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Capturing the Effect of Thickness on Size-Dependent Behavior of
Plates with Nonlocal Theory

Banafsheh Sajadi∗, Hans Goosen, Fred van Keulen

Department of Precision and Microsystem Engineering, Delft University of Technology, The Netherlands

Abstract

The effective elastic properties of nano-structures are shown to be strongly size-dependent. In this
paper, using a three dimensional strong nonlocal elasticity, we have presented a formulation to
capture the size-dependent behavior of plate structures as a function of their thickness. This paper
discusses some new aspects of employing a three dimensional nonlocal formulation for analysis of
plates, namely, the confining of the nonlocal kernel in the near-boundary regions at the two surfaces
of the plate. To address this aspect, we have studied two different types of nonlocal kernels, one
bounded in a finite domain of the structure and the other, non-bounded. This study shows that
the influence of the plate’s thickness on its bending stiffness can be captured within the nonlocal
elasticity framework, and this influence highly depends on the bounding of the nonlocal kernel.
Particularly, for a uniformly deformed plate with a homogeneous isotropic material, using the
nonlocal formulation with the bounded domain reflects the physics of the problem better.

Keywords: Nonlocal theory, Finite-scale kernel, Nanoplate, thickness, size-dependency,
continuum theory.

1. Introduction

Micro and nano electro-mechanical-systems
(MEMS and NEMS) play key roles in a wide
variety of modern applications, including nano-
mechanical sensors, actuators, and many elec-
tronic devices. The performance of these de-
vices is based on movements and deformations
of their micro/nano mechanical components,
such as cantilevers, double clamped beams or
plates. Obviously, the further development of
these devices requires a thorough understand-
ing and modeling of their mechanical behavior.
However, devices at nano-meter scale may ex-
hibit mechanical properties not noticed at the
macro-scale. Many theoretical methods such as
molecular and atomistic simulations and size-
dependent continuum theories are being devel-
oped to analyze this behavior. Molecular and
atomistic simulations are generally time con-
suming and computationally expensive. Alter-
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natively, continuum models offer superior com-
putational efficiency.

Classical continuum mechanics is size inde-
pendent and it cannot provide a good predic-
tion for small scales. Therefore, size-dependent
continuum theories have been introduced to ac-
count for these scaling effects [1, 2]. In an at-
tempt to account for atomistic effects, these the-
ories embed an internal material length scale.
This makes it possible to qualify the size of a
structure as “large” or “small” relative to its
material length scale [1, 3, 4]. If “large”, then
these theories should converge to classical con-
tinuum theory, and, otherwise, they should re-
flect the size-dependence.

One of the best-known size-dependent contin-
uum theories is non-local continuum theory, ini-
tiated in a general notation by Piola in 1846
[5, 6]. In nonlocal continuum theory, a mate-
rial point is influenced by the state of all points
of the body. The mathematical description of
this theory relies on the introduction of addi-
tional contributions in terms of “gradients” or
“integrals” of the strain field in the constitu-
tive equations. This, respectively, leads to so-
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called “weak” or “strong” non-local models [7–
9]. Although both models have been found to
be largely equivalent [10], the weak (gradient)
formulation requires stronger continuity on the
displacements gradients. In addition, in cases
that a well-defined spatial interaction exists in
the material, the strong (integral) approach is
preferred, because it models the nonlocality in
a more transparent way [10].

In strong nonlocal theories, particularly for-
mulated by Kröner in 1967 [2], and then by Erin-
gen in 1977 [1, 4], the point-to-point relationship
between stresses and strains does not hold any-
more. Instead, the stress in each point is in-
fluenced by the strain of all points of the body.
This influence is captured by a spacial integral
over the body. The integral is weighted with a
decaying kernel, which is designed to incorpo-
rate the long-range interaction between atoms
in the continuum model. With the spacial in-
tegral, the dimensions of the body are brought
into the constitutive equations, and thus, the
constitutive equations will be size-dependent.

It is worth to mention here that closely re-
lated to strong nonlocal theory, the peridynam-
ics theory has been developed by Silling [9]. In
fact, in peridynamics, instead of spatial differ-
ential operators, integration over differences of
the displacement field is used to describe the
existing, possibly nonlinear, forces between par-
ticles of the solid body [9, 11]. However, in con-
trast to the peridynamic theory, the strong non-
local theories rely on spatial integrations. The
present study mainly focuses on the commonly
used strong formulation given by Eringen.

The strong nonlocal theory has been used
in many studies for modeling micro- or nano-
mechanical devices. In these studies, mechani-
cal components such as thin-film elements and
plate-like structures have been modeled with so-
called two-dimensional non-local formulations,
also known as “nonlocal plate theories” [12–14].
In these theories, the plate-like structures are
generally modeled as a two-dimensional domain.
In this way, the nonlocal contribution of the
strain field in the transverse direction is ignored.
Therefore, the size of a plate is only defined by
its lateral dimensions, and thus, its thickness is
not incorporated in its size-dependent behavior.

In plane stress problems, which are inher-
ently two dimensional—such as the stress analy-
sis near the crack tip in a thin plate [4]— ignor-
ing the nonlocal effects in transverse direction is
within reason. Also, for structures whose thick-

ness is much smaller than the material length-
scale, such as a monolayer graphene, the non-
local effect in transverse direction is in fact
meaningless [15]. However, modeling a plate as
a two-dimensional domain and ignoring the non-
local contribution in the transverse direction is
not always valid. First of all, from a physical
point of view, a nonlocal theory is supposed to
incorporate the interaction between atoms in a
continuum model and so its effect should exist
in all directions [16]. Second, since the thickness
of a plate is significantly smaller than its lateral
dimensions, the length scale at which classical
elasticity breaks down appears in the transverse
direction first. Moreover, in problems in which
there is a uniform strain field in the tangential
directions, the nonlocal stress as a function of
weighted average of strain in tangential direc-
tions is simply equal to the classical stress. This
means the two-dimensional formulation fails to
reflect any size-dependency. In such a case, it is
likely that transverse non-locality would have a
more pronounced size-dependence contribution.

