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Abstract. Newman’s measure for (dis)assortativity, the linear degree correlation coefficient ρD, is refor-

mulated in terms of the total number Nk of walks in the graph with k hops. This reformulation allows

us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each

rewiring step, either increases or decreases ρD conform our desired objective. Spectral metrics (eigenvalues

of graph-related matrices), especially, the largest eigenvalue λ1 of the adjacency matrix and the algebraic

connectivity μN−1 (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic

processes on networks such as virus spreading and synchronization processes. We present various lower

bounds for the largest eigenvalue λ1 of the adjacency matrix and we show, apart from some classes of

graphs such as regular graphs or bipartite graphs, that the lower bounds for λ1 increase with ρD. An

new upper bound for the algebraic connectivity μN−1 decreases with ρD. Applying the degree-preserving

rewiring algorithm to various real-world networks illustrates that (a) assortative degree-preserving rewiring

increases λ1, but decreases μN−1, even leading to disconnectivity of the networks in many disjoint clusters

and that (b) disassortative degree-preserving rewiring decreases λ1, but increases the algebraic connectivity,

at least in the initial rewirings.

1 Introduction

“Mixing” in complex networks [14] refers to the tendency

of network nodes to connect preferentially to other nodes

with either similar or opposite properties. Mixing is com-

puted via the correlations between the properties, such

as the degree, of nodes in a network. Networks, where

high-degree nodes preferentially connect to other high-

degree nodes, are called assortative, whereas networks,

where high-degree nodes connect to low-degree nodes, are



2 Piet Van Mieghem et al.: Influence of Assortativity and Degree-preserving Rewiring on the Spectra of Networks

called disassortative. The degree correlation is widely stud-

ied after it was realized that the degree distribution alone

provides a far from sufficient characterization of complex

networks. Networks with a same degree distribution may

still differ significantly in various topological features (as

we will also show in this paper). A stronger confinement

than a same degree distribution are networks with a same

— apart from a possible node relabelling — degree vector

dT = [d1, d2, ..., dN ], where dj is the degree of node j.

Also “same degree vector” networks may possess widely

different topological properties. Consequently, degree cor-

relation related investigations have been performed along

various axes: a) models to generate networks with given

degree correlation have been developed [13][2]; b) the ef-

fect of degree correlation on topological properties is stud-

ied in [25][12], and c) the influence of degree correlation

in dynamic processes on networks such as the epidemic

spreading [5] and on percolation phenomena [16] have

been targeted. Relations between degree correlation and

other topological or dynamic features are examined ex-

perimentally [25] or in a specific network model [16][5].

“Local” assortativity is proposed in [17]. Analytic insight

in degree correlations in an arbitrary network remains far

from well understood. In this work, we explore the in-

fluence of the degree correlation on spectra of networks,

which well capture both topological properties [23] and

dynamic processes [4] on the network.

Let G be a graph or a network and let N denote the

set of N = |N | nodes and L the set of L = |L| links.

An undirected graph G can be represented by an N ×N

symmetric adjacency matrix A, consisting of elements aij

that are either one or zero depending on whether there is

a link between node i and j. The adjacency spectrum of

a graph is the set of eigenvalues of the adjacency matrix,

λN ≤ λN−1 ≤ · · · ≤ λ1, where λ1 is called the spectral

radius. The Laplacian matrix of G with N nodes is an

N ×N symmetric matrix Q = ∆−A, where ∆ = diag(di)

and di is the degree of node i ∈ N . The set of N eigen-

values of the Laplacian matrix μN = 0 ≤ μN−1 ≤ ... ≤ μ1

is called the Laplacian spectrum of G. The theory of the

spectra of graphs provides many beautiful results [23]. Re-

cently, modern network theory has been integrated with

dynamic system’s theory to understand how the network

topology can predict dynamic processes such as synchro-

nization or virus spread taking place on networks. The

SIS (susceptable-infected-susceptable) virus spreading [24]

