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Abstract
The �eld of prognostics on composites is relatively young, and research is focused on constant amplitude fatigue
(CAF) loading, whereas variable amplitude fatigue (VAF) loading is more common in actual use-cases. Therefore
in this research, the feasibility of di�erent in-situ, data-driven probabilistic models is studied for prognostics on
carbon �bre reinforced polymer (CFRP) specimens under VAF. Fatigue data with recorded acoustic emissions
(AEs) is available from an earlier performed experimental campaign. Three models were selected: a statistical
model to be used as a baseline comparison, a Gaussian process (GP) regression using cumulative AE energy,
and a recurrent neural network (RNN) using all available AE features and load data. The models were compared
for performance of remaining useful life (RUL) predictions on specimen under VAF loading for three di�erent
cases; when trained on CAF, VAF, and the combination of these two. Seven performance metrics were used to
quantify their performance, as well as a qualitative comparison. The statistical method’s performance varied
per test specimen and can, therefore, only be used in practical applications when used very conservatively. It
did not perform better in any of the three training cases as compared to the others. The GP regression was
deemed not feasible due to high variability in its RUL predictions, high uncertainty due to the setting of a failure
threshold as probability distribution based on other specimens, and high computational costs. The performance
di�ered per test specimen as well. Finally, the performance of the RNN increased when trained on VAF data
as compared to training on solely CAF data. It increased further when including both CAF and VAF in the
training data. It is not yet feasible to be used in practice, due to variability in its predictions, and the inability
to handle outliers. The latter is an issue for the other two models as well. The RNN outperformed the other
two models when trained on VAF, and CAF and VAF data. Due to the de�nition of the failure threshold in the
GP, the GP did not perform better than the statistical model. In the case of CAF training data, there was not
a clear distinction between the performance of the statistical model and the RNN, except for one performance
metric related to the precision of predictions. During this research, AE data from glass �bre reinforced polymer
(GFRP) specimens tested on tension-tension (T-T) fatigue under di�erent load levels became available. In a case
study, the feasibility of a RNN, trained on AE data, was analysed for prognostics on this data-set. Due to large
di�erences in the life-times between the specimens in this data-set, this was not feasible. Extending this RNN
with a feedforward neural network (FFNN) which uses load data as well as input, provided worse predictions.
The main conclusion drawn in this thesis is that with the current implementation of the used models, in-situ,
data-driven prognostics on composite specimens under VAF is not yet feasible.
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1
Introduction

The use of �bre reinforced polymers has been growing in multiple industries, including the aerospace and
wind-energy industry. However, structures in these industries have to cope with fatigue loads. Some sources
of fatigue in aircraft are due to take-o� and landing, pressurization and gusts. The wind-energy industry is
constantly moving towards larger blades for o�shore turbines, resulting in more extreme fatigue loads. With
larger blade lengths come higher aerodynamic forces, masses and moment arms, while in a blade’s lifetime of
20 years it typically has to survive over 100 million cycles. An example for the wind-energy industry is that of
GE’s Haliade X, with 107 m long rotor blades (GE Renewable Energy). With the resulting loads in these blades,
designing for fatigue is critical.

Considering the cost of maintenance, there are three traditional maintenance strategies (�gure 1.1) (Tchak-
oua et al., 2014). The �rst is preventive maintenance, which is time-based. This type of maintenance is often
too frequent but results in low repair costs. On the other side of the spectrum is reactive maintenance. Running
up to failure gives a low prevention cost, but high repair cost. In the case of a wind turbine blade, the latter is
unacceptable since failures of the blade often lead to catastrophic failures of the complete turbine. This is not
only a �nancial loss, but it can also impact safety as well as the environment around it. The �nal type of main-
tenance strategy is that of intelligent maintenance. This is a condition-based approach, where the condition of
the structure is determined from a distance, and maintenance is carried out if a fault is predicted to occur in the
near future, i.e. the remaining useful life (RUL) is too low. This is referred to as prognostics. While prognostics
has an impact on maintenance planning, operations, and pro�tability, it is also of value for re-use and recycling
of components after their service (Si et al., 2011). Three main model categories exist in the �eld of prognostics.
One of these is a data-driven approach. Requiring no prior knowledge of the case or physics behind it, these
models can make RUL predictions solely based on available data.

Figure 1.1: Di�erent maintenance strategies and their associated cost, adapted from Tchakoua et al. (2014)

The degradation process of composites under fatigue loading is a complicated mechanism, however. Mul-
tiple failure mechanisms take place while also in�uencing each other. Next to this, there is high variability
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in the properties of composites, and the (sti�ness) degradation of composites varies per specimen (Yang et al.,
1990). The risk of this stochastic nature is that deterministic designs overestimate the reliability of composite
structures, as Lekou and Philippidis (2008) have found for a case of a wind turbine blade. Therefore, prognostics
could be used to perform in-situ predictions of the RUL of an asset, and determine on time if maintenance or
replacements should be carried out, to prevent catastrophic failure.

Current research on prognostics for composites is relatively young, dating back to a maximum of roughly
15 years. Furthermore, research is focused on constant amplitude fatigue (CAF) loading, while in practice,
the amplitude varies. Therefore, this project aims to �nd out whether data-driven prognostics can be used on
variable amplitude fatigue (VAF) loading. It is not only useful to know how di�erent models perform on subjects
under VAF when trained on VAF. Can a model also predict RUL of subjects under VAF, while only trained on
CAF? Is there a signi�cant di�erence between the two, which causes incompatibility? Multiple data-driven
models will therefore be compared in their performance based on training on a data-set containing only CAF,
only VAF, and a combination of the two.

1.1. Objective and research questions
The objective of this research is to investigate the feasibility of in-situ, data-driven prognostics on composites
under VAF, by training multiple probabilistic models on CAF and/or VAF data and assessing their performance
in the prediction of RUL. In order to ful�l this objective, the following research questions must be answered:

1. What is the performance of di�erent data-driven prognostics models in in-situ predictions of the RUL of
a composite under VAF using acoustic emission (AE) data, when trained on CAF data?

2. What is the performance of di�erent data-driven prognostics models in in-situ predictions of the RUL of
a composite under VAF using AE data, when trained on VAF data and using the known load path as a
second input?

3. How is the performance of a data-driven prognostics model improved when training the model on data
from both CAF as well as VAF, using the known load path and AE data as input?

4. To what extent are the used models able to adapt to possible di�erences in the lifetimes of specimens
under VAF?

These four research questions go hand in hand. Because of this, the following sub-questions which allow
the main research questions to be answered apply to all four.

The �rst sub-question is related to the models: "which probabilistic, data-driven models for in-situ prognostics
can be implemented within the timeframe of this thesis?" Choosing models is, of course, one of the fundamentals
of studies like these. In choosing these models, it is essential to keep in mind which possible requirements
models have for their input data.

The second sub-question will be investigated partially parallel to the �rst; "which features from AE data
can be used in prognostics?" The features have to follow the degradation process as much as possible, for the
models to make accurate predictions. Next, "what is an appropriate threshold to set for the selected features?"
While generally, the feature series �rst has to be extrapolated, it also has to be determined at which point the
end of life (EOL) occurs.

Finally, when the models have made their predictions, they have to be compared to each other, for all three
cases mentioned in the research questions. To be able to do this, the following has to be determined: "what
is an objective way of comparing the outcome of the models both quantitatively as well as qualitatively?" Within
this comparison, attention should not only be paid to a general trend but especially to outliers.

The data which is used for this research is AE data from a testing campaign at TU Delft, conducted before
this research. Both CAF as well as VAF tests were performed on notched carbon �bre reinforced polymer (CFRP)
specimens, with a quasi-isotropic layup.
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Case study: varying load levels
During this research, a testing campaign at Danmarks Tekniske Universitet (DTU), on uni-directional (UD)
glass �bre reinforced polymer (GFRP) specimens took place. In this campaign, GFRP specimens were loaded
under CAF, in tension-tension (T-T). In this research, specimens were loaded to di�erent maximum strain levels,
which caused di�erences in the lifetimes. The recurrent neural network (RNN) was thought to be able to make
the most accurate predictions in this case, which therefore raised the following sub-question: To what extent can
a RNN predict the RUL of GFRP specimens which are loaded under di�erent levels, purely on AE data? Naturally,
this also raised the question of whether these predictions could be improved: Can these RUL predictions be
improved when feeding the model information about the load levels and stress ratios?

1.2. Structuring
These research questions are answered throughout this thesis, according to the following structure:

• Chapter 2 will discuss the current state of the art by �rst giving an introduction to composites and the
relevant failure mechanisms for this research. This is followed by a section on AEs, and the research
which was done to quantify their relation with damage. Next, the �eld of prognostics is covered. Finally,
di�erent models used in prognostics are discussed, together with the choices made on which models to
use for this thesis.

• Chapter 3 covers the methodology behind the research. The theory behind the models (a statistical
model, Gaussian process (GP) regression, and RNN), is thoroughly covered, as well as the implementation,
followed by a section which covers the performance metrics to compare these models objectively.

• Chapter 4 treats everything concerning the data which is used in the models. This starts with the setup
of the experiments and the processing of the acquired data for both the experiments on CFRP as well as
the GFRP specimens. Then, the computational setup is brie�y discussed. Finally, the selected features for
this thesis are discussed.

• Chapter 5 discusses the results of the RUL predictions, model by model. The research questions are
answered per model. The models are also compared to each other, determining which model shows the
best performance, both quantitatively, but also qualitatively. Finally, the results from the case study are
discussed.

• Chapter 6 marks the end of the thesis; the conclusions are drawn, as well as recommendations for further
research.





2
State of the art

This chapter covers the relevant research for this thesis. First, composites and their failure mechanisms are
introduced. This is followed by the research on acoustic emission (AE) data, focusing on the classi�cation of
signals. Next, the �eld of prognostics is covered, together with relevant research in this �eld. Finally, di�erent
kinds of data-driven models are introduced, which is concluded with the choices made for the models which
are to be used in this research.

2.1. Fibre reinforced polymer composites
While a composite can, in general, be any type of material made of multiple constituents, the focus of this
section will be on �bre reinforced polymer (FRP) composites, the family of composites which is central to this
research. This section �rst gives a general introduction on FRP composites concerning its constituents and
imperfections. It is concluded by a description of the complex series of failure mechanisms within composites,
for three di�erent fatigue load types.

2.1.1. Properties
As the name suggests, a composite consists of multiple materials, as can be seen in representation in �gure 2.1.
The choice of materials for both the load-bearing �bres as well as the matrix which holds them together is
extremely important for the properties of a composite and discussed �rst. This is followed by the orientation
of the �bres and the stacking of di�erent layers, which also impacts the properties of a composite. Finally,
the scatter of material properties and imperfections are being discussed. These are present in practically every
composite sample ever fabricated and lead to unpredictable behaviour.

Figure 2.1: A depiction of a FRP, with aligned �bres, embedded in a matrix

Fibres
The �bres are the load-bearing components of a polymer matrix composite. There are many di�erent types of
�bres, starting with a division between natural and arti�cial �bres. Examples of natural �bres are hemp and
�ax. Within man-made �bres, there are again multiple di�erent types; carbon, glass, polyethylene and Kevlar,
for example. Furthermore, there are �bre types with unique properties within these groups. All these �bre
types have di�erent properties (e.g. sti�ness, strength, �bre diameter), and therefore cause the composite to
have di�erent properties (e.g. S-N curve, density). This makes a �bre type suitable or not for a speci�c use case.
Whereas �bre types perform strongly in one area, they perform poorly in others; there is not a single perfect
�bre type (yet).
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Typical carbon �bres are T300 (baseline), IM6 (high modulus) or AS4 (high strength). Examples of glass �-
bres are E-glass (named after initial electrical applications), S-glass (high strength), and H-glass (high modulus).
(Wicaksono and Chai, 2013)

Due to the complex manufacturing process of carbon �bres, they are more expensive to produce than glass
�bres. On the other hand, carbon �bres show a greater speci�c modulus and -strength than glass �bres, making
them more suitable for high-performance applications, where weight is a driving design factor.

Matrix types
The matrix is the material which keeps the �bres together. Because this research focuses on polymer matrix
types, only these will be discussed, and, e.g. metal matrix composites or ceramic matrix composites will not be
covered. Just as in �bres, there are di�erent types of matrix materials, of which there are two subgroups in the
polymer matrix class; thermoset and thermoplastic resin. A thermoplastic resin is said to have an advantage
over thermoset material in ductility and fracture toughness, shown by Wicaksono and Chai (2013). This is
important since damage often starts as cracks between matrix and �bre material in �bre layers which are not
oriented to the load direction (Mikkelsen, 2020). A tougher resin will result in higher interfacial toughness, i.e.
a higher resistance to delamination if the �bres allow this. Finally, the interfacial strength of the matrix and
the �bres is another important factor in the toughness of a composite. A lower interfacial strength e�ectively
resists the crack in propagating from the matrix to �bres, therefore increasing toughness of the composite.
(Wicaksono and Chai, 2013)

Thermoset matrices are often used in the aerospace- and wind industry. Nevertheless, thermoplastic matrix
composites are appearing more and more within the aerospace industry (Airbus, 2015). Thermoset composites
can better deal with higher temperatures then thermoplastics. However, the manufacturing time of compos-
ites using thermoset matrices is often longer than that of thermoplastics because they need time to harden.
Thermoplastics are also easier to recycle because their structural properties do not degrade signi�cantly when
they are heated up and reshaped. This also allows them to be welded together. Due to an initial high supply
of thermoset matrices, their cost was perceived as lower than that of thermoplastic matrix types. As more
thermoplastic matrix composites started to appear in the market, this di�erence in cost is decreasing. (Airbus,
2015)

Fibre orientation and stacking sequence
Not only the materials, but especially the orientation of the �bres makes an enormous di�erence in the prop-
erties of a composite. Because �bres provide uni-directional (UD) strength and sti�ness to the composite, their
orientation is crucial.

A composite can be tailored to its speci�c needs by the customisation of its layup. In the case of a wind
turbine blade, for example, high UD strength and sti�ness are required because the load is primarily in one
direction. A typical layout is then (quasi-)UD, where all/most �bres are aligned in the direction of the applied
loads, and some are aligned in other directions in order to account for remaining transverse loads. A cross-
section of such a layup is shown below in �gure 2.5.

In other cases, isotropic strength can be required. Now, a layup of �bres in for example the 0°, ±45° and
90° directions can be used. This is an example of a quasi-isotropic layup. While it can handle loads from all
in-plane directions, more material is needed to support a speci�c load as compared to a UD layup. On the other
hand, the downside of a UD layup is that there can be no exceptions to the load case for which it is designed.

Finally, the order of the laminae, the stacking sequence, is also important. A symmetrical stacking sequence,
for example, does not bend/twist while in pure tension, while some asymmetrical ones do. Another example is
that of the bending strength and sti�ness, which can be increased by having plies on the top and bottom of the
stack in the desired direction. This e�ect can be compared with the increased bending resistance of an I-beam.

Scatter of properties and imperfections
While from the properties of �bres and matrices composites sound very promising, there are also some dis-
advantages. Due to the complexity of the material, there is more scatter in fatigue resistance and material
properties than in, for example, metals. There are di�erent kinds of imperfections which can cause scattered,
lower material properties. The ones discussed below are purely imperfections within the material; factors such
as load misalignment are seen as external factors and are not discussed. The amount of scatter can be seen in
�gure 2.3, where the dots indicate speci�c measurements. The scatter also leads to di�erences in the number
and timings of AE events, which can be seen in the plots in section 4.4.2.
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First of all, the properties of the �bres and matrix themselves can scatter. In �gure 2.2 below, di�erent �bre
diameters can already be spotted, for example. Due to the large numbers of �bres however, these variations do
not have a signi�cant impact on the properties of a composite. Secondly, during the manufacturing process,
more imperfections relating to the �bres can be created. Fibres can break, or they can be misaligned. The former
is not always an issue, since loads can be transferred into the matrix, and back into the �bre again; bridging the
failed region. The latter can cause regions in the composite to have with higher loads within the �bres than they
are designed for. Furthermore, when in compression, this may lead to micro buckling. Finally, a design variable
is the volume- or weight fraction of �bres and matrix. This can vary locally within the composite. Furthermore,
in an ideal world, these would make up all of a composite. However, during fabrication imperfections occur,
causing voids to be left in the composite. These are also referred to as porosities. Three kinds of porosities can
be seen in �gure 2.2. An interface porosity (B) is a location where there is no bonding between a �bre and the
matrix; thus allowing no load transfer. Next, an impregnation porosity at spot C is a place where the matrix
material could not reach, since the �bres encapsulated this region. The last type of porosity is that of voids
in the matrix, shown at point D. These three types of porosities cause a decrease in the possibility to transfer
loads, as well as possible stress concentrations.

Figure 2.2: A group of glass �bres within a glass/carbon FRP, taken from Malte Markussen (2015). Four key areas are shown: di�erent
sized glass �bres (A), an interface porosity (B), impregnation porosity (C), and matrix porosity (D).

2.1.2. Failure mechanisms
Failure mechanisms in FRP composites are vastly di�erent as compared to those in other materials such as
metals. First of all, failure does not occur locally at an imperfection, where a crack opens and extends into the
material. Instead, it is a much more global phenomenon in composites; faults occur in multiple locations in the
material. Secondly, the failure mechanisms are complicated in composites. Depending on the composite and
load case, multiple damage accumulation mechanisms are present; matrix cracking, �bre-matrix debonding,
�bre failure, and delamination. The mechanisms may, of course, also in�uence each other. (Wicaksono and
Chai, 2013)

Failure mechanisms di�er based on the type of fatigue loading applied on a composite, which can be distin-
guished between tension-tension (T-T), tension-compression (T-C), and compression-compression (C-C). Fig-
ure 2.3 shows the S-N curves for the three di�erent load cases for multi-directional composites. The stress
ratio, or R-ratio, is the ratio between the minimum and maximum stress, σmi n/σmax . It can be seen that the
T-T (R = 0.1) and T-C (R = −1) case have relatively similar slopes, also called Basquin exponents, suggesting
a similar failure mechanism. This is not the case for C-C (R = 10), which has a di�erent failure mechanism.
(Mikkelsen, 2020)

Environmental e�ects such as temperature, moisture, and acidic corrosion also play a role in the fatigue
behaviour and resistance of composites (Wicaksono and Chai, 2013), but are outside the scope of this thesis. In
the following sections, T-T, T-C and C-C loading are covered respectively. T-T is extensively researched in the
past decades, and a thorough understanding of failure mechanisms has been developed. There is little research
available on T-C and C-C failure mechanisms, especially due to the hardships in testing under these conditions.
Because C-C is not the load case for the samples used in this theses, it is brie�y covered at the end.
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Figure 2.3: S-N curves for di�erent load cases on multi-directional composites, taken from Mikkelsen (2020). The data from this �gure is
from the OptiDat database (Nijssen et al., 2006).

Tension-tension loading
T-T fatigue is by far the most researched type, since it is the most experienced load type due to the longevity of
composites under this load type. It is also relatively easy to test, as compared to fatigue tests with compressive
loading, in which control of the stress state and buckling e�ects are hard to achieve (Gamstedt and Sjögren,
1999).

In a typical composite specimen under T-T loading, there are three distinguishable phases in the develop-
ment of damage in quasi-isotropic, cross-ply and quasi-UD composites (Reifsnider and Jamison, 1982). The
three phases are shown in the context of sti�ness degradation in �gure 2.4. The three phases of degradation
are respectively:

Stage I: initial sti�ness drop;

Stage II: gradual sti�ness degradation;

Stage III: fast �nal sti�ness degradation and failure.

Figure 2.4: Typical sti�ness degradation curve (normalised), taken from Ye (1989)

It has to be noted that the amount of sti�ness degradation varies considerably based on the type and layup of
a composite; Reifsnider and Jamison (1982) reports 18% sti�ness degradation on a quasi-isotropic carbon/epoxy
specimen when at failure, whereas a cross-ply fails below 10% sti�ness degradation already.
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Stage I Transverse matrix cracks started occurring �rst in Reifsnider and Jamison (1982) their experiments
on quasi-isotropic ([0, 90, ±45]s) and cross-ply ([0, 902]s) carbon/epoxy laminates. The cracks were distributed
throughout the specimen but did not reach the characteristic damage state (CDS) yet (see �gure 2.6a). This
state is reached when no new cracks are created. When a matrix crack occurs, internal forces in the matrix
are transferred to the �bres through shear. This load transfer requires a certain length along a �bre. Now, the
matrix material close to cracks does therefore carry less load. At a certain stage of crack saturation, the distance
between cracks is small enough such that there is no e�ective stress transfer to the matrix material anymore,
and therefore no new cracks will form. The eventual saturation of crack formation is achieved in every ply,
where the crack spacing depends on the speci�c type of material and geometry. This mechanism is likely the
main driver of the sharp sti�ness degradation in stage I. (Reifsnider and Jamison, 1982)
In �gure 2.6

Quasi-UD glass �bre reinforced polymer (GFRP) specimen are tested in T-T loading by Zangenberg et al.
(2014) and Jespersen et al. (2016), who analysed damages using 2D and 3D methods respectively. The composites
consist of mainly UD, non-crimp laminae, together with a few backing bundles. Both authors report matrix
cracking in stage I in the backing bundles, at cross-over points (as shown in �gure 2.5).

Figure 2.5: Sketch of UD- and backing bundles, taken from Mikkelsen (2020)

Stage II This stage lasts for the majority of a subjects life; damage accumulation is constant in this phase.
The rate of sti�ness degradation decreases relative to stage I due to the fact that �bres act as obstacles to matrix
crack growth (Ye, 1989).

At the end of this stage, delamination growth along the outer plies was complete for the quasi-isotropic and
cross-ply specimen from Reifsnider and Jamison (1982). Longitudinal cracks started appearing and growing in
the 0° plies in their cross-ply laminate, as can be seen in �gure 2.6b-d. Reifsnider and Jamison (1982) notes that
this phenomenon occurred due to too high transverse stress in these plies, caused by the surrounding 90° plies’
constraint.

For quasi-UD laminates, damage grows into the UD layers adjacent to the backing bundles due to sliding
friction from rubbing and fretting, especially near intertwining regions in the backing bundles. The friction
naturally causes increases in temperature, which can be picked up by infrared (IR) thermography. This even-
tually causes �bre failures and �bre-matrix debonding in the UD laminae close to the backing bundles. This
process naturally leads to less sti�ness, but also higher damping of the composite due to the energy which is
taken up by the friction.

Stage III In the quasi-isotropic specimen, Reifsnider and Jamison (1982) note the appearance of micro-cracks
at this phase, which occur closely to transverse cracks. The crack density increased towards the specimen’s
end of life (EOL). Eventually, coalescence and interaction of micro-cracks, and the quick growth of ’favourable
cracks’ lead to catastrophic failure (Ye, 1989). The cross-ply laminates of Reifsnider and Jamison (1982) showed
stepwise degradation in this phase. First, the 90° plies fail, followed by the ultimate failure of the specimen
when the 0° plies fail. Transverse matrix cracks eventually cause �bres to fail as well, as illustrated in the right
of �gure 2.7. Damage localisation also takes place in the quasi-UD laminate, especially for longitudinal cracks.
Zangenberg et al. (2014) mentions that this often occurs close to clamps, due to the local stress concentrations
at these locations. This last stage generally lasts less than 20% of a composite’s lifetime, whereas sometimes
localised cracks grow fast on a macroscopic scale, causing it to fail extremely quickly in this phase (Ye, 1989).
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Figure 2.6: Edge replicas of the quasi-isotropic specimen at sti�ness degradations of 2% (a), 4% (b), 8% (c), 12% (d) and 15% (e), taken from
Reifsnider and Jamison (1982)

Tension-compression loading
Mikkelsen (2020) observed a similar failure mechanism for T-C (R=-1) as for T-T loading, which is also initiated
by transverse cracks in the matrix material in the backing bundles of a quasi-UD GFRP composite. In the
compression part of the loading, two additional mechanisms were observed; �bre crushing and the limited
formation of kink-bands. The failure mechanism �bre breakage occurs in the tensile part of the loading.

Transverse cracks in plies not in the loading direction are also the initial damages according to Gamstedt
and Sjögren (1999), who note that these type of damages are again not critical. However, these cracks might in-
teract with surrounding laminae, resulting in eventual delamination in compression and �bre failure in tension,
as illustrated in �gure 2.7. These transverse cracks start from cavities caused by �bre-matrix debonding. This
process, as compared to T-T fatigue, occurs at a much higher rate, due to the compression component in the
loading. The micromechanisms of this phenomenon are thoroughly studied by Gamstedt and Sjögren (1999).
The increase in both density and rate of occurrence of transverse cracks is detrimental for the fatigue perfor-
mance in this load case. Mall et al. (2009) �nds that on both notched and unnotched carbon/epoxy specimens,
the initial process of matrix cracking and delamination causes the matrix to be unable to hold the compressive
loads. This causes both micro buckling and the kinking of �bres. Fibre breaking eventually occurs at the EOL
of a specimen and is the cause of �nal failure.

Figure 2.7: Transverse cracks leading to delamination in compression, while leading to by �bre failures in tension, taken from Gamstedt
and Sjögren (1999)
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Compression-compression loading
As discussed above, the failure mechanism for C-C loading is di�erent from that of T-T and T-C. This causes
the S-N curve in �gure 2.3 to have a di�erent slope than the other two. Instead of matrix cracking, delamina-
tion, �bre kinking (in T-C) and eventually �bre failures, shear cracks are driving for �nal failure (Fraisse and
Brøndsted, 2017).

2.2. Acoustic emissions
A common feature which is be tracked during the life of a composite and one used in this thesis is that of
AEs. Upon the occurrence of damage, stored elastic energy is transformed into a transient mechanical wave,
propagating through the structure, which can be captured by a transducer (Eitzen and Wadley, 1984). This
method is a very common condition monitoring method, not only in composites but also in other materials.

An AE signal contains a wide array of data, all of which can be used to possibly identify events within the
examined structure. A single event is captured in a waveform, shown in �gure 2.8. It is common practice to
set a threshold in order to �lter out unwanted background noise. The duration of the AE covers the entire AE
event, from where it �rst crosses the threshold up until the last crossing. Such a crossing is called a count, the
number of which is another feature of an AE event. The rise time is the time the signal takes from the start of
the signal until the peak of the signal. These times are in the order of µs. Another feature which is extracted
from this signal is the root mean square (RMS) of the voltage. From this signal, the amplitude, frequency and
energy are determined as well. While this signal contains information on both the location and characteristics
of the AE event, characterising it is di�cult. This is due to the fact that the wave is modi�ed in its transmission,
due to factors such as material non-homogeneity, geometry and loading (Eitzen and Wadley, 1984).

Figure 2.8: Depiction of an AE signal and its parameters

Current research has focused on three main feature sets from AE: single parameter (mostly amplitude),
multi-parameter, and wavelets. As can be seen below, much of the research is related to diagnostics; it concerns
the identi�cation of di�erent failure mechanisms. The type of failure mechanism is also a feature, which can be
used for prognostics, as some of the papers (for example, Arumugam et al. (2010); Godin et al. (2019)) suggest.
However, there is not yet a consensus about the identi�cation of speci�c failure mechanisms; as the research
below will show.

2.2.1. Single parameter
Barré and Benzeggagh (1994) performed a study on damage mechanisms in short glass �bre reinforced ther-
moplastics in which they reported that the AE amplitude varied with the damage mechanism. The four mech-
anisms and corresponding AE amplitudes which they identi�ed were: matrix cracking (40-55 dB), interface
fracture (60-65 dB), �bre pull-out (65-85 dB) and �nally �bre fracture (85-95 dB).

Similarly, Arumugam et al. (2010) try to predict the failure load in uniaxial tension of (impacted) carbon
�bre reinforced polymer (CFRP) based on cumulative counts of AE events, in bins of 10 dB, from 50–100 dB.
The authors perform predictions at 50% and 75% of the failure load and manage to obtain a maximum error of
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15%.
In fatigue testing on open-hole carbon/epoxy specimen by Eleftheroglou et al. (2016), the cumulative energy

of AE events is taken, and shows a correlation with the sti�ness degradation, some specimens better than others.
The authors conclude that cumulative AE energy is promising for describing the damage process in composites
in fatigue.

Liu et al. (2009) take cumulative AE counts as input for their Gaussian process model to estimate remaining
useful life (RUL), due to their monotonic increase. They work with a damage index (DI), the normalised value
of a parameter describing the damage process, e.g. the sti�ness degradation. This parameter is 0 at the start
of fatigue testing, and 1 at the EOL. This requires knowledge of the entire series of counts. Therefore, this
research is not about in-situ/online prognostics, but rather o�ine prognostics.

Finally, Surgeon and Wevers (1999) uses a modal technique on di�erent CFRP laminates in tensile and
bending tests, with two AE sensors. The technique distinguishes between high-frequency extensional modes
and lower frequency �exural modes. The former are assumed to relate to matrix cracking and travel faster to
the medium than the latter, which are assumed to be related to �bre fracture. Discrimination between these
two modes was done in a qualitative manner by manually comparing the signals at both sensors. The author
therefore correctly notes that this technique was not yet ready to be used in practical cases, where this expensive
technique would diminish the resulting cost savings from AE techniques.

2.2.2. Multi-parameter
Gutkin et al. (2011) uses �ve parameters (peak amplitude, peak frequency, energy, rise time and duration). His
clustering analyses show that most clusters are de�ned by peak frequency. Testing was done on di�erent CFRP
laminates (0°, 90°, 0/90° and ±45°) in various load conditions (tensile, compact tension and -compression, dou-
ble cantilever beam and and four-point bend end notched �exure). A comparison was made between three
clustering methods: k-means, a combination of a Kohonen’s self-organizing map (SOM) and k-means and a
competitive neural network (NN). The SOM and k-means combination turned out to have the best combi-
nation of quality and computational e�ciency. Using this model; matrix cracking, �bre/matrix splitting and
delamination could be identi�ed. Fibre pull-out and �bre fracture were identi�ed, but not consistently present
(or absent) in certain tests, and therefore needed further study.