In this paper, we particularly investigate how
the strong three dimensional nonlocal formula-
tion can incorporate the plate thickness. More-
over, we study the effect of thickness in the pre-
dicted size dependence of the overall flexural
rigidity and elastic modulus of the plate.

It is worth to note that in nonlocal elastic-
ity, as a consequence of including contributions
of integrals of the strain field in the constitu-
tive equations, the differential order of the gov-
erning equations changes. This results in addi-
tional boundary conditions which should phys-
ically reflect the surface properties of the ma-
terial/structure. The latter, however, has not
been discussed rigorously in literature so far and
instead, the boundaries are often avoided in the
respective analyses. When a three dimensional
nonlocal formulation is employed in the analy-
sis of plates, these extra boundary conditions
should be defined on the upper and lower sur-
face of the plate. In order to investigate the
significance of these boundary conditions, two
different treatments of the boundaries will be
addressed in this paper.

This paper is structured as follows. In Sec-
tion 2, the fundamentals of Eringen’s nonlocal
elasticity theory, some important considerations
and the basis of conventional nonlocal plate the-
ory are reviewed. In Section 3, we will use a
three dimensional nonlocal formulation to solve
an example of uniformly deformed plate. For
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this purpose two types of boundary conditions
will be applied for the nonlocal formulation.
The results of this analysis will be discussed and
compared to classical plate theory in Section 4.
In the last section, the conclusions of this study
will be presented.

2. Nonlocal elasticity theory

In linear nonlocal elasticity, the stress tensor
(t) for a homogenous and continuous domain is
determined as [1, 17]:

tij(x) =

∫
Vb

α (|x− x′|, e0a)Cijklεkl(x
′)dV (x′)

=

∫
Vb

α (|x− x′|)σij(x′)dV (x′)

(1)

where εkl(x
′) are the classical Cauchy’s strain

components at the point x′ and Cijkl are the
components of the elasticity tensor. Index k
and l are the dummy index in Einstein’s sum-
mation convention, and Cartesian coordinates
have been assumed. The product of these two
terms can be simply substituted with classical
stress component σij(x

′), as in the second line.
Then, Vb is the volume of the body at hand. The
function α(|x − x′|, e0a) is the non-local kernel
representing the effect of long-range interactions
[9] . This radial kernel reflects the nonlocal con-
tribution of strain in all points x′ of the body.
The nonlocal kernel α is also a function of pa-
rameters a and e0. The parameter a is the mate-
rial characteristic length scale (e.g. atomic dis-
tance, lattice parameter, granular distance) [12],
and e0 is a constant for adjusting the model to
match experiments or other models [4, 13, 16].
Other properties of the nonlocal kernel α will be
discussed later in this section.

It should be stressed that the proof of ex-
istence of Cauchy’s stress tensor is based on
the equilibrium of contact forces with a force
which is assumed to be continuous in space. We
may use a similar assumption as well (as pro-
posed in [5, 6]). Moreover, in strain gradient
nonlocal theories, the constitutive equations are
much more than one stress-strain relationship.
Instead, so-called double or hyper stress com-
ponents are defined associated to higher order
strain gradients [18]. In the strong nonlocal the-
ory, however, the basic equations for an isotropic

solid can be expressed in its simplest form as in
Equation 1 [1, 2, 7–10].

Accordingly, the nonlocal strain energy is ex-
pressible as [4]:

Unonlocal =
1

2

∫
Vb

tijεijdV . (2)

Please note that this formulation of internal en-
ergy is a particular case of the formulation given
by Kröner [2], provided that the kernel α re-
flects the local (short-range) as well the nonlo-
cal (long-range) effects. The equilibrium equa-
tions in the nonlocal continuum theory are the
same as for classical continuum theory, but rep-
resented in terms of the nonlocal stresses (tij)
rather than the local stresses (σij).

2.1. Nonlocal kernel

The function used as the nonlocal kernel
(α(|x − x′|, e0a)) needs to have the following
characteristic properties;

1- To reflect the properties of atomistic
long term interactions correctly, it acquires
its maximum at x = x′ and monotonically
decreases with |x− x′|.

2- To ensure that classical elasticity is in-
cluded in the limit of a vanishing internal
characteristic length, it must tend to Dirac’s
delta function when e0a→ 0. [17], i.e.

lim
e0a→0

α (|x− x′|, e0a) = δ (|x− x′|) . (3)

3- The stress at x should have the same
contribution to the stress at x′ as vice versa,
thus, the nonlocal kernel is symmetric in its
arguments x′ and x, i.e. α(x,x′) = α(x′,x).

4- According to Eringen’s nonlocal contin-
uum theory [1], the function α is normalized in
the volume of the body (Vb):

∫
Vb

α(|x− x′|)dV (x′) = 1. (4)

This property assures that a uniform local strain
field should also result in a uniform nonlocal
stress field (See Equation 1), provided that the
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Figure 1: A schematic representation of one-dimensional
kernels at two points within the body (x1) and near the
boundary region (x2): (a) Gaussian density function,
normalized on an infinite domain; (b) A bounded kernel
which adapts its shape when the effective influence zone
includes a boundary.

material is isotropic and homogeneous [19]. If
the domain of the body at hand is large enough
to be considered as an infinite domain, then this
feature implies that α is always normalized on
such an infinite domain. It should be noted that
nonlocal kernels have an effective influence zone,
Ve, centered around x and an effective cut-off
length, Le [16, 17]. Outside this influence zone,
the function α(x− x′) practically vanishes and,
thus, it can be assumed that

∫
Ve

α(|x−x′|)dV (x′) '
∫
V∞

α(|x−x′|)dV (x′) = 1.

