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ABSTRACT 
Nanomagnets are widely used to store information in non-volatile spintronic devices. Spin waves can transfer information with low-power 

consumption as their propagation are independent of charge transport. However, to dynamically couple two distant nanomagnets via spin 
waves remains a major challenge for magnonics. Here we experimentally demonstrate coherent coupling of two distant Co nanowires by fast 
propagating spin waves in an yttrium iron garnet thin film with sub-50 nm wavelengths. Magnons in two nanomagnets are unidirectionally 
phase-locked with phase shifts controlled by magnon spin torque and spin-wave propagation. The coupled system is finally formulated by an 
analytical theory in terms of an effective non-Hermitian Hamiltonian. Our results are attractive for analog neuromorphic computing that requires 
unidirectional information transmission. 

KEYWORDS 
spintronics, nanomagnets, spin waves, coherent coupling, nonreciprocity 

 
1 Introduction 
Coupled nanomagnets offer a variety of functionalities towards 
non-volatile memories and logic gates and form essential 
building blocks for spintronic devices [1-4]. The interlayer 
exchange coupling between magnetic layers leads to the 
discovery of the giant magnetoresistance [5-7] and stimulates 
the broad applications of magnetic tunnel junctions [8-10]. Very 
recently, the nanomagnets are laterally coupled via the 
Dzyaloshinskii-Moriya interaction, where two static magnetic 
domains are connected through a chiral domain wall [11]. In 
addition to static magnetic coupling, GHz magnetization 
dynamics of nanomagnets can be coupled via e.g. dynamic 
exchange coupling [13] and dynamic dipolar coupling [14, 15]. 
However, these magnetic couplings are quickly weakened when 
the nanomagnets are separated apart. The dynamics of distant 
nanomagnets can be synchronized using an electrical current 
due to the spin-transfer torque effect [16, 17], which has 
important technological implications e.g. microwave generators 
[18-21]. Yet, a high current density is required to activate the  

synchronization, which would inevitably produce significant 
energy dissipation due to the Joule heating. Spin waves or its 
quanta, the magnons [22-31], are collective excitations of the 
magnetic order and can convey information free of charge 
transport. Therefore, spin waves are regarded as a promising 
candidate for the next-generation information carriers with low-
power consumption. Magnons and photons are both bosons [32, 
33], but have different dispersion relations: at the same 
frequencies magnons have much shorter wavelengths than 
photons, which offers spin waves an innate advantage for 
integrated nanodevices [34-38]. Incoherent-magnon-mediated 
coupling between magnets are found in the magnon valves with 
both vertical [39, 40] and lateral [41] structures. However, the 
long-distance coherent coupling between two nanomagnets via 
propagating spin waves has not been achieved yet.  
  
Here, we experimentally demonstrate a nonreciprocal coupling 
of two distant ultra-thin film Co nanowires (>50 nm wide) that 
is mediated by fast exchange spin waves in 20 nm-thin yttrium 
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iron garnet (YIG) films. Nonreciprocal spin waves are of great 
interest in magnonic applications due to the controllable wave 
flow for the transfer of information and logic functions [47-50]. 
The excitation and detection of coherent exchange spin waves is 
non-trivial by itself [46-49]. In this work, coherent exchange 
spin waves are excited with wavelengths down to λ = 48 nm, 
which are fastest reported so far [50-52] (see Electronic 
Supplementary Material (ESM)). More importantly, the Co wires 
are coherently and unidirectionally coupled by propagating spin 
waves with a phase shift ∆𝜙𝜙 that is freely tunable from 0 to 2𝜋𝜋 
by propagation-induced phase delay. The coupling of spin waves 
in Co and YIG can be interpreted as a dynamic interlayer magnon 
spin torque [53-56] and the strong nonreciprocity is caused by 
the chiral spin pumping [57, 58], and not the intrinsic 
nonreciprocity of magnetostatic surface waves in thick magnetic 
slabs [59-61]. Theoretically, the coupled system of two Co wires 
and magnetic substrate can be formulated in terms of an 
effective non-Hermitian Hamiltonian [62-64]. The coupling 
strongly enhances the spin-wave mediated transmission signal 
[65], quite different from the level attraction of magnon and 
photon levels reported in a microwave cavity [66, 67]. 
 