The group of Huguet et al. (2002) tried to eliminate as much damage mechanisms as possible by testing
on pure matrix material, 90° o�-axis to UD GFRP samples and 45° o�-axis to the samples, in order to capture
speci�c AE events belonging to their damage types. They gathered six components from each AE signal: rise
time, counts, energy, duration, amplitude and counts to peak, of which amplitude and duration proved to be
the main di�erentiating factors between damage types. Using an unsupervised clustering method (Kohonen’s
map), two di�erent signals for matrix cavitation were identi�ed. An "A-type" (55-70 dB) occurs in pure resin
samples and continuously throughout the loading in the 90° o�-axis specimen. These events were thought to
have been caused by mode I matrix fracture. The second, "B-type", occurred after a certain damage level was
reached. The researchers point that this had another mechanical origin, likely decohesion, since this occurred
more frequently than A-type for tests on 45° o�-axis loaded samples. The same group (Godin et al., 2004)
showed that using a k-nearest neighbours (kNN) classi�er proved to be successful as well, while it was easier
to implement than the Kohonen’s map. Furthermore, they attempted to identify a "C-type" event. Fibre breakage
could be captured by loading a single �bre composite in conditions where the failure strain of the �bre was
lower than that of the matrix. When however combining the data from their multiple experiments and training
the kNN and Kohonen’s map, there was a signi�cant overlap between especially the B- and C-type clusters.
This caused the kNN and Kohonen’s map to classify respectively 10% and 5% as C-type signals in the 90° o�-axis
loaded UD specimen. This does not make physical sense, since �bre failure should not occur in these samples.

A damage mode which is not discussed in the previous papers, but which is present in composites, is
delamination. McCrory et al. (2015) identify this mechanism, as well as matrix cracking in a CFRP plate under
a buckling load. The authors use three classi�cation methods. The �rst is an NN based on a SOM with k-means
distance measure. The input data from AE events are counts, rise-time, duration, absolute energy, amplitude,
and average- central and peak frequency. Unsupervised waveform clustering is the second, based on a principal
components analysis (PCA) analysis of the shape of the waveforms. Measures were taken to overcome signal
attenuation over distance. Finally, a method called the measured amplitude ratio calculates the in- and out-of-
plane ratio of the damage, based on the zero-order longitudinal and transverse mode amplitudes of the caused
Lamb waves. Using Delta T mapping (Baxter et al., 2007), the authors were also able to locate a large part
of the damage correctly. On the other hand, the method is not fool-proof, since it also attributed a group
of AE events to a location without noticeable damage. Delta T mapping seems particularly suited for more
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complex structures, with 3 or more AE sensors to measure and locate AE events. In addition to this, it requires
prior calibration. All three classi�cation methods show coherence in the identi�cation of AE events, as well as
correctly locating most of them. It must be noted that the authors investigated just one plate. Therefore the
determination of the number of clusters may be dependent on this speci�c plate, and all models are tested and
trained on the same data.

In estimating RUL, Eleftheroglou and Loutas (2016) require a monotonically increasing parameter. They
use a rolling window of 1500 load cycles, in which they sum rise-time over amplitude ratio’s for all AE events
in that window. The result shows a -generally- increasing trend. This allows a failure threshold to be set at a
certain µs/dB, which occurs no earlier than 70% of each specimen’s total cycles.

Finally, Zarouchas (2017) divided the loading- and unloading phase in tension-tension fatigue tests on CFRP
and GFRP composites into four sections each. He �nds that during one of the loading phases, the AE hits cor-
relate strongly with the sti�ness degradation of the specimen, therefore likely being matrix cracking. During
unloading there are hits especially towards the end of tests, likely originating from internal friction in delami-
nated regions.

2.2.3. Wavelets
An AE signal can be decomposed into a sum of wavelets, oscillatory functions which are zero on average. This
process is much like a Fourier transform. Every signal can be decomposed into a number of wavelets until their
sum su�ciently represents it. This method allows for a joint time-frequency analysis (Loutas et al., 2006).

By applying both a continuous- and discrete wavelet transform, Marec et al. (2008) extract three new fea-
tures speci�c to A- and B-type signals from the resulting wavelets. A PCA shows that clusters overlap much
less with this extra information and that they, therefore, are able to discriminate better between A- and B-type
damages.

Loutas et al. (2006) present a method to analyze the AE events using a discrete wavelet transform, based
on a ’db20’ wavelet. A decomposition to six levels is su�cient according to the authors, and they notice that
the majority of the energy content is present in four levels. From the fact that one of these has an average
energy content of roughly 50%, they derive that this must be related to the failure mode, which releases the
most energy; �bre failure. Although the writers do not identify the other levels, they do point out the varying
energy levels per waveform decomposition level. They tested on multiple GFRP samples, each with one AE
sensor at a varying distance to a small hole, where the damage is initiated.

2.3. Prognostics
The �eld of prognostics is best described by Kim et al. (2016): "Prognostics is to predict future damage/degradation
and the RUL of in-service systems based on the measured damage data." Prognostics is a relatively new �eld of
research, with most research done in the last 30 years. This also causes the fact that there is no uniform way
in which to perform prognostic predictions, as Uckun et al. (2008) mentions. This section covers the basics of
prognostics, and the many di�erences there are within this �eld.

2.3.1. Model types and algorithms
Liao and Köttig (2014) describe three di�erent model approaches for prognostics: experience-based, physics-
based and data-driven. As already mentioned, the data-driven method will be used in this research.

The �rst is based on experience and knowledge of experts. These models mostly consist of IF-THEN rules
and is much like how a human would solve a problem. The results are therefore easy to interpret. The down-
side to these kinds of models is that the model complexity explodes when more parameters are introduced.
Furthermore, the performance of the model depends heavily on the ability of the expert to de�ne a speci�c
ruleset for the problem.

A physics-based model also relies on an understanding of the physical processes within the subject. It
adjusts its mathematical model parameters based on obtained data. When the system is correctly described,
physics-based models can outperform other model types. A downside to these models is the fact that a thorough
physical understanding of the problem is needed. It is possible that a feature is not included, which leads to
non-sensible results. Unless using a high-�delity model, physical models generally require less computational
power than data-driven models (Kim et al., 2016). Due to uncertainty, algorithms mostly de�ne parameters as
probability distributions instead of �xed values (Kim and Soni, 1984).

A data-driven model is purely based on historical data. This allows a model to be trained and give predic-
tions based on extrapolation of this data, based on series and trends from other subjects. As long as there is a
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su�ciently large set of training data available such that trends and behaviour can be identi�ed and correctly ex-
trapolated, these models are quick and easy to implement. Because the results are obtained from extrapolation,
the inner workings of these models may be di�cult to interpret (Kim et al., 2016).

In order to harvest the advantages of all approaches, a fourth, hybrid approach can be used (Liao and Köttig,
2014; Kim et al., 2016). Richardson et al. (2017) even advise not to use a purely data-driven model, should there
be information available on the underlying process. In this way, no valuable knowledge is lost.

Next, Coble and Hines (2008) categorised prognostics algorithms in three types, according to which data is
used:

Type I: Reliability data-based algorithms. These algorithms are purely based on historical reliability data and
therefore give an estimate of an average subject under average environmental conditions. An example
would be the �tting of a Weibull curve to a data-set.

Type II: Stress-based algorithms. Environmental conditions are now taken into account, but the algorithm
still takes an average subject into account. An example of such an algorithm would, for example, be a
proportional hazards model.

Type III: E�ects-based algorithms. These algorithms use the response of the subject to the environmental
conditions by tracking or identifying damage parameters. A general path model is an example of an
e�ects-based algorithm.

While type III algorithms provide most accurate results in a test case with a large variation of failure times
with little in�uence of environmental factors, Coble and Hines (2008) warn that enough data should be available
in order to minimise the impact of noise.

Going from type I to III, the amount of information which is fed into models is increased. The complexity
of the models is however also increased, as these features are increasingly harder to interpret. In the case of
this research, AE data is used in two models, therefore classifying these as type III algorithms, since AEs are
’responses’ of the subjects. Information can be contained in these responses, possibly telling something about
the progression of damage. This makes the type III models, in principle, more able to give adaptive predictions,
based on the current state of the subject. However, this also introduces uncertainty, since the data which is
captured must re�ect the degradation process well and consistently.

2.3.2. Failure thresholds
One could say that the end of life is simply the point at which a subject fails catastrophically. However, it could
be argued whether it is desired to operate until such a point. First of all, testing until failure of coupons is not
an issue. Doing this on, for example, wind turbine blades or aircraft engines is often unacceptable due to safety
and cost reasons. This raises the prognostics paradox (Saxena et al., 2010); running to failure is avoided by
maintenance, therefore the exact time to failure (TTF) is unknown, resulting in a guess for actual TTF which
has to be used in training the prognostics algorithms. In the case of wanting to avoid failure, one should de�ne
the so-called minimum allowable prognostics horizon (Saxena et al., 2010), which is the amount of time needed
to repair/replace a component. Secondly, is it desirable to test until catastrophic failure, or is a component
already unable to ful�l its function before this point? Finally, as discussed above in section 2.1.1 and shown in
section 4.4.2, there is a large degree of variability in both EOL and AE features between specimen. Therefore,
each specimen likely fails after a di�erent amount of cycles, while also its AE features at failure may be di�erent.

This makes the de�nition of failure for a prognostic algorithm a choice which has to be made. In a prognos-
tics algorithm, a threshold is often used to determine failure (Coble and Hines, 2008). These can be categorised
as follows:

• Manual threshold;

• Based on engineering knowledge;

• Catastrophic failure.

When there is a predictable condition monitoring (CM) curve, a threshold can be set in order to determine
the practical EOL, and therefore determine RUL for a specimen. Setting the threshold is a somewhat arbitrary
process, based on data of other specimen or engineering experience/standards (Si et al., 2011). An example of the
manual threshold is that in Eleftheroglou and Loutas (2016), who base the threshold on the rise time/amplitude
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of AEs. Examples of thresholds based on engineering knowledge are from, for example, Wei et al. (2010), who
de�ne failure at a 40% sti�ness drop. In another �eld, Richardson et al. (2017) set a limit at a certain percentage
of battery capacity loss.

For these methods to be accurate, the prognostic feature will have to either be a feature on which a thresh-
old based on engineering knowledge can be set such as sti�ness loss, or it has to follow the degradation of
such a value closely. These methods are, however, susceptible to outliers in terms of life-time or degradation
behaviour. If a specimen performs di�erently than the ’status quo’, a threshold can be set too conservatively or
too optimistically, depending on whether it fails later or earlier than other specimens, respectively.

The �nal method is that of going to catastrophic failure; the type of failure which is undesired in applica-
tions, but which is possible to achieve in a lab setting. This is an easy threshold to set for existing data, but
hard to predict on a specimen which is about to fail, since there are no direct features which lead up to this in
the longer term.

Finally, as mentioned brie�y before, (Liu et al., 2009) use a DI. They de�ned the DI at a measurement i as a
normalizing function of the total time-series y (equation (2.1) (Liu et al., 2009)). While this does return a value
which is in the range [0,1], the �aw of this method is that the minimum and maximum values of the time-series
y have to be known at every point in time. Therefore, one must know the �nal value of the time-series. This
value is often unknown in composite specimens, due to the large scatter in material properties. Whereas one
specimen might, for example, fail after 10,000 cumulative acoustic emission counts, another may fail at 25,000.
This �nal value, to which the DI is normalised, is not known during operation. Therefore, this method does
not allow in-situ prognostics.

D Ii (y) = yi −min(y)

max(y)−min(y)
(2.1)

2.3.3. Prognostic performance metrics
There is not yet a standard method for prognostics (Uckun et al., 2008), which also results in the fact that there
is not a standard metric to assess the quality of a prognostics algorithm (Saxena et al., 2009, 2010). Therefore,
the two papers by Saxena et al. (2009, 2010) investigate which metrics could be used to judge and compare
the performance of di�erent prognostic algorithms. Common methods used were: "accuracy, precision, mean
squared error (MSE), and mean absolute percentage error (MAPE)" (Saxena et al., 2009). These metrics, however,
did not fully capture the essence of prognostics; the quality of predictions should increase towards the EOL,
whereas these metrics were mainly measured at certain points only. They can be aggregated over the full life of
a subject, but then an arbitrary weight must be included to take into account the fact that higher performance
is required towards the EOL. Therefore, Saxena et al. (2010) introduces the following four metrics:

1. Prognostic horizon (from which point in time on is the EOL predicted with a desired accuracy, between
bounds ±α, and is this time-span large enough to perform repairs or replacements?);

2. α−λ performance (what is the slope of the cone in which the accuracy increases towards EOL?);
3. Relative accuracy (what accuracy does the algorithm have at a certain point in time? For multiple points

in time cumulative relative accuracy may be used, including a weight factor);
4. Convergence (does the performance converge, and if so, how fast?).

These metrics will have to be taken into account when trying to quantify the performance of the di�erent
models objectively.
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2.4. Model selection
In order to select the models which shall be used in this research, the requirements for the models are �rst
discussed. Then, from the initial literature study, three main model categories were distinguished. These are
discussed here, together with both advantages and disadvantages of these models. Finally, the de�nitive choice
of models for this research will be discussed.

2.4.1. Requirements
From the available literature on prognostics, and a preliminary analysis of especially the AE features in the
available experimental data, four main requirements were drawn for the model selection. In order for a model
to be used in this research it must:

1. be able to provide an in-situ regression, based on training data from other samples;
2. give probabilistic outputs;
3. be able to handle nonlinearities in training and prediction data;
4. be possible to implement within the timeframe of this research (9 months).

The �rst requirement relates to the training data. A model must be able to make predictions on RUL purely
based on data which is available until the prediction point. It could be argued that the �eld of o�ine prognostics
is not prognostics in its purest form, since this requires data from the future. This is therefore not possible to
apply in practice.

Next, Uckun et al. (2008); Saxena et al. (2010) argue that uncertainty is a key element in prognostics. Not
only should prognostic methods give accurate and precise estimates of RUL, but they should also give their
con�dence. Examples of sources of uncertainty, collected by Saxena et al. (2010), are listed below. Therefore, it
is key to not only provide an estimation of the RUL but especially of the associated con�dence.

• modeling uncertainties;

• measurement uncertainties;

• operating environment uncertainties;

• input data uncertainties.

Especially the AE data will be of nonlinear nature. Therefore, models must be able to handle this, trying
to capture this behaviour. As Liao and Köttig (2014) point out, at the initiation of faults, health indicators are
often suddenly very noisy, and these will therefore not show linear or stationary behaviour anymore.

Finally, it must be possible to implement a model within the timeframe of 9 months. Especially due to
the goal to compare multiple models, they cannot become too complicated or computationally expensive. This
therefore also makes this research a search for relatively simple models which can still ful�l this goal of making
prognostic predictions on variable amplitude fatigue (VAF) data.

2.4.2. Linear models
Two types of linear models are covered; Gaussian processs (GPs) and the autoregressive moving average
(ARMA) class. While there are many other linear models available, these two were found to be used in prog-
nostics.

Gaussian processes
A GP is a stochastic process which can represent any possible function. This method is used by, for example,
Liu et al. (2009), for o�ine prognostics on a carbon/epoxy beam. Two damage indices are compared, from both
AE counts and energy content of low-frequency wavelet decompositions of Lamb waves. A major shortcoming
is how the authors de�ne the DI, which requires prior knowledge of the �nal state of a specimen, which is
discussed above in section 2.3.2. Despite this, the authors note that the predictive capability of the in-situ GP
regression improves during the life of a specimen. In another �eld, a GP regression is applied by Richardson
et al. (2017) on in-situ battery capacity degradation data, based on data from other batteries. It must be noted
that the cells were loaded under the same variable loading and conditions, resulting in similar degradation
curves.
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ARMA class
Liao and Köttig (2014) mentions two cases of an ARMA model being used in prognostics. In the prediction of
RUL of elevator doors, an ARMA model was used to predict the trend of the failure probability. In another case,
an ARMA model was used to regress between a measured health indicator (pump rotation speed) and a system
degradation severity indicator. This allowed for prognostics of an engine fuel pumping unit in aircraft.

When comparing the group of autoregressive (AR), moving average and ARMA models to nonlinear models,
there are both disadvantages as well as advantages according to Dor�ner (1996). These models generally require
less computational power than their nonlinear counterparts, are less prone to over�tting and do not have a
learning phase which can lead to sub-optimal minima. However, the time-series has to -of course- be of a
linear nature. Next to this, these models require that the time-series is stationary. In other words, both the
mean and standard deviation cannot change with time. The fact that health indicators tend to become noisy
when faults occur generally makes ARMA models less suited for long-term predictions (Liao and Köttig, 2014).

Some time-series can be made stationary by applying a di�erence operator ∆with order d . By checking the
variation of the mean and standard deviation of the series ∆d x(t ), it can be determined if it is now stationary.
The new model is called an integrated ARMA model, or ARIMA[p ,d ,q] model.

An example of an autoregressive integrated moving average (ARIMA) model being used in prognostics is by
Wu et al. (2007). This group aims to predict the RUL of a rotor test rig, from vibration data. A vibration severity
measure is established from the data, and this measure is extrapolated using an ARIMA model to estimate when
it reaches a certain threshold. The conclusion from this research is that the extended ARIMA model performs
better than a regular ARIMA model. However, the authors did not include prediction intervals (PIs).

2.4.3. Neural networks
NNs are models which can theoretically model anything. The idea behind this set of models is taken from
nature, based on neurons within a brain which communicate with each other. There are numerous types
of NNs. Examples are a feedforward neural network (FFNN), Bayesian neural network (BNN), convolutional
neural network (CNN), or recurrent neural network (RNN).

A FFNN is the most common type of NN. An input layer is connected to a number of hidden layers, where
all nodes from the previous layer are connected to all nodes in the current layer. The �nal hidden layer is
connected to the output layer. FFNNs can be used in time-series prediction by feeding it a number of most
recent data-points. Based on this, the model can predict future values, making it an AR model (Dor�ner, 1996).
The nonlinear nature of NNs make them able to approximate any function (Dor�ner, 1996). Having more than
one hidden layer in a NN is often referred to as deep learning. Generally, NNs output single, deterministic
values. They are trained by maximum likelihood estimation (MLE) of their parameters. To make the output
probabilistic, a BNN can be used. This model category sets a probability density function (PDF) over its weights
and biases, making the output a posterior. Yet, evaluating the output of the model is complicated, and with an
increasing scale of the model it can become computationally too demanding (MacKay, 1992). An example of a
FFNN in prognostics is by Arumugam et al. (2010), who use a FFNN with 10 neurons in each of the 5 hidden
layers, in their prediction of failure load of a composite in tension (see section 2.2.1). However, the authors did
not motivate their speci�c choice of FFNN architecture. Finally, FFNNs have proven to be able to model S-N
curves by Al-Assaf and El Kadi (2001).

A CNN is a variant to the FFNN. Instead of each node being connected to every node at the adjacent layers,
inputs are ’grouped’ together and sparsely connected to the next layer. This type of network architecture is
often used in image or sound processing, where there is a large array of input values in the order of thousands
of nodes. Connecting all nodes of them to all nodes in a hidden layer would result in a very complex network,
which is not only hard to train but is also prone to over�tting.

Finally, RNNs are speci�cally suited for time-series. What makes a RNN di�er from other NNs is that nodal
outputs are fed into the NN again. This allows the handling of temporal data, e.g. music or language processing.
The di�erence from a AR model is that in this category, information from far in the past can still be used if the
model is implemented correctly. An example of the usage of a RNN in prognostics is that by Heimes (2008),
why use one to tackle the IEEE 2008 Prognostics and Health Management conference challenge problem. This
problem consists of sensor data from 218 complex units, from an unknown initial state to failure. The goal
is the provide an as accurate RUL prediction as possible. Their RNN was able to predict when a system was
starting to fail, and had a consistent response towards failure, as opposed to a FFNN which they also tested.

The random initialization of NNs, just as the random choice of training and testing data, makes them suitable
for probabilistic modelling (Kim et al., 2016). An approach where multiple models are trained could be used.
With these models giving varying predictions on the data due to their varying initial conditions, the di�erent
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outcomes can form a probability distribution based on their relative frequencies. Another possibility is through
bootstrapping, where di�erent models are trained on random subsets of the data. This is complicated with
temporal data however; data-points cannot just be left out. Complete series can be skipped in training, but it
is decided to not use this method due to the low number of time-series in the training data.

2.4.4. Other models
In their overview, Si et al. (2011) discusses other statistical data-driven models, based on directly observable
states as well as indirectly observable states. Three noteworthy models in the �rst category are Wiener pro-
cesses (Brownian motions with drift), Gamma processes and Markov processes. A disadvantage of the �rst two
is that they solely use degradation data of the specimen subjected to prognostics. There are more disadvan-
tages, such as degradation state evolving based on the current state of a subject only (Weiner, Gamma, Markov),
and requiring monotonic degradation data (Gamma). A general downside of these models is that they require
a directly observable state, whereas in structural health monitoring of composites, this is often not available.
Taking a hidden Markov model allows for modelling of indirectly observable states (Si et al., 2011; Eleftheroglou
and Loutas, 2016). Still, there is the fact that the sojourn state time (the time spent in a (current) state) is ex-
ponentially distributed in a (hidden) Markov model, which is not always the case in engineering appliances (Si
et al., 2011; Eleftheroglou and Loutas, 2016). In order to overcome this, Eleftheroglou and Loutas (2016) mention
a hidden semi Markov model. Finally, they take an extended version of this; the non-homogeneous continuous
time hidden semi Markov model (NHCTHSMM). This makes the state transitions now also dependent on the
total age of the subject and the sojourn state time.

2.4.5. Choice of models
Due to the limited timeframe of this research, choices had to be made concerning which models would seem
most feasible. Furthermore, they must also meet the set requirements above.

In order to see if the more complex models presented below are of any use, they are compared to a so-
called baseline model as well. This is a relatively simple statistical model, based on a statistical analysis of
the experimental data. For this analysis, the RUL for each specimen under VAF, is estimated using the failure
distribution from all other specimens (both constant amplitude fatigue (CAF) and VAF). It is, therefore, a model
based purely on failure data.

Models in the ARMA class did not meet all requirements above. No noteworthy research was found on
multivariate input data, and the requirement of stationary input data in the ARMA class cannot be ful�lled by
AE data without any severe modi�cations. Within the class of linear models, GP regressions seemed better
suitable. This model would have to be implemented by extrapolating a set of features or a single feature based
on itself and other specimens until it passes a threshold.

Within the class of NNs, the RNN seems most promising due to its ability to model temporal dependencies,
in comparison to other types of NNs which would have to work in an AR manner. In this way, possibly more
complex patterns can be picked up. An advantage to NNs is that they do not need to compared to a threshold
of some kind, but can be trained based on for example the EOL time or degradation state of other specimens.
In this research, it was decided to train the models on the failure index (FI), which linearly increases from 0 at
the start of the fatigue test, to 1 when the specimen fails. The degradation state is then captured as a hidden
state within the model.

In the category of the other models, the NHCTHSMM class seems most promising. However, due to its
complexity, it is not possible to implement this within the timeframe of this thesis.

Finally, it must be stressed that the models must provide in-situ/online prognostic predictions. Having
information from the future makes in-situ prognostics impossible. Therefore, it is key that when testing a
model on a specimen, it must not have information after the testing point.
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Methodology

In this chapter, the theory behind the three selected models, and their implementation will be discussed. First,
the statistical model will be described, followed by the Gaussian process (GP) regression. The �nal model dis-
cussed is the recurrent neural network (RNN). Finally, a section dedicated on performance metrics will describe
di�erent metrics used, for quantitatively comparing the results of each of the three models.

3.1. Statistical model
The �rst model is the statistical model, which will primarily aid as a baseline in order to compare the other two
models with. This section is divided into three parts. First, the appropriate statistical distributions to describe
the failure times in the data-set are covered. Next, the methodology behind basic, static statistical distributions
is discussed. Finally, a second set of statistical distributions is covered, one which is adapting during the testing
phase, based on how long a specimen has survived already.

3.1.1. Determining the statistical distribution
Figure 3.1a shows the time to failure (TTF) of all specimens in a histogram. The �rst feature which stands out
is that this is not a symmetrical distribution. The majority of the specimens lies around 50,000 cycles, with
a tail towards higher numbers of cycles. Furthermore, from a physical perspective, the probability density
function (PDF) cannot be non-zero for cycles lower than zero; a negative number of cycles does not have a
physical meaning. These two statements likely eliminate the possibility for symmetrical distributions (e.g.
normal, logistic). The last statement also rules out the class of extreme value (EV) distributions. In these, the
smallest extreme value (SEV) distribution suggests a high concentration of failures after a certain point in life.
The largest extreme value (LEV) distribution is more suitable since it is left-skewed. Both the SEV and LEV
distributions, however, give non-zero PDF values at cycles ≤ 0. (Meeker and Escobar, 1998)

When comparing non-symmetrical distributions, there are many options. The most common ones are now
brie�y discussed. It is expected that the failures follow a Weibull distribution, a PDF which is 0 at 0 cycles,
is left-skewed and often used in failure time analysis. Another common model for this is, for example, the
lognormal distribution, which can take roughly the same shape as the Weibull. The exponential distribution is
another type of non-symmetrical distribution. However, this distribution is usually un�t for modelling the life
of components under fatigue. Another possibility is that of the gamma distribution, of which the failure rate
converges to a constant value at the end of life. This makes it suitable for some speci�c failure time analyses.
(Meeker and Escobar, 1998)

The distributions mentioned here are �tted to the data and shown below in �gure 3.1b. Another Weibull
distribution is modelled as well; the exponentiated Weibull. This is a Weibull distribution whose cumulative
distribution function (CDF) is raised to a power, allowing for a more �exible type of distribution. Especially the
(exponentiated) Weibull, lognormal and gamma distributions seem to model the data correctly.

In order to con�rm these beliefs, the Kolmogorov–Smirnov (KS) test is used. It is implemented in SciPy.
This test is a goodness-of-�t test, which compares two distributions to each other and returns a test-statistic D
and p-value. D is the value which describes the di�erence between the two distributions. The null hypothesis
is that the two distributions are equal, and it is rejected if D is larger than a critical value. This is described
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(a) Distribution of failure times (b) Fits of di�erent PDFs

Figure 3.1: Distribution of failure times and their �tting distributions, of all carbon �bre reinforced polymer (CFRP) specimens

by the p-value; which should therefore be above a certain threshold in order not to have the null-hypothesis
rejected.

The results of the KS test are shown below in table 3.1. The test shows that in fact, the gamma distribution
is the most suitable for describing the failure time distribution. Due to the small sample size, the test is only
performed on all specimens. Therefore, no di�erent distribution types will be taken when looking at subsets of
the data. Within all subsets discussed, the p-values for the gamma distribution were larger than 0.39. Therefore
there was no need to reject the hypothesis; something which is commonly done when p < 0.05.

Table 3.1: KS test results for lifetime distributions on the CFRP data-set, sorted by goodness-of-�t

Distribution p-value [-] D [-]
Gamma 0.879 0.152
Weibull 0.807 0.167
Exponential 0.783 0.171
Lognormal 0.693 0.186
Exponentiated Weibull 0.672 0.189
Normal 0.351 0.246

The PDF at t cycles for the gamma distribution is shown in equation (3.1). This is with the location pa-
rameter set to 0, as this is under the assumption that there is an immediate probability of failure in the �rst
cycle. Its shape and scale parameters, k and θ, are found by maximum likelihood estimation (MLE). Γ

(
k
)

de-
notes the gamma function of k . Its CDF is presented in equation (3.2), where γ

(
k, t/θ

)
is the lower incomplete

gamma function. Both the gamma- and incomplete gamma function can be found in appendix A.1. (Meeker
and Escobar, 1998)

fT (t ) = t k−1 exp
[−t/θ

]
θkΓ

(
k
) (3.1)

FT (t ) = γ
(
k, t/θ

)
Γ

(
k
) (3.2)
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3.1.2. Static predictions
The �rst set of predictions is based on failure times of all specimens except for the test specimen. In this way,
the model does not have any prior knowledge of the shape and scale parameters of the distribution of the test
specimen. It does, however, from the analysis above, have knowledge of the type of distribution.

The CDF of the distribution can be used to obtain a con�dence of the predictions, prediction intervals (PIs).
To obtain a (1−α) con�dence level, the lower- and upper PI bounds are calculated by solving equation (3.3).
This is done numerically. The same is done to obtain the median, by now solving for 0.5.(

FT (t ) =α/2, FT (t ) = 1−α/2
)

(3.3)

With a prediction for the failure time, the remaining useful life (RUL) at t cycles can be calculated by
subtracting the passed time. The same goes for the lower- and upper PI bounds.

3.1.3. Adapting predictions
The statistical model is taken one step further, to where it adapts during the testing phase. If after s cycles the
specimen has survived (meaning p

(
S = s

)
), then the failure distribution can be updated with this knowledge to

fT |S=s (t ). This is done using Bayes’ theorem in equation (3.4).
Two terms in this equation can be simpli�ed. First of all, the probability that the specimen has survived,

given the time of failure is simple; the specimen survives if t > s. Therefore, this term can be written as the
Iverson bracket fT |S=s (t ) = [t > s], returning 1 if the condition is satis�ed, and 0 if this is not the case. Secondly,
the denominator, is simply the survival function of the PDF, evaluated at s; p

(
S = s

) = 1−FT (s). These two
operations simplify equation (3.4) to equation (3.5):

fT |S=s (t ) = p
(
S = s

∣∣T = t
)

fT (t )

p
(
S = s

) (3.4)

= [t > s] fT (t )

1−FT (s)
(3.5)

All terms except fT (t ) are constants, making the integration of equation (3.5) a quick process of taking the
CDF of fT (t ). This results in the CDF FT |S=s (t ):

FT |S=s (t ) = [t > s]
(
FT (t )−FT (s)

)
1−FT (s)

(3.6)

With the obtained PDF and CDF, the same methods as above can be used to obtain the median failure times
and PIs. The RUL is then calculated in the same manner as well.
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3.2. Gaussian process regression
This section discusses the GP regression model. It starts o� with a description of GPs, followed by kernel
functions used in these models. Next, the parameterisation is covered, together with possible issues. This
is followed by a section on making the predictions, where a threshold will need to be set to determine RUL
from the extrapolated GP predictions. Next, a new method of possibly improving the setting of a threshold is
discussed; the adjustment of the threshold PDF according to the correlation between time-series in the data.
Finally, the implementation of this model category is discussed.

