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A B S T R A C T

Network science offers powerful concepts and methods for studying complex systems, such as public transport
networks. However, many existing studies on complex network analysis of public transport networks were
primarily motivated to test network science concepts using real-life networks. Consequently, important prop-
erties related to public transport services in these studies have been overlooked. This has led to claims made by
transport researchers that these works do not necessarily improve the understanding of system properties and
performance. To bridge this gap, this study integrates network science and public transport accessibility analysis
for comparative assessment across multiple public transport networks. The primary contribution of this study
pertains to developing a method based on network science for computing public transport accessibility measured
as the average travel impedance. The travel impedance metric is defined based on the generalized travel cost
between stop pairs, containing initial and transfer waiting times, in-vehicle travel times and time-equivalent
transfer penalty costs. To perform efficient computation, we propose a new type of weighted graph re-
presentation of public transport networks, which explicitly incorporates travel costs that are derived from
general transit feed specification (GTFS) data. Besides the methodological contribution, the secondary one of this
study consists in performing a comparative assessment of worldwide tram networks' accessibility. The analysis
shows insights into how different travel components (e.g., in-vehicle travel times and waiting and transfer times)
specifically account for the variance in accessibility across different networks. Additional references for im-
proving the designing and planning of public transport networks can be obtained from such comparative as-
sessments.

1. Introduction

Network science, a research field built upon graph theory, is dedi-
cated to studying the connection and interaction between components
in complex systems (Newman, 2010). It provides researchers with
powerful toolkit to quantitatively investigate the collective dynamics
resulting from the interactions among system elements. Given this ad-
vantage, an increasing amount of research has been conducted to apply
theories and methods from network science to study transport systems
over the past decades (Lin and Ban, 2013). In particular, there has been
a focus on studying the topological characteristics of public transport
networks (PTNs) (e.g., Sienkiewicz and Holyst, 2005; von Ferber et al.,
2007, 2009; Berche et al., 2009; Louf et al., 2014; de Regt et al., 2018).

Applications of network science to transport systems have often
been studied by network scientists seeking real-life examples of

networks rather than by transport engineers and planners (Derrible and
Kennedy, 2011). Consequently, a majority of studies ended up solely
showing topological analyses without embedding information funda-
mental to transport systems, leading to claims that these works do not
necessarily contribute to the transport community. For instance, Dupuy
(2013) pointed out that these had provided limited recommendations to
network planners, and thus impeded potential applications and impacts
due to the absence of features related to transport and urban planning.
Presumably, One of the main causes is that most topological analyses
were performed with unweighted networks, thus leading to findings
and conclusions that can provide limited knowledge and insights for
improving the planning and operations of public transport (PT) (Cats,
2017). Although the significance of analyzing weighted networks for
more meaningful findings was already demonstrated almost two dec-
ades ago (Barrat et al., 2003), unweighted networks have still been
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commonly used in this specific research domain. Moreover, the per-
spective has often neglected the features associated with service attri-
butes which are fundamental to PTNs. This is largely attributed to the
difficulty in obtaining consistent PT attributes for creating meaningful
weighted networks. This research gap needs to be bridged for network
science to become more applicable in the transport research commu-
nity.

To this end, this study is dedicated to performing an exemplary
integration of network science and PT analysis that can enhance the
understanding of system properties and performance. Our primary
contribution pertains to proposing a new method based on network
science for computing public transport accessibility measured as the
average travel impedance. Note that the concept “accessibility” in this
study is defined solely based on the travel impedance associated with
reaching any potential destination across the network. This definition
thus does not account for the intensity and diversity of destinations,
which stay beyond the scope of this study and are hence neglected in
the remaining of this paper. The travel impedance metric is defined
based on the generalized travel cost (GTC) between stop pairs, con-
taining initial and transfer waiting times, in-vehicle travel times and
time-equivalent transfer penalty costs. To perform efficient computa-
tion, a new type of weighted graph representation of public transport
networks is proposed, which explicitly incorporates the aforementioned
components that are derived from general transit feed specification
(GTFS) data. The secondary contribution of this study consists in per-
forming a comparative assessment of worldwide tram networks' ac-
cessibility. The analysis shows insights into how different travel com-
ponents (e.g., in-vehicle travel times and waiting and transfer times)
specifically contribute to the variance in accessibility across different
networks. Such latitudinal comparative assessments can provide addi-
tional knowledge for the PTN design, benchmark and planning, but are
still scarce in the current literature due to the requirements imposed by
existing methods that heavily rely on geographical information systems
(GIS).