 

2 Nanomagnonic device information 
Figure 1(a) illustrates two identical Co nanowires in direct 
contact with a 20 nm-thin YIG film. The Co wires are 30 nm thin, 
100 nm wide and separated by 1.5 μm. A scanning electron 
microscope (SEM) image is shown in Fig. 1(c). Magnons in two 
Co wires are coupled through spin waves in the YIG film with low 
magnetic damping [68, 69]. On each Co wires, gold nano-
stripline (NSL) antennas (200 nm wide) [70] are integrated to 
coherently excite and detect spin waves (Fig. 1(b)). The 
microwave reflection spectrum 𝑆𝑆11 (Fig. 2(a)) is sensitive to the 
ferromagnetic resonance (FMR) of the material close to NSL1. 
The Co wire Kittel mode is observed at frequencies (14.5~19.5 
GHz) much higher than that of the YIG film (0.5~3.5 GHz) due to 
the large form anisotropy of Co nanowires [71, 72]. An in-plane 
magnetic field H is applied parallel to Co wires. By sweeping H 
from negative to positive values, the magnetic configuration of 
Co/YIG device switches from parallel (P) to antiparallel (AP) 
because of the high coercivity of Co nanowires [71, 72] 
compared to the YIG film, returning to a parallel configuration 
only at 𝐻𝐻 > 50 mT.  

Microwaves are transmitted from Co1 to Co2 via 
propagating spin waves [25, 28, 69, 73] as measured by the 
transmission spectra 𝑆𝑆21  (its imaginary part is shown in Fig. 
2(b)). We observe remarkable interference fringes (ripples) 
around the Co resonance in the AP state. The features in 𝑆𝑆21 
(Fig. 2(b)) vanish in the reverse transmission spectra 𝑆𝑆12 (Fig. 
1(f)), revealing a nearly perfect chiral excitation of exchange 
spin waves by the magnetodipolar fields from the Co nanowires 
[15, 57, 58]. This can be understood by the stray fields generated 
by the right (left) moving spin waves that vanish below (above) 
the film and precess in the opposite direction of the 
magnetization. Figure 2(d) is a cross section from 𝑆𝑆21 extracted 
at a field of 30 mT. The Co FMR related signal near 15 GHz is 
more than 10 times stronger than the signal at lower 
frequencies assigned to dipolar magnons close the FMR of YIG 

[74, 75]. Therefore, the short-wavelength, exchange-dominated 
magnons with high group velocities [47-52] transmit signals 
between two Co wires at high frequencies (14~17 GHz) and in 
one direction only.  
 
3 Results and discussion 
The mechanism of nonreciprocal coupling is conceptually 
sketched in Fig. 3(a). Due to the chiral spin pumping [58], the 
FMR of Co wire 1 can only couple to spin waves in YIG with 
wavevector 𝑘𝑘 in one direction. After propagating over a finite 
distance 𝑑𝑑, the spin waves in YIG then drive the magnetization 
in Co wire 2 to precess. We find a fixed phase relation Δ𝜙𝜙 =
𝜙𝜙2 − 𝜙𝜙1 between the spin precessions of two Co wires that is 
caused by: (1) Twice a shift of 𝜙𝜙𝑖𝑖  by the dynamical coupling 
[53-55] between the Co wires and YIG film, i.e. from Co1 to YIG 
and from YIG to Co2, which depends on the frequency. At 
resonance this process is purely dissipative, i.e. 𝜙𝜙𝑖𝑖 = π/2 ; (2) 
the phase delay 𝜙𝜙𝑘𝑘 by the propagation of exchange spin waves 
with a finite wavenumber 𝑘𝑘 over a distance 𝑑𝑑. The total phase-
difference between the Kittel modes of Co2 and Co1, thus reads 
(see ESM) 

〈𝑚𝑚�2〉 =
2|𝜎𝜎𝑘𝑘|

𝜅𝜅Co
2 + |𝜎𝜎𝑘𝑘|

𝑒𝑒𝑖𝑖Δ𝜙𝜙〈𝑚𝑚�1〉,

Δ𝜙𝜙 = 2𝜙𝜙𝑖𝑖 + 𝜙𝜙𝑘𝑘 ,

𝜙𝜙𝑖𝑖 =
𝜋𝜋
2

,

𝜙𝜙𝑘𝑘 = 𝑘𝑘𝑑𝑑,

(1) 