3.2.1. Description
GPs are supervised methods, which can be used for both regression and classi�cation. For the purpose of this
thesis, regression will be used. Although sometimes regarded as common knowledge, the theory below is based
on the works of Rasmussen and Williams (2006); Murphy (2012). The nature of GPs is that they are probabilistic;
each prediction will come with a certain con�dence.

Because a GP regression is a supervised method, there is a training set (available data) D, consisting of N
data-points. At each point, there are inputs and an output. The inputs xi are D-dimensional, and a value yi is
observed. In order to perform a regression, two approaches can be taken. The �rst one, a regular regression,
takes a function f

(
y ,θ

)
, and infers a distribution of its function parameters p

(
θ

∣∣D)
. This method can, however,

underperform when the wrong function is chosen to represent the data. A GP regression on the other hand
infers a distribution of functions p

(
f

∣∣D)
. It is essentially a distribution of possible functions which agree with

the training set. The prior of the regression function, a GP, is written as in equation (3.7).

f (x) ∼GP

(
m (x) ,κ

(
x , xT

))
(3.7)

The prior follows a mean m (x) and has a covariance- or kernel function κ
(

x , xT
)
, which are de�ned as

follows:

m (x) = E
[

f (x)
]

(3.8)

κ(x , xT) = E

[(
f (x)−m (x)

)(
f
(

xT
)
−m

(
xT

))]
(3.9)

The function evaluations at di�erent points f =
[

f
(
x1

)
, ..., f

(
xN

)]T
are assumed to be jointly Gaussian,

with the prior in equation (3.10). In other words, function values are all dependent on each other through
a multivariate Gaussian distribution, with mean vector µ =

[
m

(
x1

)
, ...,m

(
xN

)]T
and covariance matrix K ,

constructed using positive de�nite kernel functions: Ki j = κ
(

xi , x j

)
. This is therefore a discrete process. Several

kernel functions will be discussed below in section 3.2.2.

p
(

f
∣∣ X

)=N
(

f
∣∣µ,K

)
(3.10)

When a prediction has to be made on a set of points X∗, sized N∗×D , the function values at these points
f
(

X∗
)
, written as f∗, behave according to the joint distribution in equation (3.11). Due to the �exibility of

GPs, it is common to ignore the mean function and set it to 0, since the mean function can still be modelled
well (Murphy, 2012; Rasmussen and Williams, 2006). This will be done from this point on. This simpli�es
equation (3.11) to equation (3.12).

[
f
f∗

]
∼N

[
µ

µ∗

]
,

[
K K∗

K T∗ K∗∗

] (3.11)

[
f
f∗

]
∼N

0,

[
K K∗

K T∗ K∗∗

] (3.12)

The di�erent covariance matrices are constructed from the kernel functions by: K = κ(
X , X

)
, K∗ = κ(

X , X∗
)

and K∗∗ = κ
(

X∗, X∗
)
. The matrices are dimensioned respectively as N ×N , N ×N∗, and N∗×N∗. Now when
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wanting to predict the distribution of function values at X∗, the prior from equation (3.10) is conditioned on
X∗:

p
(

f
∣∣ X∗, X , f

)=N
(

f∗
∣∣µ∗,Σ∗

)
(3.13)

From this Gaussian distribution, the mean and variance of the new set of points can be determined by the
rules for conditioning Gaussians. The full proof behind this can be found in, for example, Murphy (2012).

µ∗ = K T
∗ K −1 f (3.14)

Σ∗ = K∗∗−K T
∗ K −1K∗ (3.15)

First of all, it should be noted that the assumption that µ = 0 is already incorporated in equations (3.14)
and (3.15). Secondly, the above method assumes that there is no noise surrounding the available data f . This
model interpolates the training data exactly, �tting through the available data-points; yi = f

(
xi

)
. This assump-

tion, however, is not always correct. Training data can be noisy, and having to �t the model exactly through
each point might not be realistic. Furthermore, the inversion of K may also give numerical issues in some cases.
An example is where there is noise, and two data-points x lie in the same position. The resulting covariance
matrix will be singular in this case, and cannot be inverted. Therefore, it is common practice to allow for noise
in the training data by adding a white noise kernel to the model.

3.2.2. Kernel functions
There are multiple kernel functions which can be used. The choice of kernel function is the single factor which
in�uences the predictive performance of a GP (Murphy, 2012). Di�erent kernel functions and their parameters
will be discussed in this section. Two di�erent distance measures can be used; the Euclidean distance and
Mahalanobis distance. These are elaborated upon in appendix A.2.

Besides the four kernel types listed below, there is a large variety of other kernel functions. They are either
not commonly found in literature concerning this �eld of research, or not applicable to the problem in this
thesis. An example of this is the periodic kernel since no periodic behaviour is present in the time-series used
for the GP regression model. For more kernel functions, Rasmussen and Williams (2006) provide an excellent
overview.

White noise kernel
The �rst kernel function is the most basic and is already mentioned brie�y before. By using this kernel, it is
assumed that the available data-points are noisy. In this way, a measured point yi is related to not only the true
function, but also a independent and identically distributed (i.i.d.) normally distributed error term ε∼N

(
0,σ2

y

)
,

thus yi = f
(
xi

)+ ε. This gives the GP a bit more �exibility, in the sense that it does not have to pass through
the available data-points exactly.

The white noise kernel is shown in equation (3.16). In this equation, δpq depicts the Kronecker delta func-
tion, such that the noise σ2

y is added to the diagonal of the covariance matrix only. The covariance matrix
is therefore simply constructed by the multiplication of the identity matrix I and the white noise σ2

y , as in
equation (3.17).

κW N

(
xp , xq

)
=σ2

yδpq (3.16)

KW N =σ2
y I (3.17)

In literature, the noise kernel is often not explicitly used. The covariance matrix of the noisy observations is
then constructed by adding the white noise, de�ned as K y ,K +σ2

y I . From this notation, it is easy to overlook
the fact that the noise also has to be added to K∗∗, since this matrix’s diagonal terms also satisfy the Kronecker
delta function.

With a covariance matrix of sole zeros except for the diagonal; the process is simply white noise with
standard deviation σ f . A sample drawn from this process is shown in �gure 3.2. There is indeed no covariance
between the di�erent points.
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Figure 3.2: A sample drawn from a GP constructed with a white noise kernel (σ2
f = 1)

Squared exponential kernel
The squared exponential (SE) kernel is commonly shown in the literature. The hyperparameters of this kernel
(equation (3.18)) are the length scale l , and function variance σ2

f . The former dictates the smoothness of the
function, while the latter determines its scale. The function uses the distance d between two points xp and xq

as input. In case the Mahalanobis distance is used instead of the Euclidean distance l−2 can be captured in the
covariance matrix ΣM . As a consequence, the entries in this matrix are an additional set of hyperparameters
which must be optimised for. A way of rewriting the matrix as a set of parameters is by using the spherical
representation, which is explained in detail in appendix A.3.

κ
(
d

)=σ2
f exp

− d 2

2l 2

 (3.18)

An issue of the SE function is that it is in�nitely smooth. This is generally not applicable to many physical
processes, and therefore not recommended to use. Instead, the Matérn class (below) is recommended. (Ras-
mussen and Williams, 2006)

An example of a kernel is used to draw a few function realisations, which are shown in �gure 3.3a. The
covariance matrix is shown in �gure 3.3b. It can be seen that the function is stationary due to the linear ridge
in the covariance matrix; points which are close to each other have higher covariance than those further away,
and covariance is solely dependent on this distance between points.

(a) Four samples drawn from GPs constructed with a SE kernel (b) Covariance matrix

Figure 3.3: Characteristics of a SE kernel. The kernel is set with σ2
f = 1, l = 1.
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Matérn class
There is no single Matérn kernel; it is a full class of kernels. The Matérn class is often used in GP regression
models, and shown below in equation (3.19) (Murphy, 2012). The length scale (l > 0) and function variance can
be spotted again. Kν is a modi�ed Bessel function, with ν> 0.

κM a
(
d

)=σ2
f

21−ν

Γ (ν)

(p
2νd

l

)ν
Kν

(p
2νd

l

)
(3.19)

When ν → ∞, the SE kernel function is obtained (Rasmussen and Williams, 2006; Murphy, 2012). For
half-integer values larger than 0, the function simpli�es signi�cantly. The most interesting cases for machine
learning are possibly ν = 3/2 and ν = 5/2, stated by Rasmussen and Williams (2006). These Matérn kernels
are often depicted as Ma3- and Ma5 kernels (equations (3.20) and (3.21)). With these values for ν, the Bessel
function disappears, and the remaining function is that of the product of a polynomial and an exponential
function. Just as in the SE kernel, the length scale can be captured in ΣM when using the Mahalanobis distance.
The hyperparameters are then σ2

f and ΣM .

κM a3
(
d

)=σ2
f

(
1+

p
3d

l

)
exp

(
−
p

3d

l

)
(3.20)

κM a5
(
d

)=σ2
f

(
1+

p
5d

l
+ 5r 2

3l 2

)
exp

(
−
p

5d

l

)
(3.21)

The di�erence in the smoothness of these processes, as compared to those from the SE kernel, can be im-
mediately noticed in �gures 3.4 and 3.5. Both covariance matrices again show the stationarity of the functions;
being only dependent on the distance between coordinates. Because they seem similar to that of the SE kernel,
they are not shown here.

Figure 3.4: Four samples drawn from GPs constructed with a Ma3
kernel. The kernel is set with σ2

f = 1, l = 1.
Figure 3.5: Four samples drawn from GPs constructed with a Ma5
kernel. The kernel is set with σ2

f = 1, l = 1.

The covariance matrices of the functions above seem similar to that of the SE kernel. In order to spot
di�erences, the covariance function and its dependence on d is shown in �gure 3.6. What can be seen is that
the Matérn class kernels are steeper near the centre of the function. This explains the higher roughness for
the Matérn kernels. Furthermore, the Ma5 kernel is more similar to the SE kernel than the Ma3 kernel. This
is consistent with the fact that when ν→∞, the SE is obtained for the Matérn kernels; ν is higher in the Ma5
kernel than in the Ma3 kernel.
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Figure 3.6: Covariance functions as a function of distance from 0. For all functions, σ2
f = 1 and l = 1

.

Linear kernel
The �nal kernel type is a linear kernel (equation (3.22)). While the SE and Matérn type kernels are stationary,
this kernel is not. It is dependent on the locations of the two points xp and xq . Were the data-points to move,
the model would produce di�erent results, in contrast to the kernels mentioned above. One hyperparameter is
present again in this kernel; the function variance again scales this kernel’s output. The vector c determines
the x-intercept of the prediction.

κl i n

(
xp , xq

)
=σ2

f (xp −c)T(xq −c) (3.22)

Figure 3.7a shows a few samples from a linear kernel. The in�uence of c can be spotted in the drawn
samples. The covariance matrix in �gure 3.7b shows that this kernel is non-stationary; the covariance di�ers
based on the magnitude of the points instead of on their di�erence.

When a GP regression would be based solely around this kernel, it would be wiser to use a Bayesian linear
regression, since this is a more e�cient method (Duvenaud, 2014).

(a) Four samples drawn from GPs constructed with a linear kernel (b) Covariance matrix

Figure 3.7: Characteristics of a linear kernel. The kernel is set with σ2
f = 1, c = 3.
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Combining kernels
It is possible to combine kernels, in order to build a model which can predict more complex structures which
are not possible to model using a single kernel function. Kernels can be added, as well as multiplied with other
kernels. (Duvenaud, 2014)

This fact can be used in order to model more complex GPs, with for example (exponentially) increasing
means. When multiplying a linear kernel with another linear kernel, an exponential process is obtained. Taking
the kernel from �gure 3.7, and multiplying it with itself yields the curves in �gure 3.8a. A linear kernel can also
be used to model a linear trend behind another process, such as in �gure 3.8b.

The shape of the eventual function depends on the hyperparameters of the individual kernels. Not only
their shape can be altered, but also their relative share in the �nal function. When adding two kernels and
giving the �rst a 100 times lower σ2

f than the other, for example, the shape from the second kernel will be
much more present in the process.

(a) Multiplication of two linear kernels (b) Addition of a linear and Ma3 kernel

Figure 3.8: Samples drawn from di�erent kernel combinations. The kernels use c = 3, σ2
f = 1, l = 1.

There is an endless list of possible kernel combinations, and there are di�erent methods which can test dif-
ferent combinations. An example is that from the work of Duvenaud (2014), who uses a tree-like method. First,
single functions are tested. The best performing kernel will then be combined (by addition and multiplication)
with all kernels. Again, the best combination will be picked, and this will be repeated until accepted model
performance is reached, or when a certain depth is reached. Another possibility is constructing a multi-layered
neural network (NN) from kernel functions, used by Sun et al. (2018). The weights which connect the neurons,
which are in this case kernel functions, are optimised for optimal representation of the process in the training
data.

While these methods may give an optimal combination of kernels, they are also complex and harder to
implement. Another drawback is the fact that when increasing the number of kernels, the number of hyper-
parameters also increases in the model. All these parameters have to be optimised, where an increase in the
number of parameters yields an increase in required computation time. Therefore it was decided not to perform
a complex, deep search for kernels. Instead, an approach was taken with the knowledge of the data. The deci-
sion was made to model the cumulative energy, as discussed below in section 3.2.6. From the data in �gure 3.13,
the following observations can be made:

1. The cumulative energy time-series is not smooth;

2. The cumulative energy is a monotonically increasing time-series.

A linear kernel on its own would be able to perform a regression along the data, but would not be able to
follow the time-series exactly. Its predictions would therefore have high uncertainty. Furthermore, a Bayesian
linear regression would be a more e�cient method, as stated above. Based on observation 1, the SE kernel is
also deemed un�t to model the time-series. Therefore, the Ma3- and Ma5 kernels remain options for modelling
the time-series.

A GP based on one of these two kernels would however always end up at its mean, which was set at zero.
Far away from the training data, the model would therefore predict zero cumulative energy. This would clash
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with observation 2. In order to overcome this, a combination by addition of a linear- and Ma3- or Ma5 kernel is
therefore proposed. The linear kernel can be used to model the long-term, increasing trend, while the Ma3- or
Ma5 kernel can pick up on smaller changes in the time-series. Addition is preferred over multiplication, since
the variance in the data is not expected to increase with the number of cycles.

In order to allow for noise in the data and make the model more �exible regarding the existing data, a white
noise kernel is �nally added. Therefore, the covariance matrix will be built up from a Ma3 or Ma5 kernel, a
linear kernel, and a white noise kernel. The di�erence in performance between the Ma3 and Ma5 kernels will
be discussed in section 5.2.1.

Multiple time-series
The �nal set of operations using kernels is the product correlation rule. This rule enables the full potential of
GPs in this thesis; the ability to model multiple time-series. Using a GP regression on L di�erent time-series,
requires multiple outputs for the model, which are presumably related to each other. A simple way to deal with
this is to label the L separate time-series and treat them as separate inputs. The labels l = [

1,2, ...,L
]

are now
used as additional dimension for the input; xi in the l th

i time-series would now be treated as a D+1-dimensional
point x (l )

i = [xi , li ]. This approach does not require that data-points need to be in the exact same points in time
for the di�erent series. (Osborne, 2010)

Instead of having to use x (l )
i as an input for a (set of) kernels, the product correlation rule decomposes the

covariance function into the multiplication of the covariance of the inputs κ(x) and that of the labels κ(l ), as in
equation (3.23).

κ
(

x (l )
p , x (l )

q

)
= κ(x)

(
xp , xq

)
κ(l )

(
lp , lq

)
(3.23)

The covariance between labels cannot be modelled using a kernel function; since the order of labelling
would possibly in�uence the result. Because there are just 13 specimens used in the CFRP data-set, κ(l )

(
lp , lq

)
can also be represented by an L×L covariance matrixΣL . This covariance matrix can be represented by a vector
of parameters using the spherical representation (appendix A.3). This results in L/2(L +1) parameters which
have to be quanti�ed in order to determine the covariance between all time-series.

3.2.3. Parameterisation
With hyperparameters in kernel functions and in the label covariance matrix, there are multiple parameters
to be set in order accurately regress on the data. This is done by maximising the marginal likelihood of the
observations y , given the inputs; p

(
y

∣∣ X
)
. The log of the marginal likelihood for GPs is given in equation (3.24)

(Rasmussen and Williams, 2006).

logp
(

y
∣∣ X

)=−1

2
yTK −1

y y − 1

2
log

(
det

(
K y

))
− N

2
log

(
2π

)
(3.24)

In the equation, the �rst term accounts for the data �t, while the second accounts for the complexity of the
model. These two terms therefore perform the bias-variance trade-o�, a classic problem in machine learning
(ML). This avoids over-�tting of the data by making the model too complex. The �nal term is a constant,
depending on the number of samples. This is not in�uenced by setting the hyperparameters, of course.

A faster way of computing log p
(

y
∣∣ X

)
is by taking the Cholesky factorisation L of K y , where K y = LLT

(Rasmussen and Williams, 2006). The term K −1
y y can be replaced by a vector α (equation (3.25)). Another

advantage is that the determinant of K y can be computed faster if K y is decomposed. The determinant of LLT

is equal to the squared product of the diagonal entries; ∏N
i=1 L2

i i . The log of this is then twice the sum of the
diagonal entries. These operations simplify equation (3.24) to equation (3.26).

α=
(
L−1

)T
L−1 y (3.25)

log p
(

y
∣∣ X

)=−1

2
yTα−

N∑
i=1

log
(
Li i

)− N

2
log

(
2π

)
(3.26)

Despite this optimisation, the computational complexity is still O
(
N 3

)
for the Cholesky factorisation, and

O
(
N 2

)
for computing its inverse and solving equation (3.25) (Rasmussen and Williams, 2006). The computa-
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tional cost therefore increases exponentially and can become a problem for large data-sets. In fact, an opti-
misation for hyperparameters can take up to one core-hour for a model with 1-dimensional input data and 13
di�erent time-series, which is an actual use-case for this thesis.

Another issue is that depending on the process modelled, there can be local optima in log p
(

y
∣∣ X

)
. This is

shown in �gure 3.9, where data was generated using a GP. Values for X were randomly taken between 0 and
10. Three local optima were found. The global optimum lies at point 3, however, this prediction does not seem
to be the optimal prediction; prediction 2 lies much closer to the hyperparameters of the original GP.

When relating this to the bias-variance trade-o�, it can be seen how these two interact; with increasing
length scales the model complexity decreases, but therefore the noise has to grow with it. If more data-points
were taken, the shape of the process would become more apparent, and eventually, there will be a single
optimum in log p

(
y

∣∣ X
)
.

(a) Grid search for − log p
(

y
∣∣∣ X

)

(b) Di�erent optimal models

Figure 3.9: Three local optima arise in a search for optimal parameters for a GP with SE kernel with σ f set at 1. y was drawn from a GP
with SE kernel, white noise and parameters σ f = 1, l = 1,σy = 0.1. Inspired by �gure 5.5 of Rasmussen and Williams (2006).

A grid search could be performed over all possible combinations of hyperparameters in order to overcome
the issue of landing at local optima. This method would, of course, become very expensive for higher numbers
of hyperparameters. Therefore, due to limited computational power and time, another approach is taken. A
model is initialised with random hyperparameters. From a random initial position, the model will converge
towards a nearby optimum. This may be the global optimum or a local one. The hyperparameters will be
saved, as well as log p

(
y

∣∣ X
)

at this point. This process of initialisation and optimisation is repeated 20 times,
trying to �nd the global optimum in at least one of the tries. This is an arbitrary number of tries, primarily based
on the time the Danmarks Tekniske Universitet (DTU) high performance computing (HPC) cluster would take
to perform a full run on one of the data-sets. This time is in the order of days, depending on which research
question is answered. From the results, the predictions from the optimal sets of hyperparameters generally
showed good accordance with both the training- and testing data, although there were still cases where local
optima led to improper predictions. This led to the belief that 20 times would be a suitable number to �nd the
best possible sets of hyperparameters in this context.
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3.2.4. Probability of failure and remaining useful life
With a prediction of the future behaviour of the energy parameter, the probability of failure or RUL is not yet
known. As stated in section 2.3.2, a commonly used method is to set an arbitrary threshold for the -in this case-
energy parameter. If the predicted energy crosses this threshold, it is assumed that the specimen fails. This is
quite an arbitrary and subjective process, as discussed in section 2.3.2.

Because of this issue, a new method is proposed. This method is based on the principles of load and resis-
tance factor design (LRFD) (Galambos, 1981). In structural design, it is the goal to design a structure which can
withstand a certain load. The amount of load a structure can withstand is called resistance in this method. Due
to uncertainties in, e.g. design, materials, and conditions, the load and resistance are often not deterministic
values. Instead, they are modelled as probabilities. This is illustrated in �gure 3.10. When the load exceeds the
resistance, the structure fails. Due to the uncertain nature, there is no single point of failure. Instead, there is a
probability of failure P f in the region where the load PDF is greater than the resistance PDF.

Figure 3.10: Load and resistance PDFs. The intersection depicts the probability of failure P f .

This concept is translated to the context of this thesis by taking the (predicted) cumulative energy as load,
and taking the PDF of the failure energies from other specimens as the resistance. Therefore, the threshold
now becomes a continuous random variable TE , for energy threshold values tE . Letting E denote the predicted
amount of cumulative energy e , then P f can be de�ned as p

(
E > TE

)
. This can be written as the integral of the

joint PDF fTE E (tE ,e):
p

(
E > TE

)= ∫ ∞

e=−∞

∫ e

tE=−∞
fTE E (tE ,e)dtE de (3.27)

Now, it is assumed that the TE and E are independent. Therefore, the joint PDF fTE E (tE ,e) can be formulated
as the product of the individual PDFs. The integrals become:

p
(
E > TE

)= ∫ ∞

e=−∞

∫ e

tE=−∞
fTE (tE ) fE (e)dtE de (3.28)

=
∫ ∞

e=−∞
fE (e)

[∫ e

tE=−∞
fTE (tE )dtE

]
de (3.29)

The term between square brackets in equation (3.29) is the de�nition of the CDF of the threshold FTE (e).
Now the two terms within the integrals are both dependent on energy and can be integrated numerically.
Furthermore, the lower bound for the integral can be set to 0, since this both the CDF of the threshold should
be 0 for inputs below 0 since negative cumulative energies are not physically possible in this case. This results
in equation (3.30).

Finally, one last addition is made. Since the PDF of the GP is a normal distribution, there is sometimes a
signi�cant probability of cumulative energy below 0 eu. This depends on both the mean and standard deviation
of each prediction, but examples where this happens are shown in section 5.2.1. This means that in�nitely far
in the future, there will be a probability that the cumulative energy is below 0 eu, which is not physically
possible. This results in the issue that, at this in�nitely far point in the future, the integral in equation (3.30)
and hence the probability of failure stays signi�cantly less than 1. Therefore, a scaling factor is applied. The
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fE (e) distribution is scaled by its CDF at 0 eu. This results in the fact that the area under the PDF of the
cumulative energy prediction will always be 1, which is the cumulative probability.

p
(
E > TE

)= ∫ ∞

e=0
fE (e)FTE (e)de (3.30)

=
∫ ∞

e=0

fE (e)

1−FE (0)
FTE (e)de = P f (3.31)

Now, the probability of failure P f is obtained. This is still a scalar variable at this point. Keep in mind
that this is at one point in the future, in a single prediction by the GP regression. When evaluating the GP
prediction further in the future, another P f can be determined, which is larger than the previous one, since
fE (e) shifts to the right, with more probability mass exceeding the threshold. When this is done for all points
in time, a CDF of the probability of failure is obtained; P f (t ). Some energy predictions are signi�cantly more
optimistic than their predecessors, resulting in a decrease in the probability of failure. Because this is physically
impossible, a monotonicity constraint is enforced; a probability of failure should always be larger than or equal
to its predecessor, i.e. P f

(
ti+1

)≥ P f
(
ti

)
.

The median end of life (EOL) can now be calculated by solving the CDF for 0.5. The PIs can be determined
by solving the CDF for α/2 and (1−α/2).

This CDF is still for just one prediction. Therefore for this prediction, the expected EOL and the 95% PI can
now be determined. This process is performed for all predictions in order to get a live RUL prediction.

Just as in the statistical model, the probability distribution type of the cumulative energies at failure had to
be determined. Again, the KS test was used. The results of the test are shown in �gure 3.11 and table 3.2. Just
as for the cycles at failure in section 3.1.1, the gamma function (equations (3.1) and (3.2)) turned out to �t the
data best.

Figure 3.11: Distributions of cumulative energies at failure, for all CFRP specimens

Table 3.2: KS test results for di�erent distributions of the cumulative energy at failure, on the CFRP data-set, sorted by goodness-of-�t

Distribution p-value [-] D [-]
Gamma 0.998 0.100
Lognormal 0.972 0.125
Weibull 0.969 0.126
Exp. Weibull 0.761 0.175
Normal 0.760 0.175
Exponential 0.291 0.260

3.2.5. Correlation adjustment
Just as the distribution of failure times, this distribution of cumulative energy is very wide. For setting the
failure threshold, this will likely result in a general, wide PDF, not tailored towards the specimen under testing.
Therefore, an extension is made to the failure PDF; an adjustment for correlation.
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It is hypothesised that the correlations between the specimen under testing and other specimens can be
used to centre the threshold PDF more towards the failure energy of the test specimen. This would then be
under the assumption that cumulative energy series which correlate with each other will also fail at similar cu-
mulative energies. This does, however, not yet suggest that positively correlated series share the same damage
mechanisms at the same times.

Specimens whose time-series shown high correlation with the test specimen should therefore have more
weight when establishing the failure threshold PDF than those with zero or negative correlation.

Extracting the correlation between time-series from a GP regression is a simple task; the label covariance
matrixΣL , constructed by κ(l )

(
lp , lq

)
can be extracted from the model. This function’s hyperparameters are �t-

ted by MLE, and should therefore correctly represent the covariance between labels. From the relation between
covariance and correlation in equation (3.32), the correlation matrix can be extracted.

cor
[

X ,Y
]= cov

[
X ,Y

]
σXσy

(3.32)

The decision to go with the correlation matrix instead of the covariance matrix is due to how it is scaled; all
values are between -1 (negative correlation) and 1 (positive correlation). Now, the weights can be determined.
Because a new distribution is drawn based on weighed data, there are two conditions for the weights. First of
all, the weights should all be larger than or equal to zero. A distribution cannot be drawn on negative numbers
of samples. Secondly, the sum of the weights should be larger than zero; if all weights are zero, a probabilitiy
distribution cannot be drawn. From this and the bounds from the covariance matrix, it was chosen to set the
weights as in equation (3.33), for a test specimen with label lp under test, and lq labelled specimen from the
training data.

wq = cor
[

lp , lq

]
+1+ε (3.33)

Using this methodology, wq is an extremely small value of ε if there would be a purely negative correlation. The
maximum weight would be 2+ε. This ensures both requirements for the weights. The maximum weight is set
at just above 2, in order not to cause any too extreme new distributions. This is also needed for the assumption
that PDF drawn on the weighted distribution is still a gamma function.

An example of desired behaviour is shown in �gure 3.12. Because the correlation matrix is symmetric,
only the upper triangular half is shown in �gure 3.12a. The specimen for which the RUL is predicted is A005.
The correlation matrix shows especially negative correlation with specimens A007 and A010. This causes the
adjusted PDF in �gure 3.12b to shift towards the right, where the actual cumulative energy at failure lies. In
this case, the model therefore �nds a correlation between specimens which have failure energies close to that
of A005, which is used in the RUL predictions.

(a) Correlation matrix (b) Original and adjusted PDF

Figure 3.12: Original and adjusted PDFs of the failure energy threshold. The model, with Ma3+lin kernels, is trained on variable amplitude
fatigue (VAF) data, and tested on A005 after approximately 17,500 cycles.
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3.2.6. Implementation
Due to the time-consuming training phase, a single feature was chosen to be extrapolated using this model,
although using more features could be possible. Because a GP can model any function, every feature could,
in theory, be used for making predictions. However, the value must also cross a threshold. Furthermore, if
data is very noisy, the GP will likely pick this up as noise, therefore resulting only in a general trend with low
con�dence. It would therefore be wisest to take a cumulative acoustic emission (AE) parameter.

From the research of Eleftheroglou et al. (2016), the cumulative energy of AE events shows good correlation
with the sti�ness degradation, some specimen better than others. The authors conclude that cumulative energy
is promising for describing the damage process in composites in fatigue. Therefore, it was decided to use this
feature on the GP regression. All series are shown below in �gure 3.13. It can be seen that for most specimens,
there is a relatively sharp increase in the cumulative energy early in their life, followed by a lower gradient later
on. The values at the EOL di�er signi�cantly, and will therefore likely cause a low precision in the predictions.

Figure 3.13: Cumulative AE energy for the CFRP specimens

This model is not used to answer the �rst research question. Training on solely constant amplitude fatigue
(CAF) data is impossible since the model uses the available data of the specimen which it is being tested on as
training data as well.