The remainder of this paper is organized as follows. Section 2 pre-
sents related research on PTN analysis and PT accessibility. The pro-
posed method is then detailed in section 3. In section 4, the selected
eight tram networks for the case study are described, followed by the
presentation of the results and analysis in section 5. Section 6 concludes
the study with the insights derived from the comparative study across
different tram networks and suggestions for future research.

2. Related research

The research on PTN analysis has for a long time been a significant
topic among transport scholars given its fundamental role in influen-
cing network design and planning (van Nes, 2002). According to a re-
view by Derrible and Kennedy (2011), several chronological develop-
ment stages of this research topic can be identified. Pioneering
contributions were made early by Vuchic and Musso who introduced a
graph theory approach for analyzing PTNs (Musso and Vuchic, 1988;
Vuchic and Musso, 1991). A variety of metrics were established to
quantitatively evaluate PTNs (Vuchic, 2005). Derrible and Kennedy
(2009, 2010a, 2010b) later on adopted graph theory principles for
studying PTNs in a series of contributions. For example, they adapted a
variety of concepts of graph theory to describe the features of metro
networks. State, form and structure were proposed to measure the
complexity of a network, the link between systems and the built en-
vironment, and the connectivity and directness of networks, respec-
tively. The latest development has been focused on applying concepts,
theories, and methods from network science to study the topological
characteristics of PTNs. This has been largely facilitated more recently
by the increasing availability of data sets (e.g., Gallotti and Barthelemy,
2015; Kujala et al., 2018a) and software functionalities (e.g., Hagberg
et al., 2008).

2.1. Network science analysis of PTNs

At the early stage, PTNs drew network scientists' attention when
they searched for real-life examples of networks to test their theories
and models (e.g., Latora and Marchiori, 2001, 2002; Sen et al., 2003).
For example, many studies explored whether PTNs possess scale-free
(Barabási and Albert, 1999) and small-world (Watts and Strogatz, 1998)
features, which are considered among the most significant topological
properties for characterizing networks. For more detailed summary and
discussion of these studies, readers are referred to the reviews by
Derrible and Kennedy (2011) and Zanin et al. (2018).

Unraveling PTNs' topological characteristics requires considering
the key feature of PTNs. In particular, PTNs consist of both infra-
structure and service dimensions with the latter being superimposed on
the former. Consequently, establishing meaningful graph representa-
tions of PTNs lays the foundation for any further network analyses. Two
types of graph representations that have been mostly employed in the
literature are the so-called L-space and P-space topology, which are
illustrated in Fig. 1 and also interpreted below.

• L-space: A straightforward representation of PTNs from the per-
spective of infrastructure. Each node represents a stop, and a link
between two stops is formed if two stops are adjacent on at least one
infrastructure segment (i.e. road or rail). This is one of the most
extensively utilized representations by researchers (e.g., Latora and
Marchiori, 2002; Sienkiewicz and Holyst, 2005; von Ferber et al.,
2007, 2009). In many of the studies adopting this representation,
only unweighted graphs are used in the analysis, hence containing
no information of service properties.

