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Abstract

The term ”Algal Bloom” refers to the accumula-
tion of algae in a confined geological space. They
may harm human health and negatively affect eco-
logical systems around the area. Thus, forecasting
algal blooms could mitigate the environmental and
socio-economical damages. Particularly, the use of
deep learning methods could distinguish underly-
ing patterns such as spatio-temporal dependencies
in the available remote sensing data of environmen-
tal factors that might cause algal blooms, such as
change in water temperature. This research paper
will aim to answer the following research ques-
tion: Does the inclusion of explicit spatio-temporal
embedding methods display a significant improve-
ment for predicting algal blooms?. The paper will
use the UNet architecture and further encodes spa-
tial and temporal information to be explicitly in-
cluded as features in the training and validation
process of deep learning models. The results of
the experiment show that the inclusion of explicit
spatio-temporal information separately into the fea-
ture space exhibits a small increase in performance.
However, the combination of spatio-temporal infor-
mation does not display a significant improvement
for the predictions.

1 Introduction
The term ”Algal Bloom” refers to the accumulation of algae
in a confined geological space, which can be caused by vari-
ous factors such as increase in temperature or excessive nutri-
ent loads in water sources [1]. A sudden increase in concen-
tration of chlorophyll-a (used by algae in oxygenic photosyn-
thesis) in fresh water resources may further lead to ”Harmful
Algal Blooms” (HABs). HABs not only release toxic sub-
stances that may harm human health, but they also can affect
nearby ecological systems negatively and may threaten the
balance of this local ecosystem [2]. They are estimated to
cause billions of dollars in damage worldwide [3]. Therefore,
forecasting algal blooms in fresh water resources accurately
might help in mitigating the environmental and subsequent
socio-economical damages they are causing.

The forecasting problem is modeled through the processing
of the relevant region’s collected data with varying modal-
ities.The objective of the forecast is to use the ”window
size” number of sequential geo-spatial samples to predict
the chlorophyll-a concentration ”prediction horizon” days
ahead. Since in-situ measurements may not be practicable
for all regions and all sources of data because of physical in-
accessibility or high cost of finances, ”Remote Sensing” is a
viable alternative to in-situ measurements. Remote Sensing
is the identification of earth’s surface characteristics and the
estimation process of their respective properties, referring to
the air or space-born remote sensors that are used to gather
geological data [4]. We show the visual demonstration of the
remote sensing data used for algal bloom forecasting in Fig-
ure 1.

The abundance of data gathered through remote sensing,
as well as the differing media types (e.g. satellite imagery,
meteorological data), make it difficult to combine the gath-
ered data in a meaningful manner for forecasting. The data
is traditionally combined manually through the collection of
maritime data, which is later modeled either through explicit
programming or shallow machine learning shore-based pre-
diction systems [5]. Such methods can lead to material and
financial bottlenecks for extensive monitoring, also requir-
ing more man-hours for feature extraction and modeling [6].
As a solution to overhead costs, deep learning can prove to
be useful by making use of its advantage of automatic fea-
ture learning, which allows the model to identify underly-
ing patterns among features even in noisy and disorganized
data. Furthermore, since the data depends on each other con-
sidering the varying spatial and temporal factors, modifying
state-of-the-art deep learning methods in accordance with the
spatio-temporal knowledge may improve the overall perfor-
mance [7].

Although the use of deep learning methods could improve
the performance, the model may still miss relevant informa-
tion such as the addition of sample geo-locations. Thus, the
explicit use of spatial information might be further beneficial
as integrating location information into the training process
will convey the same domain-specific patterns present in ge-
ographical data such as spatial dependencies [8]. In addition,
algal bloom forecasting is a time series problem where data is
successively collected over a time interval. The collected data
includes periodic temporal patterns (e.g. yearly/seasonal pat-
terns) as well as local extrema (e.g. weekly trends, incidental
factors). Therefore, the addition of temporal information into
the training process is also particularly relevant concerning
the spatio-temporal dependencies of algae colonies.