and the Kuramoto type of synchronization process of cou-

pled oscillators [18] have been characterized on a given,

but general, network topology. Both these dynamic and

non-linear processes feature a phase transition, that spec-

ifies the onset of a remaining fraction of infected nodes

and of locked oscillators, respectively. The more curious

aspect is that each of the phase transitions in these dif-

ferent processes occurs at an effective spreading rate τ c

and coupling strength gc respectively, that is proportional

to 1/λ1. In addition, dynamic processes on graphs con-

verge towards their steady-state, in most cases, exponen-

tially fast in time and with a time-constant related to the

spectral gap (difference between λ1 and λ2). Connectivity

and the number of disjoint clusters in G follows from the



Piet Van Mieghem et al.: Influence of Assortativity and Degree-preserving Rewiring on the Spectra of Networks 3

algebraic connectivity (second-smallest eigenvalue of the

Laplacian) and the number of smallest Laplacian eigenval-

ues that are zero [23]. Hence, these spectral metrics (eigen-

values of graph-related matrices), especially, the largest

eigenvalue λ1 of the adjacency matrix and the algebraic

connectivity μN−1, are powerful characterizers of dynamic

processes on graphs.

The present paper starts with a reformulation of the

linear degree correlation coefficient ρD, introduced by New-

man [14, eq (21)], in terms of the total number Nk of walks

in the graph with k hops. This reformulation allows us

to derive a new formula from which a degree-preserving

rewiring algorithm is deduced, that, in each rewiring step,

either increases or decreases ρD conform the desired objec-

tive. Thus, we construct a sequence of degree-preserving

rewirings that monotonously in- or decreases the linear

degree correlation coefficient ρD, or equivalently, that in-

creases the assortativity or disassortativity of G. Next, we

present various lower bounds for λ1 and we show, apart

from some classes of graphs such as regular graphs or bi-

partite graphs, that lower bounds for λ1 increase with ρD.

We derive an upper bound for the algebraic connectivity

μN−1 that decreases with ρD. Then, as an example, we

apply the degree-preserving rewiring algorithm to a real-

world network, the USA air transportation network, and

compute in each rewiring the entire adjacency and Lapla-

cian spectrum. A major finding, also observed in other

real-world networks that we have rewired, is that, increas-

ing λ1 by increasing the assortativity, relatively rapidly

leads to disconnectivity, while increasing disassortativity

seems to increase the algebraic connectivity μN−1, thus

the topological robustness.

2 Reformulation of Newman’s definition

Here, we study the degree mixing in undirected graphs.

Generally, the linear correlation coefficient between two

random variables X and Y is defined [22, p. 30] as

ρ (X,Y ) =
E [XY ]− μXμY

σXσY
(1)

where μX = E [X] and σX =
p
Var [X] are the mean and

standard deviation of the random variableX, respectively.

Newman [14, eq. (21)] has expressed the linear degree cor-

relation coefficient of a graph as

ρD =

P
xy

xy (exy − axby)

σaσb
(2)

where exy is the fraction of all links that connect the nodes

with degree x and y and where ax and by are the fraction

of links that start and end at nodes with degree x and y,

satisfying the following three conditions

X
xy

exy = 1, ax =
X
y

exy and by =
X
x

exy

When ρD > 0, the graph possesses assortative mixing, a

preference of high-degree nodes to connect to other high-

degree nodes and, when ρD < 0, the graph features disas-

sortative mixing, where high-degree nodes are connected

to low-degree nodes.

The translation of (2) into the notation of random vari-

ables is presented as follows. Denote by Di and Dj the

node degree of two connected nodes i and j in an undi-

rected graph withN nodes. In fact, we are interested in the
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degree of nodes at both sides of a link, without taking the

link, that we are looking at, into consideration. As New-

man [14] points out, we need to consider the number of

excess links at both sides, hence, the degree Dl+ = Di− 1

and Dl− = Dj − 1, where the link l has a start at l+ = i

and an end at l− = j. The linear correlation coefficient of

those excess degrees is

ρ (Dl+ ,Dl−) =
E [Dl+Dl− ]−E [Dl+ ]E [Dl− ]

σDl+
σDl−

=
E [(Dl+ −E [Dl+ ]) (Dl− −E [Dl− ])]r

E
h
(Dl+ −E [Dl+ ])

2
i
E
h
(Dl− −E [Dl− ])