• P-space: A representation solely based on PT service routes. The
nodes represent stops and are linked if they are served by at least
one common route. As a result, the neighbors of a node in this space
are all stops that can be reached without performing a transfer. P-
space has been widely used to investigate transfer possibilities (e.g.,
Sienkiewicz and Holyst, 2005; Xu et al., 2007; von Ferber et al.,
2007, 2009). This space does not contain any information about the
infrastructure layer (i.e., the physical sequence of links traversed
between stops).

In the following, the terms space-of-infrastructure (L-space) and

Fig. 1. Illustration of two commonly adopted topological (space) representa-
tions of PTNs (adapted from von Ferber et al. (2009)). The terms space-of-in-
frastructure (L-space) and space-of-service (P-space) are used in the following to
better reflect the context of PT.
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space-of-service (P-space) are used to better reflect the context of PT
(Luo et al., 2019).

Based on the pioneering studies mentioned above, scholars have
recently striven to better capitalize on network science in the context of
PT research. This has led to efforts to incorporate PT specific features
into complex network analysis of PTNs, such as travel demand and
service attributes (e.g., passenger flows, transfers, service frequency,
travel times, etc.). More weighted complex network analyses have
emerged to account for demand and supply patterns in PTNs (e.g., Soh
et al., 2010; Haznagy et al., 2015; Feng et al., 2017). Furthermore,
investigations into the vulnerability, robustness and (node and link)
criticality of PTNs have explicitly considered passenger demand and
flow assignment (e.g., Cats and Jenelius, 2014; Cats, 2016; Cats et al.,
2016, 2017).

2.2. Public transport accessibility

Accessibility has been widely studied in the field of urban planning
(e.g., Batty, 2009) and transport planning (e.g., Geurs and van Wee,
2004; van Wee, 2016). According to the summary by Nassir et al.
(2016), a consensus has been reached that accessibility can be mea-
sured based on two main components, which are: (i) locations and at-
tractiveness of urban opportunities (benefit side); and, (ii) impedance of
traveling to these locations from residential areas in the network (cost
side). In a nutshell, more accessible areas are defined as those that can
be reached with lower travel impedance. PT accessibility can thus be
defined in a similar fashion, with the travel mode restricted to PT, and
the travel impedance calculated based on PTN attributes.

PT accessibility research has so far been mostly performed based on
GIS techniques with limited data availability (e.g., Lei and Church,
2010; Currie, 2010; Saghapour et al., 2016). The recent wide spread of
GTFS data, along with the improvement of software's capability in
processing them (e.g., ArcGIS), has further facilitated these GIS-based
approaches (e.g., Farber et al., 2014, 2016; Farber and Fu, 2017).
Moreoever, new analytical methods have also been gradually proposed
in parallel, such as the travel impedance metrics based on utility (Nassir
et al., 2016) and Pareto-optimal journey (Kujala et al., 2018b), and a
faster computational algorithm by Fayyaz et al. (2017).

According to the literature review presented above, it can be sum-
marized that previous studies have mostly performed mechanical ana-
lyses without incorporating service information fundamental to PT
systems, thus providing the transport community with limited insights.
Although some studies have attempted to address this challenge, more
efforts are still needed. To further bridge the gap, the research pre-
sented in what follows demonstrates how network science can be ef-
fectively integrated with PT accessibility analysis.

3. Method

This section presents the proposed method. An overview is first
presented in Fig. 2 along with an introduction of all the individual
steps. The details of each step is then depicted in the following sub-
sections.

3.1. Building graph representation of PTNs from GTFS data

We first define that PTNs are comprised of two layers: the infra-
structure layer (i.e., roads and rails) and the service layer superimposed
on the physical one (i.e., routes). A PTN is then represented as a di-
rected graph which can be denoted by a triple G=(V,E,R), where V, E,
R represent the set of nodes, links and routes, respectively. Each node v
represents a stop, while each link eij is defined by an ordered pair of
nodes (vi,vj), where vi and vj, respectively, denote the source and target
nodes. Each route r is directional and characterized by an ordered se-
quence of links r=(er, 1,er, 2,…,er,∣r∣). Note that a link can constitute
parts of different routes when they share the same corridors. In

addition, the stop here relates to a service location (as commonly shown
in PT maps) which can contain more than one individual boarding and
alighting spot in the operational network.