Figure 1: The ”data cube”, an example demonstration of the pro-
cessed samples within a batch for the algal bloom forecasting prob-
lem. A specified number of data band measurements are stacked on
top per sample. If batch size is bigger than 1, these cubes are stacked
once more on another dimension to be ready for training purposes.



The objective of this paper is to answer the following
research question: Does the inclusion of explicit spatio-
temporal embedding methods display a significant improve-
ment for predicting algal blooms? This paper will use deep
learning to forecast the HABs in one of the three fresh water
sources in Uruguay with their respective data provided by the
research supervisor. Furthermore, it will particularly focus on
embedding spatio-temporal information through:

• using a modified convolutional neural network architec-
ture to capture the spatial patterns,

• including spatial data explicitly as a feature to train on
to observe further improvements,

• including temporal data to enrich the feature space of
training data to capture patterns in the repeating nature
of time.

We show that adding spatio-temporal information to remote
sensing data slightly improves the accuracy of a CNN for al-
gal bloom forecasting. More importantly, we also show that
such addition increases the confidence of class predictions by
reducing false positives for the higher chlorophyll-a concen-
trations.

2 Related Work
This section will focus on the relevancy of deep learning with
spatio-temporal embedding in comparison with the existing
work on algal bloom forecasting.

2.1 Algal Bloom Forecasting
Traditional machine learning methods have been previously
used for various ecological forecasting purposes. They are
suitable for making powerful predictions while excelling in
handling sparse data, reducing bias with context-free struc-
ture and adequately reflecting the complexity of ecological
structures [9]. In addition to traditional ML, artificial neural
networks were also successfully applied in predicting algae
trends in varying water bodies [10, 11].

2.2 Choosing the Neural Network Architecture
Several neural network architectures can improve on the per-
formance with their inclusion of spatial and temporal meta-
data. Convolutional Neural Networks (CNN) are generally
used for image classification and segmentation tasks with
convolutional and fully-connected layers that convolve over
the input image. This allows the neural network to create
”feature maps”, meaning that it not only includes the weight
of the variables for the learning process but also their respec-
tive spatial information [12], implicitly providing a richer fea-
ture space to the training process. On top of their ability to
gather spatial metadata, CNNs are also applicable on time-
series data since they are able to derive features from grid-
like data within a certain spatial context [13]. Recurrent Neu-
ral Networks (RNN) on the other hand are directly suitable
for time-series as they can preserve the relevant information
from past internal states to look for patterns in the input [14].
Certain variations of RNNs such as Long Short-Term Mem-
ory (LSTM) [15] can be particularly effective for making use

of information gathered from earlier feed-back signals. Ad-
ditionally, certain combinations of aforementioned structures
could improve performance even further. Examples include
Conv-LSTM [16] which is a mixture of convolutional layers
in a RNN structure, or or UNet [17], a modified CNN that
achieves more precise analysis through fewer training data.
This way, the network can preserve both spatial and temporal
metadata to create context. Therefore the conducted experi-
ment will make use of the UNet structure because of its scal-
ability for large datasets as a CNN, while still maintaining a
simple structure to implement with a previously established
performance in image segmentation.

2.3 Explicit Use of Spatio-temporal Information
Recently, neural networks were observed to be more suitable
than traditional machine learning approaches for the purpose
of spatio-temporal forecasting [18], ranging from forecast-
ing precipitation [19] to photo-synthetically active radiation
[20]. In its essence, forecasting is a multivariate classifica-
tion/regression problem and neural networks may reveal pat-
terns that are not easily observable in large amount of data.
However, space and time based dependencies are often over-
looked for tasks such as determining the type of land cover
[21] or short and long-term patterns for traffic flow [22].

Although neural network architectures may include meta
information about space and time for implicit use, there were
no explicit spatio-temporal embedding example as a feature
in the observed papers. Therefore it’s not clear what effect it
would have on the performance of the model. This paper will
focus on explicit inclusion of spatio-temporal data with their
respective encoding as features.