Due to the required computational resources, a prediction is not made at every 500 cycles except for speci-
men A010. It was decided to make predictions at a maximum of around 40 points in the life of each specimen.
This meant that the intervals between predictions were higher than 500 cycles for some specimens. The most
extreme case was specimen A006; due to its long life there were intervals of 5,000 cycles between predictions.
It was ensured that the last prediction was madeat the actual EOL. The training data was not altered, so this
consisted of blocks of approximately 500 cycles.

All of the above theory had to be implemented in a program. This is showed schematically in algorithm 1.
Because current available Python dictionaries did not seem to be �exible enough to incorporate all of the theory
and extensions discussed above, it was decided to develop a new Python GP regression model. The model is
built using the NumPy library for its e�cient storage of- and operations on arrays, and the SciPy library for the
optimisation algorithm and matrix operations. It uses the limited memory Broyden–Fletcher–Goldfarb–Shanno
bound constrained (L-BFGS-B) optimisation algorithm, which allows for the use of bound constraints. In this
way, the constraints regarding the spherical parameterisation (appendix A.3) can be ful�lled, thus decreasing
the search space for hyperparameters.
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Algorithm 1: Steps taken for a single RUL prediction in the GP regression
input : Data Dl for each specimen labelled l in l = [

1, ...L
]

total specimens, containing the input
(cycles) xl and output (cumulative energy) yl

Specimen l test to perform prediction on
Time-step t0 at which to make the RUL prediction
Number of model repetitions nR

output: Median RUL and the 95% PI
1 Let the training specimens be l tr ai n = {l |l ∈ l , l 6= l test }

2 Split the data-set into training data Dtr ai n , containing x , y of l tr ai n and xl test , yl test until t0

3 Standardise Dtr ai n

4 for r=1 to nR do
5 Initialise Mr on Dtr ai n with random hyperparameters
6 Maximise logp

(
y

∣∣ X
)

by varying the hyperparameters using L-BFGS-B optimisation
7 end
8 Take Mr with highest logp

(
y

∣∣ X
)

9 if using the correlation adjustment then
10 Extract ΣL from the hyperparameters, construct correlation matrix and determine w
11 Resample the cumulative energy at failure distribution of l tr ai n according to w
12 Construct FTE (e) based on this distribution
13 else
14 Construct FTE (e) based on the cumulative energy at failure distribution of l tr ai n

15 end
16 while P f ,n < 0.975 do
17 Predict cumulative energy on x test , running from t0 to tn

18 Construct normal distribution fE (e) from predicted mean and covariance
19 for t0 to tn do
20 Solve the integral in equation (3.31), append P f ,t to P f

21 end
22 Extend tn further into future if P f ,n < 0.975
23 end
24 Enforce P f ,t ≥ P f ,t−1

25 Calculate median RUL, lower and upper PI by interpolating P f at 0.5, 0.025, 0.975 respectively
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3.3. Recurrent neural network
In this section, the RNN is covered. First, the concept of NNs will be introduced, together with that of a RNN.
Next, a more advanced type of RNN cell is covered; the long short-term memory (LSTM) cell. Next is the
implementation of the model, followed by a validation scheme. Then, because NNs tend to be somewhat of a
black-box, a sensitivity analysis is included. This is followed by an explanation of the conversion from failure
index (FI) to RUL since it was decided to have the FI as model output. Finally, the case on varying load levels,
using data from the glass �bre reinforced polymer (GFRP) experiments is covered.

3.3.1. Neural networks
A neural network is a group of so-called ’neurons’; nodes which interact with each other. Although on a much
smaller scale, there are similarities with the structure of a brain, hence the term neurons. Depending on the
architecture of the network, the neurons are connected in di�erent ways.

A relatively simple network is that of a feedforward neural network (FFNN) with one hidden layer. Data is
processed from an input layer to the output layer, via a layer which contains a number of neurons; the hidden
layer. In such a network, all nodes in adjacent layers are connected to each other. Each connection is altered
by a weight. An example of a FFNN is shown in �gure 3.14.

Figure 3.14: A typical FFNN architecture with two inputs, a hidden layer with three nodes, an output layer and one output. The connections
going into the activation functions φ are weighed.

At each neuron, an operation takes place which sums the weighed input from connected neurons and feeds
this through a so-called activation functionφ. The input to this function x is a D-dimensional vector. Sometimes
a bias term is included as well, resulting in x = [

1, x1, x2, ..., xD
]T. When this is multiplied with a set of weights

w , the cell’s activity is obtained. This is then passed through the activation function, resulting in the output h
of the i th neuron (equation (3.34)). Instead of doing this per neuron, this can also be done for the entire layer
at once, as in equation (3.35). In this equation, W consists of the individual weight vectors for each neuron in
that layer, and is, therefore, D +1×nh-dimensional.

hi =φ
(

w T
i x

)
(3.34)

h =φ(
W x

)
(3.35)

An activation function can, in principle, be any function. If the network is required to model nonlinear
behaviour, these functions must do so as well. With nonlinear activation functions, NNs are able to approxi-
mate any function (Dor�ner, 1996). Some commonly used activation functions are shown below in �gure 3.15.
The sigmoid function (�gure 3.15a) outputs values between 0 and 1, and is often used in classi�cation tasks
because of this behaviour. Next, the hyperbolic tangent (�gure 3.15b) shows the same S-shaped curve, however
outputting values between -1 and 1. Finally, the recti�ed linear unit (ReLU) is a half recti�ed function, with
outputs ranging from 0 to in�nity. Many other activation functions exist, but these three are common ones and
used in this thesis.

A network as described above is essentially a (nonlinear) function of input variables and its weights: f
(
x , w

)
.

Before training, the unknowns in this function are the weights. A method which is generally applied for �nding
the weights is the MLE approach (Herlau et al., 2019). This method results in the loss function L, which is a
function of the model’s output, and the actual output y :

L (w ) = 1

N

N∑
i=1

∥∥∥ f
(
xi , w

)− yi

∥∥∥2
(3.36)
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(a) Sigmoid (b) Hyperbolic tangent (c) ReLU

Figure 3.15: Three commonly used activation functions

The goal is now to minimise the loss of the model, and �nd accompanying optimal weights w∗. Because
the above equation is not analytically solvable, this is done using gradient descent. The loss is calculated for
a speci�c w , as well as the gradient at this point. The sign of the gradient then tells us in which direction the
weight should move in order to result in a lower loss. Just as in the GP regression, NNs optimisers have to deal
with the possibility of hitting local minima. When weights are initialised randomly, di�erent ’optimal’ models
will be found.

The loss function can also be customised. Although this is not done for this thesis, it could be, for example,
customised to add more weight to the loss close to the EOL of a specimen. In this way, the priority of predictions
near the EOL is increased.

Recurrent neural networks
Whereas a FFNN takes a vector as an input, resulting in an output vector, a RNN is capable of handling entire
multidimensional time-series. A RNN consists of cells, which do not only take inputs from a previous layer, but
also from the previous time-step. With this addition, multiple architectures can be used, see �gure 3.16. All of
these are with one hidden layer, but numerous hidden layers can, of course, be used, as well as combinations
of these architectures.

(a) One-to-many (b) Many-to-one (c) Many-to-many (d) Another version of many-to-many

Figure 3.16: Four possible architectures for RNNs. A cell thus has two inputs, one from the input x, and its previous output. The data is
therefore passed through the same cell every time.

The �rst, one-to-many in �gure 3.16a, can be used for generating word sequences or music, based on a
single input. An output would then be dependent on a previous output, in order to form coherent sentences or
melodies. The other way around is done in a many-to-one architecture (�gure 3.16b). An array of input data
can be compressed into one output. Unlike in a regular FFNN, this output takes the order of inputs into account.
Finally, there are two versions of many-to-many architectures (�gures 3.16c and 3.16d). The �rst can be used
for processing a series where at a time-step an output is required, based also on the previous time-steps. The
second is used in for example translations, where a translated word depends on not only one word, but possibly
also on the following word.

For this thesis, the �rst many-to-many architecture (�gure 3.16c) shall be used. In this way, an input can
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immediately produce a corresponding output. In the context of this thesis, the inputs would then consist of
measured AE data and possibly load data, and the output of the RNN will be a parameter which relates to the
state of the specimen under testing.

Vanilla RNN cell
A so-called vanilla RNN cell is the simplest form of a RNN. Just as in the FFNN, a weighted input is passed
through an activation function. The cell is shown in �gure 3.17

Figure 3.17: A vanilla RNN cell

For every time-step t , a D-dimensional input vector xt is fed into the cell. The output, or hidden state, of a
cell h at time t is a function of both the input vector xt , as well as the preceding output ht−1. It is de�ned as in
equation (3.37). Just as in a FFNN, there is a weight matrix U for the input. A bias can be again be included in
x . The size of the weight matrices depends on the number of hidden nodes nh ; U is (nh +1)×D-dimensional,
where the 1 is due to the bias. The previous output is multiplied by a weight matrix V . This matrix is of
course nh ×nh-dimensional, since the output is a nh-dimensional vector. The sum of these is passed through
an activation function, just as in any NN.

In the equations hereafter, U and V are written as one weight matrix W . This D +1+nh ×nh-dimensional
matrix is multiplied with two stacked vectors xt and ht−1, as in equation (3.38).

ht =φ
(
U xt +V ht−1

)
(3.37)

=φ
(
W

[
xt ;ht−1

])
(3.38)

During training, the values in U and V have to be optimised in order to �t the training data. The number of
parameters np which have to be trained in a simple RNN cell is, therefore, a function of the number of hidden
nodes, as well as the number of dimensions of the input:

n(RN N )
p = n2

h +nhD +nh (3.39)

An issue of vanilla RNN cells is the problem of exploding/vanishing gradients (Hochreiter and Schmidhuber,
1997). The information from a previous cell is handled together with the cell input. In this way, the information
from cells in the past is overwritten multiple times. This causes di�culties in training, as well as the simple fact
that long-term information is not stored. Because of this, FFNNs with time windows would perform equally
well as RNNs with vanilla cells. (Hochreiter and Schmidhuber, 1997)

3.3.2. Long short-term memory cell
In order to overcome this vanishing gradient problem, Hochreiter and Schmidhuber (1997) proposes a new type
of cell: the LSTM cell. Recently, the gated recurrent unit (GRU) was introduced by Cho et al. (2014). This type of
cell contains one less gate as compared to the LSTM. The LSTM cell was however preferred over the GRU, due
to a wide array of documentation online, making the implementation easier. In terms of performance, no real
di�erence between the two was found in, for example, the study by Chung et al. (2014). The two signi�cantly
outperformed a regular RNN in multiple case studies, however.

The entire LSTM cell can be seen in �gure 3.18. What makes the LSTM di�er from a vanilla RNN cell is the
fact that it has one additional in- and output. This is the so-called cell state. The cell state is adjusted every
cycle, such that information is forgotten or added. The cell state interacts with the input and previous hidden
state, leading to a new hidden state.
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Figure 3.18: A LSTM cell

The LSTM cell contains three so-called gates. The gates are the combinations of sigmoids and element-wise
multiplications in �gure 3.18. The sigmoid will determine if information should be let through (output of 1),
or be deleted (output of 0). Firstly, the cell state is altered within the cell through two operations, shown in
equation (3.40). They will be explained below.

ct = ct−1 ¯ ft + c̃t ¯ it (3.40)

The �rst operation in the cell state in equation (3.40) is through the forget gate, where ct−1 is multiplied
element-wise with the output of the forget gate ft (equation (3.41)). This gate determines which elements of the
cell state should be forgotten or kept, based on the input and previous hidden state. The trainable parameters
in this equation are the weight matrix W f (also containing bias). Just as in a vanilla RNN, the weight matrix
is D +1+nh ×nh-dimensional. This is passed through a sigmoid function σ, meaning that all values in ft are
between 0 and 1. Because of this, elements of ct−1 multiplied with values close to 0 will di�use, while elements
multiplied with values close to 1 will be kept.

ft =σ
(
W f

[
xt ;ht−1

])
(3.41)

The input gate it proposes candidate values c̃t . Their corresponding equations are shown in equations (3.42)
and (3.43). The gate uses again the output of a sigmoid function, whereas the candidate values come from a
hyperbolic tangent function. This causes the candidate values to range between -1 and 1, allowing the cell state
ct to decrease as well.

c̃t = tanh
(
Wc

[
xt ;ht−1

])
(3.42)

it =σ
(
Wi

[
xt ;ht−1

])
(3.43)

Now, the cell state is adjusted before it is fed into the cell in the next time-step. The output gate, which
adjusts the output of the cell based on the cell state, input and previous output, remains. Again, the sigmoid
function in equation (3.44) determines which parameters to output, and what their weight is. Next, this is
multiplied element-wise with the cell-state which has been passed through a hyperbolic tangent function in
equation (3.45). Each element of ht therefore contains values between -1 and 1.

ot =σ
(
Wo

[
xt ;ht−1

])
(3.44)

ht = ot ¯ tanh
(
ct

)
(3.45)

From the fact that four weight matrices, including bias vectors, are present in an LSTM-cell, the number of
trainable parameters becomes much higher than in a vanilla RNN cell:

4(n2
h +nhD +nh) (3.46)
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3.3.3. Implementation
In order to predict RUL using a LSTM-cell, several changes had to be implemented to the basic many-to-many
architecture with LSTM cell. These changes are discussed below. The optimisation of the number of hidden
nodes is discussed after this section in section 3.3.4. The model itself is built in Python using Keras, an open-
source library for NNs (Chollet and others, 2015).

In- and output
Due to the ability of NNs to distinguish between di�erent features if they are trained properly, it was decided
to feed the RNN all features which are presented in section 4.4.3. The sensitivity analysis will point out which
features are deemed most important.

For the output of the model, it was decided not to use the RUL as a direct output variable. This variable is
scaled di�erently between specimens, also after standardisation. This meant that not all activation functions
are suited for reaching RUL values. A variable which lends itself extremely well is the FI or health index (HI),
with values always between 0 and 1. These variables linearly increase from 0 to 1, or decrease from 1 to 0
respectively. All three activation functions discussed above would be able to output these values, and would
therefore not require additional weights or scaling afterwards.

It should be noted that these functions describe the percentage of life passed or still left to pass. Therefore,
they are not representing the actual damage within a structure, which is generally not linearly increasing.

Eventually, the choice was made for the FI. This was done in conjunction with choosing the �nal activation
function, discussed below. The FI could, in principle have values above 1, which say that the specimen should
have failed by then. A value below 0 would, however, be physically impossible; this implies that a specimen is
in better health than before the test. The ReLU function, with outputs larger than 0 can model this behaviour.
Therefore, the combination of a ReLU function and FI as output was deemed the best combination.

Architecture
The architecture was already brie�y discussed above, with a many-to-many with a direct output being the best
architecture for this problem. It was also decided to keep the number of hidden layers at one. While increasing
the number of hidden layers generally leads to better-�tting of the training data, there are also downsides. First
of all, the number of trainable parameters increases, and therefore the required computation time. In addition
to this, the training set is already extremely small for a NN with just 13 specimens in total. With more added
complexity, the model will be bound to over�t on such a small sample set.

Summation layer
An extra layer is added after the output of the cell, in order to make the output of a cell a single number, instead
of a vector with nh entries, which is the original output of a LSTM cell. This layer (equation (3.47)) is a simple
summation layer with weight vector ws , hence containing an additional nh +1 trainable parameters.

yt =φ
(

w T
l ht

)
(3.47)

Now, the network with nh hidden nodes is able to be fed a batch of time-series with D dimensions, and
output a 1-dimensional series. The output can now be trained to match and predict a single output variable.

A model parameter which can signi�cantly a�ect the results is the choice of activation function in this �nal
layer. Because the model is trained on the FI, values should fall between 0 and 1. Initially, a sigmoid function
was thought to adhere to this requirement, since this function will always result in values between 0 and 1
(see �gure 3.15a). However, in order to get output values close to 0 or 1, large negative or positive activities
are required. This proved to be a problem. In test runs, the outputs generally �oated between 0.2 and 0.8; the
models were not able to train towards giving more extreme activities to the �nal layer. In order to overcome
this, ReLU activation functions were used in the network. This resulted in predicted FIs which were closer to
0 and 1.
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Dropout
A relatively new regularisation method is dropout, introduced by Srivastava et al. (2014). The idea behind this
method is to randomly eliminate nodes and their connections during training.

Srivastava et al. (2014) motivate their idea for dropout from a theory of the role of sex in evolution. Or-
ganisms which have evolved through sexual reproduction are much more advanced than those who reproduce
asexually. Through sexual reproduction, the o�spring receives roughly 50% of the genes of the parents, together
with some random mutations. In asexual reproduction however, the o�spring receives all genes, together with
some random mutations, from one parent. In the latter case, genes which work well together are passed on to
the o�spring. It seems plausible that this results in more advanced lifeforms through evolution than reproduc-
ing sexually because here, the genes of the parents are split and must work together with a new set of genes.
The fact that organisms which evolved through sexual reproduction are however more advanced than their
asexual counterparts is likely that over the long term, natural selection favours the mix-ability of genes. This
ability for sets of genes to work together with unseen other sets makes them more robust. Furthermore, when
genes are then working together in small, compatible subsets, mutations can also more quickly lead to more
successful o�spring. When a favourable mutation would be introduced in an asexually reproducing organism,
the mutated genes are less likely to be able to work together with the almost monolithic set of genes which
was passed on for generations already.

Srivastava et al. (2014) argue that the same could be applied to a NN. When forcing units to randomly
work together with other units, preventing co-adaptations between nodes, this makes the model more robust.
Furthermore, nodes will be forced to create useful features themselves, instead of relying on the entire infras-
tructure around the units. Typical values for dropout range from retaining 50% to 80%. Smaller retainment
values can lead to under�tting, whereas larger values may not enforce enough dropout to e�ectively regularise
the model to prevent over�tting. (Srivastava et al., 2014)

The motivation behind implementing this method in this thesis is because the RNN has many inputs (dis-
cussed in section 4.4.3). With many relatively similar inputs and some possibly not of interest to the FI predic-
tions, it was decided to add dropout to the input layer as a form of input regularisation. A value of 50% was
chosen, based on the typical values by Srivastava et al. (2014). Also, eliminating 50% of all inputs would not
lead to useless predictions, due to the fact that there are up to 31 inputs. With, for example, all 9 cumulative
features form AEs, missing half of them will not result in the inability to function.

Furthermore, the learning rate and momentum of the optimiser are also advised to be changed by Srivastava
et al. (2014), because of noise which is introduced in the stochastic gradient descent. Through trial and error,
a learning rate of 0.005 and momentum of 0.9 was found to give the highest learning speed and reduce noise
as much as possible. Note that this was done on one model, on one specimen. Including this in another cross-
validation loop would too computationally expensive.
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3.3.4. Hidden nodes and validation
In order to objectively determine the best model architecture and its performance, a two-level, K -fold cross-
validation scheme is implemented. The key to this scheme is that this is as objective as possible, by validating
and testing on unseen data. A model cannot ever be objectively evaluated when it is fed the same training data
as it is tested on. Two-level cross-validation is a way of mitigating this and determining the optimal model
architecture and performance based on ’unseen’ data. The optimal architecture is a combination of the number
of hidden nodes, as well as the number of training epochs. In order to capture increasingly more complex
models, the number of hidden nodes is exponentially increased from 1 to 128.

Having a low amount of epochs usually results in under�tting, whereas a high amount of epochs results in
over�tting. An example of this phenomenon is shown in �gure 3.19. Whereas the training loss keeps decreasing
over time, the validation loss increases again due to over�tting. Note the oscillating losses; this is due to noise
from the dropout. Setting the maximum amount of training epochs at 1000 proved to capture most optima in
validation losses, as well as keeping the computation time for training a set of models relatively low.

Figure 3.19: Training- versus validation loss for a model with nh = 16, with specimen A001 left out, and validated on A010

The algorithm for the cross-validation scheme is shown in algorithm 2. The loops for the two levels can
be seen in lines 1 and 6. For each test specimen l test , the data is split into a test case Dtest , and the data from
the other specimens Di nner . The optimal model architecture is now determined in the inner loop, where for
each combination of a validation specimen l val and training set l tr ai n , the validation error is determined. In
every one of these combinations, all model architectures are evaluated. The validation errors are also stored
per training epoch in order to decide on the best number of training sessions eventually.

This is then repeated R = 10 times since due to the random initialisation of weights in a NN, results vary
per model. In order to mitigate the impact of outliers, the median over these repetitions is taken. The average
of these validation errors is taken per model architecture, resulting in an approximation of the generalisation
error. The architecture and number of epochs with the lowest generalisation error is taken to train a new model,
based on all data used in this inner loop. In this way, the optimal model architecture is determined on the other
specimens, without any knowledge of the test specimen.

When training on solely CAF data, the outer loop is omitted. The validation can be done on all CAF spec-
imens. From this, the optimal model architecture can be determined and tested on a VAF specimen. When
trained on both CAF and VAF data, it was decided to loop over just the VAF specimens as validation and test
specimens. This is because, for this research, there was no interest in the performance of the models on pre-
dictions of CAF specimens, as well as to save time on computations. Although not used for calculating errors,
the CAF specimens were used as training data in all steps.
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Algorithm 2: Two-level K -fold cross-validation for the RNN
input : Data Dl for each specimen labelled l in l = [

1, ...L
]

total specimens, containing the input Xl

and output yl

nM number of model architectures M, with nh hidden nodes from
[
1,2,4,8,16,32,64,128

]
Number of training repetitions nR

Number of training epochs nE

output: Optimal network architecture M∗
i and predictions yi for each specimen

1 for i = 1 to L do
2 Let the test specimen be l test

i = li

3 Let the inner fold specimens be l i nner
i = {l |l ∈ l , l 6= l test

i }

4 Split the full data-set into Di nner
i =Dl∈l i nner

i
, Dtest

i =Dl test
i

5 Standardise Di nner
i , save µi nner

i and σi nner
i and use these to standardise Dtest

i
6 for j = 1 to L−1 do
7 Let the validation specimen be l val

i , j = l i nner
i , j

8 Let the set of training specimens be l tr ai n
i , j = {l |l ∈ l i nner

i , l 6= l val
i }

9 Take training and validation data-sets Dtr ai n
i , j =Dl∈l tr ai n

i , j
,Dval

i , j =Dl val
i , j

10 for m=1 to nM do
11 for r=1 to nR do
12 Train Mi , j ,m,r on Dtr ai n

i , j for nE epochs, minimising the mean squared error (MSE)
13 Validate Mi , j ,m,r on Dval

i , j , giving validation error E val
i , j ,m,r at every epoch

14 end
15 Take the median validation error for each model Ẽ val

i , j ,m

16 end
17 end
18 Compute the estimated generalisation error Ê g en

i ,m = 1
L−1

∑L−1
j=1 Ẽ val

i , j ,m for each model
19 Select the optimal model M∗

i and number of epochs E∗ to train it, based on the minimal Ê g en
i ,m

20 for r=1 to nR do
21 Train M∗

i on Di nner
i for E∗ epochs, and feed it X test

i to obtain the estimate output ŷi ,r

22 end
23 Compare the group of estimated outputs ŷi ,r to the actual outcome yi

24 end
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3.3.5. Sensitivity analysis
Due to the number of weights and operations in a NN with multiple hidden nodes, it tends to become a ’black-
box’. With information going in and being fed through all nodes and layers, the net spits out an output. How
this output is constructed based on all inputs is impossible to analyse by just looking at all weights matrices of
the network. Yet, it is important to know which inputs a�ect the output of the model. Therefore, a sensitivity
analysis is performed. Due to the temporal dependence of the RNN, not all methods can, however, be used.
The perturbation method was found to be possible to implement in this context. This method is able to classify
variables, according to their importance of inputs (Gevrey et al., 2003).

The perturbation method adds changes δ to the i th input variable. These changes are usually steps of 10%
of the input, up to 50% (Gevrey et al., 2003). This was followed in this analysis, with the steps calculated as
10-50% of the maximum value of an input. This was done before standardising the data. After adding the δ,
the input data was standardised, using the mean and standard deviation from the other specimens’ data. Now
for each input variable, the model’s MSE loss is calculated when adding δ to this input. By then ranking the
change in MSE, a ranking of the input variables can be made.

3.3.6. Failure index to remaining useful life
The RNN predicts the FI, while the RUL is the required prognostic feature. Fortunately however, there is a
simple relationship between the FI and RUL. Since the FI is a function of RUL and passed time or cycles t ,
equation (3.48) can be derived from this. The unfortunate part of this relationship is the fact that FI is in the
denominator. If the model therefore predicts a FI of 0, this leads to an in�nitely high RUL. Therefore, predictions
with an FI of 0 had to be omitted from the �nal RUL prediction.

From the 10 repetitions with predictions for the FI, a RUL, as well as the PIs have to be determined. Assuming
that the repetitions result in a normally distributed set of predictions, the median, as well as the PIs of the RUL
prediction, can be easily obtained.

RU L = t

F I
− t (3.48)

One �nal adjustment which is made to the FI is enforcing monotonicity. This is because the predictions from
the RNN have a high variability from one time-step to another, with sometimes also decreasing FIs. An example
is shown below in �gure 3.20. From a physical perspective, this behaviour is not possible. A damage parameter
cannot decrease in a structure when it is not repaired, let alone when it is under active loading. From the
perspective of data analysis, this behaviour is possible. A model has more information at time t compared to
time t −1. When having this additional information, it might turn out that the FI is found to be lower than in
the previous prediction.

It was decided to go for more realistic predictions, and therefore enforcing a monotonicity constraint on
the FI. This was implemented on the results by setting FI at t equal to the FI at t −1 if it were smaller than its
predecessor. This also smoothens the RUL predictions. Compared to other smoothing methods which may rely
on the data on both sides of t , this method does not require prior information on future FIs.

Figure 3.20: The original FI output from the RNN for specimen A007, trained on CAF data
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3.3.7. Case study: varying load levels
For the case study, the same approach from above was used, to predict RUL based on solely AE data and the
number of cycles as time-indicator. These predictions were, however, not su�ciently good enough; models
seemed to be unable to handle the large scale di�erences between the specimens.

Therefore, it was decided to include the load levels in the input features. From a physical standpoint, the
magnitude of the applied load impacts the EOL of the specimen in a nonlinear nature. An example can be
seen in the S-N curve in �gure 2.3. There is research done on modelling S-N curves using FFNNs, as done by
for example Al-Assaf and El Kadi (2001), who discuss a FFNN for successfully modelling the S-N curve of uni-
directional (UD) GFRP specimens under tension-tension (T-T) and tension-compression (T-C) loading. They use
the maximum stress, R-ratio and �bre orientation angle as inputs. The latter does not apply to this research.

It is hypothesised that the predictions from a RNN can be enriched by adding a FFNN at the end of a
RNN. Feeding the load levels into this second layer next to the output of the RNN could result in a nonlinear
weight factor on the output of the RNN, leading to better predictions for this data-set. The FFNN will use ReLU
activation functions, just like the �nal layer of the RNN, which was used to generate a single output. This �nal
layer was bypassed; the output from the LSTM cell is directly fed into a number of hidden nodes in the FFNN.
After the hidden layer, a single node is used to generate one output value per time-step; the FI.

In order to validate this approach, the same cross-validation scheme is used above �rst to determine an
optimal RNN architecture for this problem. FI predictions will be made using this setup. Next, the cross-
validation scheme will be used again, but now for determining the number of nodes in the hidden layer of an
added FFNN at the end of the RNN. The hidden nodes from the RNN are kept the same as before, therefore
varying only the nodes of the FFNN.



3.4. Performance metrics 45

3.4. Performance metrics
When comparing predictions to actual values, there are two notions which seem similar but are actually dif-
ferent. These are accuracy and precision. The di�erence between the two is illustrated in �gure 3.21. As can
be seen, accuracy is a measure of bias; how far the mean or median is situated from the actual value. Precision,
on the other hand, is the width of the PI. More precision leads to more certainty about the mean or median, but
not necessarily to better predictions.

(a) Low accuracy, low precision (b) Low accuracy, high precision

(c) High accuracy, low precision (d) High accuracy, high precision

Figure 3.21: The di�erence between accuracy and precision

In this thesis, both the prediction and accuracy of predictions will be taken into account. Scoring low on
one of them means that a model does not yet provide good predictions. The 95% PIs are illustrated to show the
precision of the models. The predicted values for the RUL are based on the median of the predictions, or 50%
probability of failure. This choice was made because of the implementation of the GP regression. In this model,
the probability of failure was calculated numerically. In order to calculate a mean, the CDF would have to be
integrated. This was an array of points, however, and not a function. Numerical integration over this array
proved to give unstable results, and it was decided to not �t a distribution on this, since there can be no solid
arguments behind speci�c distributions. Therefore, taking the median from interpolating the CDF at 0.5 gave
more reliable results. In order to stay consistent, this was also done for the other models.
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3.4.1. Classical metrics
According to Saxena et al. (2009), the four most commonly used classical metrics in forecasting are accuracy,
precision, MSE, and mean absolute percentage error (MAPE). All these functions utilise the prediction error ∆;
the di�erence between the actual RUL of the nth prediction rn , and the predicted RUL at this point r̂n :

∆n = rn − r̂n (3.49)

The mean bias B is then simply the sum of the errors of all predictions (equation (3.50)). The precision
measure S is used for quantifying the variability between predictions (equation (3.51)). Each error is compared
to the mean bias, resulting in the standard deviation of the errors. This measure does not relate to the precision
de�ned above.

B = 1

N

N∑
n=1

∆n (3.50)

S =
√ ∑N

n=1

(
∆n −B

)2

N −1
(3.51)

Both these functions have the issue that negative and positive errors cancel each other out. Luckily, the
MSE and MAPE exist; these do not have this issue. They are shown in equations (3.52) and (3.53). The MAPE
is a scale-independent number. This makes it possible to compare di�erent samples with di�erent EOL to each
other. However, using this metric causes the loss of information about the absolute error. This may be a valuable
metric to determine if, for example, a specimen with a relatively short lifespan still has an acceptable prediction
error in order to perform maintenance in time.