Based on the above definition, PTNs are constructed from GTFS data
which are now commonly available as a standard data format for PT
operators to share their schedules and network information with the
public. Structured as a relational database, one GTFS feed is comprised
of multiple files that are interconnected via common keys (Google,
2019). To obtain required graph representation, a dedicated program
was developed in MATLAB. In principle, a full-scan of all the trips as-
sociated with a route during a period needs to be performed in order to
obtain the complete stop sequence for this route.

3.2. Constructing the unweighted space-of-service network

Based on the basic graph representation, we further establish the
unweighted space-of-service network Gs=(Vs,Es) for PTNs. As in-
troduced in section 2.1, this topological representation characterizes
PTNs merely from a service perspective. A node vis in this case represent
a PT stop which is the same as it in the basic graph G (i.e., Vs= V). A
link eijs∈ Es is created if vj can be reached from vi without performing
transfers.

3.3. Adding travel times as weights to the space-of-service network

Using the scheduling information from GTFS data, we are able to
combine in-vehicle travel times and waiting times into link weights in
the space-of-service network. Note that both components are time-de-
pendent based on schedules and are averaged values for a given time
period. For simplicity the temporal element is not incorporated in the
following formulation. For link eijs in Gs, its weight wij

s is defined as
follows:

= +w t tij
s

ij
v

ij
w

(1)

where tijv denotes the in-vehicle travel time of the direct service from
stop i to stop j according to the schedule from GTFS. tijw represents the
expected waiting time of travelers for the direct service from stop i to
stop j during the same time period. This is estimated as half of the
headway based on the joint service frequency of all direct services from
stop i to stop j. It needs to be pointed out that if there is any synchro-
nization among different PT routes, it is neglected in this definition. An
example is presented at step 3 in Fig. 2 to illustrate the proposed
weight.

3.4. Measuring the average travel impedance per stop

The average travel impedance associated with individual stop τi in
this study is defined as follows:

=
∑

∣ ∣ −

≠τ
u

V 1i
j i ij

(2)

where ∣V∣ denotes the number of stops in the PTN. uij represents the
lowest GTC from stop i to j. Specifically, uij is the sum of total in-vehicle
travel times, total waiting times for each journey leg (i.e., the initial
waiting time and subsequent transfer waiting times), and time-
equivalent penalty per transfer. The last component expresses the ad-
ditional penalty associated with the inconvenience of performing a
transfer beyond the additional travel time. The lowest GTC in this case
can be efficiently computed using the proposed weighted space-of-ser-
vice network Gs(Vs,Es,Ws). For instance, for the GTC from stop i to j, uij,
the shortest path Pij between them in Gs is first searched for, which is
denoted as a sequence of links Pij=(e1s,e2s,…,eKs). Then the additional
penalty cost is added based on the number of transfers along this
shortest path. The definition is specified as follows:
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∑= + −
=

u w λ K( 1)ij
k

K

k
s

1 (3)

where wk
s denotes the weight (i.e., travel time, including in-vehicle

time and waiting time) of link eks. K represents the number of links,
namely the minimal number of journey legs from stop i to j. λ represents
the time-equivalent penalty cost per transfer which is a constant in this
case. The applied metric is conceptually similar to the so-called close-
ness centrality (Bavelas, 1950), but it is much more adapted in the
context of PT. It allows to quantify the travel impedance of each stop to
all other stops in terms of the total journey time in the PTN. The simple
average function can be replaced by a weighted average to enrich the
metric by accounting for the importance of different origin-destination
relations based on land-use or demand data if those are available.