(5)

Many kernels have been suggested in litera-
ture with the above mentioned properties, and
in general, all these kernels qualitatively lead
to similar results [17, 20]. However, for a ker-
nel with these properties, in points closer than
its cut-off length (Le) to the boundary, the in-
fluence zone of the kernel exceeds the boundary.
Consequently, it only collects the nonlocal influ-
ence of the points x′ inside the body (see Figure
1-a). Thus, the normalization condition would
not be satisfied anymore.

To satisfy the normalization condition, either
the analysis domain should be far from bound-
aries [1], and then we can use the common ker-
nels; or, a modified bounded nonlocal kernel
should be used. The shape of such a kernel is
modified near boundaries such that it satisfies

the normalization condition based on all mate-
rial points available (Figure 1-b) [3, 10, 21, 22].
It is worth noting that the kernel function in
such an expression cannot not be a function of
|x− x′| any more, but x and x′.

It should be noted that bounding the nonlocal
kernel in the finite domain of the body, results in
bringing the dimensions and perhaps the shape
of of the body into the definition of the nonlocal
kernel. In order to introduce this modification
to the nonlocal kernel mathematically, we first
need to specify the final property of the kernel α.

5- The final feature of the function α, is
an assumption, and physically speaking it is
not really required [17]. It is assumed that the
kernel α is the Green’s function of an operator
L. In other words, it is supposed that an
operator L can be found for any kernel α where:

Lα(|x,x′|) = δ(|x,x′|). (6)

The later, as a matter of fact, is an assump-
tion to convert integral equations to differen-
tial equations. Such an operator L can be used
to relate the non-local stress to the local stress.
Applying L to Equation 1 would yield:

Ltij = σij . (7)

Therefore, a choice of kernel implicitly defines a
differential operator which transforms the non-
local stress to the local one [19]. Equation 7 is
commonly used instead of the definition given
in Equation 1.

As a matter of fact, for solving Equations 7,
one has to impose boundary conditions on tij .
It should be reminded that Green’s function of
a boundary value problem should also satisfy
the boundary conditions of the problem. There-
fore, these boundary conditions are actually the
tools to change the shape of the kernel in the
near-boundary regions, as schematically shown
in Figure 1-b.

In literature, most of the suggested operators
L are second-order operators [17]. For the re-
sulted second-order differential equation, the re-
quired boundary conditions involve either the
zeroth- or first-order derivatives of the function.
Thus, as an appropriate boundary condition for
Equation 7, either the value of nonlocal stress
components, their derivatives, or a linear com-
bination of these two must be defined on the
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boundary. Fixing the stress components (tij)
on the boundaries does not have any physical
motivation. Hence, homogeneous or inhomoge-
neous boundary conditions on the first deriva-
tive of the stress components (e.i. Neumann
B.C.) shall be employed.

Although the boundary conditions on the
nonlocal kernel, which indicate the extra bound-
ary conditions on the stress derivatives, are key
elements in nonlocal elasticity, they are dis-
cussed in very few studies. In most publica-
tions, non-bounded kernels are used; and the
boundary effects (like in Fig. 1-a,) are justified
by the surface effects [3]. In a few studies, a
homogeneous Neumann boundary condition is
applied on the nonlocal kernel [3, 10, 22]. How-
ever, there is no discussion on the connection
between the suggested mathematical boundary
conditions and the underlying physics.
It should be mentioned that the added boundary
conditions are a challenging problem in so-called
weak nonlocal or higher order elasticity theo-
ries, as well. In strain gradient elasticity, for
example, these boundary conditions automati-
cally appear either for the second order gradient
of the displacement components or associated
double stress (i.e. the partial derivative of en-
ergy density to strain gradients) [18]. Although
a clear interpretation of the mentioned bound-
ary conditions is not provided in this theory ei-
ther, it has been shown that the strain gradient
and nonlocal formulation are largely equivalent
if the appropriate boundary conditions are em-
ployed for the nonlocal kernel [10].

It is the authors’ opinion that the boundary
conditions on the nonlocal kernel should reflect
the surface properties of the material/structure.
From a physics point of view, the nonlocal ker-
nel is supposed to incorporate the long range
interactions of atoms into continuum mechan-
ics. Hence, if its shape is varying near bound-
aries, it should result from the rearrangement of
atoms near the surface of the pristine material.
In addition, there are fewer possibilities for in-
teraction between atoms near the surface, and
this should also be reflected in the model.

We should keep in mind that the extra bound-
ary conditions become very relevant in applying
nonlocal elasticity to a plate. In such a case,
the relevant boundaries are the lateral surfaces,
for which the additional boundary conditions on
the stress or the kernel should be defined. In
this paper, we investigate the difference between
the predicted mechanical response of the plate,

when applying a non-bounded kernel (Fig. 1-a),
or, a bounded one using a homogeneous Neu-
mann boundary condition (Fig. 1-b). This is
done for an example of uniform deformation of
a plate.

2.2. Conventional nonlocal plate theories

In nonlocal elasticity, as described above, all
formulations are three-dimensional. The points
x and x′ are arbitrary points in space and the
integrals in Equations 1–2 involve the entire vol-
ume of the body. The kernel function α is a
three-dimensional kernel, i.e. it reflects the non-
local contribution of the strain field in all direc-
tions and its dimension is m−3.