3 Dataset
This section will focus on the specific dataset provided by the
project supervisor with the help of domain experts. It will
provide some initial analysis of the data solely through the
palmar water reservoir to provide a clearer understanding of
the data distribution. It will also explain how it lead to design
choices later on through the experiment setup.

3.1 Processing the Raw Data
Relevant data could be categorised under three main proper-
ties: biological, meteorological and surface water tempera-
ture. The collected data mainly refers to three regions and
respective water bodies nearby in Uruguay: palmar, bonete
and baygorria. Biological data was acquired through the Min-
istry of Environment of Uruguay and consists of chlorophyll-
a concentration, water turbidity and colored dissolved or-
ganic matter (CDOM) concentration. Meteorological data
was gathered through NOAA Global Forecast System and
consists of the following bands: air temperature, cloud cov-
erage, precipitation, radiation, relative humidity, u wind and
v wind. Finally, surface water temperature was acquired
through satellites “AQUA” and “TERRA” through MODIS
of NASA.

Files are read from TIFF/GeoTIFF format and subse-
quently combined through the use of Rasterio, a Python li-
brary that allows read and write operations for GeoTIFF



files, to comply with the conventional geospatial data for-
mat GDAL. Therefore, even after the combination of afore-
mentioned bands, the spatial and temporal metadata could
be preserved for further use in data preprocessing for model
training later on. As a result, all the findings could be pro-
jected onto an abstracted geological data structure on which
the data loader could work on loading in batches for training
the model.

Figure 2: An overview of how chlorophyll-a values are distributed
in the clipped range of [0, 250].

Figure 3: An example of the spatial distribution of chlorophyll-a
concentration averaged per pixel over 365 samples from 2016-09-
23 to 2022-06-19.

3.2 Chlorophyll-a Analysis
• Sparse and imbalanced data. Within the given pal-

mar dataset, 77.926% of the water-pixels have a mea-
surement over the time interval of late 2016 to mid-
2022. As can be seen from Figure 2, the provided

Figure 4: Overview of the standard distribution/the fluctuation per
pixel over 365 samples.

chlorophyll-a data is disproportionately distributed. 80
µg/L of chlorophyll-a concentration is considered high
by the domain expert, which implies that only 4.885%
of the non-NaN data is above the threshold. Upon the
project supervisor’s suggestion, the binning range was
chosen as [0-10, 10-30, 30-75, 75+] µg/l. For this given
range the distribution of the data is as follows: 63.574%,
23.185%, 7.963%, 5.273%. The input and predicted val-
ues will fall into one of these bins for classification pur-
poses.
Artificial oversampling of minority classes, undersam-
pling of the majority class and weighted loss meth-
ods were considered possible options to tackle the im-
balanced data problem. Over/undersampling methods
might interfere with the underlying spatio-temporal pat-
terns of the sequential environmental data, considering
that the data distribution will change without the ”nat-
ural randomness”. For that reason, the handling of the
imbalanced data was done through class-balanced loss
[23], which is a weighted loss approach that gives class
weights by the inverse of their percentage within the
data.

• NaN values. NaN values in chlorophyll-a values refer
to invalid data readings from remote sensors. The lack
of available data is either caused by the cloud coverage
since the readings are remotely collected through spec-
trophotometer, or areas that fall outside the water reser-
voir and hence don’t have readings for light reflecting
from algae in the water. The percentages of pixels with
a non-NaN chlorophyll-a readings are 0.112%, which
shows that there’s a need for handling NaN values later
in preprocessing.

• Spatio-temporal distribution. As can be seen from
Figure 3 and 4, high concentrations of chlorophyll-a are
mostly accumulated over the coastal boundaries of wa-



ter bodies with relatively high fluctuation with discrete
boundaries. Encoding spatial information and using it
in the feature space might help with finding such border
patterns to have an effect on the prediction. Moreover,
Figure 5 shows how the chlorophyll-a readings change
through temporal samples over time. Therefore, encod-
ing time and including it as a feature band might help
the model to catch these patterns to make more precise
predictions.