4. Case study: assessing the accessibility of tram networks
worldwide

To demonstrate the proposed method, eight tram networks world-
wide, including Melbourne (Australia), Vienna (Austria), Milan (Italy),
Toronto (Canada), Budapest (Hungary), Zurich (Switzerland),
Amsterdam and The Hague (The Netherlands), are employed for the
case study. Tram networks are used because there is, to the best of our
knowledge, a lack of dedicated research on tram networks with suffi-
cient samples in the literature compared to other PT modes, particularly

metros (e.g., Derrible, 2012; Roth et al., 2012). This was presumably
largely due to the unavailability of standardized data on tram networks.
Therefore, by investigating eight tram networks worldwide in this case
study, we aim to further highlight one of the main merits of the pro-
posed method, which is its high transferability.

The network selection criteria include the following aspects: (i) the
tram network plays a dominant role in the local urban transport system;
and (ii) the GTFS data are available. All the networks were then gen-
erated using the GTFS data from the second half of 2018, which are
subject to temporal variations possibly caused by construction and
maintenance. In addition, for this case study the weekday morning peak
schedules (8 am – 9 am) are used for computing the weight of space-of-
service networks. For the time-equivalent transfer penalty cost λ in Eq.
3, we apply 5min per transfer in this study based on the result from Yap
et al. (2018).

To obtain a better understanding of the basic properties of these
tram networks, a graph displaying the numbers of stops, (physical) links
and routes (i.e., G(V,E,R)) is presented in Fig. 3. Noticeably, the stop
here relates to a service location (as commonly shown in PT maps)
which can contain more than one individual boarding and alighting
spot in the operational network. From the graph, it can be seen that
these eight tram networks exhibit considerable differences in terms of
their physical scale. With more than 800 stops and 1500 links, the
Melbourne tram network is significantly larger than the others. Not-
withstanding, it does not contain the largest number of routes (24

Fig. 2. Illustration of the proposed method.
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routes only). Following the world's largest tram network in terms of the
track-km length, the second tier cluster in our analysis encompasses
Vienna and Milan, both of which possess some 300 stops and 700 links.
However, Vienna boasts the largest number of regular routes out of all
the eight networks, while Milan's number of routes seems to be pro-
portionate to its scale. On the lower left corner in this diagram lie the
remaining five networks, with Amsterdam and Zurich being the smal-
lest. The Budapest tram network also stands out since its number of
routes is remarkably disproportionate to its scale. Overall, it can be
concluded that the numbers of stops and links are linearly correlated,
while the number of routes does not necessarily coincide with the size
of the networks.

5. Results and analysis

This section presents the results of applying the proposed method to
the case study tram networks. Section 5.1 first introduces a benchmark
metric used in the analysis. Then the results are presented in section 5.2
with visualizations, followed by a discussion in section 5.3. More in-
sights are further presented in section 5.4 through an investigation into
the variance in the proposed GTC-based travel impedance metric across
different networks.

5.1. Additional benchmark travel impedance metric

To better demonstrate the merit of the proposed GTC-based travel
impedance metric, especially in the context of PT, we include an ad-
ditional one in this analysis as a benchmark. It is computed using the
space-of-infrastructure (L-space) representation described in section
2.1. This metric is derived in the same way as implied by Eq. 2, except
that the GTC is replaced with the topological shortest path length in the
unweighted space-of-infrastructure network. In other words, the travel
impedance is solely determined based on the minimal number of links
that are traversed between stop pairs in the space-of-infrastructure
network. Neither travel times nor transfer attributes are incorporated in
this benchmark metric. The travel impedance is thus completely viewed
from a topological perspective. The reason for adopting this specific
metric as the benchmark against the proposed one is the following:
existing topological analyses of PTNs have used the space-of-infra-
structure representation to study PTNs' properties related to what this
study is examining. For example, several studies have studied the effi-
ciency of PTNs based on the shortest path length in the unweighted
space-of-infrastructure network without taking into account of PT
transfers (e.g., Latora and Marchiori, 2001; de Regt et al., 2018). By
comparing the proposed metric based on the GTC to this benchmark,
the impact of including information on service properties can be as-
sessed.

