)

Fs =GS +nx, (A.3)

Fhb = Fn ∪Fs . (A.4)

The resulting locations are the sets

lFn = LOC(Fhb ,Fn), lFs = LOC(Fhb ,Fs ).

The sets for the vertical boundary faces
Consider the vertical faces as in A.2b. The sets of interest, the vertical faces, can be calculated through

Fe =GE +
⌊

GE −1

nx

⌋
+1, (A.5)

Fw =GW +
⌊

GW −1

nx

⌋
, (A.6)

Fvb = Fe ∪Fw . (A.7)

The resulting locations are the sets

lFe = LOC(Fvb ,Fe ), lFw = LOC(Fvb ,Fw ).

The u-grid sets
For the u-grid, only the grid sets have to be known (and not the faces), because the no slip boundary condi-
tions let every image to a face direct to a zero-velocity value on this face. In general, the sets of interest can be
calculated through
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Figure A.2: A 5x5 grid with 4 striped interior boundary cells and 21 interior grid cells. The horizontal faces are numbered left and the
vertical faces are numbered right.

Gu =
((

G +
⌊

G −1

nx

⌋)
∪

(
G +

⌊
G −1

nx

⌋
+1

))
\ Fvb , (A.8)

GuN =Gu ∩
((

Fn +
⌊

Fn −1

nx

⌋
+1

)
∪

(
Fn +

⌊
Fn −1

nx

⌋))
, (A.9)

GuE =Gu ∩ (Fe −1), (A.10)

GuS =Gu ∩
(((

Fs +
⌊

Fs −1

nx

⌋
+1

)
∪

(
Fs +

⌊
Fs −1

nx

⌋))
− (nx +1)

)
, (A.11)

GuW =Gu ∩ (Fw +1). (A.12)

The resulting locations are the sets

lGu = {1,2, ..., |Gu |},

lGuN = LOC(Gu ,GuN ), lGc
uN = lGu \ lGuN , lGc+

uN = LOC(Gu ,Gc
uN − (nx +1)),

lGuE = LOC(Gu ,GuE ), lGc
uE = lGu \ lGuE , lGc+

uE = lGc
uE +1,

lGuS = LOC(Gu ,GuS ), lGc
uS = lGu \ lGuS , lGc+

uS = LOC(Gu ,Gc
uS + (nx +1)),

lGuW = LOC(Gu ,GuW ), lGc
uW = lGu \ lGuW , lGc+

uW = lGc
uW −1.

The v-grid sets
As for the u-grid, only the v-grid sets have to be known. The sets of interest can be calculated through

Gv = (G ∪ (G +nx )) \ Fhb , (A.13)

Gv N =Gv ∩ (Fn +nx ), (A.14)

GvE =Gv ∩
((

Fe −
⌊

Fe −1

nx +1

⌋
−1

)
∪

(
Fe −

⌊
Fe −1

nx +1

⌋
−1+nx

))
, (A.15)

GvS =Gv ∩ (Fs −nx ), (A.16)

GvW =Gv ∩
((

Fw −
⌊

Fw −1

nx +1

⌋)
∪

(
Fw −

⌊
Fw −1

nx +1

⌋
+nx

))
. (A.17)

(A.18)
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The resulting locations are the sets

lGv = {1,2, ..., |Gv |},

lGv N = LOC(Gv ,Gv N ), lGc
v N = lGv \ lGv N , lGc+

v N = LOC(Gv ,Gc
v N −nx ),

lGvE = LOC(Gv ,GvE ), lGc
vE = lGv \ lGvE , lGc+

vE = lGc
vE +1,

lGvS = LOC(Gv ,GvS ), lGc
vS = lGv \ lGvS , lGc+

vS = LOC(Gv ,Gc
vS +nx ),

lGvW = LOC(Gv ,GvW ), lGc
vW = lGv \ lGvW , lGc+

vW = lGc
vW −1,

lGvW 1 = LOC(Gv ,GvW 1), lGc
vW 2 = LOC(Gv ,GvW 2), lGvW 3 = LOC(Gv ,GvW 3).

Images between the u-grid and the v-grid
Images from the u-grid to the v-grid
In general, the sets representing the images from the u-grid to the v-grid at the north (denoted by an a and a
b) and the south (denoted by an a and a b as well) can be calculated through

Guvna =Gu \GuN −
⌊

Gu \GuN −1

nx +1

⌋
−1, (A.19)

Guvnb =Gu \GuN −
⌊

Gu \GuN −1

nx +1

⌋
, (A.20)

Guv sa =Gu \GuS −
⌊

Gu \GuS −1

nx +1

⌋
−1+nx , (A.21)

Guv sb =Gu \GuS −
⌊

Gu \GuS −1

nx +1

⌋
+nx . (A.22)

The resulting locations are the sets

lGuvna = LOC(Gv ,Guvna), lGuvnb = LOC(Gv ,Guvnb),

lGuv sa = LOC(Gv ,Guvna), lGuv sb = LOC(Gv ,Guv sb).

Images from the v-grid to the u-grid
The sets representing the images from the v-grid to the u-grid at the east (denoted by an a and a b) and the
west (denoted by an a and a b as well) can be calculated through

Gvuea =Gv \GvE +
⌊

Gv \GvE −1

nx

⌋
+1, (A.23)

Gvueb =Gv \GvE +
⌊

Gv \GvE −1

nx

⌋
−nx , (A.24)

Gvuw a =Gv \GvW +
⌊

Gv \GvW −1

nx

⌋
, (A.25)

Gvuwb =Gv \GvW +
⌊

Gv \GvW −1

nx

⌋
− (nx +1). (A.26)

The resulting locations are the sets

lGvuea = LOC(Gv ,Gvuea), lGvueb = LOC(Gv ,Gvueb),

lGvuw a = LOC(Gv ,Gvuw a), lGvuw a = LOC(Gv ,Gvuw a).
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