in which 〈𝑚𝑚�2〉  ( 〈𝑚𝑚�1〉 ) are coherent amplitudes of the Kittel 
magnons in Co2 (Co1), 𝜎𝜎𝑘𝑘  additional damping induced by the 
interface Zeeman coupling (see ESM), 𝜅𝜅Co = 2𝜔𝜔𝛼𝛼G  the 
reciprocal lifetime proportional to the Gilbert damping 
parameter 𝛼𝛼G of the Co wires. The blue dashed line in Fig. 3(b) 
traces a mode of exchange spin waves with short wavelengths 
propagating in YIG [50]. When the propagating spin-wave mode 
crosses the Co resonance (red dashed line in Fig. 3(b)), the phase 
shifts by π  and the transmission amplitude changes sign 
(yellow area of Fig. 3(c)). The non-locally excited Co2 can again 
pump spin waves (to the right) with a phase Δ𝜙𝜙 = 3𝜙𝜙𝑖𝑖 + 𝜙𝜙𝑘𝑘 
that destructively interferes with the waves coming from Co1 
that have not been absorbed by Co2. Figure 3(d) shows a 
spectrum extracted along the Co FMR (red dashed line in Fig. 
3(b)) with 2𝜙𝜙𝑖𝑖 = π. The periodicity of the oscillations is caused 
by the propagation phase delay 𝜙𝜙𝑘𝑘 = 𝑘𝑘𝑑𝑑 . Between two 
neighboring peaks (marked by red and blue arrows) Δ𝜙𝜙 = 2π. 
Since the propagation distance 𝑑𝑑 is fixed, the phase change is 
governed by the wavenumber variation Δ𝑘𝑘 = 𝑘𝑘2 − 𝑘𝑘1  for the 
peak frequencies 𝑓𝑓1  and  𝑓𝑓2  [73]. The dispersion relation of 
dipole-exchange spin waves [76] in the Damon-Eshbach 
configuration for a 20 nm-thick YIG film [68, 69] is plotted in Fig. 
3(e). Here, the value of the exchange constant 𝐴𝐴 = 3 ×
10−12 cm2  is taken for ultrathin films [77]. From the 
dispersions, 𝑘𝑘1 =  89.9 rad μm-1, 𝑘𝑘2 =  93.9 rad μm-1 and 
Δ𝑘𝑘 = 4.0 rad μm-1, or 𝜙𝜙𝑘𝑘 = Δ𝑘𝑘 ∙ 𝑑𝑑 = 6.0 , which is reasonably 
close to 2π  considering the uncertainty in 𝑑𝑑  introduced by 
the finite width 𝑤𝑤 ≈ 100 nm of the wires. Micromagnetic 
simulations provide further support for coherent phase transfer 
between Co magnetizations (see ESM). Figures 3(f) and 3(g) 
show the dynamics of the 𝑦𝑦  component of the wire 
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magnetization as indicated in the insets, which precesses either 
in phase Δ𝜙𝜙 = 0 (Fig. 3(f)) or with Δ𝜙𝜙 = π/2 (Fig. 3(g)), as a 
function of 𝐻𝐻 and 𝑓𝑓.  
 𝑆𝑆21  depends on the propagation distance 𝑑𝑑  via the spin-
wave propagation phase delay 𝜙𝜙𝑘𝑘 = 𝑘𝑘 ∙ 𝑑𝑑 as illustrated in Figs. 
4(a-c) for a wire width 𝑤𝑤 = 60 nm (see ESM). The spin-wave 
group velocity 𝑣𝑣𝑔𝑔 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑘𝑘
= 2𝜋𝜋𝜋𝜋

𝑘𝑘
= 2𝜋𝜋

Δ𝜙𝜙𝑘𝑘
Δ𝑓𝑓 ∙ 𝑑𝑑 , where Δ𝑓𝑓  is the 

peak-to-peak frequency difference as shown e.g. in the inset of 
Fig. 4(d) (a cut of Fig. 4(a) at zero field) that corresponds to 
Δ𝜙𝜙𝑘𝑘 = 𝑑𝑑∆𝑘𝑘 = 2π  and 𝑣𝑣𝑔𝑔 = Δ𝑓𝑓 ∙ 𝑑𝑑  or Δ𝑓𝑓 = 𝑣𝑣𝑔𝑔(1/𝑑𝑑) . Figure. 
4(d) shows the observed Δ𝑓𝑓 as a function of 1/𝑑𝑑 derived from 
Fig. 3(a)-3(c). Using the group velocity for dipole-exchange 
magnons [74] leads to a linear relationship between Δ𝑓𝑓  and 
1/𝑑𝑑  (blue dotted line in Fig. 4(d)) that deviates significantly 
from the experimental data. However, taking 𝜙𝜙𝑖𝑖 = π/2  into 
account, 𝜙𝜙𝑘𝑘 = Δ𝜙𝜙 − 2𝜙𝜙𝑖𝑖 and Δ𝑓𝑓 = 1