4 Integrating Spatio-Temporal Information
This section will explain the chosen methods to include ex-
plicit spatio-temporal information within the training and val-
idation process. It will further provide reasonings for method-
ological and design choices.

4.1 Model Architecture
Because of its ability to perform better with fewer training
images while still benefiting from its modified convolutional
neural network architecture, UNet was chosen as the model.
An overview of its architecture can be seen in Figure 6. Py-
Torch Lightning library was utilized to wrap the model in or-
der to process the incoming batches before continuing further
with the training of the data. A demonstration of the output of
batch processing (and what the model receives) can be seen
in Figure 1. The data cube has values for respective bands
placed on the 2-dimensional grid space and bundled together
per day, which is then combined further with previous days’
stacked bands to create a 4-dimensional input tensor. Subse-
quently, the UNet model applies convolution operations over
these tensors to deduce the feature mapping.

4.2 Spatio-temporal Encoding
The sampling for training and validation is done through
”Bounding Boxes”. Bounding Boxes within this context are
structures used as a helping tool for fetching image data from
the dataset in memory. Because metadata such as timestamp
and coordinate values are not directly accessible through ten-
sor indexing, Bounding Boxes allow the creation of spatio-
temporal ”Region of Interests” for the sampler. It composes
of six parameters including the maximum and minimum x,y
coordinates of the sampled region as well as the minimum and
maximum timestamps among the samples. Then, the sampler
will fetch the data from the dataset in accordance with the
region of interest set by the Bounding Box.

Since all of the bands are separate images, the query re-
turns every available band per day and stacks them in a di-
mension to be returned as input images to the model seen in
Figure 1. At this stage, the accessed timestamps per each
sample are encoded into the day of the year and added as
a new ”pseudo-band”, clipped and scaled, and subsequently
stacked with the rest. Unlike the timestamps which change
per each sample, spatial information is preserved among the
samples within the same batch because of the way the sam-
pler functions with the BoundingBoxes. Therefore, it is suf-
ficient to access the coordinate information for the corners of
the bounding box in order to create 2-D coordinate arrays.
All of the parameters are inferred by the data loader from the

processed dataset. The spatial information is then extracted
through the sampler’s region of interest, while the temporal
information is gathered through an iteration of the samples to
be matched with their respective timestamps.

5 Experiments
The experiment was carried out in Python and Torch library.
Main packages that were used are PyTorch1 for the model,
TorchGeo2 for handling geospatial data, and PyTorch Light-
ning3 for increased model readability and logging. The ex-
periment was conducted on DelftBlue Supercomputer [24].

5.1 Setup
Loading the Processed Data
The purpose of the data loader is to format the input
.tiff files into tensors4 for conducting the deep learning
steps after the data is cleaned and processed into one
file. The input data is first converted into a PyTorch
Dataset in a tuple with the format (image,mask, target).
Image refers to the batch of stacked samples, and
has the shape of (batch size, window size, num bands,
input size, input size). Mask is the respective mask for
some of the data bands such as the biological data in or-
der to reduce the use of computational resources for irrele-
vant spatial information by masking the raster dataset. Tar-
get refers to the target sample that the model is trying to
predict values for the respective bands with the shape of
(batch size, num bands, input size, input size).

After the data loader is set, the data were loaded to tensors.
However, as the entire dataset includes enormous amounts
of samples with different bands, loading the full dataset for
training purposes is not ideal. Therefore, the sampler has
the objective of (in this case, randomly) choosing instances
from all the samples for training the model with a reason-
able amount of computational power. The same sampling
process can be repeated for testing purposes while making
sure that the chosen sample is within the region of interest.
The chlorophyll-a concentration (µg/L) data was chosen as
the ground truth for the model to compare its predictions.

Data Pre-processing
After the data is received by the model, the following opera-
tions were applied:

• Extreme values were clipped from the input tensor to
fit in the range of [10−6, clip value]. Likewise, the
ground truth was also clipped to fit in the range of [0,
clip value]. In addition, biological data bands and the
precipitation band went through Yeo-Johnson Transfor-
mation [25] in order to make the data more normal
distribution-like.

