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Abstract

Automated vehicles have the potential to create a future in which most cars are shared instead of being in-
dividually owned and used. The advantages of vehicle sharing are expected to be multiple: reduced traffic,
freed-up parking space, safer trips and a lower environmental impact of traveling.
The dial-a-ride problem with transfers (DARP-T) consists in finding a set of minimum cost routes that satis-
fies a set of transportation requests. Requests may share a vehicle and may be transferred from one vehicle
to another at any node during their journey.
In this thesis, we describe a heuristic solving moderate to large instances of the static heterogeneous DARP-
T in which the requests have demanding time constraints. The heuristic builds a solution in a constructive
greedy randomized procedure and subsequently improves it with a destroy and repair procedure. The heuris-
tic is tested on instances we randomly generated containing up to 1000 requests traveling between any two of
the 100 most populated cities in the Netherlands inside a four-hour timescale. These instances are also solved
without transfers to determine the benefits transfers can bring and the user inconvenience they may cause.
We also investigate the influence of the demand on the objective function value, look into the influence of the
fleet size on the fleet usage, and present some visualizations of the solutions found.





1
Introduction

In this thesis, we are studying the dial-a-ride problem with transfers (DARP-T). This problem is related to
the traveling salesman problem (TSP), the vehicle routing problem (VRP), the pick-up and delivery problem
(PDP), and the dial-a-ride problem (DARP). The TSP consists in finding, for a vehicle, the minimum cost
route that visits a set of locations and returns to its starting location. The VRP is a generalization of the TSP
that consists in finding, for a fleet of vehicles, the set of minimum cost routes that start and end at the same
location, and for which each location is visited by one route. The PDP is a generalization of the VRP that con-
sists in finding, for a fleet of vehicles, the set of minimum cost routes that satisfy a set of location-to-location
transportation requests. The vehicles can transport several requests simultaneously as long as the capacity
of the vehicles is not exceeded. The DARP is a generalization of the PDP in which transportation requests
have time windows and user inconvenience constraints, as it considers the transportation of people instead
of goods. The DARP-T is a generalization of the DARP in which the vehicles are allowed to exchange requests.
The DARP and the DARP-T are said to be static if all information relevant to the decision making (appearance
of new requests, disturbances, ...) is provided before the start of operations. On the other hand, if the infor-
mation relevant to the decision making is progressively revealed during operations, the problem is said to be
dynamic.
We start by explaining the context motivating this research in Section 1.1. Because most of the literature on
similar problems does not consider transfers, we first review the research on related problems without trans-
fers in Section 1.2. We review the literature on similar problems with transfers and explain how our research
fits in the existing literature in Section 1.3. The objective of this thesis and the thesis organization is given in
Section 1.4.

1.1. Context
Automated vehicles are expected to revolutionize mobility and could be used to create an affordable on-
demand mobility service. Fagnant and Kockelman (2015) estimate that every automated vehicle could save
on average $4000 per year in parking benefits, crash savings, fuel efficiency, and travel time reduction.
In densely populated cities, many authors (International Transport Forum (2015), Fagnant and Kockelman
(2015)) estimate that, with ride-sharing, one shared autonomous vehicle could replace up to 10 traditional
cars. Spieser et al. (2013) estimate that in a metropolis like Singapore, automated vehicles could satisfy the
overall demand without ride-sharing with less than a third of today’s fleet. Indeed, cars are currently parked
95% of the time and even during rush hours, only up to 16% of the cars are used simultaneously (Fagnant
and Kockelman (2015)). This reduction in the number of cars will free up parking space. For the medium-
sized European city of Lisbon, the on-street parking amounts to 1.5 million square meters that could be put
to other uses (Dia and Javanshour (2017)).
Since the use of the cars is more intense, their lifespan will decrease, allowing for a faster adoption of new,
cleaner technologies (International Transport Forum (2015)). Additionally, in case of a combustion engine
fleet, the intense usage reduces the number of cold starts, responsible for the emission of large amounts of
atmospheric pollutants (Fagnant and Kockelman (2014)). Automated vehicles will also use energy-efficient
driving techniques to reduce their noise and pollution impact (Spieser et al. (2013)). By allowing automated
vehicles to operate close to one another, they can take advantage of each others’ slipstream, reducing their

3



4 1. Introduction

mileage by approximately 20% (Poczter and Jankovic (2013)).
Automated vehicles are expected to be effective at reducing congestion and travel times (Spieser et al. (2013)).
They will also be accessible to non-drivers such as young children, persons with a disability, and the elderly
(Fagnant and Kockelman (2015)). Finally, autonomous cars are safer than traditional ones (International
Transport Forum (2015)). In fact, 90% of the accidents in the U.S. are caused by human errors and more than
40% of the fatal crashes involve alcohol, distraction, drugs, or fatigue (U.S. National Highway Traffic Safety
Administration (2008)).

1.2. Literature on problems without transfers
Early work on the DARP was published by Psaraftis (1983), who derives a O(n23n) (n being the number of
requests) exact dynamic programming algorithm for the single-vehicle DARP. The existing literature on the
DARP is reviewed by Cordeau and Laporte (2007). They describe the DARP variants as well as the different
mathematical formulations of the problem. Then, they proceed to discuss the different heuristics used to
solve the problems and compare their features and performance.
Berbeglia et al. (2012) develop a hybrid tabu search (TS) and constraint programming (CP) heuristic for the
dynamic dial-a-ride problem. Tabu search explores the solution space using a variant of local search that al-
lows worsening moves when no improving move is found and that uses memory (a tabu list) to prohibit some
moves in order to avoid revisiting solutions. Their algorithm quickly decides whether to accept or refuse new
requests with the constraint that, when a request is accepted, the algorithm can not refuse it later on. They
use TS and CP in parallel when a new request is received. They observe that CP is good at proving the infea-
sibility of a request insertion while TS is good at finding feasible solutions.
Parragh et al. (2010) solve the DARP using variable neighborhood search (VNS) with three types of neigh-
borhoods. VNS is a hill-climbing technique introduced by Mladenović and Hansen (1997) that explores in-
creasingly distant neighborhoods of the current incumbent solution. To avoid being trapped in local minima,
VNS uses the fact that a local minimum in a given neighborhood structure is not always a local minimum in
all neighborhood structures (but that global minima must be local minima in all neighborhood structures).
They introduce the idea of zero-split neighborhoods. Members of a zero-split neighborhood are obtained by
finding two arcs in the route of a vehicle where the vehicle is not carrying any requests and reinserting the
requests served between these two arcs in other routes.
Ritzinger et al. solve the DARP by first using a dynamic programming (DP) inspired heuristic to generate an
initial solution and then large neighborhood search (LNS) to further improve it. LNS is a technique that ex-
plores the search space by destroying large parts of the incumbent solution before repairing the partially de-
stroyed solution. During the dynamic programming phase of the optimization, to avoid exploring the entire
search space, they use a heuristic to bound the number of branches of the decision tree that are considered.
During the LNS phase, in addition to the classic LNS destroy/repair operators, they use their DP heuristic in
two new destroy and repair operators based on zero-split and on tour removal. Parragh and Schmid (2013)
solve the DARP using a hybrid LNS and column generation heuristic. They discover that column generation
improves the convergence speed of LNS.
Li et al. (2016) solve the Share-a-Ride problem (parcels and passengers share a ride) using adaptive large
neighborhood search (ALNS). Parcels do not have time windows but passengers do. Vehicles can contain
several parcels but at most one passenger at the same time. ALNS is a LNS technique that keeps track of the
performance of its destroy and its repair operators and decides which one to use depending on their success
rates.
Toth and Vigo (2003) solve the vehicle routing problem (VRP) using a new variant of tabu search they named
granular tabu search (GTS). The difference between GTS and TS is that GTS only considers neighborhoods
that are likely to be part of a high-quality feasible solution by removing expensive arcs.
Qu and Bard (2014) solve a variant of the PDP with a branch price and cut algorithm. They manage to solve
instances to optimality for up to 50 requests. Ropke and Pisinger (2006) solve the pick-up and delivery prob-
lem with time window (PDPTW) with ALNS, using several removal and insertion heuristics.
Rieck et al. (2014) give a mixed integer linear programming (MILP) model for a variant of the many-to-many
location-routing problem. They solve small scale instances with CPLEX. For larger instances, they either use
a genetic algorithm or a fix-and-optimize procedure. Inspired by the process of natural selection, genetic
algorithms recombine and mutate the fittest solutions from a generation of solutions to produce the next
generation. The fix-and-optimize procedure works by generating a feasible solution, fixing a subset of the
decision variables and optimizing the remaining variables with the commercial solver CPLEX.
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Cordeau (2006) develops a branch and cut algorithm to solve the DARP using new DARP-specific inequalities
as well as inequalities from other similar problems (TSP, VRP, and PDP). They are able to solve small instances
and suggest using such method as a subroutine in a metaheuristic when solving larger instances.
Afifi et al. (2013) describe a simulated annealing (SA) algorithm for the VRP with time windows and synchro-
nization constraints. The synchronization constraints require some locations to be visited by two vehicles
simultaneously. SA is a probabilistic optimization technique inspired by the slow cooling of metals. SA ac-
cepts a modification of the current solution with a probability depending (among others) on decreasing a
parameter called the temperature. Afifi et al. (2013) use a variant of SA in which a reheating mechanism regu-
larly resets the temperature. They test their algorithm on a benchmark from the literature and report finding
all known optimal solutions in shorter computation times. They strictly improve the best known solutions of
some instances.
Pisinger and Ropke (2007) present a general heuristic for five different variants of the VRP. They introduce a
noise term in their decision heuristics to diversify their destroy and repair neighborhoods.

1.3. Literature on problems with transfers
Masson et al. (2013) solve the PDPT using ALNS. Their model includes time windows and allows transfers to
happen only at predetermined locations. They manage to the total distance traveled by the vehicles in some
instances from the literature and also test their algorithm on their real-life instances in which the introduction
of transfers brings improvements of up to 9%. They observe that transfers are useful when people from the
same geographical area need to be transported to different locations.

Rais et al. (2014) develop a MILP model for the pick-up and delivery problem with transshipment (PDPT).
It includes optional time windows and requires transshipments to take place at designated transshipment
nodes. The model is polynomially bounded in the size of the problem. They use the commercial solver
GUROBI to solve instances containing up to 14 nodes to optimality. These instances are also solved to opti-
mality without transshipments and they report an improvement of total distance traveled by the vehicles in
13 of their 20 solved instances, at the cost of larger CPU time.

Qu and Bard (2012) solve the PDPT using a two step algorithm. The first step generates feasible solutions
with a Greedy Randomized Adaptive Procedure (GRASP) and the second step attempts to improve the results
of the first step with ALNS. GRASP is a technique that finds solutions by repeatably sampling the search space
using a stochastically greedy heuristic. Unable to find public data to benchmark against, they introduce their
own 25 requests instances of the PDPT. Cortés et al. (2010) present an arc-based formulation of the PDPT and
solve small instances to optimality using a branch and cut algorithm based on Benders decomposition. They
conjecture that transfers will become more and more profitable under high demand. The size of the instances
they can solve is unfortunately too small to provide experimental evidence of that conjecture.
Masson et al. (2014) solve the DARP-T using an extended version of the ALNS algorithm they previously devel-
oped to solve the PDPT (Masson et al. (2013)). In order to speed up the feasibility checks, they derive several
computationally cheap necessary/sufficient conditions for feasibility. They assess the savings the transfers
can provide by solving DARP instances that have been solved to optimality by Ropke et al. (2007). On the 20
instances tested, the introduction of transfers allows the ALNS algorithm to reduce the total distance traveled
by the vehicles by on average 3.5%, at the cost of large CPU time.

1.4. Thesis structure
In this thesis, we describe a new constructive greedy randomized repair-and-destroy heuristic for the DARP-
T. We introduce and solve DARP-T instances containing up to 1000 requests, all traveling inside a four-hour
timescale. These instances require a service quality competitive with public transportation. We solve these
instances with and without transfers. The goal of this research is to quantify the savings in total distance
traveled by the vehicles that transfers can bring, the user inconvenience they may cause, and the influence
the demand has on the fleet efficiency.

The remainder of this thesis is organized as follows. First, we define the DARP-T and discuss some of
the challenges involved with the introduction of transfers in Chapter 2. Then, we define the concepts our
algorithm is based on, provide the algorithm framework, and describe the repair and destroy procedure in
Chapter 3. In Chapter 4, we generate instances of the problem and solve them with and without transfers.
In Section 4.3, we provide a few visualizations of the solutions, investigate the user inconvenience, look into
the influence of the demand on the solution quality, investigate the influence the fleet size has on the vehicle
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usage, and experimentally determine the running time of the algorithm. We conclude the thesis and provide
recommendations for future work in Chapter 5.



2
Problem description

This chapter gives a description of the DARP-T. Section 2.1 provides a formal definition of the problem. Sec-
tion 2.2 discusses some of the challenges involved with the introduction of transfers and demanding time
windows, and introduces the main ideas the algorithm described in Chapter 3 is based on.