2
i

Since Dl+−E [Dl+ ] = Di−E [Di], subtracting everywhere

one link does not change the linear correlation coefficient,

provided Di > 0 (and similarly that Dj > 0), which is

the case if there are no isolated nodes. Removing isolated

nodes from the graph does not alter the linear degree cor-

relation coefficient (2). Hence, we can assume that the

graph has no zero-degree nodes. In summary, the linear

degree correlation coefficient is

ρ (Dl+ ,Dl−) = ρ (Di,Dj) =
E [DiDj ]− μ2Di

E [D2
i ]− μ2Di

(3)

We now proceed by expressing E [DiDj ], E [Di] and

σDi in the definition of ρ (Dl+ ,Dl−) = ρ (Di,Dj) for undi-

rected graphs in terms of more appropriate quantities of

algebraic graph theory. First, we have that

E [DiDj ] =
1

2L

NX
i=1

NX
j=1

didjaij =
dTAd

2L

where di and dj are the elements in the degree vector

dT = [d1, d2, ..., dN ], and aij is the element of the sym-

metric adjacency matrix A, that expresses {0, 1} connec-

tivity between nodes i and j. The quadratic form dTAd

can be written in terms of the total number Nk = uTAku

of walks with k hops (see e.g. [23]), where u is the all-one

vector. Since d = Au, dTAd equals N3 = uTA3u, the to-

tal number of walks with length equal to 3 hops, which

is called the s metric in [12]. The average μDi
and μDj

are the mean node degree of the two connected nodes i

and j, respectively, and not the mean of the degree D of

a random node, which equals E [D] = 2L
N . Thus,

μDi
=

1

2L

NX
i=1

NX
j=1

diaij =
1

2L

NX
i=1

di

NX
j=1

aij

=
1

2L

NX
i=1

d2i =
dTd

2L

while

μDj
=

1

2L

NX
i=1

NX
j=1

djaij = μDi

The variance σ2Di
= Var[Di] = E

£
D2
i

¤
− μ2Di

and

E
£
D2
i

¤
=

1

2L

NX
i=1

NX
j=1

d2i aij =
1

2L

NX
i=1

d3i = E
£
D2
j

¤

After substituting all terms into the expression (3) of the

linear degree correlation, we obtain, with N1 = 2L and

N2 = dTd, our reformulation of Newman’s definition (2)

in terms of Nk,

ρD = ρ (Di,Dj) =
N1N3 −N2

2

N1

NP
i=1

d3i −N2
2

(4)

The crucial understanding of (dis)assortativity lies in the

total number N3 of walks with 3 hops compared to those

with 2 hops, N2, and one hop, N1 = 2L.
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3 Discussion of (4)

Fiol and Garriga [8] have shown that the total number

Nk = uTAku of walks of length k is upper bounded by

Nk ≤
NX
j=1

dkj

with equality only if k ≤ 2 and, for all k, only if the graph

is regular (i.e., dj = r for any node j). Hence, (4) shows

that only if the graph is regular, ρD = 1, implying that

maximum assortativity is only possible in regular graphs1.

Since the variance of the degrees at one side of an arbitrary

link

σ2Di
=

1

N1

NX
i=1

d3i −
µ
N2

N1

¶2
≥ 0 (5)

the sign of N1N3−N2
2 in (4) distinguishes between assor-

tativity (ρD > 0) and disassortativity (ρD < 0). Using the

Laplacian matrix, Fiol and Garriga [8] show that

NX
i=1

d3i −N3 =
X
i∼j

(di − dj)
2
=
1

2

NX
i=1

NX
j=1

aij (di − dj)
2

(6)

which is the sum over all links of the square of the dif-

ferences of the degrees at both sides of a link l = i ∼ j.

Using (6), the degree correlation (4) can be rewritten as

ρD = 1−
P

i∼j (di − dj)
2

NP
i=1

d3i − 1
2L

µ
NP
i=1

d2i

¶2 (7)

1 Notice that the definition (4) is inadequate (due to a zero

denominator and numerator) for a regular graph with degree

r because Nk regular graph = Nrk. For regular graphs where
N

i=1

d3i = N3, the perfect disassortativity condition (9) becomes

N2
2 = N1N3, which is equal to the zero assortativity condition

(8). Of course, ρregu lar graph = 1, since all degrees are equal

and thus perfectly correlated.

The graph is zero assortative (ρD = 0) if

N2
2 = N1N3 (8)

In Appendix A, we show that the connected Erdős-Rényi

random graph Gp (N) is zero-assortative for all N and link

density p > pc, where pc is the disconnectivity thresh-

old (see [22, p. 329-338]). Asymptotically for large N ,

the Barabási-Albert power law graph is zero-assortative

as shown in [15].