5.2. Results

In this subsection, the computational results are presented in the
form of travel impedance maps with explanations. As Fig. 4 shows, each
column displays three graphs for a given tram network, corresponding
to the result of, from top to bottom, (i) the benchmark metric; (ii) the
proposed GTC-based metric, and; (iii) the difference between (i) and
(ii). For the first two graphs, the same color scheme is used to illustrate
different magnitudes of the travel impedance, therefore allowing for
analyzing the spatial variation in impedance. Additionally, the dis-
tribution of metrics is presented in the top right corner for a more
quantitative description. Note that there are black “x” markers in the
middle and bottom rows, which represent the stops disconnected from
the rest of the network. This is due to the fact that in this study the
weighted space-of-service network pertains to service provision rather
than infrastructure availability and is thus time-dependent. Besides,
there is a tram route that is completely disconnected from the rest of the
network in Toronto. This is because this tram route is integrated into
the network through two other metro routes which are not included in
this analysis.

The graphs on the bottom row in Fig. 4 visualizes the gap between
the two different travel impedance metrics. The gap is quantified by the
residual of a linear regression model in which the dependent and in-
dependent variables are the GTC-based and benchmark metrics, re-
spectively. The rationale is that the bigger the residual (absolute value)
for a stop is, the larger the gap between the two metrics for this stop is.
For the network-wide visualization, we apply two colors, i.e., red and
blue, to indicate the sign of residuals, while the magnitude is reflected
through the depth of the color: the deeper the color is, the larger the
gap between the two metrics is. Specifically, the blue spots illustrate
where the travel impedance by the benchmark metric is higher than
that by the proposed GTC-based metric, while the opposite holds for the
red spots. The scatter plot in the upper right corner further shows more
information about the linear regression between the two metrics. With
the color for describing the gap retained, this plot allows for a more
intuitive understanding of the consistency between the two metrics,
particularly across different networks with the indication of the Pearson
correlation coefficient r.

5.3. Discussion

Some important patterns from the visualization are summarized in
this subsection. First, according to Fig. 4, it can be seen that low travel
impedance (i.e., high accessibility) is pronounced for those stops in the
central area of the network in both benchmark and GTC-based cases.
The travel impedance gradually increases as one moves away from the
center toward the periphery for all the networks. Nevertheless, certain
differences are also noticeable pertaining to the general pattern and the

Fig. 3. Illustration of the basic properties of the studied tram networks. Note that the stop here relates to a service location (as commonly shown in PT maps) which
can contain more than one individual boarding and alighting spot in the operational network.
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distribution. For example, the spatial disparity in the travel impedance
is visually more remarkable when it is measured in terms of the GTC
(the second row). In other words, in the GTC-based case, the stops with
low travel impedance are more concentrated in the central part of the
network. This is particularly remarkable in the case of Amsterdam, The
Hague, Vienna and Melbourne. Second, in several cities, e.g., The

Hague, Toronto, Milan, Budapest and Melbourne, some stops on the
periphery of the network display largely underestimated impedance by
the benchmark metric (reflected by the red spots). These patterns per-
taining to the inconsistency between the two metrics can stem from
three factors: (i) Less waiting times are needed in the central area given
higher service frequency, particularly in the studied morning peak

Fig. 4. Visualization of the travel impedance maps for case study tram networks. The benchmark metric, newly proposed GTC-based metric, and the comparison
between them are respectively displayed from top to bottom for each city. The physical scale of all the networks are also provided on axes.
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period; (ii) It is more likely that reaching a stop distant from the center
requires more transfers, thus incurring more transfer penalty costs. (iii)
It is common that the physical inter-stop space increases as the location
moves from the center to the periphery of a network, therefore re-
quiring more in-vehicle travel times.