2.1. Problem formulation
We consider the following problem: given a set of requests R and a fleet of vehicles V , maximize the number
of requests served while minimizing the total distance traveled by the vehicles. The objective function is de-
scribed more formally in Equation 2.1.
The road network of the problem is represented by a complete, weighted directed graph G whose set of nodes
N represents a set of geographical locations and whose arc weights represent the time required to travel from
the tail of an arc to the head of an arc. The weight of an arc is given by the function d(a,b) for any a,b ∈ N .
Note that d is non-negative and respects the triangular inequality, that is d(a,b)+d(b,c) ≥ d(a,c) for any
a,b,c ∈ N . We use the notation d(n1,n2, . . . ,nk ) :=∑k−1

i=1 d(ni ,ni+1) to denote the travel time of a sequence of
arcs.
Individual requests and vehicles are defined by attributes which we denote by ob j ect .at tr i bute. Every re-
quest r ∈ R is described by a pick-up node r.p, a drop-off node r.d , an earliest pick-up time r.e, a latest
drop-off time r.l and a group size r.g s. Every vehicle is described by a capacity v.c, a position v.pos and the
time v.t at which the vehicle reached v.pos. A vehicle v can move to another node by traveling along any arc
of G connected to v.pos and doing so increases its v.t by the weight of the traveled arc. Vehicles can park at
any node for any amount of time. Vehicles serve requests picking them up at their pick-up nodes after their
earliest pick-up time and transporting them to their drop-off node before their latest drop-off time. Vehicles
are allowed to transport several requests simultaneously as long as the sum of the group size of all the requests
inside a vehicle never exceeds the capacity of the vehicle. Vehicles are also allowed to exchange requests at
any node. For transfers in which one vehicle does not receive any request, that vehicle is allowed to drop-off
its transferred requests and drive off before the arrival of the other vehicle.
Given a solution S serving a set A of requests, the objective function is defined to be

cost (S) =
∑

v∈V time v spent driving∑
r∈A d(r.p,r.d)

+ (|R|− |A|)penal t y (2.1)

with penal t y a value large enough to ensure that a solution serving n requests has a lower cost than all
solutions serving n −1 requests.
This model of DARP-T does not include explicit user inconvenience constraints such as a maximal ride time
or a preferred time of departure/arrival, and therefore, one might think we are solving the PDPT. However,
we assume that the inputted time windows [r.e,r.l ] are not much larger than the travel time d(r.p,r.d) for all
requests r . The time windows in the instances we solve in Chapter 4 are on average about 50% larger than the
corresponding d(r.p,r.d). For example, this means that a request wanting to travel between two locations 60
minutes apart must be transported within the 90 minutes time window it specified. For the Netherlands, this
is competitive with public transportation. Therefore, we are indeed solving DARP-T and not PDPT instances.

7



8 2. Problem description

2.2. Problem characteristics
The tight time windows of the DARP-T might first seem beneficial as they allow us to prune many decisions
by infeasibility. While this is true, they also make the feasibility of a solution very vulnerable to change. Take,
for example, the fragment of a solution shown in Figure 2.1. Nodes are represented by small black dots, re-
quests by arrows, vehicles by stars, and routes by wavy lines. The number written under the vehicles indicates
the time at which the vehicles reached their displayed position. The vehicles are empty and have the same
capacity. Colors are used to distinguish the different objects. This fragment looks like it could be improved
by swapping the tasks of the two vehicles (the red vehicle would pick-up the orange and green requests and
the blue vehicle the blue request). Without time windows, such change improves the objective function value
and does not affect the rest of the solution. Therefore, we know with certainty that the displayed fragment is
not part of any optimal solution and can be discarded. In other words, the displayed fragment can be pruned
by optimality. However, this is not necessarily the case with time windows. One can see that the blue vehicle
has arrived at its shown position before the red vehicle. Therefore, even though the red vehicle is closer to
the orange request, it might not be able to feasibly serve the orange or green request, making the route or
ride-sharing (if only one request can be picked-up) no longer feasible. This reasoning extends to the rest of
the solution. Therefore, the swap being feasible in the fragment does not imply that the swap is feasible in
the entire solution. Another unfortunate consequence is that even if the swap is not affecting the feasibility
of the entire solution, there is no guarantee anymore that the displayed fragment is not part of an optimal
solution. Indeed, it is not because the swap does not affect the feasibility of some solution that it does not
affect the feasibility of an optimal solution. In other words, we cannot prune the displayed case by optimality
anymore.

Figure 2.1: Example of a fragment of a solution with 3 requests and 2 vehicles.

The vulnerability of the feasibility of a solution to change is exacerbated by the transfers. Transfers require
two vehicles to arrive at a specific node with a specific set of passengers within a tight time window. Most
modifications of a route involved in a transfer are likely to make the transfer (and therefore the entire solution)
infeasible. Therefore, finding new feasible solutions or exploring the neighborhood of a given solution is
not easy and computationally expensive in general. Computationally cheap modifications could be done by
stepping out of the solution space and considering infeasible solutions. However, because of the rarity of
feasible solutions, fixing them will probably either be hard or significantly worsen their objective function
value. This leads to the two main ideas the algorithm is built upon:

• Feasibility at all times: computational time spent on infeasible solutions is considered wasted and
should be avoided. The algorithm presented in this thesis progressively builds a solution with the con-
straint that it must know at all times that the solution it is building can be completed to a feasible
solution.

• Greediness: because the solution space is expensive to explore, we do not consider moves that are
unlikely to be part of a good solution.



3
Solution approach

This chapter describes the algorithm used to solve the DARP-T. We start with definitions in Section 3.1 then
provide an outline of the algorithm in Section 3.2. The solution selection criterion is explained in Section 3.3.
The repair phase of the algorithm is described in Section 3.4 and the destroy phase in Section 3.5.

3.1. Definitions
In this section, we define some important concepts, we introduce some additional attributes for the vehicles
and the requests, and we give a practical example of these definitions in a visualization of a problem. We
introduce a general cost function in Section 3.1.1 and a geometrical representation of the graph in Section
3.1.2.
Let us define the following concepts:

• Route: a route is a sequence of (node, time, action) tuples called units, associated with a vehicle. Actions
can be wait, pick-up, transfer, or drop-off. Every node of the route must be assigned an action except
for the first node (the start node). The element time is the time at which the action is finished. A route
must respect the constraints of its associated vehicle (e.g., arcs are traveled in the time specified by d)
and every action must be feasible (e.g., the pick-up of request r must happen after r.e). An example of
a route is given in Table 3.1. The following adjectives are used to refer to different types of routes.

– Entire: an entire route is a route that starts at the initial position and time of its associated vehi-
cle. The algorithm presented in this thesis builds solutions by constructing one entire route for
every vehicle by repeatedly appending small non-entire routes to the entire route. For a vehicle v ,
these entire routes are denoted by v.er and always contain at least one unit describing the initial
position and time of the vehicle.

– Complete: a complete route is a route that is empty (i.e., no request inside the vehicle) at its last
node. The route shown in Table 3.1 is complete.

– Incomplete: routes that are not empty at their last node are said to be incomplete. Note that there
is no certainty that all the requests at the end of an incomplete route can still be feasibly dropped-
off. Therefore, because of the feasibility at all time principle, incomplete routes cannot be part of
the solution unless they can be proven to be completable to a complete route.

Table 3.1: Example of a complete route

Node Time Action
4 0 None
4 28 Wait
12 35 Pick-up request 3
34 64 Transfer with vehicle 9: exchange request 3 for request 6
26 87 Drop-off request 6

9



10 3. Solution approach

Finding the shortest route serving a set of requests is equivalent to solving the open capacitated sin-
gle vehicle PDPTW. Since the algorithm presented in this report builds long routes by joining several
smaller routes together, we only solve the open capacitated single vehicle PDPTW for small sets of re-
quests and complete enumeration is not computationally costly. Therefore, all routes computed in this
thesis are computed by complete enumeration.

• Solution: a list of complete, entire routes (one per vehicle).

• Partial solution: a list of possibly incomplete, entire routes (one per vehicle). Solutions are gradually
built and the partial solutions are the intermediary steps in the construction of a solution.

• Certificate of feasibility: in Section 2.2, we explain that the solution being built — the partial solution —
must always be known to be completable to a feasible solution. Therefore, if the entire route of a vehicle
v is incomplete, it must come with a complete route called the certificate of feasibility and denoted by
v.c f proving that the content of the vehicle can indeed feasibly be dropped-off.

• Current(ly): indicates that we are mentioning the most recent situation of a vehicle, that is the situation
described at the last unit of its entire route. For example, if Table 3.1 is the entire route of a vehicle v ,
the current position of v is node 26, the current time of v is 87, v is currently empty, etc.

• t i meRoute(r oute): the time at the last unit of the route minus the time at which the route started. For
the example route of Table 3.1, t i meRoute would return 87.

• The vehicle attribute canBeModi f i ed : we sometimes allow and sometimes prohibit the modification
of the v.er of a vehicle (more details in Section 3.4). The Boolean v.canBeModi f i ed is set to true if
such a modification is allowed, false otherwise.

• The request attribute ld : the latest feasible time of departure of a request r , denoted by r.ld , is the
maximum time at which r can be picked up and still be dropped off before r.l .

• The request attribute r el ated : the set of requests related to a request r , denoted r.r el ated , is defined
to be:

r.r el ated = {q ∈ R | t i meRoute(shortest route starting at r.p serving r and q) ≤ d(r.p,r.d)+d(q.p, q.d)}.

It is used to find requests that could be share a vehicle or be part of a transfer,

• The request attribute i sH andled : the Boolean r.i sH andled is set to true if request r is handled, false
otherwise.

• The request attribute i sRe j ected : the Boolean r.i sRe j ected is set to true if request r is rejected, false
otherwise. Note that r.i sRe j ected implies that r.i sH andled (but not the other way around).

Table 3.2 summarizes the attributes of the requests and vehicles.
To make these definitions less abstract and understand in what context they are used, an example of a

partial solution is shown in Figure 3.1. Nodes are represented by small dots, requests by arrows, entire routes
by dashed lines, current positions of the vehicles by stars, and feasibility certificates by wavy lines. Colors are
used to distinguish the different objects. To avoid overloading the illustration, some pieces of information,
such as the time windows of the requests, the vehicle content, the visiting time of nodes are not explicitly
shown (but can be deduced).
From the entire route of the blue vehicle, we can deduce that the blue vehicle picked up the brown, purple,
and green request (in that order), then transferred the brown request to the red vehicle, then dropped-off the
purple and the green request (in that order). Thus, the blue vehicle is currently empty and therefore has a
trivial (empty) certificate of feasibility.
From the entire route of the red vehicle, we can see that the red vehicle transported the blue and orange re-
quests, then picked up the yellow request and drove to the transfer point where it received the brown request
from the blue vehicle. Therefore, the red vehicle now contains the yellow and the brown requests. Since the
vehicle is not empty in the partially solved solution, we have a certificate of feasibility to prove that the vehi-
cle can indeed drop off its content. In this case, the certificate proves that the brown request and the yellow
request can feasibly be dropped off. Note that the certificate is not necessarily the route the algorithm will
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choose for the vehicle. For example, in this case, the algorithm could make the red vehicle pick up the pink
request between the drop-off node of the brown and yellow requests as it is more efficient.

Table 3.2: Summary of all attributes

Short notation Description
r.p pick-up node of request r
r.d drop-off node of request r
r.e earliest pick-up time of request r
r.l latest drop-off time of request r
r.g s group size of request r
r.ld latest feasible time of departure of r
r.r el ated set of requests related to r
r.i sH andled Boolean set to true when r has been handled, false otherwise
r.i sRe j ected Boolean set to true if r has been rejected, false otherwise
r.di r direction of r (see Section 3.1.2)
v.c capacity of vehicle v
v.pos current position of v
v.t current time of v (time at which v reached v.pos)
v.er entire route of the v
v.c f certificate of feasibility of v
v.canBeModi f i ed a Boolean set to true if v.er can be modified, false otherwise

Figure 3.1: Visualization of a partially solved instance of an example problem.

3.1.1. Local cost function
The repair phase from Section 3.4 is constructive and progressively builds a solution by taking decisions based
on local criteria. These criteria occasionally compare different objects. For example, we sometimes need to
decide whether to do a 2-vehicle transfer or to route these two vehicles independently. Therefore, we need a
general cost function able to compare the quality of different objects. However, since we repeatedly partially
destroy the solution (see Section 3.5), we might have to repair the same part of the solution several times.
Therefore, we do not want this cost function to be excessively greedy and always lead to the same decision.
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Thus, whenever two objects are compared using cost , one of the cost functions is multiplied by a factor
sampled from the continuous uniform distribution U (0.85,1.15). This way, the cost comparison is still greedy
but will not always favor the lower cost object. This is similar to the noise term proportional to the objective
function introduced by Pisinger and Ropke (2007).

Take a route r o associated with vehicle v and let us denote by Cr o the set of requests that are transported
by r o. Note that v is not necessarily empty at the first unit of r o (e.g. certificate of feasibility) or at the last
unit of r o (e.g. incomplete route) and that it does not necessarily pick up or drop off requests at their pick-up
or drop-off nodes (as it might exchange requests with another vehicle). Therefore, for a request r ∈ Cr o , we
denote by ni n the node corresponding to the first unit of r o containing r and nout the node corresponding
to the last unit of r o containing r . We measure how much a request r ∈Cr o has been transported by r o using
the function

f (r,r o) =


d(r.p,r.d)−d(r.p,ni n) if nout = r.d

d(r.p,r.d)−d(nout ,r.d) if ni n = r.p

d(ni n ,r.d)−d(nout ,r.d) if nout 6= r.d and ni n 6= r.p

. (3.1)

A diagram illustrating the three cases of Equation 3.1 is shown in Figure 3.2.

Figure 3.2: Illustration of the three cases of Equation 3.1. The request r is indicated by the arrow, the part of r o that transports r is the
red line and the value of f (r,r o) is indicated by the curly bracket.