2
𝑣𝑣g(1/𝑑𝑑). This leads to the 

red solid line in Fig. 4(d) that agrees nicely with experimental 
data.  
 𝑆𝑆21 for 𝑤𝑤 = 60 nm shows a clear beating pattern for all 𝑑𝑑 
that leads to a vanishing oscillation around 19 GHz (white arrow 
in Fig. 4(b)) that do not show up for 𝑤𝑤 =100 nm sample (Fig. 
3(b)). Indeed, we argue that the interlayer coupling strength 𝑔𝑔𝑘𝑘 
should depend on the wire width (see ESM). The Hamiltonian 
for a single wire close to the film can be written as 
ℋ�Co|YIG

ℏ
= 𝜔𝜔Co𝑚𝑚�†𝑚𝑚� + � 𝜔𝜔𝑘𝑘

YIG

𝑘𝑘
�̂�𝑝𝑘𝑘
†�̂�𝑝𝑘𝑘 + � �𝑔𝑔𝑘𝑘𝑚𝑚��̂�𝑝𝑘𝑘

† + 𝑔𝑔𝑘𝑘∗𝑚𝑚�†�̂�𝑝𝑘𝑘�,
𝑘𝑘

(2)
 

where 𝑚𝑚�   and �̂�𝑝𝑘𝑘   are bosonic operators associated, 
respectively, with the Kittel mode in Co and spin waves in YIG 
with wavenumber 𝑘𝑘 . 𝜔𝜔Co  is the Co FMR frequency, 𝜔𝜔𝑘𝑘

YIG  the 
YIG spin-wave frequency dispersion [74] (see ESM). The 
interlayer coupling matrix elements 𝑔𝑔𝑘𝑘  can be caused by the 
interface exchange or magnetodipolar interaction. The indirect 
Co-Co coupling strength as sketched in Fig. 2(a) scales with 
|𝑔𝑔𝑘𝑘|2 ∝ �∫ 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖𝑤𝑤

0 𝑑𝑑𝑦𝑦�
2

= �sin (𝑘𝑘𝑤𝑤/2)
𝑘𝑘/2

�
2
, which is plotted as a function 

of wavelength λ = 2π/𝑘𝑘 in Fig. 3(f) (see ESM). The blue shaded 
interval λ =  54.0~66.8 nm corresponds to the spectrum 
plotted in Fig. 3(e) (see ESM). In this range, the relative coupling 
strength shows a minimum around 60 nm (Fig. 4(e)), which 
explains the suppressed amplitude around 19 GHz (Figs. 4(a-c)). 
In the 𝑤𝑤 = 100 nm sample (Fig. 3(d)), we also observe some 
amplitude modulation (see ESM). The experimental results 
shown in Fig. 4(b) may be directly compared with the calculated 
transmission based on the theoretical analysis [12, 78-80] (see 
ESM). 
 The coherent excitation of Co2 from Co1 is driven by a 
magnon spin torque [53-56] mediated by exchange spin waves 
in the YIG film. The torque transferred at Co1|YIG and YIG|Co2 
may be induced by either interfacial exchange or 
magnetodipolar coupling. In view of an interfacial exchange 
coupling strength measured to be 0.2 GHz in planar Co|YIG films 
[53], the exchange coupling strength at the interface between a 
single Co nanowire and the YIG film is merely 20 kHz, which is 
negligible in comparison with the magnetodipolar coupling 
calculated and shown in Fig. 4(f). It has been theoretically 
studied that the interlayer exchange (magnetodipolar) coupling 
is larger at the parallel (antiparallel) configuration [58]. The 

experimental observation that strong transmission between 
Co1 and Co2 occurs at the antiparallel configuration (Fig. 2(b)) 
indicates that the magnetodipolar interaction is responsible for 
the coupling at Co1|YIG and YIG|Co2. The dominance of 
magnetodipolar coupling and the absence of interlayer exchange 
give rise to the spin-wave chirality and eventually lead to the 
nonreciprocal coupling of two Co wires. A chiral spin pumping 
can also be achieved by microwaves emitted by normal metal 
antennas that can couple to the dipolar spin waves in thick films 
[81]. However, this process is very inefficient in ultrathin films, 
while the exchange spin waves as excited by magnetic nanowires 
here cannot be accessed at all. Theoretically, the coupling 
between two Co wires can be described by an effective 
Hamiltonian as 