Perfect disassortativity (ρD = −1 in (4)) implies that

N2
2 =

N1

2

Ã
N3 +

NX
i=1

d3i

!
(9)

For a complete bipartite graph2 Km,n, we have that

X
i∼j

(di − dj)
2
= mn (n−m)

2
,
NX
i=1

d3i = nm
¡
n2 +m2

¢
and

NX
i=1

d2i = nm (n+m)

such that (7) becomes ρD = −1, provided m 6= n. Hence,

any complete bipartite graph Km,n (irrespective of its size

and structure (m,n), except for the regular graph variant

where m = n) is perfectly disassortative. The perfect dis-

assortativity of complete bipartite graphs is in line with

the definition of disassortativity, because each node has

only links to nodes of a different set with different prop-

erties. Nevertheless, the fact that all complete bipartite

graphs Km,n with m 6= n have ρD = −1, even those with

2 The complete bipartite graph Km,n consists of two sets

M and N with m = |M| and n = |N | nodes respectively,

where each node of one set is connected to all other nodes of

the other set. There are no links between nodes of a same set.

More properties are deduced in [23].
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nearly the same degrees m = n± 1 and thus close to reg-

ular graphs typified by ρD = 1, shows that assortativity

and disassortativity of a graph is not easy to predict. It

remains to be shown that the complete bipartite graphs

Km,n with m 6= n are the only perfect disassortative class

of graphs.

There is an interesting relation between the linear de-

gree correlation coefficient ρD of the graph G and the vari-

ance of the degree of a node in the corresponding line

graph l (G). The line graph l (G) of the graph G (N,L)

has as set of nodes the links of G and two nodes in l (G)

are adjacent if and only if they have, as links in G, ex-

actly one node of G in common. The l-th component of

the L× 1 degree vector in the line graph l (G) (see [23]) is¡
dl(G)

¢
l
= di + dj − 2, where node i and j are connected

by link l = i ∼ j. The variance of the degree Dl(G) of a

random node in the line graph equals

Var
£
Dl(G)

¤
= E

h
(Di +Dj)

2
i
− (E [Di +Dj ])

2

which we rewrite as

Var
£
Dl(G)

¤
= 2

¡
E
£
D2
i

¤
− μ2Di

+E [DiDj ]− μ2Di

¢
Using (3), we arrive at

Var
£
Dl(G)

¤
= 2 (1 + ρD)

¡
E
£
D2
i

¤
− μ2Di

¢
= (1 + ρD)Var [Di]

= 2 (1 + ρD)

Ã
1

N1

NX
i=1

d3i −
µ
N2

N1

¶2!
(10)

Curiously, the expression (10) shows for perfect disassor-

tative graphs (ρD = −1) that Var
£
Dl(G)

¤
= 0. The latter

means that l (G) is then a regular graph, but this does

not imply that the original graph G is regular. Indeed, if

G is regular, then l (G) is also regular as follows from l-th

component of the degree vector,
¡
dl(G)

¢
l
= di + dj − 2.

However, the reverse is not necessarily true: it is possible

that l (G) is regular, while G is not, as shown above, for

complete bipartite graphs Km,n with m 6= n that are not

regular. In summary, in both extreme cases ρD = −1 and

ρD = 1, the corresponding line graph l (G) is a regular

graph.

4 Relation between graph spectra and ρD

The largest eigenvalue λ1 of the adjacency matrix A of

a graph as well as the algebraic connectivity μN−1, in-

troduced by Fiedler [7], are important characterizers of a

graph. Here, we present a new lower bound for λ1 and up-

per bound of μN−1 in terms of the linear degree coefficient

ρD.