We define the cost of a single route r o of vehicle v to be the time v spends transporting requests, divided by
how much these requests have been transported. Formally, we have

cost (r o) = t i meRoute(r o)∑
r∈Cr o f (r,r o)

. (3.2)

Similarly, the total cost of two independent routes r o1 and r o2 is defined to be

cost (r o1,r o2) = t i meRoute(r o1)+ t i meRoute(r o2)∑
r∈Cr o1

f (r,r o1)+∑
r∈Cr o2

f (r,r o2)
. (3.3)

Given two vehicles and two corresponding sets of routes W1 and W2, we define the cost function on the two
sets of routes to be the total cost of the best route in W1 and the best route in W2, that is

cost (W1,W2) = cost (argmin
w1∈W1

cost (w1),argmin
w2∈W2

cost (w2)). (3.4)

A transfer is described by two routes r o1 and r o2 that bring requests to the transfer point and two certificates
of feasibility c f1 and c f2 proving that the requests brought to the transfer point can be feasibly dropped-
off. The cost of the transfer is defined in Equation 3.5. The factor α ∼ U (0.7,1) is applied to the t i meRoute
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term of the certificate of feasibility to compensate for the fact that the certificates of feasibility are likely to be
improved later on.

cost (tr ans f er ) =
∑

i=1,2
(
t i meRoute(r oi )+αt i meRoute(c fi )

)
∑

i=1,2

(∑
r∈Cr oi

f (r,r oi )+∑
r∈Cc fi

f (r,c fi )
) (3.5)

3.1.2. Multi-dimensional scaling
The example given in Figure 3.1 makes it clear that, when trying to solve the problem by hand, concepts from
geometry such as the relative position of nodes on a map and direction are very helpful to find good routes.
However, in the instance of the problem we described, nodes and their distances from one another are repre-
sented by a complete graph in which these geometrical concepts do not exist. If we could map every node to
a vector in Rd such that the Euclidean distance between any two of these vectors would be approximately the
travel time between the two corresponding nodes, we could incorporate some geometrical heuristics from
our visual intuition into the algorithm.
For example, imagine considering organizing a transfer between two routes, such as the ones shown in Figure
3.3. Nodes are represented by small black dots and the routes by lines. One can see that the nodes visited by
the blue route are all far from the nodes visited by the red route. However, this does not imply that the two
routes are far apart and that a transfer is not possible, as can be seen by the two routes intersecting close to a
city in the figure.
Without a geometric representation of the situation, we determine whether two routes are candidates for a
transfer by looking for nodes that can be cheaply inserted in both routes. This is done in O(|N |(|r o1|+ |r o2|))
time. Using the geometric representation of the graph, we can compute the Euclidean distance between any
two routes in O(|r o1||r o2|) time. Since |N |À |r o|, this is an efficient way to assess whether a transfer between
two routes is likely to be successful. Additionally, whenever two routes are found to be close to one another,
candidate nodes for a transfer can efficiently be found by narrowing down the search for transfer nodes to a
small zone (for example, the nodes inside the blue circle in Figure 3.5). For real-life instances, we can expect
the set N to be large (for example, there are 50 thousand bus stops in the Netherlands (Zijlstra et al. (2018)))
and developing transfer organizing procedures having a time complexity independent of |N | is crucial.

Figure 3.3: Visualization of a partially solved instance of an example problem.

The problem of representing complete weighted graphs in a Cartesian space has already been studied (see
for example Borg and Groenen (2005)) and can be solved using techniques from Multi-Dimensional Scaling
(MDS). MDS creates a map md s : N →Rd such that ‖md s(n1)−md s(n1)‖2 ≈ d(n1,n2) for all n1,n2 ∈ N (with
‖·‖2 the Euclidian norm). Note that equality is not possible in general. Therefore, the map is found by solving
the following optimization problem

min
x1,...,xN∈Rd

∑
ni 6=n j

(d(ni ,n j )−‖xi −x j ‖2)2.

Many libraries such as scikit-learn1 have a numerical solver designed for this problem.
We use the md s map to create an additional request attribute denoted r.di r that indicates the direction of a

1www.scikit-learn.org



14 3. Solution approach

request r . The vector r.di r is defined to be

r.di r = md s(r.d)−md s(r.p)

‖md s(r.d)−md s(r.p)‖2
.

We have seen in the example illustrated by Figure 3.3 that representing routes in Rd can be useful. Suppose a
route r o is visiting nodes n1,n2, . . . ,n J (in that order). We define the geometric representation of that route to
be the set

md s(r o) = ⋃
i=1,2,...,J−1

{(1−λ)md s(ni )+λmd s(ni+1) | λ ∈ [0,1]}.

We define the distance between the route r o and a vector v ∈Rd to be

min
x∈md s(r o)

‖v −x‖2. (3.6)

An example is shown in Figure 3.4.

Figure 3.4: Example of the distance between a route r o and vectors in R2 (the red dots). The set md s(r o) is colored in blue and the blue
dots are the nodes visited by r o. The distance between the vectors and r o is represented by the radius of the circles drawn around the
vectors.

Claim 1. Equation 3.6 can be computed in O(|r o|) time. Indeed, setting ñi = md s(ni ), di = ñi+1−ñi and using
· to denote the dot product, Equation 3.6 can be simplified to

min
i=1,··· ,J−1

∥∥∥∥v − ñi −min

(
1,max

(
0,

(v − ñi ) ·di

di ·di

))
di

∥∥∥∥
2

. (3.7)

Proof. Since
md s(r o) = ⋃

i=1,2,...,J−1
{ñi +λdi | λ ∈ [0,1]},

we can rewrite Equation 3.7 as

min
x∈md s(r o)

‖v −x‖2 = min
i=1,··· ,J−1

(
min

x∈{ñi+λdi | λ∈[0,1]}
‖v −x‖2

)
= min

i=1,··· ,J−1

∥∥∥∥∥v − ñi −
(

argmin
λ∈[0,1]

‖v − ñi −λdi‖2

)
di

∥∥∥∥∥
2

. (3.8)

Let us define f (λ) = v − ñi −λdi . Since the square function is strictly increasing on R≥0, we have

argmin
λ∈[0,1]

‖ f (λ)‖2 = argmin
λ∈[0,1]

f (λ) · f (λ).

We have
d

dλ
f (λ) · f (λ) = 2λ(di ·di )−2di · (v − ñi ),

One can see that the derivative of f (λ) · f (λ) is a strictly increasing function and has a unique root at λ0 =
(v−ñi )·di

di ·di
. Therefore, f (λ) · f (λ) is strictly decreasing on (−∞,λ0] and strictly increasing on [λ0,∞). As a result,

argmin
λ∈[0,1]

‖v − ñi −λdi‖2 =


0 if λ0 < 0

λ0 if 0 ≤λ0 ≤ 1

1 if λ0 > 1

= min(1,max(0,λ0)) .
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Plugging in this result into Equation 3.8 gives Equation 3.7.

The distance between a route r o1 and a route r o2 is defined to be

min
x1∈md s(r o1),x2∈md s(r o2)

‖x1 −x2‖2. (3.9)

An example is shown in Figure 3.5.

Figure 3.5: Example of the distance between two routes (in red and in green). The distance is represented by the diameter of the circle.

Claim 2. Equation 3.9 can be computed in O(|r o1||r o2|) time.

Proof. Let us denote by n1
1,n2

1, . . . ,nK
1 the nodes r o1 is visiting (in that order) and by n1

2,n2
2, . . . ,nL

2 the nodes

r o2 is visiting (in that order). We denote by d j
i = md s(n j+1

i )−md s(n j
i ), p j

i = md s(n j
i ), x j

i (λi ) = p j
i +λi d j

i
Using the definition of md s(r o), we can rewrite Equation 3.9 as

min
k=1,...,K−1

min
l=1,...,L−1

min
x1∈Sk

1 ,x2∈Sl
2

‖x1 −x2‖2, S j
i = {x j

i (λi ) | λi ∈ [0,1]}. (3.10)

Therefore, Equation 3.9 can be computed in O(|r o1||r o2|) time if the distance between two line segments
S1 and S2 can be computed in constant time. Let us drop the superscript for clarity and let us compute the
distance between some S1 and S2.
Since the square function is strictly increasing on R≥0, we have

(λ̂1, λ̂2) := argmin
λ1,λ2∈[0,1]

‖x1(λ1)−x2(λ2)‖2 = argmin
λ1,λ2∈[0,1]

f (λ1,λ2)

with

f (λ1,λ2) = (x1(λ1)−x2(λ2)) · (x1(λ1)−x2(λ2)).

The gradient of f is

∇ f =
(

2d1 · (x1(λ1)−x2(λ2))
−2d2 · (x1(λ1)−x2(λ2))

)
.

Setting αi = di ·di , β=−d1 ·d2, the Hessian of f is

∇2 f =
(
2α1 2β
2β 2α2

)
(3.11)

Assume that d1 and d2 are not parallel. Then, α1α2 >β2 and we have that the Hessian of f is positive definite.
Solving ∇ f (λ1,λ2) = 0 for λ1 and λ2 gives

λ̃i := α j di · (p j −pi )+βd j · (pi −p j )

α1α2 −β2 , j =
{

2 if i = 1

1 if i = 2
. (3.12)
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Since the Hessian of f is positive definite, f is strictly convex and (λ̃1, λ̃2) is the unique global minimum of

argmin
λ1,λ2∈R

f (λ1,λ2).

Therefore, if (λ̃1, λ̃2) ∈ [0,1]× [0,1], we have (λ̂1, λ̂2) = (λ̃1, λ̃2) and we have an expression for the segment to
segment distance that can be computed in constant time. If not, then (λ̂1, λ̂2) must be on the boundary of
[0,1]× [0,1] and there must be an i ∈ {1,2} such that λ̂i ∈ {0,1}. Therefore, the distance between S1 and S2

involves one of the four extreme points of S1 and S2 and since the distance between a point and a segment
can be computed in constant time (see Equation 3.7), we can compute the distance between S1 and S2 in
constant time. If d1 and d2 are parallel, the minimum distance between S1 and S2 must also involve one
extreme point and the distance can also be computed in constant time.

3.2. Algorithm outline
Now that the main concepts used by the algorithm have been discussed, we can delve into its description. In
short, the algorithm works by repeatedly destroying and repairing the incumbent solution. This modification
of the incumbent solution occasionally improves it, creating a new incumbent solution. This process goes on
until the stopping criterion — 104 iterations without an improvement of the solution — is reached.

An outline of the algorithm is given in Algorithm 1. We start by transforming the instance into a trivial
partial solution S (no vehicle moves and no request is handled). Then, we define the last accepted solution
Sa and the best solution Sb and set them to S. To avoid getting stuck in local minima, we occasionally accept
worse solutions, and thus, Sa is not necessarily the best solution found over all iterations of the destroy and
repair procedure. Therefore, we remember the best solution in Sb . We set the temperature T to T0. The tem-
perature is a simulated annealing parameter that influences whether a new solution is accepted, as explained
in Section 3.3. We made the temperature time dependent, and thus, let the variable t to be the time in sec-
onds since the start of the algorithm.
Then, we let S be the last accepted solution. Since the vehicles involved in transfers are more likely to be af-
fected by the destruction mechanism (see Section 3.5), we randomly protect half of them against destruction
by setting their attribute canBeModi f i ed to false. Then, we transform the trivial partial solution S into a
solution using Algorithm 2. If S is the best solution found so far, we store it into Sb . We update the tempera-
ture T (see Section 3.3) and Equation 3.13 is used to determine whether S becomes the new Sa . After that, S
is partially destroyed using the procedures described in Section 3.5. We repeat these repair, acceptance, and
destruction steps until the stopping criterion is reached. Sb is the output of the algorithm.

Algorithm 1: Outline of the algorithm

Input: An instance of the DARP-T
Output: A solution Sb of the problem

1 Transform the instance into a trivial partial solution S;
2 Set the last accepted solution Sa = S and the best solution Sb = S; Set the temperature T = T0;
3 Let t be the time in seconds since this line was executed and set the temperature function to be

Equation 3.14;
4 while Sb has been updated in the last 104 iterations do
5 Set S = Sa ;
6 Randomly set half of the attributes canBeModi f i ed corresponding to a vehicle involved in a

transfer to false: Set all other canBeModi f i ed attributes to true;
7 Transform S into a solution using Algorithm 2;
8 If S has a lower objective cost than Sb , set Sb = S;
9 Update T (see Section 3.3);

10 Determine using Equation 3.13 whether S is accepted; If S is accepted, set Sa = S;
11 Partially destroy S using the procedures described in Section 3.5;

12 Return Sb ;
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3.3. Selection criterion and cooling scheme
The objective function value of a solution is measured by Equation 2.1. The acceptance of a new solution
S depends on its objective function value cost (S), the objective function value of the last accepted solution
cost (Sa), and a temperature T ∈ (0,T0] that determines how likely we are to accept worse solutions. We accept
the new solution S with probability

0 if S is one the last 20 accepted solutions

1 otherwise, if cost (S) ≤ cost (Sa)

min
(
1,exp

(
− cost (S)−cost (Sa )−γmax(0,∆tr ans )

T

))
otherwise

(3.13)

with ∆tr ans the number of transfers in S minus the number of transfers in Sa . We avoid revisiting parts of
the solution space by using the last 20 accepted solutions as a short term tabu list. If S is not in the tabu
list, it is always accepted when it has a lower cost than Sa . The criterion can also accept worse solutions
but becomes less accepting of worse solutions as the temperature decreases. The term containing ∆tr ans is
much smaller than cost (S). It increases the probability of accepting a solution containing more transfers but
does not affect the probability of accepting a solution reducing the number of transfers (to prevent keeping
inefficient transfers). Because the value of the ∆tr ans term is small, it mostly plays a diversification role when
the temperature is close to 0 by making the criterion accept a solution that is slightly worse, but different from
Sa . Since it is not possible to keep increasing the number of transfers without significantly increasing the cost
of the solution, the ∆tr ans term cannot be the cause of the acceptance of worse solutions many times in a
row. Therefore, the increase in cost this diversification mechanism can cause to Sa is bounded by the factor
γ. Another advantage of the ∆tr ans term is that it compensates for the higher destruction of the transfers by
the destruction mechanism (see Section 3.5) by reintroducing transfers in the solution. An analysis of the
performance of this mechanism is provided in Section 4.3.7.
The temperature is a function of the time t (in seconds) elapsed since the start of the algorithm:

T (t ) = T0e−t/375. (3.14)

Equation 3.14 is plotted in Figure 3.6. The temperature was designed to take around half an hour to drop
under 1% of T0 as the algorithm was observed to usually take around 15 minutes to find a solution that mini-
mizes the number of rejected requests.