ℋ�Co|Co

ℏ
= �(𝜔𝜔𝑙𝑙

Co − 𝑖𝑖Γ𝑙𝑙)𝑚𝑚�𝑙𝑙
†𝑚𝑚�𝑙𝑙

2

𝑖𝑖=1

− 𝑖𝑖Γ12(𝜔𝜔)𝑚𝑚�1
†𝑚𝑚�2 − 𝑖𝑖Γ21(𝜔𝜔)𝑚𝑚�2

†𝑚𝑚�1,

𝛤𝛤𝑙𝑙=1,2(𝜔𝜔) ≡ −�
𝑑𝑑𝑘𝑘
2𝜋𝜋

�𝑔𝑔𝑘𝑘,𝑙𝑙�
2

𝑖𝑖(𝜔𝜔 − 𝜔𝜔𝑘𝑘) − 𝜅𝜅YIG
2

,

𝛤𝛤12(𝜔𝜔) ≡ −�
𝑑𝑑𝑘𝑘
2𝜋𝜋

𝑔𝑔+𝑘𝑘,1𝑔𝑔+𝑘𝑘,2
∗

𝑖𝑖(𝜔𝜔 − 𝜔𝜔𝑘𝑘) − 𝜅𝜅YIG
2

,

𝛤𝛤21(𝜔𝜔) ≡ −�
𝑑𝑑𝑘𝑘
2𝜋𝜋

𝑔𝑔−𝑘𝑘,1
∗ 𝑔𝑔−𝑘𝑘,2

𝑖𝑖(𝜔𝜔 − 𝜔𝜔𝑘𝑘) − 𝜅𝜅YIG
2

.

(3) 

where 𝛤𝛤12  (𝛤𝛤21 ) is the coupling from Co1 (2) to Co2 (1), 𝜅𝜅YIG 
stands for the FMR linewidth of the YIG film, 𝑔𝑔+𝑘𝑘,1 (𝑔𝑔+𝑘𝑘,2) the 
coupling between Co1 (2) and propagating spin waves in YIG 
with positive wavenumber +𝑘𝑘 , 𝑔𝑔−𝑘𝑘,1  ( 𝑔𝑔−𝑘𝑘,2 ) the coupling 
strength between Co1 (2) and spin waves with −𝑘𝑘 . Here the 
spin-wave coupling is chiral, 𝑔𝑔−𝑘𝑘,1 = 0  and 𝑔𝑔−𝑘𝑘,2 = 0 , as 
illustrated in Fig. 3(a) [57, 58] and 𝛤𝛤12 ≈ 0 and hence Eq. 3 is 
non-Hermitian. 
 

4 Conclusions 
In summary, we have demonstrated on-chip nonreciprocal 
coupling of two distant nanomagnets at room temperature. The 
two Co wires are found to be phase-related by propagating 
exchange spin waves in the YIG film. Any desired phase shift ∆𝜙𝜙 
from 0 to 2π can be realized by tuning frequencies and applied 
magnetic fields in the vicinity of the Co FMR. The magnon 
transmission varies sensitively with propagation distance and 
the nanowire width, providing additional evidence for the 
phase-coherent coupling. We theoretically describe the coupling 
between two Co wires in terms of a Hamiltonian that includes 
the chiral spin pumping and therefore becomes non-Hermitian 
[58]. This formulation helps to predict new phenomena, such as 
the magnon trap [82] and chiral magnetic noise [83]. The chiral 
coupling of nanomagnets demonstrated in this work is attractive 
for neuromorphic computing [84, 85], since it mimics the 
innately unidirectional information transmission between 
neurons via synapses [86]. 
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Figure 1 (a) A schematic diagram of two Co nanowires coupled by spin waves in the YIG film. Parameters are the film thickness 𝑠𝑠, the distance between 
the nanowires 𝑑𝑑, the spin-wave wavevector 𝑘𝑘 and the in-plane applied field 𝐻𝐻. The coupling between Co1 (2) and Co2 (1) is evident in the microwave 
transmission spectra 𝑆𝑆21 (𝑆𝑆12) measured by nano-stripline antennas. The shift 𝛥𝛥𝜙𝜙 = 𝜙𝜙2 − 𝜙𝜙1 of the precession phases of the Kittel modes in two wires 
can be controlled. (b) An optical microscope image of the device with two ground-signal antennas, NSL1 and NSL2. Scale bar, 100 μm. (c) An SEM image of 
two Co wires with width 𝑤𝑤 = 100 nm and center-to-center distance 𝑑𝑑 = 1.5 μm. Scale bar, 300 nm.  