For thin plates, however, many studies have
modeled the plate as a two-dimensional domain.
In such models, the points x and x′ are arbitrary
points of the mid-plane of the plate and the inte-
grals are taken over the surface area of the plate.
The nonlocal kernel in such a model is a two-
dimensional function, ignoring the components
with respect to the transverse direction (z) [12–
14, 23–25]. The dimension of a two-dimensional
kernel is m−2 and it is normalized over the the
area of the plate.

With above mentioned assumptions in the
nonlocal plate theory, the nonlocal stress is de-
fined as [14]:

tij(x) =

∫
A

α (|x− x′|)σij(x′)dA(x′), (8)

where A is the surface area of the plate and i and
j denote the in-plane coordinates. The over-line
is employed specifically for vector form indica-
tion of the nonzero components of the second or-
der tensors of stress and strain in the plate. The
tangential resultants of stress (Nnl) are then cal-
culated by integrating the nonlocal stress com-
ponents along the transverse direction (z) in the
limits of plate thickness (h). Considering that
α (|x′ − x|) is not a function of z and, thus, it
does not affect any integration in transverse di-
rection, the tangential stress resultants and tan-
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gential stress couples can be written as:

Nnl =

∫
h

tdz

=

∫
h

(

∫
A

α (|x− x′|)σ(x′)dA(x′))dz

=

∫
A

(

∫
h

α (|x− x′|)σ(x′)dz)dA(x′)

=

∫
A

α (|x− x′|) (

∫
h

σ(x′)dz)dA(x′)

=

∫
A

α (|x− x′|) Ncl(x′)dA(x′),

(9)

and similarly the tangential stress couples (Mnl)
can be calculated as:

Mnl =

∫
h

tzdz

=

∫
A

α (|x− x′|)
∫
h

σ(x′)zdzdA(x′)

=

∫
A

α (|x− x′|) Mcl(x′)dA(x′).

(10)

In these equations Ncl and Mcl are the tangen-
tial stress resultant and couples from the clas-
sical plate theory. The equations of motion are
then identical as for the classical Kirchhoff plate
theory, but based on the nonlocal tangential
stress resultants and couples.

Notice that based on Equations 9 and 10,
in nonlocal plate theories, the nonlocal tan-
gential stress resultants and couples do not
have any nonlocal contributions from the trans-
verse direction. Therefore, the thickness of the
plate does not have any influence on the size-
dependency of the result. Considering that the
kernel function is normalized over the area, if
Ncl and Mcl are uniform in the plate, there
would be no difference between the nonlocal and
classical tangential stress resultants and couples,
and therefore, the two solutions (classical and
nonlocal) would predict similar mechanical re-
sponses.

This model is valid for inherently two dimen-
sional plane-stress problems, where there is no
variation of the classical stress field through the
thickness. Otherwise, it cannot be motivated on
the basis of the fundamentals of nonlocal the-
ory or physics. However, it has been the ba-
sis of nonlocal plate theory which is commonly

Figure 2: deflection of the plate with thickness h and
surface area A.

used for solving many other problems related to
plates, where the stress varies through the thick-
ness, as well.

3. Capturing effects of thickness in non-
local plate theory

In this section, using an example of a plate
with both a uniform stretch and a uniform cur-
vature, the effect of thickness in nonlocal plate
theory is studied. In fact, we use a three-
dimensional nonlocal formulation in order to
calculate the tangential resultant stresses and
couples induced by such a deformation in the
plate. With this solution we shall study the
effect of thickness of the plate on its mechan-
ical response as predicted by nonlocal elasticity
theory. Moreover, we will compare the results
with the classical plate theory. The solution dis-
cussed here can be extended to a plate with non-
uniform deformation, as well.

Assume a plate with a uniform thickness h,
and lateral area A (Figure 2). The lateral di-
mensions of the plate are much larger than its
thickness. The mid-plane of the plate is sub-
jected to both a uniform curvature κ and stretch
γ (Figure 2). Using classical plate theories
(based on plane-stress assumptions), the tan-
gential strain ε at the interior of the plate, i.e.
sufficiently far away from the edges, can be de-
scribed as

ε =

 εxx
εyy
2εxy

 =

 γxx
γyy
2γxy

− z
 κxx
κyy
2κxy

 , (11)

where x and y denote the tangential coordi-
nates. The transverse coordinate is z, and the
midplane coincides with z = 0. Using classical
linear constitutive equations, the classical tan-
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gential stresses follow as

σ =

σxxσyy
σxy

 = Qε, (12)

where Q represents the elasticity tensor for a
homogeneous and isotropic material and in a
plane-stress problem:

Q =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (13)

where E is the Young’s modulus and ν is the
Poisson ratio of the material. As a result, the
nonlocal stress can be calculated:

t =

∫
V

α (|x− x′|) Q(γ − z′κ)dv(x′). (14)

It is worth noting that the classical plane-stress
assumption (σzz = 0) as adopted in classical
plate theory, now has directly lead us to a plane-
stress condition for the nonlocal stresses as well
(tzz = 0). In particular, we can employ Equa-
tion 1 to explicitly prove this case:

tzz(x) =

∫
Vb

α (|x− x′|)σzz(x′)dV (x′)

=

∫
Vb

α (|x− x′|) (0)dV (x′) = 0.

(15)

In addition, we stress here that imposing the
plane-stress assumption on the nonlocal stresses
(tzz = 0) will also result in plane-stress condi-
tion for the classical stress components (σzz =
0), provided that the kernel α is a positive defi-
nite function.

For deriving t in Equation 14, the appropri-
ate nonlocal kernel α(|x′−x|) should be chosen.
Here, a three-dimensional Gaussian function is
chosen as the nonlocal kernel α(|x′ − x|):

α (|x− x′|) =
1

(π(e0a)2)
3
2

exp

(
−|x− x′|2

(e0a)2

)
.