Figure 3.6: Plot of Equation 3.14

The temperature does not only affect the acceptance criterion but also influences the amount of destruc-
tion in the destruction phase (Section 3.5). At low temperatures, the amount of destruction is kept low and
at high temperatures, large parts of the solutions are destroyed. Since the computational cost of repairing
increases with the amount of destruction (see Section 4.3.6), the destroy-and-repair procedure at low tem-
peratures is computationally cheap. Additionally, repairing a small part of the solution does not require tak-
ing many decisions, and therefore, we are likely to guess enough of them correctly to improve the incumbent
solution. Therefore, at low temperatures, the repair-and-destroy procedure results in an efficient local search
since it is computationally cheap (many solutions can be considered), greedy (the acceptance criterion is
almost greedy at low temperatures) and only consider close neighbors. The repair-and-destroy procedure
at low temperature is, however, incapable of escaping local minima. For this reason, when the algorithm
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seems to be stuck in a local minimum, we introduce a reheating mechanism inspired by Afifi et al. (2013).
The reheating mechanism increases the temperature by switching to another temperature function

T (t ) = T0e−((t−t0)/8+2) (3.15)

with t0 the time (in seconds) at which it was decided to switch the temperature function. This decision hap-
pens when no solution has been accepted in the last 3000 iterations and when the last Sb was discovered in
the last 5000 iterations. Since the algorithm stops after failing to find a new Sb for 10000 iterations, we want
to ensure that we still have at least 10000−5000 = 5000 iterations to compensate for the increase of cost (Sa)
that will follow the increase in temperature. Equation 3.15 is designed to worsen Sa just enough to displace
it from the local minima. Therefore, it starts at T (t0) = 0.14T0 and reaches 0.01T0 in 20 seconds. A compu-
tational experiment from Chapter 4 shows the temperature function switch in Figure 3.7. One can see that
the temperature increase originally causes a small increase in the cost of Sa but also resumes the objective
function value descent. The effect of the ∆tr ans term is visible in Figure 3.7 as occasional small increases of
Sa . One can see that this increase is indeed always bounded.

Figure 3.7: Objective function value of the accepted solutions and temperature vs time, when solving an instance from Chapter 3. The
first 50 minutes are not shown to keep the range of the y axes relevant, since the initial objective function value and temperature are an

order of magnitude larger.

3.4. Repair phase
This section first provides an outline of the repair phase of the algorithm. Then, the procedures used in the
repair phase are explained in more details in Section 3.4.1 (vehicle-request matching), Section 3.4.2 (candi-
date route generation) and Section 3.4.3 (candidate transfer generation).

Usually, destroy and repair procedures clearly separate the two steps and only the destroyed part of the
solution is modified in the repair step. However, since we greedily repair the partial solution with a feasibility
constraint, repairing a small destruction has a high chance of simply reverting the destruction. Furthermore,
since transfer organization relies on a high density of unserved requests and available vehicles, destroying
and repairing a small subset of the solution is unlikely to discover transfers. Therefore, applying this proce-
dure will most likely reduce the number of complex routes and transfers, worsening the solution. We could
mitigate this problem by only destroying large parts of the solution but, as explained in Section 3.3, a large
destruction is computationally expensive and unlikely to improve good solutions. Therefore, we solve this
issue differently by allowing the repair operator to occasionally interact with the non-destroyed part of the
solution during the repair phase. Every modification of the non-destroyed part of the solution usually results
in some additional destruction of the solution. To avoid getting stuck in the repair phase because of this ad-
ditional destruction, we occasionally forbid some routes to be interacted with in the repair phase by setting
their attribute canBeModi f i ed to false (See Algorithm 6). Eventually, enough routes will be protected and
the solution can only be repaired.

Algorithm 2 gives an outline of the repair phase. It starts by matching vehicles and requests using Al-
gorithm 3. Then, it selects the vehicle with lowest current time v1, generates different routes for v1 using
Algorithm 4 and tries to find a transfer having a lower cost than these routes using Algorithm 5 (see Section
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3.1.1 for the definition of cost). Algorithm 5 is allowed to organize a transfer between v1 and a non-destroyed
route in S. If a transfer is found, the routes that bring the requests to the transfer point are appended to the
entire routes of the vehicles involved in the transfer, and the drop-off routes are set as certificates of feasi-
bility for these vehicles. If no better transfer is found, the least cost route in W1 is appended to v1.er . This
update of a vehicle is repeated until all requests are handled (i.e., served or rejected). In other words, we are
constructing a solution from the partial solution by moving vehicles one by one.
Figure 3.1 could be an input partial solution of Algorithm 2. Algorithm 2 builds a solution from Figure 3.1 as
follow. First, Algorithm 3 matches the blue vehicle to the gray request. The red vehicle is selected as it is the
vehicle with lowest current time (see Section 3.1). Candidate routes for the red vehicle are generated using
Algorithm 4 with the red certificate of feasibility as input initial complete route. Algorithm 5 tries to organize
a transfer with these candidate routes. Finally, the candidate best route or a transfer is selected and appended
to the partial solution. These steps are repeated until no more request can be served.

Algorithm 2: Outline of the repair phase

Input: A partial solution S of the DARP-T
Output: A solution S of the DARP-T

1 while requests in S can still be served do
2 Match vehicles and requests using Algorithm 3;
3 Select the vehicle with lowest current time v1;
4 Generate a set of candidate routes W1 for v1 using Algorithm 4 with v1 as input vehicle and v1.c f

as initial complete route if v1 is not currently empty, otherwise with the route that starts at
v1.pos and serves the request matched to v1 as input initial complete route;

5 Generate a transfer using Algorithm 5 with W1 as input set of candidate routes;
6 if Algorithm 5 returned a transfer then
7 If v1 is involved in a transfer with a non-destroyed route in S, partially destroy that route with

Algorithm 6;
8 Update S by appending the routes that bring the requests to the transfer point to the entire

routes of the involved vehicles and set the drop-off routes as certificate of feasibility.

9 else
10 Update S by appending the minimum cost route in W1 to v1.er ;

11 Mark the requests involved in the carried out route or transfer as handled;
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3.4.1. Vehicle-request matching algorithm
The vehicle-request matching procedure described in Algorithm 3 serves two purposes: matching idle vehi-
cles with unserved requests and rejecting the requests that cannot be feasibly served anymore in the partial
solution. The matching is found by solving the rectangular assignment problem to minimize the time re-
quired for the vehicles to pick up their request. One can imagine that solving the assignment problem is only
meaningful if the vehicles have similar current time. Indeed, if the vehicles are scattered through time, few
requests can be picked up by several vehicles and the assignment problem simply matches vehicles to their
closest request. However, since we always move the vehicle with lowest current time in Algorithm 1, the ve-
hicles move more or less together through time. Therefore, solving the assignment problem is expected to
result in a better cooperation between vehicles by preventing short-sighted greedy moves.

Algorithm 3: Vehicle-request matching

Input: A partial solution S of the DARP-T
Output: The largest set of feasible (vehicle, request) matches that minimizes the total time spent by

the vehicles travelling to (and possibly waiting for) their matched request. In the process, the
algorithm also rejects the requests that cannot be feasibly served anymore

1 Create the set of empty vehicles Va ⊂V ;
2 Create the set of available requests Ra ⊂ R (requests for which i sH andled is false) ;

3 Create the vehicle-request reach-cost matrix C ∈R|Va |×|Ra |, (ci j ) = time it takes for the i th vehicle v in

Va (from v.t ) to pick-up the j th request r in Ra (including the waiting if v arrives sooner than r.e) if v
can arrive at r.p before r.ld and if r.g s ≤ v.c, else ∞;

4 Reject the requests that cannot be reached before their latest departure time by any vehicle by setting
their attribute i sRe j ected and i sH andled to true. Remove them from Ra and C (delete the
corresponding columns);

5 Solve the rectangular assignment problem with C as cost-matrix and remove the infeasible matchings
(those with infinite cost);

6 Return the matching;

Now that all idle vehicles are matched to a request, we can select a vehicle and build candidate routes for it
using the algorithm described in Section 3.4.2.

3.4.2. Candidate route generation
Algorithm 4 generates, from an initial complete route cRo, a set of candidate routes — denoted W — for a
vehicle v . A set of requests we want to the routes in W to serve and a set of requests we do not want the routes
in W to serve can optionally be provided.
Algorithm 4 starts with the provided initial complete route cRo and then inserts a request that can be feasibly
picked-up inside cRo (i.e., not after the last drop-off of cRo) in cRo and adds this new route to W . Then, cRo
is redefined to be this new route and the process is repeated. The request must be picked-up inside cRo to
prevent creating a route that could be split into two complete routes. This is not desirable because it would
allow the second route to skip the matching procedure described in Section 3.4.1.
Incomplete routes are also found by inserting requests into cRo without considering the feasibility of the
drop-off. Therefore, the feasibility of the incomplete route relies on a future transfer. No more than one
route and one incomplete route are added every iteration to keep W small (W cannot contain more routes
than 2v.c since cRo contains one additional request every iteration and at most two routes are added every
iteration). Also, adding only these two routes to W ensures that no duplicates appear in W (since at every
iteration, cRo contains a different number of requests).
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Algorithm 4: Candidate routes generation procedure

Input: A vehicle v , an initial complete route cRo, a set of candidate requests candReq (optional), a
set of requests that cannot be picked up notC and (optional)

Output: A set W of candidate routes for v
1 Create the set of candidate routes W = {cRo};
2 Set notC and = {;} if it is not provided;
3 Set candReq = {r | r is related to a request carried by cRo} if it is not provided;
4 Add to candReq the requests that could be picked up between the start node and the first pick-up of

cRo;
5 Set candReq = candReq \ notC and ;
6 while |candReq| > 0 do
7 Set cRo = last complete route added to W ;
8 Randomly select a request r from candReq and remove it from candReq ;
9 If r has already been picked up, is already in v or does not fit in v , continue;

/* We try to insert r into cRo */
10 Try to find a route (newcRo) that serves r and the requests in cRo;
11 if newcRo exists then
12 Append newcRo to W ;
13 If candR was not provided, set candR = candR ∪ r.r el ated \ notC and ;

14 else if there are less than 3 incomplete routes in W then
15 Try to find a route that only picks up r and serves the requests in cRo and store it in W (if such

route exists);

16 Return W ;

Now that candidate routes have been generated, we can check if we can find transfers more efficient than
these candidate routes using the algorithm described in Section 3.4.3.

3.4.3. Transfer generation
Organizing a transfer adds complexity to the problem. Indeed, in order to organize a transfer, one must decide

• which vehicles are involved,

• the position (node) and time of the transfer,

• the requests the vehicles will bring to the transfer,

• the sharing of the requests between the vehicles at the transfer.

We want our transfer organizing procedure to be fast (since it is frequently called). However, there are already
2|V | − |V | − 1 different ways to select at least 2 vehicles from our fleet of |V | vehicles. Therefore, we only
consider a very small fraction of all the possible transfers. For example, Algorithm 5 only considers transfers
involving two vehicles. As explained in Section 2.2, some locally unpromising moves are sometimes part of
an optimal solution and finding the best transfer according to some local criterion was observed to not be
worth the computational effort. Therefore, we settle for a transfer with a lower cost than the two routes the
vehicles involved in the transfer would otherwise take. This not entirely greedy selection criterion diversifies
the transfers the procedure can find.
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Algorithm 5: Transfer generation procedure

Input: vehicle v1, set of candidate routes W1 for v1

Output: A transfer involving two vehicles or ;
1 Set bestTr ans f er =;;
2 foreach route w1 in W1, in a random order do
3 foreach vehicle v2 6= v1, in a random order do
4 Generate a set of candidate transfer routes W2 for v2 (more details in the text);
5 foreach route w2 in W2, in a random order do
6 foreach candidate transfer node n, in a random order do
7 Determine where n should be inserted in w1 and w2 such that the time the vehicles

have to wait for each other is minimized;
8 Set al lReq to be the union of the content of both vehicles when they reach n ;

/* Now we are now solving the open, capacitated two vehicles VRP */
9 foreach way of partitioning al l Req in two sets do

10 Find the time at which the vehicles exchange their requests and leave n (if the
vehicle is only dropping requests, it does not have to wait for the other vehicle);

11 Compute the drop-off routes; Continue if there are no feasible drop-off routes;
12 if cost (tr ans f er ) ≤ min(cost (W1,W2), cost (bestTr ans f er )) then
13 Set bestTr ans f er = tr ans f er ;
14 Stop the procedure with probability 0.3;

15 Return bestTr ans f er

The transfer procedure is described in Algorithm 5. It takes as input a vehicle v1 together with a set of com-
plete and incomplete candidate routes W1 for that vehicle. It starts by randomly selecting one candidate route
w1 for vehicle v1 and another vehicle v2.
Then, it creates a set of candidate transfer routes W2 for vehicle v2. A transfer involving v1 and the entire route
of v2 is considered and W2 = {v2.er } if v2.t is larger than the time at the last unit of w1 and v2.canBeModi f i ed
is true. If not, we have to generate the candidate transfer routes W2 using Algorithm 4. We do so by first find-
ing the set of requests r eqC and that might be interesting to bring to a transfer with w1. More precisely, these
are the requests r for which all the following statements hold:

• the group size of r fits into v2, i.e. r.g s ≤ v2.capaci t y .

• there exists a request q ∈ w1 such that r.di r ·q.di r ≥ cosα for some angle α. Informally, it means that
r points in a direction similar to at least one request in w1.

• d(v2.pos,r.p)+d(r.p, w1)−d(v2.pos, w1) < 15. Informally, it means that r.p is on the way from v2.pos
to w1.

• r.di r · (z −md s(r.p)) > 0 with z the vector in md s(w1) closest to md s(r.p). Informally, it means that
bringing r to w1 brings r closer to r.d .

Then, we compute W2 with Algorithm 4. v2 is the input vehicle, v2.c f is the input initial complete route if v2

is not currently empty, otherwise the input initial complete route is the route that starts at v2.pos and serves
the request matched to v2, r eqC and is the input set of candidate requests and the requests picked up by w1

are the input set of requests that cannot be picked up. Afterwards, we randomly select a route w2 in W2 and
find a set of candidate transfers node. These nodes are the nodes that are close to w1 and w2 (see Equation
3.7). Then, we randomly select a node n in the set of candidate transfer nodes and determine its insertion
position in w1 and w2. After that, we consider a partitioning (P1,P2) of the requests present at the transfer
node. We make sure the partitioning is feasible and passes the following quality heuristics

(md s(r.d)−md s(n)) · (md s(q.d)−md s(n)) > 0 ∀r, q ∈ Pi , i ∈ {1,2}.