 
 
 

Figure 2 (a) Reflection spectra 𝑆𝑆11 measure the microwave absorption by NSL1. The ferromagnetic resonances of the Co wires and YIG film are indicated 
by white arrows. By sweeping the magnetic field 𝐻𝐻 from negative to positive values, the magnetization of the Co/YIG bilayer switches from the parallel 
(P) to antiparallel (AP) magnetic configuration from 0 to 54 mT (white dashed lines). Transmission spectra 𝑆𝑆21 plotted in (b) exhibits strong spin-wave 
oscillations in the AP state close to the Co resonance. In the reversed transmission 𝑆𝑆12 (c) such oscillations are not detected. (d) is a line plot of the 
spectrum at 30 mT, tracing the yellow dashed line in (b), in which the blue and red areas represent the dipolar and exchange magnon regimes, respectively. 
The enhanced transmission signal indicated by the white arrow is caused by the coupling of the two Co wires through exchange magnons in YIG.  
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Figure 3 (a) A sketch of the phase-locking between two Co wires on top of a YIG film. A resonant Co wire imprints a dissipative phase shift 𝜙𝜙𝑖𝑖 = 𝜋𝜋/2 on 
exciting spin waves below by the dipolar interaction. The phase delay due to the propagation of spin waves is given by 𝜙𝜙𝑘𝑘 = 𝑘𝑘 ∙ 𝑑𝑑 . This coupling is 
unidirectional, which implies a non-Hermitian coupling. (b) Transmission spectra 𝑆𝑆21 measured at AP states of Co/YIG (close-up of Fig. 1e). (c) A single 
spectrum along the blue dashed line in (b) shows a phase change of 𝜋𝜋 in the vicinity of the Co resonance (yellow region). (d) is 𝑆𝑆21 along the Co resonance, 
red-dashed line in (b). The frequencies of the transmission maxima 𝑓𝑓1 =15.00 GHz and 𝑓𝑓2 =15.71 GHz at the red and blue arrows correspond to 
wavenumbers 𝑘𝑘1 =89.9 rad μm-1 and 𝑘𝑘2 =93.9 rad μm-1 using the calculated spin-wave dispersion (e) at magnetic fields of 26.0 mT (blue curve) and 
38.5 mT (red curve). (f) The results of micromagnetic simulations for the 𝑦𝑦 component of the magnetization 𝑚𝑚𝑖𝑖 of Co1 (blue curve) and Co2 (red curve) 
as a function of 𝑡𝑡 for 29.4 mT and 15.25 GHz. The black arrows indicate zero phase change, i.e. a perfect synchronization. (g) As (f), but for 25.3 mT and 
15.30 GHz, leading to 𝛥𝛥𝜙𝜙 = 𝜋𝜋/2. 
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Figure 4 (a)-(c) Transmission spectra 𝑆𝑆21 measured on the sample with 𝑤𝑤 = 60 nm at different propagation distances, namely 𝑑𝑑 = 1.0 μm, 1.5 μm and 
2.0 μm. The color scales are identical and shown in (b) only. (d) The frequency intervals 𝛥𝛥𝑓𝑓 extracted at the Co FMR (the inset is from (a)) are plotted as 
a function of 1/𝑑𝑑. The red solid line and blue dotted line are calculations with and without taking the additional phase jump 𝜙𝜙𝑖𝑖 into account. (e) A cut of 
the spectrum along the FMR (red dashed line) in (b). The blue dashed envelope is a guide to the eye and the arrow indicates the minimum around 19 GHz. 
(f) Relative coupling strength calculated as a function of wavelength 𝜆𝜆. The blue region shows the range (𝜆𝜆 =54.0~66.8 nm) corresponding to (e). 
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