(16)

This function has been reported to show an ex-
cellent agreement with the atomic dispersion
curves of crystalline materials [1, 16]. The Gaus-
sian density function is Green’s function of the
diffusion (or heat) equation in an infinite do-
main:

∇2t− ∂t

∂τ
= 0, (17)

where, τ = (e0a)
2

4 . We can also derive Green’s
function of the mentioned equation in a bounded
domain by applying appropriate boundary con-
ditions as discussed in Section 2.1. Here, both
solutions with bounded and unbounded kernels
are presented for the example at hand.

3.1. Gaussian kernel

To begin with, we neglect the nonlocal bound-
ary effects in all boundaries of the plate and con-
sider the unbounded kernel as in Equation 16.
Without the boundary effects, the shape of the
nonlocal kernel would be similar in all material
points in different positions. A one-dimensional
schematic of this kernel is shown in Figure 1-a.
As this figure shows, the kernels are similar at
the point x = x1 within the body, and at x = x2

where the influence length of the kernel exceeds
the boundary. By using Equations 14 and 16,
and by decoupling between in-plane and trans-
verse directions, the nonlocal in-plane stress can
be expressed as:

t =

∫
A

h/2∫
−h/2

α (|x− x′|) Q(γ − z′κ)dz′dA′

=

∫
x

∫
y

exp
(
− (x−x′)2+(y−y′)2

(e0a)2

)
(
√
πe0a)

2 dx′dy′×

h/2∫
−h/2

Q(γ − z′κ)
exp

(
− (z−z′)2

(e0a)2

)
(
√
πe0a)

dz′

(18)

Notice that the function inside the first integral
is a two-dimensional Gaussian kernel itself and
is normalized on an infinite area. As mentioned
before, the lateral geometries of the plate are
considered to be much larger than its thickness
and the plate dimensions can be assumed as in-
finite. In other words, near-boundary regions in
these two directions can be ignored relative to
the their dimensions. Therefore, the first inte-
gral equals to unity almost everywhere in the
plate, and nonlocal stress can be simplified to
the second integral only:

t '
h/2∫
−h/2

Q(γ − z′κ)
exp

(
− (z−z′)2

(e0a)2

)
(
√
πe0a)

dz′. (19)

In fact, this result is valid in the points suf-
ficiently far away from the edges. Note that
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due to the assumed uniformity of curvature and
stretch, in-plane dimensions vanish from the
equations and only the integration in transverse
direction remains. Of course, for non-uniform
deformation (i.e. κ(x, y) and γ(x, y)), the in-
plane non-locality would also remain in the for-
mulations. The nonlocal stress can be solved
and simplified to

t = Qγ

(
1

2

(
erf(

z + h/2

e0a
)− erf(

z − h/2
e0a

)

))
−Qκ

(
1

2
z

(
erf(

z + h/2

e0a
)− erf(

z − h/2
e0a

)

)
− 1

2

e0a√
π

(
exp

(
− (z − h/2)2

(e0a)2

)
− exp

(
− (z + h/2)2

(e0a)2

)))
,

(20)

where erf is the error function. Notice that the
choice of not normalizing the kernel function α
results in a non uniform in-plane stress over the
thickness even for the case of a uniform stretch
(i.e., κ = 0). Next, we can calculate the tangen-
tial stress resultants and couples in the plate:

Nnl =

h/2∫
−h/2

tdz = hQγ
(

erf(η)+

1

η
√
π

(
exp(−η2)− 1

) )
,

(21)

Mnl =

h/2∫
−h/2

tzdz =
h3

12
Qκ

(
erf (η)−

1√
π

(2

η
exp(−η2)

+ (3η−1 − 2η−3)(1− exp(−η2))
))

.

(22)

The parameter η = h
e0a

, which is the thickness
normalized with the internal length scale of the
material is introduced to simplify the formula-
tions. Equations 21 and 22 can also be written
as:

Nnl = λAγ, (23)

Mnl = βDκ. (24)

Here, λ and β are introduced as the nonlo-
cal modification factors on classical extensional

(or membrane) stiffness matrix (A = hQ) and

bending stiffness matrix D = h3

12Q, respectively.
These factors can be explicitly defined using the
following equations:

λ =
1

h

h/2∫
−h/2

h/2∫
−h/2

α(|z − z′|)dz′dz

=
1

η
√
π

(
exp(−η2)− 1

)
+ erf(η),

(25)

and,

β =
12

h3

h/2∫
−h/2

h/2∫
−h/2

−z′zα(|z − z′|)

=erf (η)− 1√
π

(2

η
exp(−η2)

+ (3η−1 − 2η−3)(1− exp(−η2))
)
.

(26)

Note that a thickness of a plate that is large
relative to the internal length scale (i.e., when
η → ∞,) results in nonlocal modification fac-
tors that converge to 1 and therefore, nonlocal
theory converges to classical plate theory. This
result will be discussed in the Section 4 (Results
and Discussion).