Informally, this heuristic tests whether all requests inside the partitions have to go in the same direction.
When a partitioning is accepted, the drop-off routes are computed. The quality of the transfer is then finally
evaluated and accepted or rejected. Since the complete candidate routes can be executed without transfers,
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they are used as a comparison to judge the quality of the transfers we find. If the transfer is accepted, a
stochastic criterion decides whether to keep searching for a better transfer or not. If we keep searching, we
try to organize a new transfer with a different combination of w1, v2, w2, transfer node and sharing of the
requests.

3.5. Destroy phase
This section first describes the challenges involved with destroying parts of the solution and the basic de-
struction mechanism used by all destroy operators. Then, we introduce the destroy operators.
Since the time windows of the requests are tight, small modifications of the v.er of a vehicle v (such as the
insertion of a request along the way) can make v.er infeasible. Therefore, we also destroy every unit of the
route happening after the modification. If this destruction affects a transfer, the destruction is propagated to
the other vehicle involved in the transfer. This mechanism is described in Algorithm 6. Unfortunately, this
propagation of the destruction affects disproportionately the complex routes and the late part of the solution
is more affected than the earlier part of the solution. We mitigate this problem by only solving the problem
on small timescales (see Chapter 4).

Algorithm 6: Destruction mechanism

Data: A partial solution, the vehicle v corresponding to the v.er we want to partially destroy and the
index i of the unit of v.er we want to destroy

Output: A partially destroyed partial solution
/* The algorithm is recursive */

1 Set j = |v.er |; toPr opag ate =;;
2 while j > 0 do
3 Consider the j-th unit of v.er . If there is a transfer, remember the other vehicle involved in the

transfer in toPr opag ate. If a request is being picked up from its pick-up node, set its attribute
i sH andled to false;

4 if j ≤ i then
5 Try to create a certificate of feasibility for v ;
6 if a certificate of feasibility is found then
7 Remove all units of v.er with an index greater or equal to j ;
8 Stop the while loop;

9 Decrement j ;

10 Set v.canBeModi f i ed = false with probability 0.5;
11 Propagate the destruction to the vehicles in toPr opag ate.

An example of the propagation of the destruction if shown in Figure 3.8. We destroy the last (the sixth)
unit of the red route in Figure 3.1. At the fifth unit of the red route, the red vehicle contains the yellow request,
which can be feasibly dropped-off. Therefore, the destruction of the red route can stop and the red vehicle
is assigned the drop-off of the yellow route as certificate of feasibility. Then, the destruction is propagated to
the blue vehicle. Since the transfer happens at the fifth unit of the blue route, everything happening after the
fourth unit is destroyed. At the fourth unit, the blue vehicle contains the green, the purple and the brown re-
quests. Unfortunately, the vehicle cannot feasibly drop-off all these requests using only ride-sharing and we
do not have a certificate of feasibility. Therefore, the fourth unit is also destroyed. The third unit of the entire
route is also destroyed for the same reason. At the second unit of the route, the vehicle can feasibly drop-
off its content (the brown request) and the destruction stops. This is an example of destruction propagating
backward in time. Note that the first unit of the route is always feasible and is therefore never destroyed.

We explain in Section 3.4 that, unlike most destroy and repair procedures, some additional destruction
sometimes happens during the repair phase. Similarly, some destroy operators are not purely destroy opera-
tors as their destruction is a byproduct of a modification of the solution.
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(a) Reproduction of Figure 3.1. (b) Destroyed Figure 3.1.

Figure 3.8: Example of the propagation of the destruction.

Let us describe the destroy and repair procedure. First, the parameter Q, defined to be

Q(T ) =
{

q with probability 0.5
T
T0

with probability 0.5
, (3.16)

is computed, with q a number sampled from the continuous uniform distribution U (0,0.4). Q is proportional
to the amount of destruction the destroy operators will carry. Therefore, we destroy more of the solution
when T is high and smaller parts of the solution when T is low (see Section 3.3 for the explanations of why
this is beneficial). Values of Q in [0,0.4] were observed to be likely to result in an improvement of the solu-
tion. Hence, we keep Q in that range at least 50% of the time. This also ensures Q is not always 0 when the
temperature has converged to nearly 0. Then, we run all the destroy operators one by one (without repairing)
in the following order:

1. Worst removal(n): entirely destroy the n worst-performing entire routes that can be modified. This
destroy operator is always selected and n is obtained by sampling the discrete uniform distribution
U {2,2+b10Qc}. The term 2 ensures that this operator destroys at least two routes, even when Q is small.

2. Zero-split(n): destroy at most n routes that can be modified at the tail of an arc they are traveling empty.
This destroy operator is always selected and n is obtained by sampling the discrete uniform distribution
U {2,2+b2Qc}.

3. Greedy ride-sharing: greedily rebuild using Algorithm 7 the entire route of a vehicle v randomly selected
from V , allowing the pick-up of any request (served or rejected). When v picks up a request that is
already served by another route, that other route is partially destroyed. This destroy operator is selected
with probability Q2 and builds a route in a very different manner than the repair operator, and therefore,
helps diversifying the solution.

4. Force a transfer: using Algorithm 8 and the entire routes from the partial solution, organize a transfer.
This partially destroys the routes of the involved vehicles (and potentially of other vehicles by propaga-
tion). This destroy operator is selected with probability Q.
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5. Related removal(n): destroy at most n routes that can be modified and containing requests related to
the rejected requests in the partial solution. This destroy operator is selected with probability min(10Q,1)
and n is obtained by sampling the discrete uniform distribution U {0,bcQc} with c the number of re-
jected requests in the partial solution.

6. Force request insertion: try to insert a request rejected in the partial solution into an existing entire route
(that can be modified) from the partial solution. If the insertion is successful, update the affected entire
route. This is applied to at most Q

2 |V | randomly selected vehicles.

Algorithm 7 modifies the solution by greedily rebuilding the route of a vehicle v . It starts by completely
destroying the existing v.er and replacing it by a route that serves a request not far from the initial position
of v . Then, it finds a set of candidate requests that are likely to be insertable in v.er . Afterward, it tries
to insert one of these candidate requests into v.er . If the insertion is successful, it updates v.er . The set
of candidate requests is recomputed and this procedure is repeated until the set of candidate requests is
empty. Then, we destroy the routes of the vehicles that are transporting requests that are now served by v .

Algorithm 7: Greedy ride-sharing destroy operator

Input: A vehicle v such that v.canBeModi f i ed is true, a partial solution S
Output: A modified S

1 Destroy v.er completely using Algorithm 6;
2 Set v.er = route that serves a request close to v.pos;
3 Set A = {request served by v.er };
4 repeat
5 Set r eqC and = {q ∈ R | q is related to a request in v.er or a request in v.er is related to q} \ A;
6 Randomly select a request r from r eqC and . Remove r from r eqC and and add it to A ;
7 Find an entire route r o for v that serves r and the requests served by v.er ; Set v.er = r o if such

route exists;
8 until r eqC and is empty;
9 Partially destroy the vehicles whose entire routes transport requests that are now served in v.er ;

Algorithm 8 analyses the solution to find two entire routes that could be modified to create a transfer. It
considers a random pair of vehicles and computes the distance between their two entire routes using the re-
sults from Section 3.1.2. If the distance is too large, it tries again with another pair. If not, it finds a set of nodes
close to the two routes. Then, Algorithm 5 is used to create a transfer. If the transfer is better than the exist-
ing entire routes of the vehicles involved in the transfer, the transfer is applied to the solution and Algorithm 8

stops.

Algorithm 8: Force a transfer destroy operator

Input: A partial solution S
Output: A modified partial solution S

1 for d100Qe pairs of vehicles (v1, v2), v1 6= v2 do
2 Compute the distance between v1.er and v2.er and continue if the distance is too large;
3 Find a transfer tr ans using Algorithm 5 with w1 = v1.er , w2 = v2.er ;
4 Set r o1 (r o2) to be the portion of v1.er (v2.er ) that will be destroyed if we carry out tr ans;
5 if cost (tr ans) < cost (r o1,r o2) then
6 Carry out tr ans;
7 Break;

Now that the algorithm has been introduced, we experimentally test it in Chapter 4.





4
Experimental analysis and results

In this chapter, we experimentally test the algorithm from Chapter 3 and analyze the results. In Section 4.1, we
generate test instances of the DARP-T. Section 4.2 investigates the accuracy of multidimensional scaling (from
Section 3.1.2) for the test instances. Then, the instances are solved in Section 4.3. We provide introductory
visualizations of the solutions in Section 4.3.1, we give a summary of the performance of the solutions in
Section 4.3.2, we investigate the user inconvenience caused by the ride-sharing and the transfers in Section
4.3.3, we look into the influence the time and the location of the demand has on the solution quality in Section
4.3.4, we investigate the effect of the fleet size on the fleet usage in Section 4.3.5, we provide an analysis of
running time of the algorithm in Section 4.3.6, and we investigate the effect of the ∆tr ans term from Section
3.3 on the solution quality in Section 4.3.7.

4.1. Test instances generation
We did not find any public benchmark for the DARP-T. Faced with the same problem, Masson et al. (2014)
tested their DARP-T solver on the DARP instances from Cordeau and Laporte (2003), since the DARP is the
closest optimization problem to the DARP-T. These instances contain from 24 to 144 requests. They noticed
that the structure of these instances is not really adapted to transfers. These instances do not require the high
quality of service we want to provide. Indeed, the requests have to travel on average for 10.5 minutes, and
half of the requests have day wide time windows and 90 minute maximal ride times. For these reasons, we
generated our own test instances.
The set of nodes N represents the main train or bus station (if there is no train station) of each of the 100 most
populated Dutch cities. The travel time (arc of the directed graph) between any two stations was computed
using the Open Source Routing Machine (OSRM). Figure 4.1 shows an overlay of the trajectory of the 100·99 =
9900 routes computed by OSRM 1.

1http://project-osrm.org/

27
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Figure 4.1: Overlay of all city-to-city trajectories computed by OSRM. Cities are represented by blue dots and the trajectories are repre-
sented in red. The Dutch road network is clearly visible.

The instances are generated using Algorithm 9. It takes as input the desired number of requests and ve-
hicles. The time windows generated by Algorithm 9 all fit inside a 4-hour (240 minutes) timescale and no
request has a travel time longer 2 hours (120 minutes). The pick-up node and drop-off node of every request
are first selected randomly. Then, to reduce the number of requests with a large travel time, the drop-off node
of some requests is redrawn with a probability increasing with the current travel time of the request. Each re-
quest is assigned a group size of 1, 2 or 3 with probability 0.6, 0.3 and 0.1 respectively. The earliest time of
departure r.e and latest time of arrival r.l of a request r are chosen such that r.l − r.e −d(r.p,r.d) is greater
than 10 minutes but also smaller than 1 hour and d(r.p,r.d). The resulting distribution of r.e and r.l is shown
in Figure 4.2. A comparison of the resulting time window size r.l − r.e with the travel time d(r.p,r.d) can be
seen in Figure 4.3. On average, the time windows generated with Algorithm 9 are 29 minutes longer than the
travel time and are 1.52 times the travel time.

Figure 4.2: Distribution of the earliest time of departure (in blue) and latest time of arrival (in orange) of 10000 requests generated using
Algorithm 9.
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Figure 4.3: Time window size vs travel time of 1000 requests generated using Algorithm 9. The blue line is the y = x line.

The vehicles are randomly assigned a capacity of 2, 4 or 6 with probability 0.2, 0.4 and 0.4 respectively. The
current time of each vehicle is set to 0 and all vehicles are assigned a random current position until all re-
quests can be reached by a vehicle before their latest time of departure plus a five minutes margin.

Algorithm 9: Instance generation algorithm

Input: Number of requests nr , number of vehicles nv

Output: A set of requests R, a set of vehicles V .
1 Create a set of nr requests R and a set of nv vehicles V ;
2 Randomly assign a city to r.p and to r.d for every r ∈ R;
3 while ∃r ∈ R s.t. d(r.p,r.d) > 120 or r.p = r.d do
4 If we are in the first three iterations of the while loop, redraw r.d with probability

min(1,d(r.p,r.d)/120) for every r ∈ R;
5 For every r ∈ R, redraw r.d if d(r.p,r.d) > 120 or if r.p = r.d ;

6 foreach r ∈ R do
7 Set r.g s = 1 with probability 0.6, 2 with probability 0.3 or 3 with probability 0.1;

/* If t1 comes from the first (second) set, it will become r.e (r.l). */
8 Randomly select a time t1 from the set {20,21, . . . ,104,105}

⋃
{135,136, . . . ,219,220};

/* t2 is selected such that |t2 − t1| = d(r.p,r.d) and t2 ∈ [15,225]. */

9 Set t2 =
{

t1 +d(r.p,r.d) if t1 ≤ 105

t1 −d(r.p,r.d) otherwise
;

10 Set te = min(t1, t2) and tl = max(t1, t2);
/* [te , tl ] is the smallest feasible time window for r, we pad it with t3, t4 */

11 Randomly select two elements t3, t4 from the set {5,6, . . . ,10}∪ {5,6, . . . ,min(30, 0.5d(r.p,r.d))};
12 Set r.e = max(0, t1 − t3) ;
13 Set r.l = min(240, t2 + t4);

14 Set v.c = 2 with probability 0.2, 4 with probability 0.4 or 6 with probability 0.4;
15 Randomly assign a city to v.pos and set v.t = 0 for every v ∈V ;
16 while ∃r ∈ R s.t. r.l −d(r.p,r.d) ≤ d(v.pos,r.p)+5 ∀v ∈V do
17 Redraw the positions of the vehicles;

For the computational experiments of this chapter, we generated 30 different instances: 10 with 150 re-
quests (5 with 60 vehicles and 5 with 70 vehicles), 10 with 500 requests (5 with 175 vehicles and 5 with 180
vehicles) and 10 with 1000 requests (5 with 330 vehicles and 5 with 360 vehicles). We name the instances
(number of requests)_(number of vehicles)_(instance number). For example, 150_60_3 is the third instance
with 150 requests and 60 vehicles.
Note that for the instances generated by Algorithm 9, the largest vehicle capacity is 6 and the smallest group
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size is 1. Therefore, no vehicle can carry more than 6 requests at once and if a solution serves all requests, we
must have ∑

v∈V
time v spent driving ≥ 1

6

∑
r∈R

d(r.p,r.d).