MSE = 1

N

N∑
n=1

∆2
n (3.52)

M APE = 1

N

N∑
n=1

∣∣∣∣∣∣∆n

rn

∣∣∣∣∣∣ ·100% (3.53)

The MAPE is the most widely used accuracy metric. A downside in RUL predictions is that forecasts which
exceed rn are more heavily penalised than those which are less; since in the latter, the error cannot be larger
than 100%. Furthermore, the MAPE of the last prediction, where the real value is 0, cannot be calculated. For
these reasons, MSE and MAPE are used as basic metrics.

3.4.2. Prognostic metrics
As mentioned in section 2.3.3, Saxena et al. (2010) propose four prognostic metrics. Three of these are actually
used here; the α−λ convergence is left out. This is because one of the requirements for this metric is that there
is a prognostic horizon (PH). In just two predictions in this thesis, there was a PH. Therefore this method was
deemed not useful. Therefore, a fourth metric is proposed, based on the PH.

Prognostic horizon
The prognostic horizon is de�ned as the time to the EOL, where the probability mass of a prediction π

[
r̂n

]∣∣α+
α−

between required con�dence bounds α± around the actual RUL, is larger than a threshold β. This is valid only
where this is true for an uninterrupted time period until the EOL. Therefore, right predictions at the start of a
specimen’s life do not count towards the PH if the requirement is not met later in the specimen’s life. When
given a CDF of the RUL prediction FT (r ), the PH is calculated as follows:

π
[
r̂n

]∣∣α+
α− = FT

(
rn +α+

)
−FT

(
rn +α−)

(3.54)

An advantage of this metric compared to the metrics mentioned above is that this metric keeps track of the
con�dence of the prediction. Wider PIs are disadvantageous for this metric.

The minimum required probability mass β, is for now set at a value of 50%. This is relatively low and should
not be acceptable in the industry. The required con�dence α± is set at ±5,000 cycles. This is mainly based on
the lifetimes of specimens in the test set. In, for example, the application of a wind turbine blade, this would
be an 8-hour window based on the turbine operating at 10 rpm, and looking at a section of the blade which
su�ers edgewise fatigue loads. These loads are caused by gravity, and therefore a fatigue cycle occurs at every
rotation.
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Cumulative bounded probability mass
As the results will show, many predictions’ π

[
r̂n

]∣∣α+
α− do not exceed a reasonable value for β. Therefore, a new

metric is introduced. This metric, the cumulative bounded probability mass (CBPM) (equation (3.55)), tracks the
cumulative probability mass within the required con�dence bounds, with weights which are relatively higher
near the EOL of the specimen. The advantage of this metric, as compared to the other mentioned metrics, is
that it captures precision as well as accuracy. Wide PIs are automatically penalised because their mass within
the required con�dence bounds is small. Predictions with low accuracy will logically have lower CBPMs.

C BP M =
N∑

n=1
w

(
rn

)
π

[
r̂n

]∣∣α+
α− ·100% (3.55)

A linear weight function, following the fraction of total life T is taken. The weights are normalised to
ensure that the total sum of the weights is 1, and therefore all weighted CBPMs can be added up. The weight
function thus becomes:

w
(
rn

)= 1∑N
n=1 rn/T

rn

T
(3.56)

Cumulative relative accuracy
Just as the CBPM, the cumulative relative accuracy (CRA) is a weighted metric over the entire life of the speci-
men. Proposed by Saxena et al. (2009), it keeps track of the relative accuracy (RA) of the predictions. Therefore
for this metric, the expected RUL is used. Wide PIs are not penalised. CRA is calculated using equation (3.57).
The weights in the equation are the same as those in equation (3.56). A CRA as close to 100% as possible is
desired. CRA values become smaller than 0 if

∣∣∆∣∣/rn is larger than 1. In this case, there would be at least a
200% bias. The CRA should be as close to 100% as possible.

C R A =
N∑

n=1
w

(
rn

)1−
∣∣∆n

∣∣
rn

 ·100% (3.57)

Convergence
The convergence is the �nal metric introduced by Saxena et al. (2009, 2010). This is a so-called meta-metric,
which quanti�es how fast a metric M improves. By using the convergence, it will be quanti�ed how the
accuracy and precision improve over time.

The convergence CM is de�ned from the start of the predictions tP up until the time where it is too late to
perform any necessary repairs, the end of useful predictions (EOUP), tEoU P . In the case of this research, this
means 5,000 cycles before the EOL. Over this time period, the Euclidean distance from (tP ,0) to the centre of
mass of the area under the metrics curve, (xc , yc ), de�nes the convergence. The lower this distance, the faster
the metric converges. The convergence assumes that the performance of the algorithm improves. Therefore
this must be checked �rst.

CM =
√(

xc − tP
)2 + y2

c (3.58)
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It is chosen to calculate the convergence on accuracy (∆ convergence) and precision (PI convergence). The
latter is also used in the research by Eleftheroglou et al. (2018b), for example. In this way, the simplest metrics
can be used to compare the prognostic performance of each model.





4
Data acquisition

In this chapter, everything related to the acquisition of data which will be used in the remaining useful life
(RUL) predictions will be discussed. First, the two experimental campaigns regarding the carbon �bre reinforced
polymer (CFRP) specimens and the glass �bre reinforced polymer (GFRP) specimens will be covered, containing
the test setups and pre-processing of the data such that data from multiple sources can be used in one go. Next,
another aspect concerning the experiments will be discussed; the computational setup. The chapter is concluded
with a section on features, their handling, and aggregation.

4.1. CFRP data
The experimental data was already available for constant amplitude fatigue (CAF) and variable amplitude fa-
tigue (VAF) loading. The data from the CAF specimens was used for the research by Eleftheroglou and Loutas
(2016); Eleftheroglou et al. (2016); Loutas et al. (2017); Eleftheroglou et al. (2018a,b). The VAF loaded specimens
were tested in during the same campaign, but were not included in any published research.

The eight and eleven coupons for CAF and VAF respectively, are from carbon/epoxy prepreg material,
manufactured using an autoclave process. The layup of the coupons is quasi-isotropic; [0, ±45, 90]2s. The
coupons measure 300x30 mm, and are open-hole, or notched; all coupons have a central hole with a diameter
of 6 mm.

Due to this shape, there will be stress concentrations at the edges of the hole in each specimen. When
analytically evaluating this, this stress concentration would be three times the nominal stress in the specimen.
Therefore, damage accumulates faster in this area. In the research of Eleftheroglou et al. (2016) on CAF, macro-
scopic cracks are indeed seen to originate in this area before propagating towards the sides of a specimen. This
allows for damage to localise at the centre of the specimen, unlike at the clamps as mentioned above. The failed
specimens, as well as the test setup, can be seen in �gure 4.1.

4.1.1. Loading
The fatigue tests were performed at 10 Hz, in an Instron hydraulic universal testing machine. The machine can
be seen above in �gure 4.1. All specimens are loaded to the same speci�c load in N, under the assumption that
they share the same cross-sectional area and hence endure the same stress.

The eight specimens under CAF are loaded at about 82% of their ultimate tensile strength (UTS) with R =
0.06, varying a little per specimen. This UTS was determined by static tests on three specimens, which averaged
42.7 kN. The frequency of the loading was at 10 Hz. Every 500 cycles, the testing was interrupted for a few
seconds to take digital image correlation (DIC) measurements at a static load of 43% of the UTS.

While advanced tools such as X-ray computed tomography were not used to monitor the damage evolution
in detail, Eleftheroglou and Loutas (2016) discuss two major damage mechanisms which were present; �bre
splitting and delaminations. These were present in all plies and interfaces respectively, occurring in parallel,
but at di�erent rates. Eventually, near the end of life (EOL), the delamination fronts propagated out-of-plane.
This caused the failure of large amounts of �bre bundles, resulting in catastrophic failure.

Another eleven specimens are tested under VAF. The di�erent load levels for two spectra are shown in
tables 4.1 and 4.2. The other spectra are not shown, since they were eventually not used in the analyses. Loads
from these blocks are randomly placed in a time-series as half-cycles, meaning that a low load Fmi n will be
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Figure 4.1: Test setup (a) for the CFRP specimens, and failed specimens (b). Taken from Eleftheroglou and Loutas (2016).

followed by a high load Fmax , based on the method described by de Jong et al. (1973). This process is repeated
in order to create di�erent load paths, to be used on di�erent specimens. Just as the CAF, the testing was
interrupted every 250 and 500 seconds for DIC measurements, for NE6 and NE9 respectively, and held at a
static load.

Table 4.1: Distribution of loads in the VAF load spectrum NE6

Cycles Fmi n % of UTS Fmax % of UTS
20 -5.4 88
40 -4.5 85
100 -2.7 79
360 -1.35 74.5
1,040 0.3 69.7
3,040 4.8 65.2
16,000 9.6 60.4
83,400 14.1 55.9

Table 4.2: Distribution of loads in the VAF load spectrum NE9

Cycles Fmi n % of UTS Fmax % of UTS
5,000 -3.5 88
10,000 -3.5 85
16,000 -3.5 80
18,000 -3.5 79
6,000 0.3 88
11,000 4.8 85
18,000 9.6 80
20,000 14.1 75

The expected failure pattern is likely similar to that in tension-compression (T-C) observed by Mall et al.
(2009): matrix cracking, delamination, micro buckling and �bre kinking, followed by eventual �bre failure and
�nally, catastrophic failure. This is due to the fact that this is a combination of tension-tension (T-T) and T-C,
where the compression component is relatively small. Microbuckling and �bre kinking are most likely not
observed in the CAF cases, which raises the question whether these mechanisms, which are the reason for
worse fatigue performance of T-C as compared to T-T, can be picked up by a data-driven algorithm which is
solely trained on CAF cases, or if this is maybe not relevant for data-driven predictions.

It is expected that the total damage will be correlated with the load levels of previous cycles. As Ye (1989)
noted, both the magnitude and rate of the development of damage are directly proportional to the load level at
any number of load cycles in the �rst two stages of damage development (see �gure 2.4). Therefore, the applied
load could possibly be used as a feature in a prognostics algorithm.

4.1.2. Acoustic emission data
The acoustic emission (AE) data of both the CAF and VAF data-set was captured using an AMSY-6 Vallen
system, with one AE sensor attached to the specimen. A threshold of 50 dB was found to be enough to �lter
out background noise. The signal itself was pre-ampli�ed by 34 dB, and a band-pass �lter of 20-1200 kHz was
applied. Each event is captured in six features, listed in the table 4.3 below. The unit for energy is an energy
unit (eu), where 1 eu = 10−14 V2s.
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Table 4.3: Recorded AE parameters for the CFRP specimens

Parameter Unit
Rise time µs
Duration µs
Energy eu
Counts -
Amplitude dB
Root mean square (RMS) mV

4.1.3. Data matching
The AE data and load paths were initially from di�erent �les and therefore had to be matched. First, so-called
load blocks were identi�ed in the (spectrum) load paths, based on the breaks between them. For all specimens
except A010 (250 cycles), the blocks contained 500 cycles. The blocks of specimen A010 were treated per two,
such that they contained approximately 500 cycles as well. Because specimens were held at a static load during
the breaks, the change of load to the static load was documented as a half cycle. Therefore in the remainder of
this thesis, there are references to numbers of cycles which are not exact multiples of 500.

From the log �les of the fatigue machine, the start- and end times of the test were extracted. Then, the
respective load path was shortened to this duration. Because failure often occurs with a load-block, this block
was included.

Next, the AE data could be merged on this load data. This was done under the assumption that the AE
system started recording at the time loading started. From inspecting the correlation between the load paths
and AEs, this was indeed the case. An example of this is shown for specimen A001, in �gure 4.2. The times
without AE activity align exactly with the load breaks.

Unfortunately, several tests during the testing campaign were found to be unsuccessful while examining the
data. The decisions to dismiss speci�c specimens was based on the log �les from the fatigue machine, as well
as those from the AE records. For several specimens, the life of the specimens was extremely short. Therefore
it is assumed that something went wrong during these tests. For specimens A003 and A015, the life was longer,
but there seemed to be a mismatch in the AE data and the applied loading. The case of A015 is shown below
in �gure 4.3. As opposed to A001 in �gure 4.2, it can be seen that the pauses between the load phases are not
only not in phase with pauses in the AE, but the load phases and pauses also seem to have a di�erent length
than those of the AE hits. Therefore, this specimen was discarded as well. An overview of all tests is shown
below in table 4.4.

Figure 4.2: Load path and AE hits for specimen A001 in the �rst 200 sFigure 4.3: Load path and AE hits for specimen A015

For the specimens which were analysed, the failure times and cumulative energies at failure (used for the
Gaussian process (GP) regression) are shown below in table 4.5. The failure times are rounded per 500 cycles
in order to improve readability.
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Table 4.4: Overview of all specimens and reason for dismissal in the CFRP testing campaign

Specimen Type Load sequence Reason to dismiss
A001 variable NE9
(A002) variable NE9 Life of 2 cycles

(A003) constant Two load log �les, both not showing
coherence with AE data

(A004) variable NE9 Life of 2 cycles
A005 variable NE9
A006 variable NE9
A007 variable NE9
(A008) variable NE9 Life of 7 cycles
A009 constant
A010 variable NE6
A011 constant
A012 constant
A013 constant
A014 constant

(A015) variable NE3 Short life (140 cycles),
no coherence with AE data

A017 variable NE9
A019 constant
A020 constant

(A021, A021b, A021c) variable NE9 Multiple interrupted load log �les,
as well as interrupted AE �les

Table 4.5: Overview of CFRP specimens used in this research, their EOL, and cumulative energy at failure

Specimen Type EOL [cycles] Cumulative energy [Meu]
A001 variable 59,500 606
A005 variable 65,000 959
A006 variable 188,000 1,785
A007 variable 56,500 605
A009 constant 29,000 195
A010 variable 8,000 262
A011 constant 68,000 755
A012 constant 25,000 701
A013 constant 22,000 1,020
A014 constant 37,500 541
A017 variable 105,000 1,318
A019 constant 57,000 496
A020 constant 13,000 331
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4.2. GFRP data
In the period from February to March 2020, T-T fatigue tests on GFRP specimens have been performed in by
Danmarks Tekniske Universitet (DTU) Wind Energy, in their composite labs in Risø.

The specimens were made of non-crimp glass �bres, reinforced with epoxy. They have a [biax/0°/0°]s-layup;
the primary load-carrying part of the laminates are 4 uni-directional (UD) layers, surrounded by bi-axial layers.
This results in specimens which have a thickness of approximately 4 mm. The shape of the specimens is a
so-called butter�y shape. It is the same as in a previous research campaign by Jespersen and Mikkelsen (2017).
The dimensions can be seen in �gure 4.4. In such a shape, the peak stresses are concentrated in the 60x15
mm gauge section in the centre, forcing failure in this part. The specimen tapers both in width and thickness
towards the ends, where it is held in the hydraulic clamps of the fatigue machine. An AE sensor is attached on
the gauge section, as well as two 50 mm strain gauges. The entire setup is shown in �gure 4.5

Figure 4.4: Dimensions of the test specimen (taken from Jes-
persen and Mikkelsen (2017)) Figure 4.5: Testing setup

4.2.1. Loading
The tests were performed using an Instron 88R8501 machine, with a 100 kN load cell. The aim was to load the
specimens for di�erent maximum strain ε values, shown in table 4.6. The load sequence consisted of two parts.
First, the Young’s modulus of the specimen was determined using a static test. During ramping up the load, the
initial Young’s modulus E0 was determined (table 4.6). With the predetermined ε, the maximum stress σmax

could be determined using Hooke’s law:
σmax = E0ε (4.1)

During this ramping up, the load was increased up to 90% of σmax , followed by loading to 0.30% strain.
This load sequence is plotted for specimen 6, below in �gure 4.6. Next, the specimens were subjected to CAF
loading at 5 Hz, until failure. Following a stress ratio Rσ of 0.1 for all specimens, the minimum load Fmi n was
set at RσFmax . The S-N plot of the coupons in this experimental campaign is plotted in �gure 4.7. Because
the fatigue machine was not able to reach the exact same stress values for every cycle, especially in the �rst
100 cycles, the median values have been plotted in this �gure. The di�erent stress levels already show large
di�erences in the lifespans of the di�erent specimens.
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Table 4.6: Load settings and properties of the GFRP specimens

Specimen Maximum strain [%] Young’s modulus [GPa] Area [mm2]
6 0.90 35.07 70.35
7 0.95 34.91 70.53
8 0.87 35.16 70.67
9 0.95 35.14 70.14
10 1.00 35.70 70.78
11 1.20 35.47 70.33
12 1.10 34.88 70.52
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Figure 4.6: The static test for specimen 6
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Figure 4.7: S-N plot for the GFRP data-set

4.2.2. Acoustic emission data
The AE events were captured by a MicroExpress Digital AE System, with a single AE sensor in the gauge section
of the tested specimens. A threshold is set at 55 dB in order to �lter out background noise. The AE events are
ampli�ed using a 2/4/6 pre-ampli�er with 40 dB gain. The system captures eight parameters, shown below in
table 4.7. Most of these parameters are discussed in section 2.2. Measured area of the recti�ed signal envelope
(MARSE) is a dimensionless waveform characteristic. To calculate the MARSE, the AE signal is �rst recti�ed.
Next, the envelope over this recti�ed signal is determined. The area under this envelope is then the MARSE.

Table 4.7: Recorded AE parameters for the GFRP specimens

Parameter Unit
Rise time µs
Duration µs
Frequency kHz
MARSE -
Counts -
Amplitude dB
Absolute energy aJ
RMS mV

4.2.3. Data matching
Due to the fact that the AE system and the fatigue machine were not connected or synchronised in time, the
fatigue load sequence had to be matched to the AE events. This was done based on the assumption that the �rst
high-energy AE event was associated with the �nal failure of a specimen. At the EOL, multiple high energy
AE events were measured. Because most were within a second of each other, the �rst occurrence was taken,
assuming that this depicted failure.
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Figure 4.8 shows the di�erence in timestamps for the two machines, as well as the measured sti�ness and
absolute energy of AE events. The large jumps in sti�ness indicate failure; the machine stops right after this
behaviour. Two AE events occur which have energies above 10 pJ (107 aJ), which are considered high-energy
events, considering the scale of other events which occur a few minutes before these events. Hence, the di�er-
ence in time between the �rst high-energy event and the last fatigue machine measurement is used to match
these two �les. While this method is not accurate to several milliseconds, it is accurate enough for this research;
since all AE events will be grouped into bins of 500 load cycles, which at 5 Hz take 100 s.

Figure 4.8: Measured sti�ness and AE events for specimen 6, near its EOL

4.3. Computational setup
While experiments above were conducted in a lab, the computational e�orts behind this thesis also have to be
regarded as an experiment.

All calculations were done in Python 3.7. Python, together with Spyder (an integrated development envi-
ronment) and a group of packages (such as Numpy, Scipy, matplotlib), is obtained through Anaconda, which
is free package management software. Python is selected due to the fact that it is open-source and free to use.
Furthermore, a wealth of information and packages for Python can be found online, especially regarding data
analysis and machine learning.

Two hardware systems are used. The �rst is a laptop with an i5 processor, 20 Gb RAM and a 1 TB hard disk.
This laptop is primarily used for feature processing, results analysis and training the statistical model. The
second system is the high performance computing (HPC) cluster from DTU. The cluster, available for students
and employees of DTU, lets users queue jobs of up to 24 hours, on up to roughly 100 cores at a time (based on
best practices). Through the use of job scripts, multiple cores could be run in parallel. All training sessions for
the GP regression, and the cross-validation runs for the recurrent neural network (RNN) could be performed
in the timeframe of roughly a week.

4.4. Features
This section covers the features which were extracted from the experimental data. First, it is brie�y discussed
how all features are standardised before they are fed into the models. Next, the acoustic emission features are
discussed, and especially their aggregation to come to new features. The section is concluded with features
which are speci�c to the CFRP or GFRP data-set.

4.4.1. Standardisation
Before features are fed into either the GP regression or the RNN, they are �rst standardised (equation (4.2)).
This means that for each feature vector x the mean µ is subtracted, followed by a division over the standard
deviation σ of the feature.

xi ,s =
x −µi

σi
(4.2)

In this way, all values are centred around 0 and are all in the same, low order of magnitude, generally
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between -5 and 5. This is done because, in this way, there are no massive di�erences in the scales of input
features, which may o�set the models; the weights of the models do not have to be extraordinary high or
low. The means and standard deviations are saved in order to scale the model predictions, which are also
standardised, back to actual values.

The standardisation is, of course, performed based on data which the model is ’allowed to see’. If for example
a GP regression would be trained on series A and B, and tested on C where 50% of C is already known, the µ
and σ would be determined on A, B, and the �rst 50% of C. In this way, the methods can still be used for in-situ
prognostics.

4.4.2. Acoustic emission data
As discussed above, all events are grouped in bins of 500 cycles. It was decided not to perform wavelet analyses
on the AE events. Therefore, the observed events and their describing parameters make up the AE data which
will be used. At �rst, these AE events seem to be of a random nature. Take for example the number of events
per bin, shown in �gure 4.9. Although there is a high concentration of events at lower numbers of cycles, this
time-series is hard to analyse. It can, however, be fed into a RNN, which can identify complex relations in the
data. These time-series do not seem to be very suitable for regression purposes, since they are noisy and are
not monotonic.

Figure 4.9: AE events for the CFRP specimens, per bin of 500 cycles

To get a better understanding of the events inside the specimens, a set of features which show monotonic
behaviour would be more appreciable. Monotonicity is when the function is not decreasing or increasing.
Hence, a monotonically non-increasing function is where each value yi ≤ yi−1. Vice versa, a monotonically
non-decreasing function is where yi ≥ yi−1. The available data can be easily altered to make it monotonic; by
taking the cumulative sum of all events over time. This operation gives a better view of events over time, not
only for regression models but also for humans. Taking the same series as above, this results in �gure 4.10.
These series are better to perform a regression on, due to their increasing values. This is the reason why in the
GP regression, a cumulative parameter is used.
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Figure 4.10: Cumulative AE events for the CFRP specimens

Next, the di�erent studies discussed in section 2.2 classify damage mechanisms according to AE parameters.
Because each study uses di�erent bin sizes to classify these, as well as di�erent parameters, it is decided to take
the mean of an AE parameter per event, within the bins of 500 cycles. If there is a trend in these series, it could
be picked up by the RNN. This would, however, not immediately imply that a similar failure mechanism is the
cause of this trend.

Three aggregated parameters are introduced. The research of Eleftheroglou and Loutas (2016) uses a win-
dowed cumulative rise time/amplitude on the CAF part of this data-set. This is, however, also a noisy and
non-monotonic feature. Therefore, its cumulative sum was used in this research.

From further feature exploration, it was found that when dividing this cumulative feature over the number
of passed cycles, a feature was created which converges later in life. This feature is thus calculated by taking
the rise time/amplitude ratio per bin of 500 cycles. Of this series, the cumulative sum is taken. This results in
the cumulative rise time/amplitude discussed above. An extra step is now to divide this over the passed cycles
at the respective point in time. The feature is shown in �gure 4.11. The same operation is performed over
the energy/counts ratio, in �gure 4.12. There is no motivation from a physical standpoint to introduce these
features. These features also do not aid in the prediction of the �nal failure. Although they converge to roughly
the same y-value, the time which they spend at this value varies. However, it can be said that if they have
not converged, this could mean that the specimen is not near its EOL yet. Therefore, these features contain
information about the fact that a specimen is in the early stage of its life.

Figure 4.11: Cumulative rise time/amplitude, divided by the passed cycles for the CFRP specimens
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Figure 4.12: Cumulative energy per count, divided by the passed cycles for the CFRP specimens

From these plots, it can be seen that not only the lifetimes of the specimens are varying, but the trends and
scales in the AE data as well. As expected, this will become challenging in the RUL predictions, likely increasing
the uncertainty that goes with predictions.

4.4.3. CFRP specimens
For the CFRP specimens, a combination of AE features and load data can be used as input. All AE parameters,
as well as their cumulative sum, mean per event, and the three aggregated features result in 23 AE features.

For both CAF and VAF loading pro�les, each 500-cycle time-series of the load had to be converted to a set
of features. While the 500 highs and lows per block could in theory all be linked to a set of input nodes in a
RNN, this would result in a large number of inputs and therefore trainable parameters. Another option could
be to feed these time-series into a preceding neural network (NN), which would then output a single value to
the main RNN, representing a sort of impact related to the loading, if the model is able to distinguish this.

This would, however, overcomplicate the matter for now. Therefore a more simple, physics-based approach
is taken. From Miner’s rule, a cumulative damage model, a piece of material can endure a number of cycles
in di�erent stress ranges ni . Based on how much cycles the material can sustain in this range Ni , the damage
fraction is calculated as ni /Ni . The damage fractions can then be summed up for each stress bin, resulting
in the total damage. Because it is unknown how much cycles the coupons can endure in each stress bin, the
damage fractions cannot be used as an input in the models. What is possible, however, is giving feeding the
model numbers of cycles in speci�c load ranges.

The load ranges were grouped in blocks of 5 kN, resulting in 7 bins, linearly ranging from 5 kN to 40 kN.
Blocks of 5 kN were chosen as not to give too much extra inputs to the RNN. The numbers of half-cycles per
load range were determined using rain�ow counting. This is made possible by fatpack, an open-source fatigue
analysis package for Python (Frøseth and Capponi, 2019). A histogram of these blocks is shown in �gure 4.13.
The majority of the loads is situated in the three highest bins. Specimen A010 is responsible for the largest
portion of the 15-20 kN bin, due to the di�erent load path (NE6). A handful of cycles can be found in the bins
from 5-10, 10-15, and 20-25 kN, containing respectively 14, 171, and 1506 cycles.

Now, these seven additional features can be used in the predictions, each containing a number of cycles in
this load range. In the perfect scenario, a RNN will attach higher weights to the inputs of the higher load bins.
In the case where training data consists of solely specimens under CAF, the loads are all in the same bin, with
other bins containing zeros. Because this would not lead to any added value, they are not included as input
parameters for this training case.

The AE features combined with the load bins and the elapsed cycles result in a total of 30 input features for
models trained on VAF and the combination of CAF and VAF data. When trained on solely CAF, there are 24
input features.
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Figure 4.13: Histogram of the number of cycles in di�erent load bins, for the CFRP specimens under VAF loading. The bins of specimens
are stacked upon each other.

4.4.4. GFRP specimens
In the GFRP testing campaign, there are two additional AE parameters; the frequency and MARSE. This results
in a total of 29 features, using the same aggregation methods as above.

When again investigating the cumulative events (�gure 4.14), the scale of the di�erence in failure times
between the specimens can be seen. When compared to the CFRP data, there are periods with low AE activity
in these specimens, as well as a di�erence in the scales of the number of events, and fatigue lifetime.

Figure 4.14: Cumulative AE events for the GFRP specimens

In order to possibly enhance these predictions, load features can be used as additional inputs. Because the
fatigue loading is constant for this data-set, the minimum- and maximum load are used as inputs, as well as the
stress ratio. This leads to a total of 33 features for the GFRP data-set when the fatigue lifetime is also included.
When solely training on AE data and fatigue lifetime as time-scale, 30 features will be used.





5
Results and discussion

This chapter covers the results of each model category, as well as the results of the comparison between the
di�erent models. First, the results from each model are discussed, not only the remaining useful life (RUL)
predictions, but also results of intermediate steps in order to get a grasp of the inner workings of these models.
Next, a comparison is made between the models, determining which is most �t for prognostics on specimens
under variable amplitude fatigue (VAF). Finally, the results from the case study on varying load levels are
discussed.

5.1. Statistical model
This section covers all results from the statistical model. First, the RUL predictions are analysed for this model.
Some predictions are shown in this section, but due to the number of specimens, the ones not mentioned in this
section can be found in appendix B.1.1. This is followed by a comparison of the impact of training data on the
quality of the predictions in order to answer the research questions. The section is concluded with a discussion
on this model category.

5.1.1. Remaining useful life predictions
From �gure 3.1a in section 3.1.1, it can already be concluded that the failure times of the specimens are scattered.
Furthermore, no clear distinction can be spotted between specimens under VAF and constant amplitude fatigue
(CAF) loading. Therefore, it can be expected that the precision of the predictions will be relatively low using
this method. Furthermore, since the failure times of CAF loaded specimens are relatively concentrated, lower
precision can be expected for cases when the model is based on VAF (together with CAF) data. The accuracy
may be positively impacted, however.

The statement concerning precision can immediately be con�rmed by taking one of the predictions where
the distributions are based on CAF data only. Take for example specimen A001 in �gure 5.1. Figure 5.1a shows
the �tted probability density function (PDF) on the CAF data, as well as where specimen A001 lies. Again,
note that specimen A001 is not used for �tting this PDF, as that would insinuate having prior knowledge of its
failure. It can be seen that A001 is not a complete outlier. Combined with the fact that A001 lies to the right of
the peak of the PDF, results in a conservative static prediction.

The 95% prediction interval (PI) of both the static and adapting predictions, however, is extremely wide.
With an end of life (EOL) of just below 60,000 cycles, having PIs of 70,000 cycles is far too great, especially
when put into contrast with the earlier de�ned required con�dence of ±5,000 cycles. This results in the fact
that the probability mass contained in the required con�dence interval is low.

The behaviour of the adapting predictions can also be seen in �gure 5.1b. As time progresses, the prediction
converges, but not to 0 cycles. This can be explained by equation (3.6) in section 3.1.3. This cumulative distri-
bution function (CDF) is always zero at the point of observation s. Therefore the expectation, as well as the
low bound of any PI, will always lie in the future; the specimen is predicted to never fail. The convergence of
the PI can be explained by the hazard function of the gamma distribution, which converges later in life. Taking
a Weibull distribution with a shape parameter >1, for example, would lead to convergence in the PIs, although
the function will also not cross zero.
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(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure 5.1: Results of the statistical model, trained on CAF data, tested on specimen A001

Whereas specimen A001 is an average specimen, there are also outliers in the data-set. Being an outlier
has a great in�uence on the accuracy of the model. The predictions for specimen A006, trained on CAF data,
are shown in �gure 5.2. Since this model is trained on CAF only, the PDF shares the same parameters with
the PDF for the prediction above. The accuracy of these predictions is low, which can already be determined
from the fact that this specimen lies far away from the majority of the probability mass in �gure 5.2a. The fact
that this prediction is far too conservative may lead to excessive maintenance, but not to unexpected failures
of components, should this model be used in practice.