The nonlocal modification factors λ and β
were calculated assuming a uniform deformation
of the plate. If a non-uniform stretch γ(x, y) and
curvature κ(x, y) are assumed in Equation 11,
the in-plane strain terms can also be expressed
by ε(x, y). Using a similar formulation to Equa-
tions 12 to 22, to describe the nonlocal elasticity,
results in nonlocal stress resultants and stress
couples like:

Nnl =

∫
A

Aγ(x, y)
exp

(
− (x−x′)2+(y−y′)2

(e0a)2

)
(
√
πe0a)

2 dx′dy′

× 1

h

∫
Z

∫
Z

exp
(
− (z−z′)2

(e0a)2

)
(
√
πe0a)

dz′dz,

(27)

Mnl =

∫
A

−Dκ(x, y)
exp

(
− (x−x′)2+(y−y′)2

(e0a)2

)
(
√
πe0a)

2 dx′dy′

× 12

h3

∫
Z

∫
Z

exp
(
− (z−z′)2

(e0a)2

)
(
√
πe0a)

z′zdz′dz
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(28)

The stress resultants, as well as stress couples,
consist of two terms; the first term is due to in-
plane non-locality, which resembles Equations
9 and 10 and can be treated using existing
nonlocal plate theories. The second terms in
both equations are created by out of plane non-
locality, and resemble the modification factor λ
and β from Equations 25 and 26. This suggests
that the same modification factors on the ex-
tensional and bending stiffness matrices can be
introduced to conventional nonlocal plate theo-
ries, to argument them by a dependency on the
plate thickness.

3.2. Bounded kernel

In Section 3.1, it was shown that only trans-
verse non-locality has a dominant contribution
in the nonlocal stress state in a uniformly de-
formed plate. For simplicity in this part, we
use a one-dimensional nonlocal formulation in
transverse direction only.

As mentioned before, the nonlocal kernel
should be normalized in the volume of the struc-
ture at hand. Most kernels suggested in litera-
ture are derived for infinite domains. There-
fore, these kernels are not normalized anymore
in the near-boundary regions, where their influ-
ence zone exceeds the boundary. As an alter-
native solution, to ensure that Equation 4 holds
everywhere in the body, one can benefit from the
operator L mentioned in Equation 6. Particu-
larly, the Green’s function of such an operator in
a boundary value problem is always normalized
in the solution domain, and thus, it can still be
employed as the nonlocal kernel [3, 10].

Similar to previous section, the Green’s func-
tion of the diffusion equation (Equation 17) is
chosen as the nonlocal kernel. As mentioned
in Section 2.1, the homogeneous natural bound-
ary condition (Neumann) is applied on Equation
17, and consequently, on its Green’s function.
This boundary condition is applied to the top
and bottom surfaces of the plate (z = h

2 and

z = −h
2 ):

∂αh(h2 , z
′)

∂z′
=
∂αh(−h2 , z

′)

∂z′
= 0, (29)

where αh is the kernel bounded in [−h2 ,
h
2 ]. The

solution of such a boundary value problem for

Figure 3: The Green’s function of bounded diffusion
equation for different locations and, for the case h =
5e0a. The shape of the kernel varies so that it satisfies
the boundary conditions and stays normalized.

any z and z′ in [−h2 ,
h
2 ] is [26]:

αh(z, z′) =

∞∑
n=−∞

(
α(z − z′ − 2nh)

+ α(z + z′ − (2n− 1)h)
)
,

(30)

where α is unbounded Green’s function of the
diffusion equation in an infinite domain, which is
the Gaussian density function given by Equation
16.

The bounded kernel αh is plotted in Figure 3
for three different locations with respect to the
boundaries. As shown in Figure 3, the shape
of the function αh changes in regions near the
boundaries such that the function remains nor-
malized inside the volume of the structure. In
other words: for any point z in [−h2 ,

h
2 ], the fol-

lowing condition is satisfied:

h
2∫

−h
2

αh(z, z′)dz′ = 1. (31)

By substituting the kernel given in Equation
30, into Equation 14, the nonlocal stress terms
are calculated. Consequently, the nonlocal tan-
gential stress resultants and stress couples in the
plate can be determined. As a result, a similar
nonlocal modification factor λh and βh on the
extensional and bending stiffness matrices can
be determined. Due to similarity of the pro-
cedure to the previous section, we avoid to re-
peat the whole calculations here. Accordingly,
λh and βh can be calculated using the following

9



equations:

λh =
1

h

∫
Z

∫
Z′

−αh(z, z′)dz′dz = 1, (32)

βh =
12

h3

∫
Z

∫
Z′

−αh(z, z′)z′zdz′dz. (33)

Notice that normalizing the kernel function re-
sults in a modification factor for the stress resul-
tant that is equal to 1, and the stress resultant
Nnl is similar to that of the classical plate the-
ory. This will be discussed and compared to
the result of the calculations with a Gaussian
kernel, in “Results and Discussion”. It should
be mentioned that the Green’s function of the
three dimensional diffusion equation in a finite
domain is not separable, i.e. it cannot be decou-
pled mathematically in-plane and out-of-plane
terms, as for the Gaussian kernel. Therefore, the
effect of out-of-plane and in-plane non-locality
cannot be separated anymore. Considering that
for plates with semi-infinite geometry in tangen-
tial directions, the kernel needs to be bounded
only in z direction. Thus, we introduce a new
three-dimensional kernel:

α′h(x,x′) =
exp

(
− (x−x′)2+(y−y′)2

(e0a)2

)
(
√
πe0a)

2 ×

∞∑
n=−∞

(
α(z − z′ − 2nh)+

α(z + z′ − (2n− 1)h)
)
.

(34)

The new kernel is only bounded in transverse
direction. Using the same process mentioned in
the previous section, the new type of kernel can
be employed to calculate the modification factor
for the stiffness matrices (λh and βh). These
modification factor can be used to correct for
the effects of thickness in the existing nonlocal
plate theories, in problems with nonuniform de-
formations.

4. Results and Discussion

In Section 3, using the strong nonlocal for-
mulation, also known as Eringen’s nonlocal the-
ory, the tangential stress resultants and stress
couples were calculated in a plate with a uni-
form deformation. In order to consider the non-
locality in all directions, this calculation was
performed with a three-dimensional kernel. It

was shown that for a very thin plate, of which
the lateral geometries are much larger than its
thickness, the only remaining terms of the ker-
nel are the ones expressing non-locality in trans-
verse direction. It is emphasized that existing
nonlocal beam or plate theories only account for
in-plane non-locality in their formulation[13, 14,
23–25].