As a result, all solutions of all instances generated by Algorithm 9 must have a cost (Equation 2.1) greater than
or equal to 1

6 . However, note that the average group size is 1.5 and that the average vehicle capacity is 4.4.

4.2. MDS accuracy
The visualizations presented in the rest of this thesis use md s in R2 to display the relative positions of every
node (see Section 3.1.2) in a 2D plane. The relative positions of the nodes is not always very accurate, as we
observe in the example from Section 4.3.1. Therefore, in order to assess how accurate the displayed relative
positions are, we compute the relative error of md s

‖md s(n1)−md s(n2)‖2 −d(n1,n2)

d(n1,n2)

for every pair of nodes n1,n2 ∈ N . Given the nature of our test instances, we could also display the relative
positions by projecting the geographic coordinates of every city onto a 2D plane. We compare the accuracy
of the two approaches (md s in R2 and projection of the geographic coordinates) in Figure 4.4. One can see
that the relative errors of md s are slightly less spread out. One may suspect that the relative errors can be sig-
nificantly reduced by increasing the dimension of the codomain of the md s map. Figure 4.5 shows the mean
and standard deviation of the relative errors for different values of the dimension of the codomain. One can
see that increasing the dimension indeed improves the accuracy of the mapping. However, it also increases
the computational cost of the distance computations from Section 3.1.2. Additionally, the probability that
the dot product of two vectors randomly sampled from {v ∈Rd : ‖v‖2 = 1} is greater than some positive value
goes to 0 as d increases, causing the direction based heuristics to behave differently at higher dimensions.
For these reasons, all heuristics based on md s in this thesis use the 5-dimensional md s mapping of N . The
accuracy of that mapping is compared to the geographic projection in Figure 4.6.

Figure 4.4: Histogram comparing the relative errors of the 2D md s map (in blue) with the relative errors of the 2D projection of the
geographic coordinates of the cities (in orange). The mean is indicated by a vertical line. The blue histogram has a standard deviation of
0.12 and the orange 0.15.
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Figure 4.5: Mean and standard deviation of the relative errors of the md s : N →Rd map for different values of d .

Figure 4.6: Histogram comparing the relative errors of the 5D md s map (in blue) with the relative errors of the 2D projection of the
geographic coordinates of the cities (in orange). The mean is indicated by a vertical line. The blue histogram has a standard deviation of
0.06 and the orange 0.15.

4.3. Results
In order to determine the effects the transfers have on the solution, we solve the instances with and without
transfers. The instances solved with transfers are said to have been solved with the DARP-T solver and the
instances solved without transfers are said to have been solved with the DARP solver. The DARP-T solver is
the main algorithm described in this thesis (Algorithm 1) and the DARP solver is simply the DARP-T solver
without Algorithm 5 and 8.
We solve each instance three times:

1. Once with the DARP-T solver. The resulting solutions are referred to as the t-solutions. The solutions
generated that way are named by adding (t) as a suffix to the solved instance name. For example, 150_-
60_3(t) refers to the solution of instance 150_60_3 obtained with the DARP-T solver.

2. Once with the DARP solver. Therefore, the resulting solutions do not contain any transfers, are referred
to as the nt-solutions and use the (nt) suffix. For example, 150_60_3(nt) refers to the solution of instance
150_60_3 obtained with the DARP solver.

3. Once with the DARP-T solver using the nt-solution as initial guess and Equation 3.15 as temperature
function. The resulting solutions are referred to as the ntt-solutions and use the (ntt) suffix. For exam-
ple, 150_60_3(ntt) refers to the solution of instance 150_60_3 obtained with the DARP-T solver given
150_60_3(nt) as initial guess.

We generated the solutions using on an Intel® Core™ i7-8750H at 1.8 GHz, with penal t y = 0.1, γ= 0.15
|R| , and

T0 = 1
150 .



32 4. Experimental analysis and results

4.3.1. Solution visualizations
In this section, we introduce a few visualizations of the solutions we generated. Nodes are represented by
small circles, requests by arrows, vehicle routes by wavy lines, and initial positions of the vehicles by stars.
The color map on the right can be used to determine the earliest time of departure of a request (color of the
tail of the arrow) and the latest time of arrival (color of the head of the arrow). The color of the vehicles is
only used to differentiate them and routes share the color of their corresponding vehicle. A blacked out circle
indicates that a transfer happened at that node.

Because of the large size of the instances solved, drawing all the requests, vehicles, and routes at the same
time would not result in an intelligible diagram. Therefore, we only draw small subsets of the solutions. Let
us call two vehicles v1 and v2 connected if there exists a sequence of vehicles starting with v1 and ending with
v2 such that any two adjacent vehicles in the sequence are exchanging requests in the solution. If we draw
the route of a vehicle involved in a transfer, it would be interesting to also draw the route of the other vehicle
involved in the transfer. Therefore, a vehicle is always drawn with its connected vehicles.
In order to estimate how efficient the displayed subset of the solution is compared to the entire solution, we
use Equation 2.1 only on the drawn objects, that is we compute

∑
v∈Vc time v spent driving∑

r∈A d(r.p,r.d)

with Vc the set of drawn connected vehicles and A the set of requests served by the vehicles in Vc .

Figure 4.7 shows a route from 500_180_1(nt). Therefore, this is a DARP (no transfer) solution of instance
500_180_1. One can see that the vehicle is fortunate to start at the pick-up node of a request with an early
time window, and therefore, does not have to drive empty to its first request pick-up. Additionally, the vehicle
finds many requests to carpool along its way and is never required to drive empty. Therefore, this is one of
the most efficient subsets of the solution, which is confirmed by its cost of 0.600, versus 0.898 for the entire
solution.

Figure 4.7: Diagram representing the routes of a vehicle in the solution of instance 500_180_1(nt).

Looking at Figure 4.8, one might question the usefulness of the transfer. Indeed, having the blue vehicle
serve the two blue requests and the orange vehicle serve the orange request would result in a similar solution
but without the transfer. However, the blue vehicle has a capacity of 2 and the request first picked up by
the blue vehicle has a group size of 2. Therefore, it is not possible for the blue vehicle to transport the two
blue requests simultaneously. The orange vehicle, having a capacity of 6, can transport the two requests.
Therefore, this transfer is actually useful as it allows the two blue requests to be carpooled.
Despite the carpooling, the cost of this subset of a solution is 1.078, which is higher than 1.027, the cost of the
entire solution without penalty (1.227 with penalty). Therefore, this subset of the solution is rather inefficient
compared to the rest of the solution. However, this higher cost does not necessarily imply that there exists a
more efficient way to serve the drawn requests.
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Figure 4.8: Diagram representing the routes of two connected vehicles in the solution of instance 150_60_7(t).

Figure 4.9 shows the routes of three connected vehicle from 500_180_1(t). The orange vehicle picks up
the blue request, transfers it to the blue vehicle, picks up the orange request, receives the green request from
the green vehicle and then carpools the orange and green requests. The blue vehicle, after receiving the blue
request, is not involved in any additional transfers. The green vehicle stops after delivering the green request
to the orange vehicle.
Looking at Figure 4.9, one might think that serving the orange and the green requests independently (orange
vehicle serves the orange request and green vehicle serves the green request) might be more efficient. How-
ever, since the relative position of the cities can be significantly off in 2D (see Section 4.2), Figure 4.9 might be
misleading. Indeed, by denoting the orange request by ro , the green request by rg and the transfer node by
nt , we have d(ro .p,ro .d) = 90, d(ro .p,nt ,ro .d) = 97, d(rg .p,rg .d) = 97 and d(rg .p,nt ,rg .d) = 109. Therefore,
the detours caused by the transfer of the green request to the orange vehicle are not as substantial as Figure
4.9 suggests. Besides, since d(ro .p,nt ,ro .d ,rg .d)+d(rg .p,nt ) = 175 < d(ro .p,ro .d)+d(rg .p,rg .d) = 187, the
transfer is more efficient than transporting the requests independently.
Despite the complexity of the routes, the subset of the solution contains little carpooling and therefore, it is
not surprising that its cost is significantly higher than the cost of the entire solution (0.974 and 0.782 respec-
tively). Again, this does not necessarily imply that it is an inefficient way to serve the drawn requests.

Figure 4.9: Diagram representing the routes of three connected vehicles in the solution of instance 1000_360_2(t).
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4.3.2. Performance
The objective function value, number of transfers, and running time corresponding to all the generated solu-
tions are shown in Table 4.1. The ntt-solution running time does not include the time spent on the generation
of the corresponding nt-solution. The relative difference between the nt-solution and the ntt-solutions and
t-solutions are indicated in the corresponding gap column. The gap between two solutions that have not
rejected the same number of requests is not computed as it depends on the value of penal t y .

Since transfers are optional, the DARP-T solution space is a superset of the DARP solution space. There-
fore, for a given instance, no solution of the DARP has an objective function value lower than an optimal
solution of the DARP-T. Thus, we can expect the t-solutions and ntt-solutions to have a lower objective func-
tion value than the nt-solutions. One can see that in Table 4.1 that this is generally the case. Indeed, the
ntt-solutions are better than the nt-solution for all 30 instances. In general, nt-solutions have the highest ob-
jective function value, followed by the t-solutions and then the ntt-solutions. The performances of the three
different solutions can be summarized as follows:

• ntt-solution < nt-solution < t-solution for 8 out of the 30 instances,

• ntt-solution < t-solution < nt-solution for 12 out of the 30 instances,

• t-solution < ntt-solution < nt-solution for 10 out of the 30 instances.

The introduction of transfers in the nt-solutions has strictly improved the objective function value for all
instances and has reduced the number of rejected requests for 4 of the 6 nt-solutions with rejected requests.
This indicates that local minima for the DARP solver are not local minima for the DARP-T solver.

Despite its longer running times and its access to a larger solution space, the DARP-T solver fails to find
better t-solutions than the nt-solutions for 8 (out of 30) instances. This suggests that the introduction of trans-
fers introduces new local minima that are difficult to escape. Indeed, it may be that the transfers present in a
solution are preventing the improvement of that solution by the destroy and repair procedure, because of the
additional the vulnerability of the solution they are causing (see Section 2.2). Indeed, transfers cause routes to
be very interdependent and the destruction of a single route may propagate and destroy large swathes of the
solution (see Section 3.5). This can be observed in 1000_360_1(t). This solution is 0.5% worse than 1000_360_-
1(nt). 1000_360_1(t) contains a set of 7 connected vehicles, whose routes are shown in Figure 4.10a. Vehicles
are represented by stars, cities by dots, and routes by wavy lines.

(a) Routes of the connected vehicles. (b) Figure 4.10a after the destruction of the brown route.

Figure 4.10: Example of the propagation of the destruction.
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The brown vehicle in Figure 4.10a is involved in three-vehicle transfer with the purple and the yellow vehicles.
Then, the yellow vehicle exchanges requests with the pink vehicle. Afterward, the yellow vehicle participates
in 4-vehicle transfer with the gray, the green, and the red vehicles. Therefore, if we destroy the route of the
brown vehicle before its transfer, we also destroy the route of the yellow vehicle, which in turn destroys the
routes of all the other connected vehicles. This propagation of the destruction is shown in Figure 4.10b. In
Section 3.3, we argued that a large destruction of the solution is unlikely to be repaired to a better solution
in a single repair iteration. Additionally, the previous repair-and-destroy iterations might have optimized the
routes of the connected vehicles, decreasing even more the probability that better routes for the connected
vehicles can be found in a single iteration of the repair operator. Therefore, most attempts of the repair and
destroy procedure to modify the routes of the connected vehicles will be rejected. Thus, if the routes in Figure
4.10a happen to be detrimental to the quality of the entire solution, we are stuck in a local minimum.
Despite the overall superiority of the ntt-solution over the t-solutions, a third of the t-solutions are better
than their corresponding ntt-solutions. Since the ntt-solutions are solved at low temperatures from elite
nt-solutions, they might not be able to reach parts of the solution space containing complex multi-vehicle
transfers through the repeated, gradual improvements of the entire solution required by the low tempera-
tures. This is also suggested by the fact that the t-solutions generally contain 30% more transfers than the ntt-
solutions. It is possible that these complex transfers are sometimes beneficial, advantaging the t-solutions,
and sometimes trap the algorithm in a mediocre local minimum, advantaging the ntt-solutions.

One can see that the objective function values of the 150 requests solutions can be more than 40% higher
than the objective function values of the 1000 requests solutions. This decrease of objective function value
is observed for nt-solutions as well as for the ntt-solutions. The decrease in gap between the small and the
large instances is in the order of 1%. This suggests that the conjecture of Cortés et al. (2010) that states that
transfer profitability increases under high demand might be true, even though the increase in profitability
attributable to the transfers is an order of magnitude smaller than the total increase in profitability due to the
higher demand.
The t-solutions seem to consistently average close to 7 transfers per 100 requests. Whether this is a property
of the algorithm or of the instances is unknown. The objective function value considerably decreases with
an increasing number of requests. Indeed, the least-cost solution of the instances with 150 requests is 1.0034
versus 0.7467 for the 1000 requests instances. This suggests that increasing the request density increases the
use of ride-sharing. Indeed, without ride-sharing, no solution can reach an objective function value lower
than 1. We investigate this in more detail in Section 4.3.4. The running time of the DARP-T solver is around
twice the running time of the DARP solver. Since 5.1 million destroy and repair iterations were required to
generate all nt-solutions, versus 5.7 for the t-solutions, the DARP-T solver has a higher computation cost per
iteration than the DARP solver. The computation cost of both solvers is investigated in more details in Section
4.3.6.
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Table 4.1: Objective function value, number of transfers, and running time of all the generated solutions. The parenthesis following the
objective function value indicates the number of rejected requests. The gap indicates, in percent, the relative difference between the ntt
or t-solution and the nt-solution.