In [23, Chapter 3], we show, for all integers k ≥ 1, that

λ1 ≥
µ
N2k

N

¶1/(2k)
≥
µ
Nk

N

¶1/k
from which limk→∞

¡
Nk

N

¢1/k
= λ1. We obtain the classical

lower bound for k = 1,

λ1 ≥
N1

N
=
2L

N
= E [D] (11)

and for k = 2,

λ1 ≥
r

N2

N
=

vuut 1

N

NX
k=1

d2k =
2L

N

s
1 +

Var [D]

(E [D])
2 (12)

For k = 3 and using (4), we obtain

λ31 ≥
N3

N
=
1

N

Ã
ρD

Ã
NX
i=1

d3i −
N2
2

N1

!
+

N2
2

N1

!
(13)

The inequality (13) with (5) shows that the lower bound

for the largest eigenvalue λ1 of the adjacency matrix A
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is strictly increasing in the linear degree correlation co-

efficient ρD (except for regular graphs). Given the degree

vector d is constant, inequality (13) shows that the largest

eigenvalue λ1 is obtained in case we succeed to increase the

assortativity of the graph by degree-preserving rewiring,

which is discussed in Section 5.

A related bound, deduced from Rayleigh’s inequality

λ1 ≥ yTAy
yT y

by choosing the vector y = Amu, where u is

the all-one vector and m is a non-zero integer, is

λ1 ≥
uTA2m+1u

uTA2mu
=

N2m+1

N2m
(14)

The case m = 1 in (14), λ1 ≥ N3

N2
, already appeared as an

approximation in [19] of the largest adjacency eigenvalue

λ1, which, again in view of (4), is a perfect linear func-

tion of ρD. Finally, we present the new, optimized bound,

derived in [23, Chapter 3],

λ1 ≥
N0N3 −N1N2 +R

2 (N0N2 −N2
1 )

(15)

where

R =
q
N2
0N

2
3 − 6N0N1N2N3 − 3N2

1N
2
2 + 4 (N

3
1N3 +N0N3

2 )

Fig. 1 illustrates how the largest eigenvalue λ1 of the

Barabasi-Albert power-law graph evolves as a function of

the linear degree correlation coefficient ρD, that can be

changed by degree-preserving rewiring. The lower bound

(15) clearly outperforms the lower bound3 (13). Especially

in degree-preserving rewiring, where N0,N1 and N2 are

constant, the complex looking, but superior formula (15)

becomes manageable, because only N3 changes with ρD.

3 Especially for strong negative ρD, we found — very rarely

though — that (15) can be slightly worse than (12).

25

20

15

10

λ 1

-0.4 -0.2 0.0 0.2 0.4
ρD

 exact
 bound (13)
 bound (14)
 bound (15)

Fig. 1. The largest eigenvalue λ1 of the Barabasi-Albert

power-law graph with N = 500 nodes and L = 1960 links ver-

sus the linear degree correlation coefficient ρD. Various lower

bounds are plotted: bound (13), bound (15) and bound (14) for

m = 1. The corresponding classical lower bound (11) is 7.84,

while the lower bound (12) is 10.548.

The Rayleigh principle (see e.g. [23,7]) provides an up-

per bound for the second-smallest eigenvalue μN−1 of the

Laplacian Q = diag(dj)−A as

μN−1 ≤
P

l∈L (g (l
+)− g (l−))

2P
n∈N g2 (n)− 1

N

¡P
u∈N g (u)

¢2
where g (n) is any non-constant function. Let g (n) = dn,

the degree of a node n, then

μN−1 ≤
P

l∈L (dl+ − dl−)
2PN

j=1 d
2
j − 1

N

³PN
j=1 dj

´2 = P
l∈L (dl+ − dl−)

2

NVar [D]

After introducing (7), we find for any non-regular graph

μN−1 ≤ (1− ρD)

NP
i=1

d3i − 1
2L

µ
NP
i=1

d2i

¶2
PN

j=1 d
2
j − 1

N

³PN
j=1 dj

´2 (16)

= (1− ρD)
E [D]E

£
D3
¤
−
¡
E
£
D2
¤¢2

E [D]Var [D]
(17)

which is an upper bound for the algebraic connectivity

μN−1 in terms of the linear correlation coefficient of the
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degree ρD. In degree-preserving rewiring, the fraction in

(16), that is always positive, is unchanged and we observe

that the upper bound decreases linearly in ρD.

5 Degree-preserving rewiring

In degree-preserving rewiring, links in a graph are rewired

while maintaining the node degrees unchanged. This means

that the degree vector d is constant and, consequently,

that N1 =
NP
i=1

di,N2 =
NP
i=1

d2i and
NP
i=1

d3i do not change

during degree-preserving rewiring, only N3 does, and by

(4), also the (dis)assortativity ρD.