As mentioned in the Introduction, the reason
for this common omission is that the nonlocal
plate theories were initially introduced for in-
herently plane-stress problems, where the strain
variation is the most significant in in-plane di-
rections. As a result, the non-locality along the
thickness could be ignored. In bending of plates,
however, the strain gradient in the transverse di-
rection is substantial. Consequently, this makes
the effect of non-locality significant in that di-
rection.

In this section, the effect of including the
transverse non-locality on the stress and effec-
tive stiffness of the plate is discussed. First,
consider a simple example of one-dimensionally
stretched plate (i.e., γ =

[
γ 0 0

]
, κ =[

0 0 0
]
). Figure 4 shows the distribution of

the tangential nonlocal stress in transverse di-
rection for this example. Both solutions in Fig-
ure 4 (with bounded and non-bounded kernels)
are normalized by the uniform stress as calcu-
lated by classical plate theory. As mentioned
before, if the kernel is bounded and normal-
ized in the domain, it ensures that a uniform
strain field introduces a uniform stress field in
the domain. Therefore, the nonlocal stress as
calculated by a bounded kernel is uniformly dis-
tributed in the thickness and is similar to the
classical stress. The nonlocal stress, as calcu-
lated with non-bounded kernel, is not uniform
in the transverse direction. On the contrary, it
has a sharp decrease near the surfaces of the
plate. This sharp decrease of the lateral stress
in the two surfaces of the structure is indepen-
dent of the thickness and it always reduces to
half of the classical stress. This is because for
z = h/2 and z = −h/2, half of the nonlocal
kernel exceeds the boundary and the other half
is collecting the influence of the uniform strain
inside the body. This behavior does not indeed
describe physics or fundamentals of surface elas-
ticity, and supports the reason behind the prin-
ciple of normalization of the kernel in nonlocal
theory.

Figure 5 shows the distribution of the tangen-
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Figure 4: Normalized in-plane stress due to one dimensional stretch, corresponding to the nonlocal solutions for two
different kernels and two different thicknesses h = 10e0a and h = 5e0a. The transverse coordinate is normalized by
the material length scale.

Figure 5: Normalized in-plane stress due to cylindrical bending, corresponding to the nonlocal solutions for two
different kernels and two different thicknesses h = 10e0a and h = 5e0a. The transverse coordinate is normalized by
the material length scale.

tial nonlocal stress in transverse direction, in a
simple example of cylindrical bending of a plate
(i.e., κ =

[
κ 0 0

]
, γ =

[
0 0 0

]
). Both

solutions (with bounded and non-bounded ker-
nels) are normalized by the maximum stress as
calculated by classical plate theory.

As can be observed in Figure 5, the non-
local in-plane stress does not vary linearly in
the thickness of the plate as it does in the
classical solution. The nonlocal stress in the
near-boundary region is lower than the classical
stress. This difference increases when the thick-
ness of the plate gets smaller. However, inside
the body, i.e. far enough from the boundaries,
the difference between classical and nonlocal so-
lutions vanishes. The length of the boundary
region in which this difference is significant, is
very close to the effective cut-off length of the
kernel (2e0a). Including the transverse nonlo-
cality in the formulation, allows us to indicate
some surface effects in elasticity of the structure.

There is a considerable difference between the
nonlocal solutions with a non-bounded kernel
and with a bounded kernel. When using a
non-bounded kernel, the in-plane stress shows
a sharp reduction near the surface which does
not reflect a physical behavior. In contrast, the
in-plane stress derived with a bounded kernel
has a smooth increase near the surface.

The modification factors λ and β on the ex-
tensional and bending matrices stiffness were
calculated in Section 3. These modification fac-
tors only include the effect of non-locality in the
transverse direction. Therefore, they only de-
pend on the plate’s thickness h. Figure 6 shows
the modification factor λ as a function of non-
dimensional thickness η. If the chosen kernel is
not bounded in transverse direction, the exten-
sional stiffness of the plate is influenced by its
thickness. Such a formulation predicts a soften-
ing when the thickness gets comparable to the
material length scale. When the thickness of the
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Figure 6: Nonlocal modification factor for extensional
stiffness matrix as a function of the thickness of the plate
normalized with internal length scale.

plate is large, then the modification factor tends
to unity which means stiffness will approach the
classical limit A = hQ.

On the other hand, the bounded nonlocal ker-
nel results in a constant extensional stiffness for
the plate. As mentioned before, a uniform ten-
sile strain in the plate, using a bounded kernel
would result in a uniform nonlocal tensile stress
equal to the classical stress. Therefore, the non-
local solution with bounded kernel does not in-
dicate the effective tensile modulus to change
with the thickness.

Figure 7 shows the modification factor β for
the nonlocal bending stiffness as a function of
non-dimensional thickness η. When the thick-
ness of the plate is relatively small, it can signif-
icantly influence the bending stiffness of a plate,
as calculated by the nonlocal theory. When
the thickness of the plate is relatively large, the
modification factor tends to unity which means
the bending stiffness will be equal to its classi-

cal limit D = h3

12Q. According to these calcula-
tions, the thickness at which the difference be-
tween classical and nonlocal solutions gets more
than 1% is h = 16e0a.

In the calculation of the modifying factors λ
and β, the initial calculation was based on a uni-
form deformation in a plate. However, it was
shown that if the kernel can be decoupled in
in-plane and out-of-plane directions, such mod-
ification factors can be used for a non-uniform
deformation as well. In the latter case, the in-
plane non-locality would have a contribution to
the nonlocal stress resultants and stress couples.
This contribution needs to be treated by exist-
ing nonlocal plate theories.