Instance
Objective function value

Number of
transfers

Running time

nt ntt Gap t Gap ntt t nt ntt t
150_70_1 1.1043 (0) 1.0811 (0) -2.1 1.0844 (0) -1.8 5 8 67 57 179
150_70_2 1.0200 (0) 1.0034 (0) -1.6 1.0556 (0) 3.5 7 5 40 48 142
150_70_3 1.0445 (0) 1.0328 (0) -1.1 1.0509 (0) 0.6 6 9 66 71 203
150_70_4 1.0502 (0) 1.0366 (0) -1.3 1.0064 (0) -4.2 6 13 82 63 181
150_70_5 1.1437 (0) 1.0818 (0) -5.4 1.0992 (0) -3.9 11 15 46 176 144
Average 1.0725 (0.0) 1.0471 (0.0) -2.3 1.0593 (0.0) -1.1 6.8 10.0 60 83 170
150_60_6 1.6838 (7) 1.5888 (6) / 1.5826 (6) / 6 10 98 73 143
150_60_7 1.2049 (2) 1.1109 (1) / 1.2273 (2) 1.9 9 10 30 64 167
150_60_8 1.9073 (9) 1.6183 (6) / 1.8391 (8) / 5 10 109 103 148
150_60_9 1.5403 (5) 1.5165 (5) -1.5 1.6801 (7) / 7 10 60 43 139
150_60_10 1.5688 (5) 1.4522 (4) / 1.4608 (4) / 5 13 49 117 169
Average 1.5810 (5.6) 1.4573 (4.4) -1.5 1.5580 (5.4) 1.9 6.4 10.6 69 80 153
500_180_1 0.8983 (0) 0.8669 (0) -3.5 0.9160 (0) 2.0 25 29 230 391 334
500_180_2 0.8990 (0) 0.8674 (0) -3.5 0.8920 (0) -0.8 31 22 317 683 495
500_180_3 0.8167 (0) 0.8008 (0) -1.9 0.8043 (0) -1.5 20 24 266 257 676
500_180_4 0.8918 (0) 0.8430 (0) -5.5 0.8831 (0) -1.0 19 33 286 409 759
500_180_5 0.9069 (0) 0.8943 (0) -1.4 0.8890 (0) -2.0 23 46 433 250 1103
Average 0.8826 (0.0) 0.8545 (0.0) -3.2 0.8769 (0.0) -0.7 23.6 30.8 306 398 673
500_175_6 0.8208 (0) 0.8032 (0) -2.1 0.8015 (0) -2.3 30 41 1412 351 1571
500_175_7 0.8846 (0) 0.8677 (0) -1.9 0.8663 (0) -2.1 27 38 213 318 540
500_175_8 0.8822 (0) 0.8561 (0) -3.0 0.8701 (0) -1.4 30 40 362 204 746
500_175_9 0.8831 (0) 0.8535 (0) -3.4 0.8812 (0) -0.2 32 34 367 633 910
500_175_10 1.2830 (4) 1.2492 (4) -2.6 1.1430 (3) / 30 43 191 454 479
Average 0.9507 (0.8) 0.9260 (0.8) -2.6 0.9124 (0.6) -1.5 29.8 39.2 509 392 849
1000_360_1 0.7715 (0) 0.7467 (0) -3.2 0.7751 (0) 0.5 54 76 1545 1448 1828
1000_360_2 0.8318 (0) 0.7785 (0) -6.4 0.7815 (0) -6.1 62 57 421 1581 2570
1000_360_3 0.8072 (0) 0.7839 (0) -2.9 0.7942 (0) -1.6 52 63 710 1043 1383
1000_360_4 0.8104 (0) 0.7955 (0) -1.8 0.7906 (0) -2.4 23 73 611 535 1584
1000_360_5 0.8034 (0) 0.7959 (0) -0.9 0.7942 (0) -1.1 26 81 1079 253 1823
Average 0.8049 (0.0) 0.7801 (0.0) -3.1 0.7871 (0.0) -2.2 43.4 70.0 873 972 1838
1000_330_6 0.7970 (0) 0.7782 (0) -2.4 0.8180 (0) 2.6 54 68 1791 903 1518
1000_330_7 0.8137 (0) 0.7920 (0) -2.7 0.7997 (0) -1.7 47 79 1069 740 2160
1000_330_8 0.8105 (0) 0.7820 (0) -3.5 0.7795 (0) -3.8 55 74 724 1334 1662
1000_330_9 0.8140 (0) 0.7829 (0) -3.8 0.7786 (0) -4.4 49 62 725 1105 2483
1000_330_10 0.7865 (0) 0.7591 (0) -3.5 0.7912 (0) 0.6 48 63 884 1253 1826
Average 0.8043 (0.0) 0.7788 (0.0) -3.2 0.7934 (0.0) -1.3 50.6 69.2 1039 1067 1930

4.3.3. User inconvenience
This section investigates the user inconvenience for the different generated solutions by looking into the de-
lays caused by the ride-sharing and transfers. Given a request r , we define the delay to be the drop-off time
minus the pick-up time minus d(r.p,r.d). Similarly, the relative delay is the delay divided by d(r.p,r.d).
The objective function does not include any term accounting for the user inconvenience. However, efficient
vehicle routing is expected to correlate with efficient request routing. Additionally, the time windows of the
requests only allow for limited delays. Indeed, on average, the time windows of the generated do not allow
for delays exceeding 29 minutes and relative delays greater than 52% (see Section 4.1).
The percentage of the requests that are not delayed, the percentage of the requests that have been trans-
ferred, the average delay and the average relative delay for all solutions are shown in Table 4.2. One can see
that the average delays are much lower than what is allowed by the time windows. Indeed, on average, the
delay caused by the ride-sharing and the transfers is typically around 10 minutes and the relative average
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delay ranges from 8 to 16%. However, since many requests are transported without delays (first column), the
fraction of the requests that are delayed are more severely delayed than the average of the requests.
In our case, ride-sharing necessarily delays at least one of the requests sharing the ride (unless they share
the same pick-up node and drop-off node). Indeed, there are no three distinct n1,n2,n3 ∈ N such that
d(n1,n2,n3) = d(n1,n3). For the same reason, a transferred request must also be a delayed request. Therefore,
it is not surprising to observe in Table 4.2 that the t-solutions and the ntt-solutions generally have a 1 to 3%
greater average delay and a higher rate of delayed requests. Thus, transfers increase the user inconvenience
in the solutions we generated.
We observe that fewer requests are transported without delay as the instances get larger. Similarly, the av-
erage delays increase with the size of the instance. Since delays must come from ride-sharing and transfers,
we deduce that there is more ride-sharing and transfers in large instances. This is consistent with the lower
objective function value of the large instances observed in Figure 4.1 that also suggests a more efficient usage
of the vehicles. We investigate the effects demand has on the solution in more detail in Section 4.3.4.
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Table 4.2: Percentage of the requests that have been transported without delay, percentage of the requests that have been transferred,
average delay over all requests and average relative delay over all requests, for all solutions.

Instance
Without delay (%)

Transfer-
red (%)

Average delay (min)
Average relative

delay (%)
nt ntt t ntt t nt ntt t nt ntt t

150_70_1 63.4 60.0 57.5 3.3 6.7 6.6 7.4 7.6 8.8 9.5 10.8
5.0 5 150_70_2 61.8 55.6 54.1 4.7 3.3 7.1 8.5 7.7 9.6 11.7 10.2
9.0 9 150_70_3 60.7 54.5 52.7 4.7 6.0 7.0 8.2 8.1 8.6 11.4 10.8
15.0 15 150_70_4 56.8 56.8 47.6 4.0 8.7 6.5 6.8 8.2 8.9 9.6 11.6
20.0 20 150_70_5 63.5 52.7 51.0 9.3 12.7 7.0 9.0 9.1 9.9 13.0 13.0
Average 61.3 55.9 52.6 5.2 7.5 6.8 8.0 8.1 9.2 11.0 11.3
10.0 10 150_60_6 58.6 52.1 53.9 3.3 6.7 7.4 8.2 8.5 9.9 11.2 11.7
12.0 12 150_60_7 61.7 54.2 53.1 7.3 8.0 7.4 8.6 8.9 9.7 11.8 12.1
11.0 11 150_60_8 72.1 63.0 62.1 3.3 7.3 4.4 5.6 6.5 6.0 7.6 8.8
12.0 12 150_60_9 64.5 54.3 51.1 4.7 8.0 6.5 7.9 8.3 8.8 10.8 12.1
14.0 14 150_60_10 66.7 61.7 57.4 3.3 8.7 5.2 6.0 6.7 7.9 8.9 9.5
Average 64.7 57.1 55.5 4.4 7.7 6.2 7.2 7.8 8.5 10.0 10.8
35.0 35 500_180_1 47.3 43.1 43.8 5.6 6.6 9.6 10.5 9.6 13.8 15.0 14.1
27.0 27 500_180_2 49.5 41.9 44.5 7.0 5.0 8.8 10.3 9.3 12.1 14.4 13.0
29.0 29 500_180_3 45.3 40.9 42.3 4.2 5.4 10.0 10.6 10.5 13.6 14.5 14.1
40.0 40 500_180_4 44.2 41.9 40.7 4.4 7.4 9.6 10.0 10.7 14.0 14.5 15.3
58.0 58 500_180_5 49.7 45.8 46.0 5.4 11.0 9.5 10.2 10.2 13.2 14.1 14.2
Average 47.2 42.7 43.4 5.3 7.1 9.5 10.3 10.1 13.3 14.5 14.2
45.0 45 500_175_6 45.8 42.5 41.2 7.8 8.2 9.4 10.3 10.7 13.3 14.7 15.3
49.0 49 500_175_7 50.1 44.3 42.5 6.2 9.0 9.2 10.2 10.2 12.4 14.2 14.1
46.0 46 500_175_8 49.1 42.9 38.4 6.8 9.2 9.1 10.2 10.4 12.3 14.3 14.5
39.0 39 500_175_9 47.7 41.2 40.5 7.2 7.6 9.7 11.0 10.7 13.3 15.3 15.1
57.0 57 500_175_10 51.8 42.4 42.5 7.0 11.0 9.2 10.5 10.0 12.9 15.4 13.9
Average 48.9 42.7 41.0 7.0 9.0 9.3 10.4 10.4 12.8 14.8 14.6
97.0 97 1000_360_1 43.5 37.4 37.8 7.4 9.4 9.8 11.0 11.1 13.7 15.5 15.8
69.0 69 1000_360_2 44.8 37.4 38.0 7.4 6.7 10.0 11.5 11.0 14.2 16.2 15.4
86.0 86 1000_360_3 44.6 39.7 39.4 6.0 7.8 9.9 10.7 10.9 13.9 15.2 15.5
93.0 93 1000_360_4 44.6 42.2 37.2 2.8 9.0 9.9 10.5 11.1 14.1 15.0 16.3
103.0 103 1000_360_5 43.4 42.1 39.5 3.2 9.9 9.9 10.3 10.6 14.5 15.0 15.3
Average 44.2 39.7 38.4 5.4 8.6 9.9 10.8 10.9 14.1 15.4 15.6
87.0 87 1000_330_6 44.4 40.4 40.7 6.7 8.4 9.9 10.8 10.5 14.0 15.6 15.2
97.0 97 1000_330_7 46.3 41.3 38.0 6.2 9.2 9.3 10.3 10.7 13.4 15.0 15.8
97.0 97 1000_330_8 42.4 37.8 39.0 7.4 9.0 9.7 10.7 10.6 13.9 15.5 15.3
91.0 91 1000_330_9 44.2 41.5 38.9 6.2 8.4 9.6 10.4 10.6 13.3 14.5 14.7
77.0 77 1000_330_10 42.9 39.1 40.1 5.5 7.6 10.0 10.8 10.9 14.0 15.0 15.2
Average 44.0 40.0 39.3 6.4 8.5 9.7 10.6 10.7 13.7 15.1 15.2

4.3.4. Influence of demand
If a nationwide dial-a-ride service were to exist and be widely used, one can imagine that |N | À 100 and
that few nodes in N would be isolated. One can see in Figure 4.1 that N consists of a central zone with a
high density of nodes and an outer zone where nodes are scattered. Since the positions of the pick-up nodes
are randomly selected (see Algorithm 9), the node density is proportional to the request density. One can
imagine that requests that have to be transported through a low-density zone are less likely to be transported
in an efficient route due to the lack of opportunity for transfers and carpooling (lack of transfer nodes and
requests). Therefore, it would be interesting to quantify how the efficiency of the vehicles is affected by the
density of the zone in which they are driving.
A real dial-a-ride service would also most likely be available 24/7 and there would always be cars transporting
requests. However, the test instances only consider a four-hour timescale in which all vehicles are initially
empty and must be empty at the end. Therefore, one can imagine that the efficiency of the vehicle routes
will be poor at the beginning and at the end of the timescale. Indeed, unless a vehicle is initially located at
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the pick-up node of the first request it is picking up, it will first have to drive empty to the pick-up node of
that request. Similarly, unless a vehicle is transporting several requests having the same drop-off node, it will
drive to its last node without ride-sharing (there is no depot constraint). This can also be seen in Figure 4.2:
the number of new requests to pick up rapidly decreases after t = 100. Therefore, it would be interesting to
quantify how the efficiency of the vehicles is affected by the start and by the end of the timescale. This could
provide insight on the improvements that can be expected from solving instances with larger timescales and
also the influence changes in demand (rush hour, night) can cause to the solution.
For some solution S, let us define VM (t ) ⊂V , the set of vehicles in motion at time t and Ri n(v, t ), the number
of requests inside vehicle v at time t . We define the instantaneous efficiency of S at time t to be the number
of requests inside a moving vehicle at time t divided by the number of vehicles moving at time t , that is

η(t ) =
∑

v∈VM (t ) Ri n(v, t )

|VM (t )| . (4.1)

Informally, η(t ) is the average number of requests per moving vehicle at time t .
In order to study how the density of the zone in which a vehicle is driving influences the route efficiency, we
partition N into two sets: the set of requests in a dense zone D and the set of requests in an isolated zone I .
Informally, we mean by dense zone a zone that many requests have to travel trough when going from their
pick-up node to their drop-off node. Therefore, let us define the centroid c of N to be

c = 1

|N |
∑

n∈N
md s(n)

and define D to be the set of the 50 cities closest to c and I the set of the 50 cities farthest from c. Formally,
the sets D and I are the sets such that D

⋃
I = N , |D| = 50, |I | = 50 and

‖c −md s(d)‖2 ≤ ‖c −md s(i )‖2 ∀d ∈ D, i ∈ I .