Furthermore, the adapting prediction in �gure 5.2b makes one remind of the saying: ’a broken clock is
right twice a day’. Because it converges, the expected RUL will always cross the actual RUL if the EOL of the
specimen is located to the right of the training data’s median.

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure 5.2: Results of the statistical model, trained on CAF data, tested on specimen A006

The statement above is of course not the case when a specimen’s EOL is shorter than average, as in for
example specimen A010 in �gure 5.3. In this case, the adapting prediction’s convergence will never hit the actual
RUL. This is also one of the specimens for which the prognostics using this method is dangerous. Whereas
the predictions for the specimens above are conservative, both the static and adapting predictions are too
optimistic in this case. In real-world applications, this could lead to catastrophic failures of components before
maintenance or replacement of the component is expected to be required.

From this initial investigation on specimens which are trained on CAF data, it can be concluded that there
are multiple �aws to both the static and adapting predictions. First, the PIs are very wide, spanning 70,000 cycles
for models trained on CAF data. Next, the accuracy is purely dependent on the distribution of the training set.
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(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure 5.3: Results of the statistical model, trained on CAF data, tested on specimen A010

This is -of course- also the essence of a purely statistical model. Finally, the adapting predictions are not useful
for prognostics. Since they will essentially never expect failure, a decision for maintenance cannot be made
based on these predictions. Therefore for the comparison of training data below, the adapting predictions are
not included in the analysis. For the reader’s interest, tables containing the performance metrics of the adapting
predictions can be consulted in appendix B.1.2.

5.1.2. E�ect of training data
In order to analyse the impact of di�erent training data sets on the static predictions, three prognostic measures
are used here; mean squared error (MSE), mean absolute percentage error (MAPE) and cumulative bounded
probability mass (CBPM). All three metrics are shown in �gure 5.4. Convergence is not analysed here, since
static predictions do not converge. Furthermore, due to a lack of prognostic horizon (PH) in all predictions,
this is also not taken into account in the comparison. The fact that there is no PH is, however, something
which should not be overlooked. Finally, because the predictions are not converging/diverging, the cumulative
relative accuracy (CRA) is essentially the same as the MAPE and is therefore also omitted in the analysis. Tables
containing all metrics are shown in appendix B.1.2.

A few specimens stand out. First, specimen A006 has the highest MSE and generally lowest CBPM. Not only
is this an outlier compared to the CAF specimens, as shown in �gure 5.2a, but also to the VAF data, although
less. Its CBPM shows that having VAF data as training data is best for this metric. This is because with this
data-set, the PDF is wider, and therefore more probability mass is located at the tail, where the actual RUL of
A006 is located.

The second specimen which stands out is A005, with low MSE and MAPE compared to the other specimens,
when trained on VAF data. Specimen A005 is a specimen which lands exactly on the expectation of the PDF
drawn on the VAF data, thus resulting in low MSE and MAPE. With a MAPE of 6%, this could be considered an
extremely good prediction. Yet, the CBPM is not higher for this training set at all. This phenomenon is due to
the low precision of this type of model; the accuracy does not make a signi�cant di�erence on the CBPM since
the PDF of the predictions are so spread out.

Finally, specimen A010 is the one with the shortest life. Because the distribution of CAF failure data is
centred at a relatively low number of cycles, the predictions for this low outlier are relatively good. In the VAF
data-set, however, specimens are more spread out and have higher numbers of cycles at failure. This causes
worse predictions for this data-set on specimen A010.

At �rst glance, the VAF data seems to provide better predictions than the other two training sets. This result
is, however, very dependent on the testing specimen, as specimen A005 and A010 tell, and could change when
more specimens are tested. This can be seen in the di�erence in performance over all the specimens, as well as
the non-consistency in the best models per specimen. Therefore, training on the most available data, thus on
CAF and VAF, can result in ’safer’ predictions, which are more likely to cover outliers.
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(a) MSE (b) MAPE predictions

(c) CBPM

Figure 5.4: Three performance metrics of the static statistical model, plotted on log-scales
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5.1.3. Discussion
The results from this statistical analysis show that there is a signi�cant spread in the data, causing low precision
of predictions, as well as high sensitivity for outliers. When comparing the static and the adapting models, it can
be concluded that the adapting versions are not �t for prognostics, even though the performance metrics for the
adapting model may be better in speci�c cases. This is because the adapting predictions never predict failure,
and can therefore not be used in practice. This said the static predictions could be used in practice. However,
the accuracy and precision of this method are low due to the large spread between the samples. Therefore, it
should be used very conservatively. In fact, this method is used in the industry, through the means of safety
factors which are based on the distribution of failure data.

A signi�cantly larger sample set would need to be tested in order to determine whether training on CAF,
VAF or the combination may be better for the results of this method. As of now, the results are too sensitive to
the behaviour of speci�c specimens in order to make the right judgement. This statistical model is, however, a
good baseline model, in order to compare the other models in this thesis with.

An idea for a follow-up study would be to perform more of these CAF and VAF tests and determine the
di�erence in statistical distributions between these two data-sets. If the di�erence is negligible, then it would
not matter if a specimen would be trained on CAF and/or VAF data. If there is a di�erence, it would be more
suitable to train on VAF only, since this would represent the distribution of the testing specimen better. The
test results would, however, be restricted to this load level and setup of VAF load path.
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5.2. Gaussian process regression
This section covers the results from the Gaussian process (GP) regression. First, the performance of the Ma3+lin
and Ma5+lin kernel combinations is compared. This is followed by the analysis of RUL predictions and the e�ect
of the correlation adjustment. The e�ect of training data on the overall performance is then covered. Finally,
there is a discussion on the potential and shortcomings of the model. All �gures which are relevant are covered
here; others have been included in appendix B.2.

5.2.1. Kernel performance
Two kernel functions were used, as well as two di�erent training sets. Therefore, before comparing the per-
formance of the RUL predictions, it is good to know what happens in the preceding phase in the predictions.
At each point in time when a prediction is made, a time-series of the cumulative energy is predicted. The qual-
ity of these predictions can be assessed by taking the MAPE over the actual predicted part of the series. The
comparison is based on the MAPE since MAPE is a scale-independent measure, unlike the MSE.

Take, for example, specimen A001 after approximately 15,500 cycles. The predictions of cumulative energy
are shown in �gure 5.5. The models in the �gure are trained on VAF data and use the Ma3+lin and Ma5+lin
kernel combinations. The �rst observation which can be made is that the former model performs better than
the latter. Note that these predictions are not only made based on this series but also on the cumulative energy
until failure from the other VAF specimens.

The better performance of �gure 5.5a is not only in the sense that its error is lower than that in �gure 5.5b
(MAPE of 18.5% versus 25.0%), but especially because it predicts physical behaviour, i.e. the cumulative energy
prediction is monotonically increasing. While this non-physical behaviour is undesired, this can unfortunately
not be enforced through a GP.

(a) Ma3+lin kernel combination (b) Ma5+lin kernel combination

Figure 5.5: Cumulative energy predictions by the GP for specimen A001 at 15,500 cycles, trained on other VAF data

Another issue is that of the local optima, as discussed in section 3.2.3. Two consecutive predictions are
shown in �gure 5.6. The log-likelihood of the second prediction (�gure 5.6b) is roughly 20% higher, and the
prediction is much better (MAPE of 2.6% versus 114.5%). It is therefore likely that all 20 replicates of the predic-
tion at around 27,500 cycles have stumbled upon local optima, with this replicate resulting in the best possible
log-likelihood. Due to the high dimensionality of the hyperparameter search space, it is impossible to know
where and if a better (global) optimum can be found.

In order to get a grasp of the performance of the di�erent kernel combinations and the e�ect of training data,
a comparison was made between all combinations. The results of this analysis are shown in �gure 5.7. Note
that the MAPE is plotted on a logarithmic scale, due to the vastly di�erent magnitude of the errors between
di�erent predictions. This shows that although median MAPEs are in the order of 10%, there are numerous
outliers for each combination. A possible explanation for these outliers is that their models’ hyperparameters
were found at local optima.

When inspecting the values for the median, and 1st and 3rd quartiles, a tentative judgement can be made.
These three metrics are all lowest for the Ma3+lin kernel combination for models trained on only the VAF
data-set. Because these numbers are relatively close, a clear distinction cannot be made yet. Hence, the RUL
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predictions of all four will be analysed. The exact values can be found in appendix B.2.1.

(a) Prediction after approximately 27,500 cycles, logp
(

y
∣∣∣ X

)
= 1479 (b) Prediction after approximately 29,500 cycles, logp
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y

∣∣∣ X
)
= 1817

Figure 5.6: Cumulative energy predictions by the GP with Ma5+lin kernels for specimen A007, trained on other VAF data

Figure 5.7: Box plot of the MAPE of the cumulative energy predictions by the GP model, grouped by kernel functions and training data. The
green line indicates the median, with the box encapsulating the 1st and 3rd quartiles Q1 and Q3. The whiskers extend up to 1.5(Q3 −Q1).
Outliers are plotted as dots.

5.2.2. Remaining useful life predictions
With predictions for the cumulative energy made at each point in time, these series could be converted to RUL
estimates. The main issue from the predictions in section 5.1 arises again; the large spread in the failure data.
This could also already be seen in the histogram of the cumulative energies at failure in �gure 3.11. This spread
impacts the PDF of the cumulative energy threshold for failure, and therefore also the PI width of the RUL
predictions. A few varying examples of RUL are shown here. The ones which are omitted can be consulted in
appendix B.2.2.

An example of this phenomenon is shown in �gure B.21. Whereas the expected RUL follows the general
decreasing trend, the 95% PI is extremely wide. The probability density of the predictions is therefore low,
resulting in a low π

[
r̂n

]∣∣α+
α− . This, in turn, leads to the fact that there is no PH for all models in this class.

The fact that the energy threshold is based on the distribution of failure energies also implies that outliers
are often not modelled correctly. An outlier which appears at the far right of the distribution will always yield
conservative predictions, whereas an outlier on the low end of the spectrum will yield too optimistic predictions.
Specimen A006 is one of these outliers on the far right, with an EOL of 188,000 cycles and cumulative energy of
1.79 Geu at failure (see table 4.5). Because the majority of specimens lie at roughly one-fourth of these values,
the specimen is expected to fail much earlier than others. Next to this, there is a sharp increase in cumulative
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energy at around 10,000 cycles. This can be seen in �gure 5.8b. The measured (and predicted) cumulative
energies acquire values above the mean of the failure threshold distribution, and therefore it is already likely
that the specimen fails after this point.

(a) RUL prediction from plain GP regression (b) Cumulative energy prediction after approximately 11,500 cycles

Figure 5.8: RUL and cumulative energy predictions by the GP regression with Ma5+lin kernels, trained on VAF data, tested on specimen
A006

5.2.3. Correlation adjustment
The e�ectiveness of the correlation adjustment on the failure threshold varies. Going back to the example in
section 3.2.5, an improvement was shown in the expectation of the threshold PDF at 17,500 cycles; it was closer
to the cumulative energy at failure than that of the original distribution.

The RUL predictions in �gure 5.9 show that the expected RUL is indeed ’pulled towards’ the actual RUL
of the specimen at this point. The predictions are 17,700 and 26,600 cycles for the plain and adjusted model
(�gures 5.9a and 5.9b respectively), compared to the real RUL of 47,500 cycles.

Especially near the EOL there are �uctuations in the adjusted predictions. Because this method is applied
after the prediction of the cumulative energy, these �uctuations can be completely attributed to the adjustment
of threshold PDFs. From this region, it becomes clear that the adjustment does not only lead to more accurate
predictions of RUL.

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure 5.9: RUL predictions by the GP regression with Ma3+lin kernels, trained on VAF data, tested on specimen A005
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In order to quantify the performance of the PDF adjustments, the change in the MAPE between the expec-
tation of the energy threshold PDF TE and actual failure energy E f is shown below in �gure 5.10. In a more
readable fashion, this change ∆ at point i is calculated as:

∆i =


∣∣∣∣∣∣∣

E
[

TE ,or i g i nal ,i

]
−E f ,i

E f ,i

∣∣∣∣∣∣∣−
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E
[

TE ,ad j usted ,i

]
−E f ,i

E f ,i

∣∣∣∣∣∣∣
 ·100% (5.1)

A positive ∆i will therefore indicate better performance of the adjusted distribution versus the original, and
vice-versa. The distribution of ∆ is shown per model type and training set in �gure 5.10. The �gure is zoomed
in; some outliers are therefore not showed. The full �gure is shown in appendix B.2.3. Multiple conclusions
can be drawn. First of all, the adjustment is not signi�cantly improving the expectation of the threshold. Each
median is close to zero, and the distribution is roughly symmetrical around the zero-line. This means that
roughly half of the adjustments lead to better E

[
TE

]
, while the other half leads to worse E

[
TE

]
.

Next, the e�ect of the adjustment seems to be larger for the models which are trained on VAF data only,
both in the positive as well as the negative direction. The 1st and 3rd quartiles are wider for these models. This
can be explained by the fact that the number of specimens is higher when the distribution is based on both CAF
and VAF. With a higher number of specimens in the sample set, the e�ect of removing a specimen or doubling
its weight has a lower e�ect on the new distribution.

Two variants can be written o� after this; the Ma3+lin model trained on VAF and the Ma5+lin model trained
on CAF and VAF. These versions show a increase in respectively median (0.56%) and mean (0.06%) MAPE after
applying the correlation adjustment. For the other two, the largest mean improvement can be found in the
Ma5+lin model, trained on VAF data. The mean improvement is MAPE of 2.6% versus 1.8%. The median of the
other (Ma3+lin, on CAF and VAF) is slightly higher; 0.54% versus 0.41%.

Figure 5.10: Zoomed in box plot of the change in MAPE (expected energy threshold versus actual failure energy) by applying the correlation
adjustment to the threshold PDF. The di�erence is calculated by M APEor i g i nal −M APEad j usted .

5.2.4. E�ect of training data and overall performance
By now it is clear that for all variants of the GP regression, there is a great deal of variability in the predictions,
as well as uncertainty. Still, it must be decided what the best possible con�guration is. This is done according
to two prognostic metrics; the CBPM and CRA. They are shown in �gure 5.11. The convergence of accuracy
and prediction precision is not analysed for this set of models. This is because of the fact that sometimes a
cumulative energy prediction seems to land at a local optimum at the last prediction. The accuracy may be
impacted by this and/or the PI width may skyrocket. This results in a �nal value which is then worse than the
�rst, resulting in no convergence. Because this phenomenon seems to occur randomly, including these metrics
in the comparison would not be reasonable.

Both metrics are plotted on a logarithmic scale, due to large di�erences in the magnitude between the
metrics of specimens. The CRA (�gure 5.11b) was smaller than zero for all cases. This means that the di�erence
between the predicted and true values was generally larger than 100%, which is unacceptable.
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A general trend can be observed for most specimens throughout all the model variations. The samples with
average lifespans all show relatively the same performance. Specimen A006, the specimen with the longest
life, has by far the lowest CBPM and also shows a low CRA; all models do not seem to be able to cope with
this outlier. There does not seem to be a specimen whose performance in both metrics is clearly a�ected by
whether its model is trained on just VAF, or also on CAF data.

(a) CBPM

(b) CRA

Figure 5.11: CBPM and CRA for all RUL predictions by multiple variants of the GP regression model

What happens in the case of specimen A010, the specimen with the shortest life, is peculiar. While the CRA
is extremely low, the CBPM is in models trained on the combination of CAF and VAF data the highest at around
20%. The low CRA can be explained by the fact that this specimen is another outlier, and that the expectation of
the threshold PDF is signi�cantly higher than the cumulative energy at the failure of this specimen. This leads
to RUL predictions which are too optimistic. This can be seen in �gure 5.12. Apart from the last prediction,
which is likely o� due to a local optimum causing its energy prediction to hover around zero, there is already a
signi�cant bias. Compared to the predictions for A006 (e.g. �gure 5.8a above) however, the predictions are now
higher than the actual values. Together with the probability of failure distributions which are right-skewed,
this leads to the fact that half of the probability mass is in a relatively small interval, below its expectation.
Therefore, for this specimen, this leads to a part of this ’condensed’ probability mass overlapping with the
required con�dence bounds, causing a relatively high CBPM.

It is impossible to deliver a �nal verdict based on these varying results per specimen. Therefore in order
to get an estimation, the means are taken to select the best variation of the GP regression. While also shown
in �gure 5.11, the exact means can be seen in table 5.1. What could already be seen in the �gure is that the
Ma3+lin kernel combination, trained on CAF and VAF perform best. Table 5.1 shows that the adjusted threshold
PDFs perform marginally better than the ’plain’ ones, con�rming the conclusion from �gure 5.10. Again, these
results are dependent on these speci�c specimens, and there is no general trend in all specimens. Therefore, a
conclusion on whether training on a speci�c data-set is more favourable than on another set cannot be drawn.
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Figure 5.12: RUL prediction by the plain GP regression with Ma3+lin kernels, trained on CAF and VAF data, tested on specimen A010

The tables containing the performance metrics of each RUL prediction, for all variations of the GP regression
can be found in appendix B.2.4.

Table 5.1: Mean CBPM and CRA for variations of the GP regression model

Model variation Mean CBPM [%] Mean CRA [%]
Ma3+lin, VAF 6.64 -1.17e+03
Ma5+lin, VAF 5.68 -748
Ma5+lin, VAF, adjusted 5.74 -725
Ma3+lin, CAF and VAF 7.12 -521
Ma3+lin, CAF and VAF, adjusted 7.48 -484
Ma5+lin, CAF and VAF 6.96 -1.41e+03

5.2.5. Discussion
From these results, it can be concluded that the current implementation of a GP regression using acoustic
emission (AE) data is not suited for prognostics on the current sample set. CBPMs from 0.1% to 10% and
negative CRAs do not lend themselves for precise and accurate enough predictions. Referring back to the
research questions, the performance of this type of model is marginally improved when training it on both
CAF and VAF data, instead of just on VAF data, although this is highly dependent on individual specimens.

For the correlation adjustment, there is an improvement both in terms of median and mean MAPE of ex-
pectations of the energy threshold. It does vary per kernel function and training data-set. Therefore, more
research should be done to con�rm the hypothesis that this could lead to better predictions or to reject it alto-
gether. One could, for example, analyse the e�ects of di�erent weight functions, or the e�ect of drawing new
probability distribution types over the weighted data. If the hypothesis can be further con�rmed, this method
is an excellent add-on to the GP regression, due to the fact that the correlation can be so easily extracted from
the model.

There seem to be four major issues in this model category. The �rst two are related to the cumulative energy
predictions. Local optima in the hyperparameter search space cause predictions which are not in line with other
predictions at surrounding points in time. This causes great variability in the RUL predictions. A more intensive
study on hyperparameter optimisation, or possibly the e�ect of reducing the number of hyperparameters could
possibly lead to an increase in performance concerning this issue.

The second issue is that some cumulative energy predictions contain non-physical behaviour, i.e. a non-
monotonically increasing cumulative energy, or negative cumulative energies. Again, this may lead to vari-
ability in the RUL predictions. While the linear kernel was hypothesised to enforce this behaviour, it was not
successful in all predictions. A possible solution would be enforcing a mean function in the GP, instead of
assuming a mean of 0, as is done now. Another possibility would be by enforcing a monotonically decreasing
RUL prediction, as done in section 3.3.6. However, predictions would become very conservative; a sudden drop
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in the predicted RUL cannot be undone. A compromise could be made by applying a smoothing function, or
by allowing for maximal increases in RUL of for example 10%. Furthermore, the custom implementation of
this model makes it probably sub-optimal with regards to the �nding of the global optimum. A study could
be performed in which more focus could be laid on �nding an optimal optimisation algorithm of the model’s
hyperparameters.

Then, the de�nition of the energy threshold as a probability distribution causes wide PIs. Although this is
the purest form of setting a threshold, it is not one which results in the best predictions, since the predictions
are now ’indirect’; an additional uncertainty is introduced. The adjustment of the distribution for correlation
improves the results somewhat, but not signi�cantly. Two options are available for possible improvements.
Firstly, more could be experimented with the adjustment of the threshold PDF. Weights could be altered, or
potential outliers could be excluded to make the PDF narrower. Secondly, a step back could be taken to a hard
threshold, based on for example a conservative maximum allowable cumulative energy. Take, for example, the
research by Richardson et al. (2017), where a threshold is set based on the ability of the specimens to function.
This does, however, not predict failure of a sample.

These issues make this model not feasible for use in real applications. The high variability of RUL predictions
would be hard to interpret for an operator who would have to make decisions on repairs or replacements. This
should be done on the �rst time a RUL prediction crosses zero, but this often happens early in the life of a
specimen due to this variability. The high uncertainty that goes with the predictions is another pitfall. Because
maintenance decisions are tended to be done conservatively, wide PIs would mean very early replacement. On
the other hand, when PIs would be narrow, there would be more certainty of a component failing in the short
term. In the �rst case, and thus for this model, this would result in signi�cantly higher maintenance costs
compared to the second case, since equipment can be utilised longer with high enough safety margins.

Finally, due to the O
(
N 3

)
complexity of the model, the computational power required for large data-sets

grows exponentially. This is a major issue for validation. In this thesis, validation for this model is done
based on the �nal results. In order to make an unbiased comparison between di�erent kernel functions and
possibly correlation adjustments, a two-level cross-validation scheme should have been employed, just as used
in algorithm 2, in section 3.3.4. This issue is the cause of long training times. Since the model is trained on
the available time-series of the test specimen as well, the model has to be re-trained every time more data
becomes available. Depending on whether a model was trained on only VAF, or also CAF data, this would take
5 or 30 core-hours on the Danmarks Tekniske Universitet (DTU) high performance computing (HPC) cluster.
In practice, this would mean that if this method were to employed, low-dimensional training data has to be
fed into the model, or intervals between predictions should be kept su�ciently large for the model to have
enough time to make predictions before new data comes in. Some computational time could be shaved o�
due to the fact that this model was now written in Python, for the purpose of this thesis. By writing it in a
lower-level computer language and making use of faster optimisers and algorithms for matrix inversion, time
can be saved. However, this does not eradicate the O

(
N 3

)
complexity of the model. Even if this method were to

provide accurate and precise predictions, this issue holds it back from actual use in applications which require
predictions more than once a day.
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5.3. Recurrent neural network
The last model to be discussed in this series is that of the recurrent neural network (RNN). The determination
of model architectures is covered �rst. Next, the results of the sensitivity analysis are discussed. With the inner
workings of the model covered, the RUL predictions are analysed. Again, the e�ect of training data on the
model’s performance is covered, and the section is concluded by a discussion on this model category.

5.3.1. Cross-validation
From the cross-validation, the optimal model architectures and number of training epochs were determined,
such that the �nal model could be constructed. It was decided to work in steps of 10 epochs, such that very local
drop-o�s were avoided. A number of, for example, 357 epochs would be too precise to train a new model on;
what if the optimum of the new model lies at for example 359 epochs? Each case from the research questions
will be discussed below. The optimal numbers of hidden nodes and epochs, as well as their corresponding
validation losses, can be consulted in appendix B.3.1.

The �rst validation set is that from the case where a model is trained on solely CAF data. As discussed in
section 3.3.4, the generalisation error can be calculated over all CAF specimens in the inner loop, and a single
model can then be employed to perform predictions on all VAF specimens. The estimated generalisation errors
for this case are shown in �gure 5.13.

It can be seen that the more complex a model is in terms of the number of hidden nodes, the earlier the
model starts to over�t. Furthermore, the error generally increases with the complexity of the models. This
implies that there are no complex relations in the data which are picked up by the model, and by increasing the
complexity, there is just over�tting. From this analysis, the optimal model architecture for models trained on
CAF data contains 1 hidden node at each activation function in the long short-term memory (LSTM) cell, and
the model should be trained for 320 epochs.

Figure 5.13: Estimated generalisation errors for the RNN, trained on CAF data

Next, the results for the cross-validation loop for VAF training data are shown in �gure 5.14. Keep in mind
that since this is the generalisation error, which is established in the outer cross-validation loop, the error is
calculated over all VAF specimens except for the one which is left out. In the case of �gure 5.14a for example,
this generalisation error is established based on validation of A005, A006, A007, A010 and A017. Then from the
lowest generalisation error for this set, the architecture for A001 is determined. Therefore, six di�erent optimal
architectures emerge for these six VAF test specimens.

The trend concerning model complexity from above can be spotted for this set of specimens as well. Gener-
ally, models with fewer nodes show lower generalisation errors. There are however exemptions for specimens
A005 and A007 (�gures 5.14b and 5.14d) where the subsets without them have the lowest generalisation errors
for 16 nodes. Also, not in all specimens, a clear optimum of epochs can be spotted, as for example in the subset
belonging to A005. In order to come to an unbiased decision on the number of epochs, the absolute minimum
from each series was taken. Finally, in the subset where specimen A010 is left out (�gure 5.14e), there is a pos-
sible optimum of more complex models at a higher number of epochs than 1000. This region was, however, not
explored due to the additional computational cost. Within the de�ned 1000 epochs, a more simple architecture
did prove to �nd an optimum, and therefore this was the go-to architecture in this case.
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(a) Specimen A001 left out (b) Specimen A005 left out (c) Specimen A006 left out

(d) Specimen A007 left out (e) Specimen A010 left out (f) Specimen A017 left out

Figure 5.14: Estimated generalisation errors for the RNN, trained on VAF data
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Finally, the cross-validation results for the last case, training on CAF and VAF data are shown in �gure 5.15.
Although there is much more variance between model complexities, the general trend of simplicity and lower
generalisation errors is present again. When comparing this to the generalisation errors above, it can be seen
that adding the CAF data does not necessarily result in signi�cantly lower generalisation errors. It could be
possible that having CAF and VAF training data does not lead to signi�cantly better results. This is just a
preliminary statement; the RULs should be analysed before any conclusions can be drawn.

Furthermore, three out of six cross-validation loops show lower generalisation errors near 1000 epochs. For
these specimens, it could have been investigated if more epochs would lead to lower validation losses, or if a
change in learning rate could lead to earlier optima.

(a) Specimen A001 left out (b) Specimen A005 left out (c) Specimen A006 left out

(d) Specimen A007 left out (e) Specimen A010 left out (f) Specimen A017 left out

Figure 5.15: Estimated generalisation errors for the RNN, trained on CAF and VAF data

5.3.2. Sensitivity analysis
Using the perturbation method, the e�ect of changes of input parameters on the MSE loss of the model was
investigated. First, the actual changes in MSE loss were plotted. An example for the models trained on the
CAF data-set is shown in �gure 5.16 below. This �gure is zoomed in to get a better view of the majority of the
changes. Therefore, some outliers are excluded. The full �gure can be seen in appendix B.3.2.

A counter-intuitive observation is made; perturbations lead to decreases in MSE loss as well, while it would
be expected that perturbations would always lead to an increase in MSE. However, it is also possible that a
change in the input results in an output value which is closer to the desired output than the unchanged output
value. If the model would, for example, be too conservative, increasing an input value which is positively
correlated with the output leads to an increase in the output, making the model less conservative and thus
decreasing the loss.

For this set of RNNs, the events in the past 500 cycles before a prediction seem to be most in�uential on the
MSE loss, whereas their cumulative features are rated as less important. While this was not expected, it makes
sense. Within the LSTM, inputs are constantly combined with the previous cell state and output. If a cumulative
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feature is therefore describing the failure process well, it can also be captured by adding the previous cell state
to an input feature, essentially capturing the cumulative feature within the LSTM.

Figure 5.16: Zoomed in sensitivities of the MSE loss of the RNN, when trained on CAF data. The sensitivities are sorted by the width of
the box encapsulating the 1st and 3rd quartiles. The green line indicates the median, with the box encapsulating the 1st and 3rd quartiles
Q1 and Q3. The whiskers extend up to 1.5(Q3 −Q1). Outliers are plotted as dots.

In this set of models, trained on CAF data, the (rise time/amplitude)/cycles feature causes the most spread
in the loss. It can be, however, that this is the case in a few of the models only. Therefore, another comparison
was made. In this comparison, the order of feature importance was saved for every single model. This comes
down to 60 models, for 6 di�erent specimens times 10 repetitions. For each of these models, the ranking of a
feature is shown in �gure 5.17. Here, it can be seen that the (rise time/amplitude)/cycles feature has caused
quite some spread in a few models, but certainly not in all. This is also the case for models trained on VAF, and
CAF and VAF data, as can be seen in �gures 5.19 and 5.20 below.

A feature which ranked highest in this set of models, as well as in the two sets below, is the amplitude/event
ratio. There is a constant trend throughout all models, in which they are sensitive to this ratio. From a physical
perspective, it does align with the results from the research of Huguet et al. (2002); Godin et al. (2004). However,
the average amplitudes all fall in their A-type category, relating to matrix fracture. It can be, however, that the
slight changes in average amplitude indicate di�erent failure mechanisms, but this cannot be con�rmed. On
the other hand, this might also have to do with the spread of this feature’s values (�gure 5.18). Since all values
are relatively close together, adding 50% of the maximum value causes relative outliers, which could have a
larger e�ect on the output of the model than when a feature’s values are more spread out.

It can be seen that almost every feature is at least once ranked lowest, and once highest. This large spread
is likely caused by the fact that these features are not very di�erent from each other. In the general trend, it can
be seen that the features which describe events 500 cycle bins are again ranked higher than their cumulative
counterparts.