Figure 7: Nonlocal modification factor for bending stiff-
ness matrix as a function of the thickness of the plate
normalized with internal length scale.

The results, as shown in Figures 6 and 7, sug-
gest that the nonlocal solution with the bounded
kernel reflects the size dependency of the elastic
properties at a relatively smaller length scale.
The difference between the two nonlocal solu-
tions is relatively large, and is almost compara-
ble to their differences with the classical elastic-
ity. According to Eringen’s nonlocal theory and
several other publications [3, 10, 21], the solu-
tion with bounded kernel is considered to be the
“correct” nonlocal solution.

Finally, we briefly discuss an example on how
this theoretical approach can be applied in prac-
tice. For this purpose, a comparison is made to
an experimental result provided by Sadeghian,
et al. [27]. In that study, the size-dependence of
the elastic behavior in Silicon nano-cantilevers
has been experimentally investigated. The em-
ployed cantilevers in this study were 170 to 8
μm long, 20 to 8 μm wide and 1019 to 40 nm
thick. Considering the large aspect ratio of the
cantilevers they can be modeled as plates.

Figure 8 shows the experimentally obtained
bending stiffness of the cantilevers when sub-
jected to a non-uniform cylindrical bending.
The bending stiffness in this graph is normal-

ized with its classical amount Et3

12(1−ν2) . The ex-

perimental results clearly show that the bending
stiffness of the cantilevers is a function of their
thickness.

For comparison the proposed nonlocal modi-
fication factors derived for three different length
scales are also shown in this figure. The theoret-
ical results are calculated using a bounded ker-
nel. The very similar trend to the experiments
can be modeled using the modification factor
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Figure 8: The normalized bending stiffness of a wide
silicon cantilever in cylindrical bending based on pull-in
measurements [27], and calculated with nonlocal theory
with three different internal length scales.

proposed in this paper and the best match is
achieved when e0a = 25 nm. We shall remind
here that the internal length scale e0a can be af-
fected by the Silicon crystal properties as well as
all the defects particularly on its surface. This
excellent match between the model and the ex-
perimental results shows the potential for em-
ploying the proposed model in mechanical char-
acterization of nano-structures. The observed
scale effect can be captured with nonlocal elas-
ticity theory effectively, and moreover, it is easy
to implement.

5. Conclusions

In this paper, using a nonlocal elasticity the-
ory, we have presented a formulation to capture
the effect of thickness on size-dependent behav-
ior of plates. We have discussed some new as-
pects and challenges of employing the strong
three dimensional nonlocal formulation for anal-
ysis of plates. The presented formulation has
been employed for a practical problem and is
shown to be capable to describe the size effect
observed experimentally.

Generally, in employing nonlocal elasticity
formulation for plate problems, the non-locality
in the constitutive equations is only considered
in tangential directions of the plate. This, in
turn, results in predicting a size dependent me-
chanical behavior which does not reflect any
dependence to the plate thickness. This is
while experimental results indicate otherwise
[27]. Moreover, if the nonlocal elasticity aims
to capture the long-range interactions between
the atoms of the material in a continuous frame-

work, their impact should be reflected in all di-
rections, including the transverse direction.

The main problem in capturing non-locality
in transverse direction for plates lies in confin-
ing the nonlocal kernel at the two surfaces of
the structure. In this study, to investigate the
effects of including the transverse non-locality
in analysis of plates, we have employed two
types of nonlocal kernels with bounded and non-
bounded boundaries. In particular, the prob-
lem of uniform deformations of a plate has been
studied with both types of kernels. The results
show that using the nonlocal formulation with
a bounded kernel can reflect the physics of the
problem better. In fact, using a bounded kernel
(i) for a given uniform local strain field, a non-
local formulation predicts a uniform nonlocal
stress field, (ii) stress components near the sur-
face do not exhibit the sharp reduction, which
occurs in case of employing a non-bounded ker-
nel.

It should be mentioned here that although
according to Eringen’s theory of nonlocal elas-
ticity, the solution given by a bounded kernel
(finite-scale kernel) is suggested to provide the
“correct” solution, there is no suggestion for
a physical interpretation of the chosen bound-
ary conditions on such a kernel. Thus, there
is a definite need for a thorough study to de-
fine the reasoning behind the adaptation of the
kernel in boundary regions. The authors sug-
gest that calculating the suitable boundary con-
dition for the nonlocal kernel in nonlocal elas-
ticity theories (and other higher order elasticity
theories) should be practicable using a molec-
ular dynamics simulation or another atomistic
model. These boundary conditions should not
be problem dependent and instead they should
reflect the physical properties in the surface of
the structure. Otherwise, the nonlocal contin-
uum theories will not be viable as they have to
be adapted to every single problem.

Moreover, in practice, defects are in the na-
ture of all materials. In a structure with a de-
fected surface, the surface properties such as in-
homogeneous elasticity should also be involved
in the formulation. Furthermore, the effect of
the surface defects should be reflected in the
nonlocal kernel either via the boundary condi-
tions or the internal length scale.

As a result of this study, two nonlocal modifi-
cation factors on extensional and bending stiff-
ness matrices have been presented to account for
the effect of thickness in the nonlocal formula-
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tions. These modification factors are valid for
any shape of the plates. Provided that the non-
local kernel is separable in transverse and tan-
gential coordinates, they can be used for solu-
tions based on conventional nonlocal plate the-
ories. The observed scaling effect and a good
match to experimental results motivate future
research into clear interpretation of the internal
length scale and the boundary conditions.
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