We define the dense zone to be the set ZD = {x ∈ Rd | ‖x − c‖2 ≤ maxd∈D ‖d − c‖2} and the isolated zone to be
ZI =Rd \ ZD . The two sets, the zone boundary, and the centroid are shown in Figure 4.11.

Figure 4.11: Visualization in 2D of D and I and of the boundary of the zones (black circle). Each city in D is represented by a black circle
and every city in I by a green cross. The 2D centroid is represented by a red square. The presence of a green cross inside the circle is due

to the fact that D and I were generated using the more accurate, 5-dimensional md s map.
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In order to measure the efficiency of the vehicles depending in which zone they are driving, we use V D
M (t )

(V I
M (t )) to denote the set of vehicles in motion inside ZD (ZI ) at time t and compute the instantaneous effi-

ciency per zone using

ηD (t ) =
∑

v∈V D
M (t ) Ri n(v, t )

|V D
M (t )| , ηI (t ) =

∑
v∈V I

M (t ) Ri n(v, t )

|V I
M (t )| .

Plots of ηD (t ) and ηI (t ) are shown for the three types of instances in Figure 4.12 (150 requests), Figure 4.13
(500 requests) and Figure 4.14 (1000 requests). The influence of the empty start and empty end is visible in
all three figures as they all start with an instantaneous efficiency close to 0 (some vehicles already pick up a
request at t = 0) that then increases to plateau from around t = 90 to t = 150 before decreasing to 1. This indi-
cates that an increase in demand will be followed by an increase in efficiency and that a decrease in demand
will be followed by a decrease in efficiency. However, note that the low efficiency at the beginning and at the
end of the timescale only affects the vehicles in motion. Therefore, the effect of the low efficiency on the cost
of the entire solution is not as large as the figures might suggest.
In the 150 requests case, ηD takes around 50 minutes to reach an efficiency of one and plateaus at an effi-
ciency of 1.25. Note that this does not mean that many vehicles drive 50 minutes before picking up a request.
Indeed, as can be seen from the number of vehicles moving, many vehicles are stationary at the beginning of
the timescale as they wait for requests to be available for pick-up. In the 500 requests case, ηD reaches one
in around 40 minutes and plateaus at around 1.6. In the 1000 requests case, these numbers further improve
to 30 minutes and 1.7. Since the larger instances have a higher request density, we conclude that the vehicle
efficiency increases with the request density.

Figure 4.12: Instantaneous efficiency ηD (red line), ηI (red dashed line) and total number of vehicles V D
M (blue line), V I

M (blue dashed
line) vs time for the ntt-solutions of the instances with 150 requests.
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Figure 4.13: Instantaneous efficiency ηD (red line), ηI (red dashed line) and total number of vehicles V D
M (blue line), V I

M (blue dashed
line) vs time for the ntt-solutions of the instances with 500 requests.

Figure 4.14: Instantaneous efficiency ηD (red line), ηI (red dashed line) and total number of vehicles V D
M (blue line), V I

M (blue dashed
line) vs time for the ntt-solutions of the instances with 1000 requests.

The effect the zone a vehicle is driving in has on the instantaneous efficiency is visible on the three figures
and the vehicles moving in zone I have a noticeably lower instantaneous efficiency throughout time. In order
to quantify the global effect the zones have on the solutions, we define a function similar to Equation 4.1 that
measures the average efficiency of the entire solution given a zone. The average efficiency of a solution S
over a zone Z is the average (over the entire timescale) number of requests inside a vehicle moving in zone Z ,
divided by the average (over the entire timescale) number of vehicles moving. This can expressed as

ηZ
av g (S) =

∫ 240

0

∑
v∈V Z

M (t ) Ri n(v, t )d t∫ 240

0
|V Z

M (t )|d t

. (4.2)
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Note that if no request is rejected we must have

cost (S) ≥ 1

ηD∪I
av g (S)

. (4.3)

Indeed, we have ∫ 240

0
|VM (t )|d t = ∑

v∈V
time v spent driving

and since every served request spends at least d(r.p,r.d) minutes in a moving vehicle, we have

∑
r∈R

d(r.p,r.d) ≤
∫ 240

0

∑
v∈VM (t )

Ri n(v, t )d t

Therefore, we must have

∑
v∈V time v spent driving∑

r∈R d(r.p,r.d)
≥

∫ 240

0
|VM (t )|d t∫ 240

0

∑
v∈VM (t ) Ri n(v, t )d t

which is equivalent to Equation 4.3. Due to penal t y , Equation 4.3 also holds when requests are rejected.
Since ∫ 240

0

∑
v∈VM (t )

Ri n(v, t )d t − ∑
r∈R

d(r.p,r.d)

corresponds to the delays due to the detours caused by the transfers and the ride-sharing, the bound is tight
when all requests are directly transported to their drop-off nodes.

The average efficiency per zone of the ntt-solutions and the nt-solutions solutions is shown in Table 4.3.
One can see that the efficiency is significantly (12-18%) higher in the dense zone. Therefore, we can conclude
that isolated zones have a considerable negative effect on the solution quality. We also observe that the gap
for the ntt-solutions is 1 to 2% greater than the gap for the nt-solutions. This suggests that the introduction
of transfers is more profitable in the dense zone than in the isolated zone and provides some experimental
evidence for the conjecture of Cortés et al. (2010) that states that transfer profitability increases under high
demand.

Table 4.3: Average efficiency per zone of the for the ntt-solutions and the nt-solutions

Number of requests
ntt nt

ηI
av g ηD

av g Gap (%) ηI
av g ηD

av g Gap (%)
150 0.906 1.068 17.9 0.893 1.028 15.1
500 1.172 1.345 14.8 1.141 1.292 13.2

1000 1.323 1.494 13.0 1.275 1.434 12.5

4.3.5. Fleet usage
We define the occupancy of a vehicle to be the number of passengers inside a vehicle divided by the capacity
c of the vehicle. We give the average distance traveled by the vehicles and average occupancy of the vehicles
for the different ntt-solution families and vehicle capacities in Table 4.4.
One can see that, for a fixed number of requests, decreasing the number of vehicles increases the average
distance traveled by the vehicles. Therefore, as expected, reducing the size of a fleet increases the usage of
the fleet. Interestingly, this increase of the usage of the fleet also comes with a general decrease of the occu-
pancy of the vehicles. This suggests that to serve all requests, the smaller fleet has to take routes with lower
occupancy. However, note that since the objective function is independent of the group size of the requests,
a lower vehicle occupancy does not necessarily imply a lower objective function value.
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One can see that, for all solution families, the capacity of a vehicle is positively correlated with the distance
this vehicle drives. This correlation is especially strong for the vehicles of capacity 2. Additionally, the smaller
fleets have a proportionally higher usage of the vehicles of capacity 2 than the larger fleets. This can be ex-
plained by the fact vehicles of capacity 2 can not carpool many passengers (and therefore requests), favoring
the use of larger vehicles in elite solutions and that, when the fleet is reduced, a higher use of vehicles of ca-
pacity 2 is necessary to serve all requests.

Table 4.4: Average distance traveled by the vehicles and average occupancy of the vehicles for the different ntt-solution families and
vehicle capacity.

|R| |V|
Average distance (min) Average occupancy (%)
c = 2 c = 4 c = 6 c = 2 c = 4 c = 6

150 70 134 143 148 55.3 40.1 25.7
150 60 161 167 165 53.3 36.6 26.6
500 180 137 157 160 60.5 46.9 36.2
500 175 140 160 163 59.4 47.4 34.6
1000 360 111 145 152 68.0 52.3 41.7
1000 330 130 155 161 66.2 51.4 40.3

4.3.6. Running time
This section experimentally investigates the influence of the instance size, the search for transfers, and Q
(see Section 3.5) on the running time of the destroy and repair procedure. The results of the experiment are
shown in Figure 4.15. The parameter Q determines how much destruction is applied to the solution and we
see, as expected, that increasing Q increases the computation cost of an iteration for all presented cases. The
DARP solver iterations seem to be around 40% cheaper than the DARP-T solver iterations for all instances
size. This suggests that the solver spends 40% of its computation time looking for transfers. The red and
green (dashed and full) lines seem to suggest that, for large enough instances, the size of the instance has
little effect on the cost of a destroy and repair iteration. This might come as a surprise, but since the amount
of destruction is mostly independent of the size of instance and since most procedures used in Algorithm 1
bound the number of cases considered independently of the size of the instance (for example, the number of
routes Algorithm 4 generates does not exceed two times the capacity of the vehicle it is considering), this is to
be expected. However, this also means that since the amount of change is independent of the instance size, a
larger instance will require more iterations before converging to a solution. This is observed in Table 4.1.

Figure 4.15: Average computation time per iteration of the repair vs Q and destroy procedure for different instance sizes. The dashed
line indicate that the DARP solver was used and the full lines that the DARP-T solver was used.
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4.3.7. Effect of∆tr ans term
In this Section, we investigate the effect the∆tr ans term from Equation 3.3 has on the solution quality. We run
all 150 requests instances twice, once with γ= 0 (which is equivalent to removing the ∆tr ans term) and once
with γ= 0.15

|R| . The resulting objective function values and number of transfers are shown in Table 4.5. One can

see than the γ = 0.15
|R| solutions are better that the γ = 0 solutions for 7 out of the 10 instances. This suggests

that the ∆tr ans term is indeed improving the solution. Additionally, the γ= 0.15
|R| solutions contain in total 103

transfers, versus 68 for the γ= 0 solutions. This shows that∆tr ans term has the intended transfer-introducing
effect on the solution.

Table 4.5: Objective function values and number of transfers for solutions generated with γ= 0 and γ= 0.15
|R| . The parenthesis following

the objective function value indicates the number of rejected requests. The gap indicates, in percent, the relative difference between
the γ= 0 (reference) solutions and the γ= 0.15

|R| solutions.

Instance
Objective function value

Number of
transfers

γ= 0.15
|R| γ= 0 Gap (%) γ= 0.15

|R| γ= 0

150_70_1 1.0844 (0) 1.0928 (0) 0.8 8 4
150_70_2 1.0556 (0) 1.0424 (0) -1.3 5 2
150_70_3 1.0509 (0) 1.0715 (0) 1.9 9 5
150_70_4 1.0064 (0) 1.0396 (0) 3.2 13 11
150_70_5 1.0992 (0) 1.1190 (0) 1.8 15 7
150_60_6 1.5826 (6) 1.5867 (6) 0.3 10 5
150_60_7 1.2273 (2) 1.2215 (2) -0.5 10 8
150_60_8 1.8391 (8) 1.7561 (7) / 10 5
150_60_9 1.6801 (7) 1.8725 (9) / 10 11
150_60_10 1.4608 (4) 1.6429 (6) / 13 10



5
Conclusion and recommendations

Automated vehicles have the potential to revolutionize transportation by creating a future in which trans-
portation is an on-demand service. This model of transportation has the potential to reduce traffic, free-up
parking space, be safer, and reduce the environmental impact of traveling. In this thesis, we addressed the
problem of the routing of a fleet of vehicles by developing a greedy randomized destroy and repair heuristic
that optimizes the routes of a heterogeneous fleet of vehicles allowed to carpool and exchange passengers.
The heuristic attempts to minimize the total distance driven by the vehicles while maximizing the number
of served requests. We created realistic instances of the problem containing up to 1000 requests traveling
between any two of the 100 most populated cities in the Netherlands inside a four-hour timescale. The time
windows in which the requests can be transported were designed to be competitive with public transporta-
tion. We showed that, even for short (four hour long) scenarios in which requests ask to travel between two
cities that are on average 60 minutes apart, our fleet can satisfy the demand using a third of the number of
vehicles that would otherwise be required if all requests independently traveled using their own vehicle, and
reduces the total distance driven by the vehicles by up to 25%.

One of the goals of this thesis was to study the influence transfers have on the solution and all instances
were solved with and without transfers for comparison. The solutions with transfers we found are typically 1
to 4% better than the solutions without transfers, and help reducing the number of rejected requests in the
scenarios in which the fleet of vehicles is too small to serve all requests. The search for transfers typically
increases the running time by a factor of 2 to 3. We found out that a first optimization round without trans-
fers followed by a second optimization round with transfer was a successful optimizing strategy giving better
results than a single optimization round with transfers in a comparable amount of time. In future works, we
recommend introducing transfers only in a late stage of the optimization and we recommend looking into
using the existing DARP solvers as initial guess generators.
We observed that the introduction of transfers causes some routes to be interdependent and that this inter-
dependence can cause modifications of a single route to propagate to many other routes. This sensitivity of
the solution to modifications is undesirable in real-life applications as it may cause a single mishap to delay
numerous passengers. We suspect that these large sets of interdependent routes are trapping our destroy and
repair algorithm into local minima it is unable to escape. In future works, we recommend also optimizing for
solution robustness and we recommend developing new strategies designed to re-optimize sets of interde-
pendent routes.
Despite an objective function not accounting for user inconvenience, we observed in our solutions that the
delays caused by the transfers and the ride-sharing are significantly lower than those allowed by the time win-
dows. We showed that the transfers and the ride-sharing extend the travel time of the requests by, on average,
8 to 16%. The transfers are, on average, responsible for 1 to 3% of that travel time extension.
We provided some experimental evidence for the conjecture of Cortés et al. (2010) that states that transfer
profitability increases under high demand. However, the increase in profitability under a higher demand at-
tributable to the transfers is an order of magnitude smaller than the total increase in profitability due to the
higher demand. We observed that, for a fixed number of requests, decreasing the fleet size increases the fleet
usage but also decreases the occupancy of the vehicles. We recommend looking into the benefits a large ve-
hicle fleet can bring in future works.

45
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To our knowledge, this thesis is the first work introducing and solving DARP-T instances with more than
200 requests. This thesis also distinguishes itself from the existing literature through its demanding time
windows. We believe that the heuristic presented in this thesis brings us closer to solving real, very large scale
instances of the DARP-T.
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