Now for the other two sets of models, the load bins are introduced. While the loads are -from a physical
standpoint- a leading factor in the degradation process, this is not fully captured by the RNN, as can be seen
in both �gures 5.19 and 5.20. From �gure 4.13 in section 4.4.3, the load bins which are most common are those
between 25-40 kN. This aligns with �gure 5.19; the fact that there is relatively much input data for these speci�c
loads likely resulted in the fact that the model learnt how to deal with these, giving them high enough weights
in order to cause signi�cant impact on the output. On the other hand, the loads below 20 kN are not common.
Because of this, low weights are attached to this input, and therefore a change in this input does not lead to a
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Figure 5.17: Feature ranking of input features based on their e�ect on the MSE loss of the RNN, when trained on CAF data. The features
are sorted by their medians, with more important features having a higher score.

Figure 5.18: Amplitude/event per 500 cycles for the carbon �bre reinforced polymer (CFRP) specimens
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signi�cant change of the output of the model.
A very important factor in the loads is that all VAF specimen except for A010 share the same load sequence

(table 4.4). Therefore, there is a signi�cant possibility that the weights attached to the load bins are mainly
suited for sequence NE9. Also, it would be worth investigating the in�uence of absolute changes in especially
the load features, instead of relative changes. This is because these relative changes are dependent on the
already available data. In the case of loads, a relative change in the number of cycles in the 5-10 kN bin is much
smaller on an absolute scale than in the 30-35 kN bin, due to the vastly higher numbers of cycles in the latter.

Figure 5.19: Feature ranking of input features based on their e�ect on the MSE loss of the RNN, when trained on VAF data

When the CAF data is added, the relative importance of load bins seems to drop again. This is probably
since in CAF data all loads are situated in the 30-35 kN bin. The values at other bins are therefore 0. When a
model is now trained on this combination, it would likely attach less weight to these bins, since half of them
are relatively irrelevant.

5.3.3. Remaining useful life predictions
Next, the RUL predictions are covered. A few specimens will be discussed in this section, all other failure index
(FI) and RUL predictions can be found appendix B.3.3.

A prediction for a specimen which is not an outlier and which shows desired behaviour is that of specimen
A001. Both the FI and RUL predictions are shown in �gure 5.21. The sawtooth pattern is due to constant FIs
during certain time intervals. Because the RUL is a function of both passed time and the FI (equation (3.48)), if
the FI stays constant and time increases, the RUL increases as well. This sawtooth pattern is especially present
at the start, which is also the case for other specimens. The predicted FI here is higher than the actual FI.
Combined with the low number of passed cycles, this results in very low predicted RULs. From an operator’s
perspective, it could therefore be wise to not only inspect the RUL prediction, but the FI prediction as well. If
the FI prediction is still low, he or she could choose to neglect the RUL predictions, because they are still very
likely to rise.

The trend from the previous models concerning outliers is seen again in most models in this category. Due to
the relatively di�erent behaviour, as compared to other specimens, the models cannot handle these specimen.
Take, for example, specimen A006, when a model trained on CAF data is used to predict its behaviour in
�gure 5.22. Its FI moves up in the �rst 70,000 cycles but then stays constant. The fact that in the �rst 70,000
cycles, it is on the conservative side is likely due to the fact that other specimens’ FIs have risen earlier than that
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Figure 5.20: Feature ranking of input features based on their e�ect on the MSE loss of the RNN, when trained on CAF and VAF data

(a) FI prediction (b) RUL prediction

Figure 5.21: RNN predictions for specimen A001, trained on CAF data



80 5. Results and discussion

of A006. Then, the failure index stays constant after roughly 70,000 cycles, resulting in a continually increasing
RUL. The exact reason behind this behaviour could not be �gured out but is likely because there are no other
specimens with data in this region.

(a) FI prediction (b) RUL prediction

Figure 5.22: RNN predictions for specimen A006, trained on CAF data

When trained on VAF data, or in the combination of VAF and CAF, the predictions for A006 seem to be
slightly better; the convergence to a FI at around 0.5 is not seen in these predictions. Instead, they provide very
conservative predictions. The models trained on VAF data show this behaviour in �gure 5.23b. The fact that
these predictions of these models are better is possibly because specimen A017 is included in these training
sets as well. With a lifetime 0f roughly 105,000 cycles, this specimen is the closest related to A006.

(a) FI prediction (b) RUL prediction

Figure 5.23: RNN predictions for specimen A006, trained on VAF data

The predictions for specimen A010, the one with the shortest life of all specimens, seem to be worst. Within
the other models, the FI tends to stay constant in the �rst 10,000 cycles. This behaviour is observed in all three
model variations. When trained on CAF data, the FI is still focused around low values, while in the other
variations, it is scattered between 0 and 1, with a mean around 0.5. Because of the short life of A010, the
specimen fails before the FI has changed signi�cantly. In the sensitivity analysis, it was discovered that 3/10
and 6/10 variants of the models trained on VAF, and CAF and VAF data had zero sensitivity to parameters.

This behaviour is very likely caused by the fact that all training specimens use load sequence NE9, while
A010 is loaded under sequence NE6 (table 4.4). It could very well be that the trained models over�t on that
speci�c load sequence, making them unable to deal with sequence NE6.

Another possible explanation is that for low numbers of cycles, the combination of input values at time t
and output values from t −1 are not signi�cant enough to ’open’ the gates in the LSTM cell. As values slowly
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accumulate over time, this could start to become signi�cant, and thus actually in�uence the output.

5.3.4. E�ect of training data
In order to assess the e�ect of the training data, the e�ect on FI predictions is investigated �rst, followed by the
analysis of prognostic metrics on the RUL predictions. Figure 5.24 presents the MSE, MAPE, and CRA for the
FIs predicted by the di�erently trained models. These performance metrics were chosen, because no required
con�dence is set on the FI. Therefore, only the bias/accuracy will be analysed.

A clear winner in training data cannot be chosen based on these metrics. They vary signi�cantly per
specimen. Furthermore, it can be seen that not all behaviour is captured in the metrics. Because specimen
A010’s predicted FIs have almost constant values of 0.2 (trained on CAF data) and 0.5 (trained on VAF, and CAF
and VAF data) for its entire life, the performance metrics are not signi�cantly worse. On top of this, due to the
fact that the least important values (those early in life) have low target values, these end up in the denominator
of the CRA equation (equation (3.57)), penalising di�erences more at the beginning. Therefore, it is important
that not only the performance metrics are to be analysed, but also the actual predictions.

(a) MSE (b) MAPE

(c) CRA

Figure 5.24: Performance metrics for the FI predictions of RNN variants, sorted by training data

With no model type which objectively performs best on FI predictions, the RUL predictions are analysed
(�gure 5.25). In these �gures, there is still variability between specimens, although less than in the FIs.

Starting in the top left for the MSE (�gure 5.25a), it seems as if the model performance improves when
trained on VAF, and even more when trained on both CAF and VAF. It should be mentioned that there are
di�erences between specimens. Specimen A006 has the highest MSE, due to its long life and therefore high
maximum actual RUL values. Although specimen A010 was determined to have bad predictions due to the
constant FIs, this cannot immediately be noticed in the MSE plot.

In the MAPE plot in �gure 5.25b, the models trained on CAF data are generally performing badly. There
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is no clear di�erence between the other two training sets. This metric does re�ect the behaviour of A010, as
this specimen has high MAPEs for all training sets. While the scale of MSE is hard to understand, a worrying
observation can be made in the MAPEs plot; not a single specimen has a MAPE below 60%.

Next, �gure 5.25c shows that some models have fairly high precision and accuracy near the EOL, especially
when compared to the models in the previous sections. There is -yet again- a signi�cant di�erence between
specimens. The models trained with CAF and VAF data perform best in almost all specimens here. The di�er-
ence between the other two is barely visible, but when the means are taken, training on CAF data (16.4%) gives
a 3% higher CBPM as compared to training on VAF data (13%).

Finally, from the CRA in �gure 5.25d, it is evident that predictions using solely the CAF data to train, give
by far the worst predictions when compared with this metric. The mean di�erence between the other two is
13%, with models trained on both CAF and VAF data being again the best performing models, with an average
CRA of -121%. Note that this is a negative CRA, so there is a weighted 221% di�erence. This metric should
be put in perspective. Just as explained above for the FI, the actual RUL moves to increasingly lower values
near the EOL, making relatively small absolute biases count as heavy bias in the CRA calculation. This is then
further ampli�ed by the weights.

The tables containing all metrics and their values are again displayed in appendix B.3.4. Here, the mean
values can also be found for these four metrics.

(a) MSE (b) MAPE

(c) CBPM (d) CRA

Figure 5.25: Performance metrics for the RUL predictions of RNN variants, sorted by training data

When inspecting all RUL predictions based on solely CAF training data, the reason behind the low perfor-
mance in these �gures can be found. The median FI predictions for specimens A005, A006, A010, and A017
all stop increasing after approximately 0.6. Some stop earlier, and A017 slightly later. This has a tremendous
impact on the RUL predictions; their median will keep growing when the FIs are constant. Therefore, when
judging from the median prediction, one would think that these specimens will live forever. In these cases, it
is crucial to keep the PIs in mind. These diverge rapidly, with at least some actually predicting failure.
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The attentive reader can spot that the PH, as well as the convergence measures, are again not yet compared.
For models trained on solely CAF data, there is only convergence of the accuracy, ∆ convergence, for specimens
A001 and A007. For the models trained on the other data-sets, there is ∆ convergence for all specimens, except
for specimen A010, which of course diverges due to its almost constant FI. When comparing the convergence
of the last two data-sets, the mean of the ∆ convergence is slightly lower for the models trained on CAF and
VAF data. This implies that these converge slightly faster.

Almost all PIs show no convergence, with the exception of the predictions for A005 and A007 in some model
variants. This is caused by the fact that most models are relatively con�dent of their �rst few predictions of
the FI, which is close to zero. As time goes by, the spread between the predictions increases, reducing chances
of convergence.

Finally, an honourable mention should go to the models trained on VAF data. This set of models has PHs
of 1,000 and 500 cycles for specimens A005 and A007 respectively. Keep in mind, however, that this is with a
50% probability mass, as explained in section 3.4.

5.3.5. Discussion
The quality of the RUL predictions by the RNN varies, as discussed above. Through the performance metrics,
it could be seen that predictions based on CAF and VAF data were generally the best, followed by predictions
based on VAF data.

Although it was discovered in the sensitivity analysis that the loads were not the input with the most impact
on the output, models trained on load data did perform better. Whether this is actually caused by the load in the
inputs is unsure. Another reason for the increase in performance could be attributed to VAF feature time-series
which are more identical to each other than to CAF time-series. When the model, trained on solely CAF data
would have to make predictions for VAF specimens, the patterns in the test specimens might be ’new’ to the
model. The sensitivity analysis also showed that the models are not sensitive to cumulative AE features, which
is counter-intuitive. They are more sensitive to events in the bin of 500 cycles which occurs before a prediction
step. It is possible that the LSTM cell calculates its own cumulative features based on these. Hard conclusions
regarding relations between in- and output can unfortunately not be drawn. The complexity of neural networks
(NNs) makes them very hard to analyse and understand thoroughly, and therefore only suggestions can be given
about its behaviour.

Having more data available in the training set, as in the case of training on CAF and VAF data, seems to
result even in better predictions. This shows the decrease in the importance of load as input, which was found
in the sensitivity analysis, is not signi�cantly a�ecting the �nal predictions. It could very well be possible that
increasing the number of samples in the training data would lead to better prediction results. This is likely the
case for specimen A006 already. Models which have VAF data in their training sets perform better than the
model trained on CAF data, by having a FI going to 1 instead of 0.5 for this specimen. This can be possibly be
attributed to the fact that the VAF data contains specimen A017, which also has a relatively long life, just like
A006. Having more training specimens in the lower EOL region could also increase performance on specimen
A010. The sensitivity to loads can also be increased by having more VAF loaded specimens with di�erent load
sequences. As of now, the majority is loaded under one load sequence except for specimen A010. This might
very well cause the predictions of A010 to be insu�cient.

Continuing on the amount of training data, if it were not possible to generate more training data, it could
be examined whether anomaly detection could result in better performance. An unsupervised learning method
such as k-nearest neighbours (kNN) could, by comparing clusters and di�erences in data, spot outliers. It can
be investigated whether this is possible during the life of a specimen. If the method were to be sure that the
specimen under testing is an outlier, it could either warn the operator who can make a judgement call or even
classify the type of outlier; will it live longer or shorter than the training specimens? This could be applicable
to all models in this thesis.

The �nal RUL predictions by the RNN seem to converge towards the actual RUL in most cases. However, the
behaviour of the RUL curves makes them bad indicators for practical usage. They generally start from almost
zero and then grow to the actual RUL in the predictions which converge. If these models were to be used in
practice, it would be hard to determine whether a specimen is actually likely to fail. It could therefore be better
for an operator to keep an eye on the FI predictions as well. When the FI would cross a speci�c threshold,
it could be decided to perform a check, maintenance or even replacement of the item which is monitored.
The threshold would have to be set lower than 1, since failure occurs before the predicted FI is 1 in multiple
specimens. This would, however, raise the discussion concerning the setting of thresholds, which was avoided
by the RNN.
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The models are currently trained on FIs. Although the use of a FI is practical from a modelling standpoint,
the conversion to RUL proved to be very impractical. The conversion resulted in RULs which started from 0
and showed sawtooth-like behaviour in most specimens. It should be investigated whether directly predicting
EOL could result in better predictions. The FI was chosen because it can be returned by many di�erent activa-
tion functions, but the recti�ed linear unit (ReLU) seemed to provide the best predictions eventually. A ReLU
activation function could also neatly model the RUL because of its output which is always larger than 0, but
has no upper bound.

Based on hardware requirements, a trained RNN is de�nitely a feasible option for live prognostics. The
emphasis is on the word ’trained’ since the cross-validation is very time-consuming. The model sets used in
this thesis needed about two days on the DTU HPC cluster to perform the cross-validation loop when spread
out over 50x2 cores. When �nally trained, predictions can be made in almost an instant on a standard desktop
computer. Therefore, computational requirements would not hold this model type back from being used in the
�eld.
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5.4. Model comparison
This section covers the comparison between the di�erent models. Not only a quantitative comparison based
on performance metrics is made, but also a qualitative one, based on the usability of RUL predictions and
computational cost of each model.

5.4.1. Quantitative
Using the performance metrics from section 3.4, all three model types are compared to each other, within their
respective set of training data. From the statistical model, only the static predictions are compared to the other
models. This is because the adapting predictions proved to be useless in practice. In case of the GP regression,
the Ma3+lin model with adjustments to the failure threshold PDF was the best model by a small margin for
predictions made based on CAF and VAF data. Therefore, this model type is compared to the others for this
data set. For training on VAF data, there was no clear best model. Therefore, it is decided to take the model
with the highest CRA; the Ma5+lin version with adjustments to the failure threshold. This model does not
have the highest CBPM in this category, but it is just marginally lower than the best (Ma3+lin). Because the
relative di�erence in CRA is larger compared to that in CBPM, this model was taken. Since the RNN was cross-
validated for the best architecture, no choices had to be made for this set. Because a model gave a PH in just
two predictions, this metric is not shown in the analyses below but discussed afterwards. The same is done for
the PI convergence, with only 8 cases of convergence in total.

Constant amplitude fatigue data
Four performance metrics can be seen in �gure 5.26, for the statistical model and RNN, trained on CAF data.
Due to convergence in just two specimens for the RNN and of course none for the statistical model, this is not
taken into account in the comparison. Apart from the CBPM in the �gure 5.26c, there is no clear distinction
between the performance of the two models. The results are highly dependent on speci�c specimens.

In the CBPM however, the RNN signi�cantly outperforms its the statistical model, except for a slight dif-
ference in specimen A005. For specimen A001 and A007, this is because the RNN converges to the actual RUL.
This behaviour is, of course, not possible for the static statistical model.

The RNN predictions for the other specimens are not very useful, while this is not clearly shown in the
metrics below, but can be spotted in their RUL predictions in appendix B.3.3. The fact that the RNN performed
poorly on this data-set was also concluded in section 5.3.4. Because their FI predictions stagnate, the RUL starts
to grow near the end of life. The RUL in the predictions from the baseline model, however, is decreasing at a
constant rate. Even though they are not conservative enough or too conservative, they do predict a point of
failure, and could therefore be more useful in practical applications.

Variable amplitude fatigue data
Next, there is the case of VAF data. In this case, and the one hereafter, the ∆ convergence is shown. The dots
in these �gures are however not connected because for some specimens there is no convergence. In this way,
no false conclusions can be drawn on these �gures.

As was already concluded in section 5.3.4, the performance of the RNN increases. Now, the model shows
convergence in accuracy (�gure 5.27e) in most specimens. This is also lower than the convergence of the GP.
It should be noted that, as was already discussed, the convergence of the GP seems to be quite situational.

The RNN is also seen to be more constant in its performance, as compared to the other two models, whose
performance depends heavily on the specimen. Interestingly, the same trend can be spotted between these two.
Despite the adjustment for correlation, the GP seems to e�ectively be just another statistical model, due to its
dependence on the cumulative energy threshold.

When ignoring some situational highs and lows, the RNN is seen to generally provide the best predictions
for this training set. A di�erence between the statistical model and GP regression cannot be clearly recognised.

Constant- and variable amplitude fatigue data
Knowing that the RNN’s performance increased further when training it on the CAF and VAF set together,
and also knowing that there was no signi�cant improvement in the other two models, the metrics below in
�gure 5.28 are no surprise. These show the same relations as above; the statistical model and GP regression
seem to be dependent on speci�c specimens. The RNN shows a di�erent trend over the specimens. Furthermore,
the RNN signi�cantly outperforms the other models again in CBPM (�gure 5.28c). Again, there is not a clear
di�erence between the statistical model’s performance and that of the GP regression.
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(a) MSE (b) MAPE

(c) CBPM (d) CRA

Figure 5.26: Performance metrics for the RUL predictions of the statistical model and RNN, trained on CAF data
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(a) MSE (b) MAPE

(c) CBPM (d) CRA

(e) ∆ convergence

Figure 5.27: Performance metrics for the RUL predictions of all three models, trained on VAF data
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(a) MSE (b) MAPE

(c) CBPM (d) CRA

(e) ∆ convergence

Figure 5.28: Performance metrics for the RUL predictions of all three models, trained on CAF and VAF data
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General observations
Although not visible in all performance metrics above, it should be noted that the predictions on specimen
A010, the lower outlier in the VAF data, are all far from its actual RUL. Whereas the statistical model and GP
regression are primarily based on the distribution of other specimen and are therefore too conservative in their
predictions, the RNN is incapable of making sensible predictions at all.

As already mentioned in section 5.3.4, there is a prognostic horizon for two specimen only, for the RNN
trained on VAF data. It has to be kept in mind that the de�nition of PH was set when 50% of the prediction’s
probability mass is between the required con�dence bounds of ±5,000 cycles around the actual RUL. In practice,
one would like to have higher certainty between these bounds. The fact that this occurred on two predictions
only tells us that the models above are not at all ready yet to be employed in practice. If they would ever be,
a PH must be present in a signi�cant portion of the specimens, if not all. Furthermore, the required bounded
probability mass should be higher than 50%, in order to be more con�dent about the predictions.

Finally, PI convergence is seldomly seen in the predictions. While this is of course not possible for the
statistical model, it was expected for the other two. Due to a lot of variability in the GP predictions, there was
no decrease between the �rst PI and the last in 7 out of 12 predictions. In the RNN the lack of PI convergence
was due to a di�erent reason. In almost all predictions, the models were con�dent about a low FI near the start.
This con�dence led to a small PI in this region. Even models which eventually converged towards the actual
RUL did not see their PIs shrink enough to meet the de�nition of convergence.

To conclude, the RNN shows to be the best model in the cases where it is trained on VAF, and CAF and
VAF data. From the fact that the performance of the RNN is best when trained on CAF and VAF data, it can be
concluded that the RNN is, therefore, the best performing model in this context. A clear distinction cannot be
made between the statistical model and the GP regression. In fact, the GP regression does not seem to di�er
signi�cantly from the statistical model. The setting of the threshold as a probability distribution is the cause
of this. The adjustment of this threshold for correlation does not lead to signi�cant changes between these
models.

5.4.2. Qualitative
Firstly, when comparing the RUL predictions, the statistical model stands out in its simplicity and consistency.
Its RUL always linearly decreases, therefore always predicting failure at some point in time. The downside
of this method is that the PIs are extremely wide. Also, this method is not a pure prognostic method, since
predictions are not dependent on events during the life of a specimen.

A signi�cant downside about the GP regression predictions is the high variability, as well as the wide PIs.
The combination of these factors leads to the fact that with this model implementation, prognostics is not
practically feasible. As discussed above, the predictions seem to be in trend with the statistical model due to
the large in�uence of the failure threshold PDF on the result. Therefore it would be better to perform a statistical
analysis before putting a subject into use than to rely on prognostics from this method.

Finally, the predictions from the RNN seem to be more constant than those from the GP regression. A
downside of the current RNN however is that not in all cases the model tends to predict failure, especially
when only trained on CAF data. Furthermore, the sawtooth-like behaviour of RUL predictions, as well as the
fact that predictions start from a close to zero RUL, are a handicap due to the current implementation, which
depends on the FI. When this model would put into use, FI predictions should also need to be taken into account.
This is because, from the FI, a clearer trend can be spotted.

For all these three models, outliers are not handled well enough yet. Measures should be put in place in
order to mitigate their impact. Providing more training data could likely lead to better results of the RNN,
especially when more varying load sequences would be used in the VAF specimens. Due to the nature of the
statistical model, and the dependence of the GP regression on the failure energy distribution, having more
data would not necessarily lead to better results for these models. The only upside is that choosing their
statistical distributions and parameterisation can be done with more certainty. For the GP regression, more
training specimen would quickly become an issue. Due to the O

(
N 3

)
complexity of the model, computational

requirements will skyrocket.
In terms of computation costs, the statistical model is the clear winner. This analysis can be performed in

an instant on a laptop. Next, a single RNN takes roughly 20 core minutes to train on the DTU HPC cluster. Keep
in mind that for a FI prediction 10 repetitions were used, therefore needing almost 3.5 core hours. This time
did still allow for a thorough cross-validation scheme to determine the optimal model parameters objectively.
Furthermore, just one set of trained models is needed to make predictions for one specimen. Therefore, online
prognostics are possible using this method. Finally, the GP regression is the most computationally expensive



90 5. Results and discussion

model. Also trained on the DTU HPC cluster, a single repetition takes 15 core minutes for a specimen trained
on VAF data. When also trained on CAF data, the size of the data-set almost doubles, and the computation time
indeed increases almost eight-fold; to roughly 1.5 core hours. Mind that for the GP regression, to be fairly con-
�dent that the models are not trained towards local optima, this process was repeated 20 times. Therefore, the
computation times per prediction are roughly 5 and 32 core hours respectively. While this is still manageable,
the model has to be trained again every time more data becomes available. Therefore if one wanted to make
predictions after every set of 500 cycles, 5 or 32 core hours would be needed every time to train the models.
With the current implementation, the repetitions can be split over di�erent cores, therefore still requiring 15
minutes or 1.5 hours. This makes online prognostics very impractical using this model.
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5.5. Case study: varying load levels
In this section, results from the case study for the glass �bre reinforced polymer (GFRP) data-set will be dis-
cussed. First, the model validation is covered, both for the single RNN, as well as the combination with a
feedforward neural network (FFNN). Next, the FI predictions of both model types are discussed. The RUL pre-
dictions are not covered for this case, since the FIs tell enough about the performance of the two models. The
section is concluded with a discussion on this matter.

5.5.1. Cross-validation
First, the architecture and number of training epochs of the optimal RNN was determined for this data-set. The
same method was used as in section 3.3.4. The results for specimen 6 are shown below in �gure 5.29a. All
specimens show the same trend in these results. The �gures for the other models can therefore be found in
appendix B.4.1. The optimal model architectures for the RNN+FFNN combinations are shown below in table 5.2.
The table containing the optimal RNN architectures and training epochs can be found in appendix B.4.1.

From �gure 5.29a, it is clear that a simple RNN with a low number of hidden nodes nh is preferred over more
complex models, just as in the case of CFRP specimens. Also, the model starts to over�t quite quickly, after
around 100 cycles. The low complexity in the RNN is likely because of the varying scales between specimens.
This likely causes a low complexity model with relatively bad predictions to be better than a variant with higher
complexity, which will tend to over�t.

When adding a FFNN to this existing RNN architecture, the opposite is seen for this second layer in �g-
ure 5.29b. High numbers of hidden nodes in the FFNN are preferred over low numbers. The reason for this
behaviour is not quite known. It is possible that for low numbers of nodes, the models converge to a solution
where a constant output is given, which is independent of the inputs.

Using high numbers of nodes in the FFNN does not improve the estimated generalisation error when com-
paring this new model to the optimal RNN model, however. Based on this, it seems that adding a FFNN does
not lead to added value.

(a) RNN (b) RNN+FFNN

Figure 5.29: Estimated generalisation errors for specimen 6 in the GFRP data-set
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Table 5.2: Optimal RNN+FFNN architectures and their corresponding estimated generalisation loss for the GFRP data-set

Excluded specimen Optimal model
nh (RNN) nh (FFNN) Epochs Est. gen. loss

6 1 32 30 0.095
7 1 128 150 0.071
8 2 64 80 0.088
9 1 64 120 0.090
10 2 64 540 0.064
11 1 128 280 0.083
12 1 128 920 0.087

5.5.2. Failure index predictions
The best predictions for this case come from a single RNN, for specimen 8 (�gure 5.30a). This specimen is an
outlier in terms of EOL, but its AE data indicate failure at values close those of specimens 6, 9 and 10. Having
similar data can be the reason for the relatively good predictions. The constant FI in the region between 100,000-
500,000 cycles coincides with the region with very low AE activity, as could be seen in �gure 4.14 in section 4.4.4.

As was expected through the analysis of the estimated generalisation loss, the addition of a FFNN does not
lead to better predictions. In fact, they are signi�cantly worse. This is likely caused by the high complexity of
its hidden layer, causing it to over�t.

(a) FI prediction from the RNN (b) FI prediction from the RNN+FFNN

Figure 5.30: FI predictions for specimen 8 in the GFRP data-set

Predictions for other specimens, such as specimen 11 below in �gure 5.31 contain large regions with con-
stant FIs. These regions are often around 0.5. It is therefore likely that the models are unable to make sensible
predictions, and therefore converge to an architecture which is independent of its inputs. Bias terms within the
models are then the driving factors behind the remaining output. This remaining output is at a FI of around 0.5
because for this value, the MSE loss is lowest. When adding the FFNN, the complexity of the model is increased,
and it over�ts, causing the PI to be extremely wide compared to the pure RNN prediction.

Because of the bad performance of these models on this data, the RULs nor any performance metrics are
further analysed.
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(a) FI prediction from the RNN (b) FI prediction from the RNN+FFNN

Figure 5.31: FI predictions for specimen 11 in the GFRP data-set

5.5.3. Discussion
From these results, two conclusions can be drawn. First of all, the current implementation of the RNN is
not suited for RUL prediction on specimens with di�erent load levels. The resulting large di�erences in load
levels cause signi�cant di�erences in the lifetimes of specimens. This cannot be handled by the RNN currently.
Secondly, adding a FFNN at the end of a RNN and feeding this the output of the RNN in combination with load
levels of a specimen does not improve the predictions. Instead, they are deteriorated.

With the low complexity of the RNNs and the high complexity of the FFNNs, it could be possible that there
is a middle ground, where the quality of the predictions does actually increase. Finding this middle ground
is not possible with the current validation method, where the layout of the RNN is �rst determined, followed
by adding a FFNN to this network. This was done to minimise the computational cost of this search for a
model architecture; this method has O

(
2nh

)
complexity, where nh is the number of hidden nodes in one of the

networks. A the cross-validation for a complete grid search has O
(
n2

h

)
complexity.





6
Conclusion and recommendations

This chapter discusses the conclusions which can be drawn based on the research done, and the answers to the
research questions. This is followed by a set of recommendations, based on the gathered insights during this
thesis which can be used to enhance further research.

6.1. Conclusion
The objective of this research was to investigate the feasibility of in-situ, data-driven prognostics on composites
under variable amplitude fatigue (VAF), by training multiple probabilistic models on constant amplitude fatigue
(CAF) and/or VAF data and assessing their performance in the prediction of remaining useful life (RUL).

Experimental data for carbon �bre reinforced polymer (CFRP) specimens, tested under CAF and VAF, was
available from earlier research. This was used to answer the main research questions, using three models.
During this project, experimental data from a testing campaign on glass �bre reinforced polymer (GFRP) spec-
imens, under di�erent load levels in tension-tension (T-T) fatigue became available. This was used in a case
study to assess the e�ect of di�erent load levels on the feasibility of in-situ prognostics using a recurrent neural
network (RNN).

The �rst model, a statistical model based on the distribution of failure times of specimens, performed as
expected; the predictions were highly uncertain due to large variability in the failure times. The performance
was heavily dependent on which speci�c specimen was tested. Therefore, it was concluded that it was not
possible, using the current data-set, to identify improvements when going from CAF training data to VAF
training data, or a combination of the two. When used conservatively, this model can be used (and is used) in
practice.

The second model was a Gaussian process (GP) regression on cumulative acoustic emission (AE) energy
data. There was not a clear di�erence in the prognostic performance between di�erent versions of the model,
with Ma3+lin or Ma5+lin kernels. A marginal improvement in performance was found when adjusting the
cumulative energy threshold probability density function (PDF), according to the correlation between di�erent
time-series in the training data. These correlations were extracted from the trained model. The performance
of this model type was marginally improved when trained on both CAF and VAF data, instead of just VAF
data, although this was highly dependent on speci�c specimens. Due to a high degree of variability in the RUL
predictions, low performance according to performance metrics, and high computational cost, it is not feasible
to use this model in practice. From its de�nition, the model could not be trained on purely CAF data, and this
case was therefore not analysed. It should be noted that an objective cross-validation scheme, for �nding the
right covariance kernels and objectively evaluating the e�ect of the correlation adjustment of the threshold,
was not used in this model category due to its high computational costs.