• NaN values for the input tensor were replaced with mean
values per band to minimize their effect on normaliza-
tion. The ground truth were replaced with 0 to bin them

1https://pytorch.org/
2https://torchgeo.readthedocs.io/en/stable/
3https://www.pytorchlightning.ai/
4https://pytorch.org/docs/stable/tensors.html



Figure 5: An overview of time-series data for chlorophyll-a throughout the time interval. Periodic peaks and troughs could be observed and
are relevant for training data considering the imbalanced distribution of the data.

Figure 6: The architecture of the UNet Model [17]. The model first
applies convolution and max pooling to create feature maps and then
scales upwards with the same mapping to minimize distortion.

into the first label index. The replaced zeros will be ig-
nored later on for loss and accuracy calculations while
carrying out the training and test. Even though the model
will predict values for it, it will not ”learn” from these
instances.

• The mean and standard deviation for each of the in-
cluded bands were calculated. Then, the input tensor
was normalized through standard score (Z-score) calcu-
lation with the assumption that it’s normally distributed.
Since time band is not normally distributed, it was scaled
into the range of [0,1] instead.

• Ground truth (labeled images) tensor was bucketized
into class boundaries for classification purposes, with
the first index indicating previously NaN or negative
chlorophyll-a readings.

After the pre-processing was done, the window size and band
dimensions were collapsed into a single dimension in order to
feed the UNet with window size ∗ num bands input chan-
nels. As a final step, spatial information that was received

from batch processing was stacked on top of the collapsed
dimensions to finalize the spatio-temporal data for training.

Since the UNet architecture preserves the number of chan-
nels between input and output, the predictions could be di-
rectly compared with the labeled images for loss and accu-
racy calculations. The model’s output predictions were finally
converted into probabilities through the softmax function for
plotting class probabilities. The UNet model implementation
was a modified version of a PyTorch UNet implementation
for image segmentation 5.

5.2 Results
Parameters
The prediction horizon of 1 and window size of 1 were cho-
sen as parameters for the forecasting problem. The training
was optimized through Adam optimizer with a learning rate
of 0.0001 and a weight decay of 0.00001 after manual opti-
mization. A batch size of 16 and 1000 training samples per
epoch were used for loading and sampling of the data. All
11 bands were used as part of the training and the predictions
were placed in one of 4 classes, of which the binning range
was chosen [0-10, 10-30, 30-75, 75+] by the domain expert.
The experiment was conducted with data from the ”palmar”
reservoir. Cross-entropy loss with initial weights as inverse
percentage of class distribution was chosen in order to tackle
the imbalanced state of the data. The data that is present be-
fore the date 31 December 2021 is used for training purposes
and the model is then validated on unseen data, which in-
cludes the last 6 months’ data until 19 June 2022.

Loss and Accuracy
Figure 7 shows confusion matrices of each embedding type
averaged over 20 epoch normalized per row for visualizing
the distribution of the predictions, with labels referring to in-
dexes of the designated bins.

The accuracy and weighted cross entropy loss values of
respective embedding types can be seen in Table 1. The sep-
arate inclusion of spatial and temporal embeddings display a

5https://github.com/milesial/Pytorch-UNet



embed type train acc train loss val acc val loss
none 0.7668 1.095 0.3336 1.515

spatial 0.7279 0.8591 0.3736 1.467
temporal 0.7384 0.9516 0.375 1.418

spatio-temporal 0.7759 0.8707 0.3305 1.469

Table 1: Table to test display accuracy and loss scores.

decrease in validation losses as well as a slight improvement
in validation accuracies.The single instances of spatial and
temporal embeddings have better prediction percentages for
intervals 10-30 and 30-75 than the version without embed-
dings.

The combined spatio-temporal embedding shows a de-
crease in loss although it does not show an improvement in
accuracy compared to the one without any embeddings. The
confusion matrix of the experiment without any embeddings
display the highest percentage for predicting 0-10 and 75+
intervals, while spatio-temporal embedding version predicts
the intermediate classes with higher percentages.