Some intriguing findings can be also observed from the Pearson
correlation coefficient. It can be seen that the values of Vienna (0.97),
Melbourne (0.96) and Zurich (0.95) are higher than those of the rest of
the tram networks, implying a good consistency between the two me-
trics. The Hague (0.84) turns out to be significantly lower than any
other network, followed by Budapest (0.87). In the case of the former,
this is due to a cluster of suburban stops on the east since the long
corridor connecting the suburb to the city largely increases the cost in
the GTC-based situation, resulting in a bias in the benchmark metric
which underestimates the impedance.

We further analyze the difference between the two metrics from a
distributional perspective. From Fig. 4, it can be already observed that
the distributions of the two impedance metrics are significantly dif-
ferent from each other. The distribution of the benchmark metric is
positively skewed, meaning that a large proportion of the distribution
mass lies on the left side and there is a long right-side tail. While for the
GTC-based metric, the majority in the distribution significantly moves
to the right for most networks. Overall, the GTC-based metric quantifies
the travel impedance in a less extreme way than the benchmark one
does, suggesting that the spatial disparity in accessibility might be
lower than assumed when neglecting service properties.

A more global comparison between them is further presented in
Fig. 5 using the complementary cumulative distribution plot. Fig. 5a
shows that several cities clearly overlap when the impedance is mea-
sured by the benchmark method (e.g., the group of Budapest, Vienna
and Milan; the group of Amsterdam, The Hague and Zurich), while
Fig. 5b demonstrates that the difference in the impedance among these
networks becomes pronounced when the GTC is considered. In other
words, once accounting for service properties that reflect network de-
sign and resource allocation choices, there are more pronounced dif-
ferences between different networks than if those are neglected. An-
other finding is that the relative positions of the curves representing
Budapest, Vienna and Milan shift from Toronto's left to its right when
the GTC-based metric is applied. This could be attributed to the fact
that the number of routes in Toronto is significantly lower than the
other three, albeit the similar network size in terms of the number of
nodes. As a result, much fewer transfers need to take place in Toronto
than in the others, hence incurring lower transfer penalty costs.

5.4. Variance analysis

This subsection is devoted to investigating the variance in the re-
sulting GTC-based travel impedance metrics across different networks.
In addition to looking at the variance in the total cost, we also examine
how individual components (i.e., (i) in-vehicle travel times and (ii)
waiting and transfer times (with penalty)) varies in different networks.
The so-called violin plot is used for visualization as shown in Fig. 6. As a
type of enhanced visualization technique for the conventional box plot
(The median of the data is marked by a white dot inside the plot with
the interquartile ranges lying on its both sides), the violin plot for each
network additionally illustrates the probability density of the data
smoothed by a kernel density estimator. In this case, the individual
violin plots are arranged in a descending order from left to right in
terms of the median travel impedance value of each city.

Fig. 6a well corresponds to the intuition that larger networks in
terms of the spatial scale indeed exhibit higher travel impedance. It can
be observed that the median value of the top one (Melbourne, 60min)
is almost twice as that of the bottom (Zurich, 30min). In addition, the
diagram reveals that the variance in travel impedance is proportional to
the spatial scale as well. As the median value of the impedance metric
declines, the variance also drops in a way that the range between the
maximum and minimum shrinks. For large networks, such as Mel-
bourne and Milan, they appear to have long tails on the top (hence,
right-hand tails) as a result of dramatic network sprawl from the center
to suburbs. The opposite holds for some much smaller networks, in-
cluding The Hague, Amsterdam and Zurich. Their shapes look much
more compact in comparison to the others. Besides, the unique shape of
Toronto reveals that its tram network is differently organized from
many others.