A degree-preserving rewiring changes only the termP
i∼j (di − dj)

2 in (7), which allows us to understand how

a degree-preserving rewiring operation changes the linear

degree correlation ρD. Each step in a degree-preserving

random rewiring consists of first randomly selecting two

links i ∼ j and k ∼ l associated with the four nodes

i, j, k, l. Next, the links can be rewired either into i ∼ k

and j ∼ l or into i ∼ l and j ∼ k .

Lemma 1 Given a graph in which two links are degree-

preservingly rewired. We order the degree of the four in-

volved nodes as d(1) ≥ d(2) ≥ d(3) ≥ d(4). The two links

are associated with the 4 nodes nd(1) , nd(2) , nd(3) and nd(4)

only in one of the following three ways: a) nd(1) ∼ nd(2) ,

nd(3) ∼ nd(4) , b) nd(1) ∼ nd(3) , nd(2) ∼ nd(4) , and c)

nd(1) ∼ nd(4) , nd(2) ∼ nd(3) . The corresponding linear de-

gree correlation introduced by these three possibilities obeys

ρa ≥ ρb ≥ ρc.

Proof: In these three ways of placing the two links,

the degree of each node remains the same. According to

definition (7), the linear degree correlation is determined

only by ε = −
P

i∼j (di − dj)
2. Thus, the relative degree

correlation difference between (a) and (b) is

εa − εb = −
¡
d(1) − d(2)

¢2 − ¡d(3) − d(4)
¢2

+
¡
d(1) − d(3)

¢2
+
¡
d(2) − d(4)

¢2
= 2(d(2) − d(3))(d(1) − d(4)) ≥ 0

since the rest of the graph remains the same in all three

cases. Similarly,

εa − εc = 2(d(2) − d(4))(d(1) − d(3)) ≥ 0

εb − εc = 2(d(1) − d(2))(d(3) − d(4)) ≥ 0

These three inequalities complete the proof. ¤

A direct consequence of Lemma 1 is that we can now

design a rewiring rule that increases or decreases the lin-

ear degree correlation ρD of a graph. We define degree-

preserving assortative random rewiring as follows: Ran-

domly select two links associated with four nodes and then

rewire the two links such that as in a) the two nodes with

the highest degree and the two lowest-degree nodes are

connected. If any of the new links exists before rewiring,

discard this step and a new pair of links is randomly se-

lected. Alternatively, we could select two links for whichP
i∼j (di − dj)

2 is highest and rewire them such that the

highest-degree nodes are connected and the lowest-degree

nodes are connected. Similarly, the procedure for degree-

preserving disassortative random rewiring is: Randomly

select two links associated with four nodes and then rewire
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the two links such that as in c) the highest-degree node

and the lowest-degree node are connected, while also the

remaining two nodes are linked provided the new links do

not exist before rewiring. Lemma 1 shows that the degree-

preserving assortative (disassortative) rewiring operations

increase (decrease) the degree correlation of a graph.

Degree-preserving rewiring is an interesting tool to mod-

ify a graph in which resources of the nodes are constrained.

For example, the number of outgoing links in a router [3]

as well as the number of flights at many airports per day

are almost fixed. Random degree-preserving rewiring may

be considered as an evolutionary process in nature.

5.1 Algorithmic considerations

In this subsection, we concentrate on the following prob-

lem:

Problem 1 Given a degree vector d consisting of N el-

ements, find a (not necessarily connected) simple4 graph

such that the assortativity ρD is maximum (minimum).

Before presenting the solution, we evaluate two intu-

itive approaches. The first method, used in [26] and coined

the stochastic approach, consists of repeating degree-preser-

ving assortative random rewiring long enough. The sto-

chastic approach stabilizes, after long enough rewiring, to

some level ρ̃D. Next we check all possible
¡
L
2

¢
pairs of

links whether we still can rewire a pair to increase ρD.

4 A simple graph is an unweighted, undirected graph con-

taining no self-loops (links starting and ending at the same

node) nor multiple links between the same pair of nodes.

If we cannot rewire any pair of links to increase ρD, we

have definitely found a local maximum. However, this lo-

cal maximum is not guaranteed to be the overall or global

maximum. This can be verified by executing the stochas-

tic approach on a same graph a number of times: each

realization (including the check over all possible
¡
L
2

¢
pairs

of links) does not necessarily achieve the same maxρD.