6 Discussions and Conclusion
The confusion matrices show that the inclusion of explicit
spatio-temporal data results in a gradual transition for predic-
tions. The confusion matrix of the spatio-temporal embed-
ding instance shows that even though the algorithm predicts
with a lower accuracy, it is more likely to choose a closer class
in case of a misclassification. Misclassifications between ad-
jacent class labels are with a higher percentage compared to
its counterpart without embedding. For example, the percent-
age of predicting an encountered 0-10 value as a 75+ value is
3 times lower for the spatio-temporal embedded model. This
can be visually demonstrated by observing the boxes along-
side the diagonal to be of lighter colors as well as darker col-
ors for bottom left and top right. Such a distinction is most
likely caused by the cross entropy loss with class percentage
as weights, considering that the loss metric is punishing the
algorithm for predicting false positives with bigger difference
between the bin values. The difference will be more visible
for the one including spatio-temporal embedding as the algo-
rithm will shape its predictions to be closer to its spatial and
temporal neighbors to avoid bigger loss values in the train-
ing. Therefore it’s more probable to make misclassifications
between pixels that are spatio-temporally connected and pre-
dict ”conservatively” rather than predicting high values more
often for achieving a higher accuracy score. This approach to
predicting might be helpful for gradual increases around the
boundaries of water bodies and highlight areas that do display
a possibility of blooming, rather than directly spotting areas
with high concentrations of chlorophyll-a.

To conclude, the results show that the inclusion of explicit
spatial and temporal information by embedding them into the
input data exhibits a small increase in performance. The com-
bined addition of spatio-temporal information did not display
a significant improvement for the predictions. However, the
combination still provides valuable insight by demonstrat-
ing how the model can pick up spatio-temporal dependencies
even with similar accuracy scores.

7 Limitations and Future Work
Certain limitations were encountered through the research
process that could have been replaced with alternatives or in-
vestigated further for more fitting implementations. Although
UNet was deemed as an appropriate model for previous in-
stances [26] of application on algal bloom forecasting, overall
accuracy and the loss of the model shows that it was not suited
for the data modalities that were used in the experiment. The
use of a different model that can detect spatio-temporal de-
pendencies such as Conv-LSTM might be a more promis-
ing solution. Furthermore, the data imbalance issue is still
present in the training data even though it’s attempted to be
solved through the loss function. Such an imbalance could be
solved by more complex methods such as Two Stage Resam-
pling for CNNs [27] without ruining the underlying data pat-
terns. For improving on the spatio-temporal encoding meth-
ods, spatial interpolation [28] could help to catch deep spatial
patterns as well as wavelet analysis for time series [29] at
pre-processing stage could improve to highlight the time se-
ries patterns. Finally, the handling of the NaN values could
be explored further to see if there are better alternatives for
filling them in as well as avoiding them.

8 Responsible Research
The most important ethical concern regarding this paper’s
responsible contribution to science is the reproducibility of
the experiment. The dataset that was provided to the re-
search group was acquired by the project supervisor from
Uruguayan researchers. Therefore, not all of the data for the
given time and space intervals that is present in the experi-
ment is publicly accessible, limiting the repeatability of the
findings. Furthermore, because of internal functions of Py-
Torch, fully reproducing the results across different platforms
and releases is not guaranteed6. However, certain steps were
taken to minimize the effects of such limitations.

Firstly, a manual seed of 42 was set for controlling the
sources of randomness throughout the the model operations
such as data loading or convolution operations on CUDA
tensors. Secondly, non-deterministic algorithms used in the
training process were replaced with their deterministic coun-
terparts whenever they had alternatives by making the Trainer
object deterministic. Thirdly, because of the way training and
validation data is split, the algorithm is making its predic-
tions always on the same 37 samples that are collected after
31st December 2021. Thus, it will allow a deterministic com-
parison of the predictions among models with differing pa-
rameters. Finally, the code that includes the implementation
details of the experiment will be hosted on TU Delft’s repos-
itory in case the data becomes publicly accessible at a later
stage.
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