The third and �nal model is a RNN based on a long short-term memory (LSTM) cell, where the failure index
(FI) is predicted. Through cross-validation, it was found that an architecture with a low number of hidden nodes
performed best on all three variations of the training data. From a sensitivity analysis, the models seemed most
sensitive to AE events grouped in the preceding 500 cycles. The load was used as input in cases with VAF
training data, in bins of 5 kN. The sensitivity of the RNNs for these features was not as high as for the AE
events grouped per 500 cycles. The RUL predictions improved when moving from CAF, to VAF, to CAF and
VAF training data. The current implementation of the RNN was, however, not deemed feasible enough yet for
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practical applications, due to an inability to handle outliers and the variability in RUL predictions.
From all these models, the RNN performed best when trained on VAF data, and on the combination of CAF

and VAF data. Due to the de�nition of the failure threshold as PDF, the GP did not perform better than the
statistical model. In the case of CAF training data, there was not a clear distinction between the performance
of the statistical model and the RNN, except for a higher cumulative bounded probability mass (CBPM) for the
RNN, which converged to the actual RUL for some specimens. The varying lifetimes of di�erent specimens
posed an issue to all three models; they were not able to deal properly with outliers.

In the case study, it was found that using a RNN is not feasible yet for prognostics on specimens under
di�erent load levels using AE data, due to large di�erences between specimens in the training data. It was
hypothesised that adding a feedforward neural network (FFNN), which uses the RNN output as well as infor-
mation about the load level, could lead to better predictions. This was not the case.

The main conclusion drawn in this thesis is, therefore, that with the current implementation of the used
models, in-situ, data-driven prognostics on composite specimens under VAF is not yet feasible.

6.2. Recommendations
While the four research questions in this thesis were answered, more questions and ideas arose. Furthermore,
although these models are not yet capable of being implemented in the industry, there are possibilities to
improve their performance. Unfortunately, due to the limited timeframe of this thesis, these had to be moved
to this section; the recommendations. These are grouped into four categories. First general recommendations
are discussed, followed by those for the three models used in this thesis.

General
A general recommendation is based on the amount of training data. With just 13 CFRP specimens which could
be used in this research, it was not possible to con�dently draw conclusions in multiple matters. Furthermore,
all models will likely perform better when fed with more training data.

If having more data is not possible, it might be possible to look into unsupervised learning methods for
outlier detection. A method such as k-nearest neighbours (kNN) could spot outliers, by comparing clusters
in the data, and their di�erences in data. It can be investigated whether this is possible during the life of a
specimen. If so, using this method could either warn an operator who can make a judgement call when this is
used in practice or even classify the type of outlier; will it live longer or shorter than the training specimens?

Finally, the AE data used in this research is from the features of each signal. These features were not
further processed. It could, however, be possible to obtain better results when a hybrid model is used. This
hybrid model would use not only AE features, but also information concerning the type of damage with which
they should be associated. This method can be based on the previously performed research on the relations
between speci�c AE signals and the related damage mechanism. One could then also compare di�erent damage
type indicators and determine their ability to predict RUL. The most potent indicators can then be validated
against the existing literature on the relationship between speci�c AE events and their parameters, and speci�c
damage mechanisms.

Statistical model
Because the performance of the statistical model varied signi�cantly per specimen, an idea for a follow-up
study for this model class would be to perform more of these CAF and VAF tests and become more con�dent
on the parameters and type of statistical distributions. The di�erence between these distributions can then
be compared, and the research questions from this thesis can be answered for this model; if the di�erence is
negligible, it would not matter if a specimen would be trained on CAF and/or VAF data.

Gaussian process regression
For the GP regression, there are multiple recommendations for possible further research. Firstly, the cumulative
energy predictions of the GP regression were sub-optimal in multiple predictions due to local optima, and/or
contained non-physical behaviour. More re�ned hyperparameter optimisation methods could be implemented
to solve the �rst issue, and it could be researched whether enforcing a mean function can solve the second.

Secondly, a new method of de�ning a failure threshold was introduced in this thesis; by making it a PDF
based on data from other specimens. Putting more weight on specimens which correlated with the time-series
of the test specimen showed marginal improvements in the performance of the GP regression. This method has
potential for the replacement of hard, arbitrary thresholds, by purely data-driven thresholds. However, more
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research is needed to con�rm the hypothesis that this could actually lead to better predictions, and if so, to look
into di�erent weight functions or PDFs for the failure threshold.

Finally, due to the high demand for computational power, a full cross-validation scheme could not be run.
Therefore, the selection of best model architectures was made in hindsight, with knowledge of the performance
of each architecture on all the data. It is a better practice to employ a cross-validation scheme for the di�erent
kernel functions and correlation adjustment, just as was done in determining the architecture of the RNN.
Again, the computational e�ort required by the GP regression hindered this. This may therefore be another
disadvantage of the GP regression as well; being unable to perform validation due to high computational cost.

Recurrent neural network
Although the RNN performed best in two out of three cases of training data, it is still far from optimal. Therefore,
multiple recommendations for this model type are proposed. First of all, just as for the statistical model, having
more available data is very likely to improve predictions. Additionally, there is currently only one specimen
in the VAF data-set with a di�erent load path than the others. This likely led to the poor performance of the
RNN on this specimen. Having more data, with di�erent load paths, will allow these complex models to �nd
patterns and dependencies better, and therefore lead to better predictions.

The RNN currently outputs FIs. It should be investigated whether predicting the end of life (EOL) could
result in better predictions. A recti�ed linear unit (ReLU) activation function could in theory neatly model the
RUL because of its output which is always larger than 0, but has no upper bound. In this way, the sawtooth
behaviour in the RUL predictions, caused by the conversion of FI to RUL can be prevented.

The loss function for the RNN (and added FFNN) is now a mean squared error (MSE) loss, in order to
�t the FI. It could be changed in multiple ways. First of all, the models could be trained to maximise the
prognostic horizon (PH) or any other performance metric directly. Another way to improve the feasibility of
RNN predictions is to add a penalisation to the loss function, such that predictions become conservative. In
order to force the models to be conservative, the errors in the MSE loss function could, for example, be weighted
based on whether a prediction is below or above an actual value. The priority of predictions near the EOL can
also be increased.

Finally, the sensitivity analysis of the RNN is now based on perturbations which are ratios of the input vari-
ables. In the case of AE, this seems sensible, due to the low interpret-ability of these (aggregated) parameters.
In the case of loads, however, it could be worth investigating what happens when absolute values are used; if
100 cycles are added to the 20-25 kN load bin, will this have more impact than when 100 cycles would be added
to the 5-10 kN bin? Under the current method, this is not analysed, but could be useful to help to quantify the
actual value of these input variables for the model’s performance.
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A
Mathematical background

A.1. Gamma functions
The gamma function Γ (z) is shown in equation (A.1). When taking other limits, the incomplete gamma function
is obtained. The lower incomplete gamma function γ

(
s, x

)
, used in this thesis, is shown in equation (A.2).

Γ (z) =
∫ ∞

0
t z−1e−t dt (A.1)

γ
(
s, x

)= ∫ x

0
t s−1e−t dt (A.2)

A.2. Distances
When the scale of each coordinate axis is the same, there is a need for an isotropic distance measure. Hence,
the distance d between two points xp and xq is normally calculated as the Euclidean distance dE :

dE

(
xp , xq

)
=

√(
xp −xq

)T (
xp −xq

)
(A.3)

In order to allow for correlation between di�erent dimensions, the Mahalanobis distance (equation (A.4)) can be
used (Osborne, 2010). This is an anisotropic distance measure, meaning that it provides di�erent scales between
dimensions, according to the covariance matrix ΣM .

dM

(
xp , xq ,ΣM

)
=

√(
xp −xq

)T
Σ−1

M

(
xp −xq

)
(A.4)

The D-dimensional matrix ΣM can take di�erent forms. The simplest of these is ΣM = l 2I . The diagonal of ΣM

can also be adjusted in order to scale dimensions di�erently. Finally, adjusting the non-diagonal terms in ΣM

allows for correlations between input dimensions. (Osborne, 2010) When for the above function the covariance
matrix is set to identity, i.e. ΣM = I , the Mahalanobis distance simpli�es to Euclidean.

A.3. Spherical parameterisation
Pinheiro and Bates (1988) describe how an N×N -dimensional covariance matrixΣ can rewritten as the product
of its Cholesky factorization:

Σ= LTL (A.5)

In this equation, L = Sdiag(τ) is an N ×N -dimensional, upper triangular matrix. It is the product of the matrix
S and scaling vector τ. In S , the N th column contains the spherical coordinates in RN , along the boundaries of
a hypersphere in SN−1. The hypersphere set is de�ned as SN−1 = {x ∈RN : ‖x‖ = 1}. To visualise this concept,
one can think of a sphere. This structure lies in a 3-dimensional space R3, but all points on its boundary lie
in the 2-dimensional plane S2. The components ξ j of the SN−1 with radius 1, and N −1 spherical coordinates
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{φi : 0 <φi <π} are written as:

ξ1 = cosφ1 (A.6)

ξ j = cosφ j

j−1∏
k=1

sinφk , ( j = 2, ..., N −1) (A.7)

ξn =
N−1∏
k=1

sinφk (A.8)

Now, an example of S where N = 3, is as follows:

S =

1 cosφ1 cosφ2

0 sinφ1 sinφ2 cosφ3

0 0 sinφ2 sinφ3

 (A.9)

In this form, STS can represent the correlation coe�cients between pairs of N discrete variables. All values in
this form are between -1 and 1, with the diagonal containing ones. The vector τ (where the elements {τi : τi > 0})
allows for scaling of the di�erent dimensions. If the scale of each dimension is the same, diag(τ) can be set to
1 and therefore be omitted in the above equations.

The total number of parameters required for S and τ is 1
2 N (N +1). While this is a large number of param-

eters, the spherical parameterisation is able to construct every possible covariance matrix (Osborne, 2010).



B
Remaining results

B.1. Statistical model

B.1.1. Remaining useful life predictions

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.1: Results of the statistical model, trained on CAF data, tested on specimen A005
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(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.2: Results of the statistical model, trained on CAF data, tested on specimen A007

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.3: Results of the statistical model, trained on CAF data, tested on specimen A017

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.4: Results of the statistical model, trained on VAF data, tested on specimen A001
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(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.5: Results of the statistical model, trained on VAF data, tested on specimen A005

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.6: Results of the statistical model, trained on VAF data, tested on specimen A006

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.7: Results of the statistical model, trained on VAF data, tested on specimen A007
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(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.8: Results of the statistical model, trained on VAF data, tested on specimen A010

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.9: Results of the statistical model, trained on VAF data, tested on specimen A017

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.10: Results of the statistical model, trained on CAF and VAF data, tested on specimen A001
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(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.11: Results of the statistical model, trained on CAF and VAF data, tested on specimen A005

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.12: Results of the statistical model, trained on CAF and VAF data, tested on specimen A006

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.13: Results of the statistical model, trained on CAF and VAF data, tested on specimen A007
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(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.14: Results of the statistical model, trained on CAF and VAF data, tested on specimen A010

(a) Fitted PDF on the training data, and the test specimen (b) RUL predictions

Figure B.15: Results of the statistical model, trained on CAF and VAF data, tested on specimen A017

B.1.2. Performance metric tables

Table B.1: Performance metrics for the static statistical model, trained on CAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 7.08e+08 239 - 7.27 -288 - -
A005 1.03e+09 269 - 5.2 -337 - -
A006 2.41e+10 537 - 0.000197 -807 - -
A007 5.57e+08 222 - 8.64 -258 - -
A010 6.22e+08 1.05e+03 - 6.22 -1.31e+03 - -
A017 5.21e+09 407 - 0.28 -574 - -
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Table B.2: Performance metrics for the adapting statistical model, trained on CAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 3.14e+08 82.7 - 24.9 -14.8 2.14e+04 3.93e+04
A005 4.54e+08 82.2 - 23.5 -8.88 2.41e+04 4.06e+04
A006 9.5e+09 90.2 - 9.1 8.38 8.39e+04 8.64e+04
A007 2.48e+08 83.2 - 25.7 -19.1 2e+04 3.87e+04
A010 6.26e+08 1.06e+03 - 5.7 -1.32e+03 - 3.51e+04
A017 2.2e+09 85.1 - 15.7 5.89 4.38e+04 5.31e+04

Table B.3: Performance metrics for the static statistical model, trained on VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 3.4e+07 52.5 - 6.9 13.6 - -
A005 5.01e+05 5.93 - 6.51 88.9 - -
A006 1.92e+10 480 - 0.36 -710 - -
A007 8.9e+07 88.6 - 7.1 -44.3 - -
A010 6.4e+09 3.37e+03 - 0.129 -4.38e+03 - -
A017 2.18e+09 264 - 3.88 -337 - -

Table B.4: Performance metrics for the adapting statistical model, trained on VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 8.78e+08 376 - 9.65 -560 - 1.32e+05
A005 7.38e+08 334 - 9.69 -496 - 1.31e+05
A006 6.78e+09 101 - 8.54 -28.4 7.63e+04 1.1e+05
A007 9.7e+08 402 - 9.62 -599 - 1.32e+05
A010 6.4e+09 3.37e+03 - 0.123 -4.38e+03 - 8.59e+04
A017 7.56e+08 184 - 9.53 -223 4.54e+04 1.23e+05

Table B.5: Performance metrics for the static statistical model, trained on CAF and VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 2.04e+08 128 - 8.13 -109 - -
A005 4.05e+08 168 - 7.32 -175 - -
A006 2.21e+10 514 - 0.0504 -769 - -
A007 1.22e+08 104 - 8.58 -68.9 - -
A010 1.91e+09 1.84e+03 - 5.4 -2.36e+03 - -
A017 3.88e+09 351 - 2.8 -482 - -
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Table B.6: Performance metrics for the adapting statistical model, trained on CAF and VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 2.09e+08 198 - 14.3 -255 - 8.2e+04
A005 2.32e+08 180 - 14.2 -219 - 8.19e+04
A006 8.18e+09 92.9 - 9 -4.62 8.01e+04 9.72e+04
A007 2.09e+08 210 - 14.4 -278 - 8.21e+04
A010 1.94e+09 1.87e+03 - 4.56 -2.39e+03 - 7.68e+04
A017 1.26e+09 119 - 12.5 -82.5 3.87e+04 8.3e+04
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B.2. Gaussian process regression
B.2.1. Cumulative energy predictions mean absolute percentage error

Table B.7: Median, and 1st and 3rd quartile values for the MAPE of the cumulative energy predictions by the GP model, grouped by kernel
functions and training data

Data-set Kernel functions MAPE [%]
1st quartile median 3rd quartile

VAF Ma3+lin 6.13 14.3 34.6
Ma5+lin 8.35 17.5 42.7

CAF and VAF Ma3+lin 7.03 18.0 41.9
Ma5+lin 7.97 20.8 38.9

B.2.2. Remaining useful life predictions

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.16: RUL predictions by the GP regression with Ma3+lin kernels, trained on VAF data, tested on specimen A001

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.17: RUL predictions by the GP regression with Ma3+lin kernels, trained on VAF data, tested on specimen A006
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(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.18: RUL predictions by the GP regression with Ma3+lin kernels, trained on VAF data, tested on specimen A007

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.19: RUL predictions by the GP regression with Ma3+lin kernels, trained on VAF data, tested on specimen A010

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.20: RUL predictions by the GP regression with Ma3+lin kernels, trained on VAF data, tested on specimen A017
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(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.21: RUL predictions by the GP regression with Ma5+lin kernels, trained on VAF data, tested on specimen A001

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.22: RUL predictions by the GP regression with Ma5+lin kernels, trained on VAF data, tested on specimen A005

Figure B.23: Prediction from GP regression with correlation adjustment, Ma5+lin kernels, trained on VAF data, tested on specimen A006.
The plain prediction can be found in section 5.2.2.



118 B. Remaining results

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.24: RUL predictions by the GP regression with Ma5+lin kernels, trained on VAF data, tested on specimen A007

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.25: RUL predictions by the GP regression with Ma5+lin kernels, trained on VAF data, tested on specimen A010

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.26: RUL predictions by the GP regression with Ma5+lin kernels, trained on VAF data, tested on specimen A017
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(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.27: RUL predictions by the GP regression with Ma3+lin kernels, trained on CAF and VAF data, tested on specimen A001

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.28: RUL predictions by the GP regression with Ma3+lin kernels, trained on CAF and VAF data, tested on specimen A005

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.29: RUL predictions by the GP regression with Ma3+lin kernels, trained on CAF and VAF data, tested on specimen A006
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(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.30: RUL predictions by the GP regression with Ma3+lin kernels, trained on CAF and VAF data, tested on specimen A007

Figure B.31: Prediction from GP regression with correlation adjustment, Ma3+lin kernels, trained on CAF and VAF data, tested on specimen
A010. The plain prediction can be found in section 5.2.4.

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.32: RUL predictions by the GP regression with Ma3+lin kernels, trained on CAF and VAF data, tested on specimen A017
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(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.33: RUL predictions by the GP regression with Ma5+lin kernels, trained on CAF and VAF data, tested on specimen A001

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.34: RUL predictions by the GP regression with Ma5+lin kernels, trained on CAF and VAF data, tested on specimen A005

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.35: RUL predictions by the GP regression with Ma5+lin kernels, trained on CAF and VAF data, tested on specimen A006
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(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.36: RUL predictions by the GP regression with Ma5+lin kernels, trained on CAF and VAF data, tested on specimen A007

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.37: RUL predictions by the GP regression with Ma5+lin kernels, trained on CAF and VAF data, tested on specimen A010

(a) Prediction from plain GP regression (b) Prediction from GP regression with correlation adjustment

Figure B.38: RUL predictions by the GP regression with Ma5+lin kernels, trained on CAF and VAF data, tested on specimen A017
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B.2.3. Correlation adjustment

Figure B.39: Box plot of the change in MAPE (expected energy threshold versus actual failure energy) by applying the correlation adjustment
to the threshold PDF. The di�erence is calculated by M APEor i g i nal −M APEad j usted . The green line indicates the median, with the box
encapsulating the 1st and 3rd quartiles Q1 and Q3. The whiskers extend up to 1.5(Q3 −Q1). Outliers are plotted as dots.

B.2.4. Performance metric tables

Table B.8: Performance metrics for the GP regression with Ma3+lin kernels, trained on VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 1.74e+09 294 - 9.34 -391 - -
A005 4.81e+08 115 - 3.69 -74 - 1.1e+07
A006 2.96e+10 631 - 0.189 -984 - 5.14e+06
A007 3.33e+09 539 - 10.7 -807 4.42e+04 2.29e+07
A010 6.07e+09 3.4e+03 - 12.8 -4.47e+03 - -
A017 2.03e+09 223 - 3.04 -275 5.76e+04 -

Table B.9: Performance metrics for the GP regression with Ma3+lin kernels with correlation adjustment, trained on VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 1.31e+09 243 - 9.23 -305 - 2.51e+06
A005 5.2e+08 145 - 3.79 -132 - 9.3e+06
A006 2.97e+10 631 - 0.182 -985 - 4.94e+06
A007 2.79e+09 492 - 10.9 -726 4.1e+04 2.08e+07
A010 5.74e+09 3.4e+03 - 13.5 -4.5e+03 4.15e+04 -
A017 2.2e+09 232 - 2.77 -288 5.66e+04 -
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Table B.10: Performance metrics for the GP regression with Ma5+lin kernels, trained on VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 2.75e+09 177 - 8.03 -145 - -
A005 1.33e+10 155 - 4.11 -85.9 1.76e+05 5.59e+06
A006 3e+10 630 - 0.111 -982 1.29e+05 -
A007 1.29e+09 120 - 17.3 -63.7 2.69e+04 4.29e+06
A010 8.56e+09 2.63e+03 - 2.09 -2.93e+03 - -
A017 2.33e+09 229 - 2.38 -278 5.62e+04 -

Table B.11: Performance metrics for the GP regression with Ma5+lin kernels with correlation adjustment, trained on VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 4.84e+09 157 - 8.21 -95.6 - -
A005 1.22e+10 170 - 3.96 -108 1.52e+05 5.34e+06
A006 3e+10 630 - 0.122 -982 1.29e+05 -
A007 1.21e+09 98 - 17.9 -27.8 2.54e+04 3.89e+06
A010 7.42e+09 2.53e+03 - 1.97 -2.85e+03 - -
A017 2.39e+09 237 - 2.26 -292 5.68e+04 -

Table B.12: Performance metrics for the GP regression with Ma3+lin kernels, trained on CAF and VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 1.71e+10 343 - 4.12 -388 1.54e+05 -
A005 8.04e+08 158 - 4.7 -145 - 4.89e+05
A006 3e+10 631 - 0.107 -983 - 3.75e+05
A007 7.02e+09 173 - 12.2 -108 9.64e+04 1.05e+06
A010 4.26e+10 1.21e+03 - 19.4 -1.19e+03 - -
A017 2.52e+09 245 - 2.21 -307 5.72e+04 -

Table B.13: Performance metrics for the GP regression with Ma3+lin kernels with correlation adjustment, trained on CAF and VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 1.58e+10 320 - 4.36 -352 - -
A005 7.79e+08 153 - 4.8 -136 3.71e+04 4.95e+05
A006 2.99e+10 629 - 0.115 -979 - 2.12e+05
A007 7.17e+09 127 - 12.5 -31 1.06e+05 9.92e+05
A010 3.87e+10 1.15e+03 - 21.1 -1.09e+03 - -
A017 2.54e+09 248 - 2.02 -312 5.76e+04 -
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Table B.14: Performance metrics for the GP regression with Ma5+lin kernels, trained on CAF and VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 1.4e+09 156 - 7.46 -141 - -
A005 9.7e+08 204 - 6.11 -237 4.39e+04 4.5e+05
A006 3.03e+10 632 - 0.0988 -984 - -
A007 1.22e+09 203 - 9.62 -226 - 1.16e+06
A010 4.19e+11 6.39e+03 - 16.4 -6.55e+03 - -
A017 2.9e+09 249 - 2.1 -310 - -

Table B.15: Performance metrics for the GP regression with Ma5+lin kernels with correlation adjustment, trained on CAF and VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 2.81e+09 218 - 7.65 -235 - -
A005 6.86e+08 180 - 6.29 -199 3.93e+04 -
A006 3.02e+10 630 - 0.0913 -980 - -
A007 6.82e+08 145 - 10.4 -127 2.92e+04 1.12e+06
A010 4.52e+11 8.76e+03 - 16.2 -9.7e+03 - -
A017 2.79e+09 246 - 2.05 -307 - -
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B.3. Recurrent neural network

B.3.1. Model architectures

Table B.16: Optimal RNN architectures and their corresponding estimated generalisation loss

Training set Excluded specimen Optimal model
Hidden nodes Epochs Est. gen. loss

CAF A001 1 320 0.049
VAF A001 1 160 0.06

A005 16 640 0.039
A006 1 90 0.05
A007 16 250 0.052
A010 4 110 0.036
A017 2 130 0.068

CAF and VAF A001 2 40 0.06
A005 32 970 0.032
A006 4 930 0.038
A007 1 910 0.056
A010 1 470 0.03
A017 1 50 0.054

B.3.2. Sensitivity analysis

Figure B.40: Sensitivities of the MSE loss of the RNN, when trained on CAF data. The sensitivities are sorted by the width of the box
encapsulating the 1st and 3rd quartiles. The green line indicates the median, with the box encapsulating the 1st and 3rd quartiles Q1 and
Q3. The whiskers extend up to 1.5(Q3 −Q1). Outliers are plotted as dots.
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Figure B.41: Sensitivities of the MSE loss of the RNN, when trained on VAF data. The sensitivities are sorted by the width of the box
encapsulating the 1st and 3rd quartiles.

Figure B.42: Sensitivities of the MSE loss of the RNN, when trained on CAF and VAF data. The sensitivities are sorted by the width of the
box encapsulating the 1st and 3rd quartiles.
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B.3.3. Failure index and remaining useful life predictions

(a) FI prediction (b) RUL prediction

Figure B.43: RNN predictions for specimen A005, trained on CAF data

(a) FI prediction (b) RUL prediction

Figure B.44: RNN predictions for specimen A007, trained on CAF data

(a) FI prediction (b) RUL prediction

Figure B.45: RNN predictions for specimen A010, trained on CAF data
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(a) FI prediction (b) RUL prediction

Figure B.46: RNN predictions for specimen A017, trained on CAF data

(a) FI prediction (b) RUL prediction

Figure B.47: RNN predictions for specimen A001, trained on VAF data

(a) FI prediction (b) RUL prediction

Figure B.48: RNN predictions for specimen A005, trained on VAF data
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(a) FI prediction (b) RUL prediction

Figure B.49: RNN predictions for specimen A007, trained on VAF data

(a) FI prediction (b) RUL prediction

Figure B.50: RNN predictions for specimen A010, trained on VAF data

(a) FI prediction (b) RUL prediction

Figure B.51: RNN predictions for specimen A017, trained on VAF data
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(a) FI prediction (b) RUL prediction

Figure B.52: RNN predictions for specimen A001, trained on CAF and VAF data

(a) FI prediction (b) RUL prediction

Figure B.53: RNN predictions for specimen A005, trained on CAF and VAF data

(a) FI prediction (b) RUL prediction

Figure B.54: RNN predictions for specimen A006, trained on CAF and VAF data
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(a) FI prediction (b) RUL prediction

Figure B.55: RNN predictions for specimen A007, trained on CAF and VAF data

(a) FI prediction (b) RUL prediction

Figure B.56: RNN predictions for specimen A010, trained on CAF and VAF data

(a) FI prediction (b) RUL prediction

Figure B.57: RNN predictions for specimen A017, trained on CAF and VAF data
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B.3.4. Performance metric tables

Table B.17: Means of four performance metrics for the RNN

Training data MSE MAPE CBPM CRA
[cycles2] [%] [%] [%]

CAF 4.06e+09 475 16.4 -697
VAF 2.72e+09 174 13 -134
CAF and VAF 2.57e+09 160 23.6 -121

Table B.18: Performance metrics for the RNN, trained on CAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 2.72e+08 66.1 - 40.8 3.02 2.04e+04 -
A005 3.77e+09 643 - 4.33 -1e+03 - -
A006 1.63e+10 693 - 2.01 -1.17e+03 - -
A007 2.75e+08 93.1 - 24.6 -41.8 2.17e+04 2.78e+04
A010 2.52e+08 849 - 22.3 -1.17e+03 - -
A017 3.53e+09 505 - 4.27 -809 - -

Table B.19: Performance metrics for the RNN, trained on VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 5.13e+08 118 - 18.6 -74.6 2.43e+04 -
A005 4.33e+09 198 1001 6.93 -126 4.84e+04 1.25e+05
A006 9.09e+09 99.8 - 5.96 -14.2 8.21e+04 -
A007 5.97e+08 99.4 500 9.73 -22.7 2.5e+04 2.53e+05
A010 7.4e+07 453 - 22.3 -568 - -
A017 1.69e+09 79.2 - 14.6 3 4.06e+04 -

Table B.20: Performance metrics for the RNN, trained on CAF and VAF data

Specimen MSE MAPE PH CBPM CRA ∆ convergence PI convergence
[cycles2] [%] [cycles] [%] [%] [cycles] [cycles]

A001 3.95e+08 65.2 - 41.3 10.7 2.05e+04 -
A005 3.98e+09 252 - 1.53 -249 5.23e+04 4.71e+05
A006 9e+09 97.1 - 9.04 -9 8.22e+04 -
A007 3.2e+08 72.3 - 38 7.4 2.04e+04 -
A010 5.35e+07 381 - 34.4 -461 - -
A017 1.7e+09 94 - 17.5 -26.3 3.99e+04 -
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B.4. Case study
B.4.1. Architecture validation

Table B.21: Optimal RNN architectures and their corresponding estimated generalisation loss for the GFRP data-set

Excluded specimen Optimal model
Hidden nodes Epochs Est. gen. loss

6 1 110 0.078
7 1 800 0.060
8 2 140 0.077
9 1 60 0.079
10 2 510 0.060
11 1 80 0.075
12 1 90 0.077

(a) RNN (b) RNN+FFNN

Figure B.58: Estimated generalisation errors for specimen 7 in the GFRP data-set

(a) RNN (b) RNN+FFNN

Figure B.59: Estimated generalisation errors for specimen 8 in the GFRP data-set
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(a) RNN (b) RNN+FFNN

Figure B.60: Estimated generalisation errors for specimen 9 in the GFRP data-set

(a) RNN (b) RNN+FFNN

Figure B.61: Estimated generalisation errors for specimen 10 in the GFRP data-set

(a) RNN (b) RNN+FFNN

Figure B.62: Estimated generalisation errors for specimen 11 in the GFRP data-set
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(a) RNN (b) RNN+FFNN

Figure B.63: Estimated generalisation errors for specimen 12 in the GFRP data-set

B.4.2. Failure index predictions

(a) FI prediction from the RNN (b) FI prediction from the RNN+FFNN

Figure B.64: FI predictions for specimen 6 in the GFRP data-set

(a) FI prediction from the RNN (b) FI prediction from the RNN+FFNN

Figure B.65: FI predictions for specimen 7 in the GFRP data-set



B.4. Case study 137

(a) FI prediction from the RNN (b) FI prediction from the RNN+FFNN

Figure B.66: FI predictions for specimen 9 in the GFRP data-set

(a) FI prediction from the RNN (b) FI prediction from the RNN+FFNN

Figure B.67: FI predictions for specimen 10 in the GFRP data-set

(a) FI prediction from the RNN (b) FI prediction from the RNN+FFNN

Figure B.68: FI predictions for specimen 12 in the GFRP data-set
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