The second deterministic approach attempts to find

an N × N matrix A that maximizes N3 = dTAd, while

maintaining the degree vector d unchanged. Without loss

of generality we can assume that the components of the

degree vector d are ordered as d1 ≥ ... ≥ dN . The el-

ements aij of A should be determined such that N3 =PN
j=1

PN
i=1 aijdidj is maximum under the condition thatPN

j=1 aij = di, aij = aji, and aii = 0 for all i. Let

us denote the vector c = Ad, which has non-negative

components. Recall that d = Au, then N3 = dT c and

uT c =
PN

i=1 ci = dT d is constant (because d must be

unchanged). Due to the ordering d1 ≥ ... ≥ dN , dT c =PN
i=1 cidi is maximum if c1 ≥ ... ≥ cN . We should there-

fore shift as much weight as possible (of the total
PN

i=1 ci)

to the left side of the vector cT . The graph constuction

method in [12] that tries to optimize
PN

i=1

PN
j=1 aijdidj ,

belongs to the second class. This method ranks all possible

links 1 ≤ l ≤
¡
N
2

¢
according to dl+dl− from the highest to

the lowest resulting in l(1), l(2), . . . , l((N2 )). Next, the graph

is constructed by including sequentially links with increas-

ing index, but links that violate the degree vector, are

excluded. Both the stochastic and deterministic approach
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(as deployed by Li et al. [12]) are, however, heuristic, while

the problem is polynomially solvable.

Problem 1 is, in fact, an instance of the maximum-

weight degree-constrained subgraph problem5, which is

polynomially solvable (e.g., see [20] and [9]). The degree-

constrained subgraph problem is defined as follows:

Definition 1 Degree-constrained subgraph problem: Given

a graph G(N ,L) with N nodes and L links, and a degree

vector d = d1, ..., dN , find a subgraph H(N ,LH), where

LH ⊆ L, and each node i has precisely di neighbors (ad-

jacent nodes).

The problem instance that we need to solve is to find

a maximum-weight degree-constrained subgraph in the

complete graph KN , where each link from a node i to a

node j is assigned a weight didj . By finding a maximum-

weight degree-constrained subgraph H, where each node

i ∈ N has precisely di neighbors, we obtain a subgraph

of the complete graph for which all nodes obey the de-

gree sequence, and for which N3 =
PN

j=1

PN
i=1 aijdidj is

maximum (corresponding to a graph with highest N3 and

hence assortativity).

5 The degree-constrained subgraph problem on its turn falls

under the umbrella of b-matching. A perfect b-matching is a set

of links (subgraph) that span all nodes and for which each node

i has (precisely or at most) b(i) adjacent links in the matching.

If links are assigned weights, then the maximum-weight perfect

b-matching problem is to find a perfect b-matching, for which

the sum of the link weights in the matching is highest among

all possible perfect b-matchings. The problem is also known as

f -matching or b/f -factor and has many variations.

We end the section by considering two additional and

related problems. The first problem considers the differ-

ence max ρD −min ρD that may be regarded as a metric

of a given degree vector d and that reflects the adaptivity

in (dis)assortativity under degree-preserved rewiring. As

shown earlier, for some graphs like regular graphs, that dif-

ference maxρD−minρD = 0, while max ρD −min ρD ≤ 2.

Let Amax be the matrix corresponding to max ρD and

Amin is the matrix corresponding tomin ρD, thenmax ρD−

min ρD = N1(d
T (Amax−Amin)d)

N1
N
i=1 d

3
i−N2

2

. Now, R = Amax − Amin is

an N × N matrix with elements rij ∈ {0, 1,−1}. The

1’s (or equivalently −1’s) indicate where a link is present

in Amax and not in Amin (or vice versa for −1’s). Con-

sequently, given that for an undirected graph R = RT is

symmetric, the maximum number of links that would need

to be rewired in Amin to get Amax equals the total amount

of 1’s (or equivalently −1’s) divided by 2. The rewiring of

a link in Amin to a link in Amax corresponds to rewiring

an element in R with a −1 and with a 1 (in the same row

or column due to symmetry of R). Through appropriate

relabeling of nodes, the number of rewirings may decrease.