Fig. 6b and Fig. 6c further unravel how (i) in-vehicle travel times
and (ii) waiting and transfer times (with penalty)) respectively con-
tribute to the variance in the GTC. It can be seen in Fig. 6b that the
sequence derived based on the total GTC can still be roughly applied to
the case of in-vehicle travel times and the shapes are also similar. This
makes sense as the overall GTC is dominated by the in-vehicle travel
time in all the networks. The only remarkable inconsistency occurs to
Toronto where its median value is larger than that of Budapest and
Vienna.

Fig. 6c then displays a very different pattern from the previous two
diagrams. By excluding the component of in-vehicle travel times, which
is largely dependent on the spatial scale of networks, we can actually
find out how planned services on top of the physical network (i.e., route

Fig. 5. Complementary cumulative distributions of the travel impedance for the studied tram networks. (a) The benchmark metric; (b) The GTC-based metric.
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and frequency design) influence the travel impedance. This can be ex-
plained from two aspects: (i) The number of transfers needed for con-
necting every stop pairs in the entire network determines waiting times
and transfer penalty costs; (ii) Service frequency determines waiting
times for each ride. It can be seen that the majority of the networks
exhibit a median value of around 15min, with the largest and smallest
being close to 20min (Budapest) and lower than 10min (Toronto),
respectively. Surprisingly, most significant variance can be found in
Milan which shows a long tail on the top. This explains why Melbourne

and Milan are similar in terms of the shape of the GTC (Fig. 6a) despite
the fact that the in-vehicle travel times in Milan have less variance.

6. Conclusion

Existing complex network analyses of PTNs have mostly been fo-
cused on performing topological analyses without incorporating in-
formation fundamental to public transport services for the sake of PT
planning. Although these studies have generated many insights into PT

Fig. 6. Visualization of the variance in travel impedance for eight tram networks. The violin plot displays the median, quartiles and probability density of the data
smoothed by a kernel density estimator.
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systems previously unknown to PT scholars, more efforts are still
needed to enable network science to further address challenges en-
countered in PT planning and operations. To this end, this study pro-
poses an exemplary integration of network science and public transport
accessibility analysis. The primary contribution lies in developing a
method based on network science for computing public transport ac-
cessibility measured as the average travel impedance. With the proposal
of an innovative weighted graph representation of PTNs that explicitly
incorporates travel costs according to the planned services contained in
GTFS data, we are able to efficiently compute the minimal generalized
travel cost between stop pairs. Such cost is comprised of initial and
transfer waiting times, in-vehicle travel times and time-equivalent
transfer penalty costs. The secondary contribution pertains to per-
forming a comparative assessment of worldwide tram networks' ac-
cessibility based on the proposed method. Such latitudinal comparative
assessments can provide additional insights into the PTN design,
benchmark and planning, but are still scarce in the current literature
due to the requirements imposed by existing methods that are heavily
reliant on GIS.

New insights derived from the comparative case study are sum-
marized as follows. According to the comparison between the bench-
mark and proposed GTC-based metrics, the main conclusion is that the
spatial disparity in PT accessibility can be higher when planned service
properties (i.e., travel times, initial and transfer waiting times, and
transfer penalties) are considered than when they are not. In addition,
the subsequent investigation shows that larger networks in terms of the
spatial scale indeed exhibit higher median total travel impedance.
However, this is primarily attributed to the component of in-vehicle
travel times which is intrinsically positively correlated to the spatial
scale of networks. By excluding in-vehicle travel times, we can see that
the majority of the networks exhibit a median cost of around 15min
regarding waiting and transfers, with the largest and smallest being
close to 20min (Budapest) and lower than 10min (Toronto), respec-
tively. Among all the studied networks, Milan shows the largest var-
iance in this specific cost component.

This study can be further continued in following directions. First, as
mentioned earlier, information of the origin-destination demand can be
incorporated when computing the average travel impedance. This
would result in a more comprehensive way of measuring PT accessi-
bility. Second, the proposed method can be extended to be more sui-
table for multimodal PT systems, possibly by adopting the multilayer
network theory (Kivelä et al., 2014).
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