Unfortunately, finding the minimum number of rewirings

is an NP-complete problem [3].

The problem of finding a connected graph of mini-

mum (or maximum) weight given a degree sequence is

NP-complete, since by setting all degrees to 2, the problem

reduces to the NP-complete Traveling Salesman Problem

[10]. However, Bienstock and Günlük have proved that “If

two connected graphs have the same degree sequence, then

there exists a sequence of connected intermediate graphs
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transforming one of them to the other” [3]. Even though

we cannot efficiently compute a connected graph of high-

est (dis)assortativity, we can use a rewiring approach to

increase (dis)assortativity, while maintaining connectivity.

Hence, we would like to possess a criterion to check if a

rewiring will lead to disconnectivity. In the field of dy-

namic graph algorithms, Eppstein et al. [6] have proposed

a technique to check for connectivity in O(
p
N) time for

each link update (four updates per rewiring), which nat-

urally beats any standard way of checking for graph con-

nectivity.

Fig. 2. USA air transportation network, with N = 2179 and

L = 31326.

5.2 Application to the USA air transport network

As an example, we consider degree-preserving rewiring in

the USA air transportation network displayed in Fig. 2,

where each node is an airport and each link is a flight con-

nection between two American airports. We are interested
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Fig. 3. The ten largest and five smallest eigenvalues of the

adjacency matrix of the US airport transport network versus

the percentage of rewired links. The insert shows the linear

degree correlation coefficient ρD as function of the assortative

degree-preserving rewiring.

in an infection process, where viruses are spread via air-

planes from one city to another. From a topological point

of view, the infection threshold τ c =
1
λ1
is the critical de-

sign parameter that we would like to have as high as pos-

sible, because an effective infection rate τ > τ c translates

into a certain percentage of people that remains infected

after sufficiently long time (see for details [24]). Since most

airports operate near to full capacity, the number of flights

per airport should hardly change during the re-engineering

to modify the largest eigenvalue λ1. Hence, the degree vec-

tor d should not change, which makes degree-preserving

rewiring a desirable tool. Fig. 3 shows how the adjacency

eigenvalues of the USA air transport network change with

degree-preserving assortative rewiring. In each step of the

rewiring process, only four one elements (i.e., two links)
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in the adjacency matrix change position. If we relabel the

nodes in such a way that the link between 1 and 2 and

between 3 and 4 (case a) in Lemma 1) is rewired to ei-

ther case b) or c), then only a 4× 4 submatrix A4 of the

adjacency matrix A in

A =

⎡⎢⎣ A4 C

CT Ac

⎤⎥⎦

is altered. The Interlacing Theorem [23, Chapter 3] states

that λj+4 (A) ≤ λj (Ac) ≤ λj (A) for 1 ≤ j ≤ N − 4,

which holds as well for Ar just after one degree-preserving

rewiring step. Thus, apart from a few largest and small-

est eigenvalues, most of the eigenvalues of A and Ar are

interlaced, as observed from Fig. 3. The large bulk of the

2179 eigenvalues (not shown in Fig. 3 nor in Fig. 6) re-

mains centered around zero and confined to the almost

constant white strip between λ10 and λN−5. As shown

above, assortative rewiring increases λ1. Fig. 3 illustrates,

in addition, that the spectral width or range λ1 − λN in-

creases as well, while the spectral gap λ1 − λ2 remains

high, in spite of the fact that the algebraic connectivity

μN−1 is small. In fact, Fig. 4 shows that μN−1 decreases,

in agreement with (16), and vanishes after about 10% of

the link rewirings, which indicates [23, Chapter 3] that

the graph is then disconnected. Fig. 4 further shows that

by rewiring all links on average once (100 %), assortative

degree-preserved rewiring has dissected the USA airport

network into 20 disconnected clusters. Increasing the as-

sortativity implies that high-degree and low-degree nodes

are linked increasingly more to each other, which, intu-
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Fig. 4. The twenty smallest eigenvalues of the Laplacian ma-

trix of the USA airport transport network versus the percent-

age of rewired links. The insert shows the degree distribution

that is maintained in each degree-preserving rewiring step.

itively, explains why disconnectivity in more and more

clusters starts occurring during the rewiring process.

The opposite happens in disassortative rewiring as shown

in Fig. 5: the algebraic connectivity μN−1 increases during

degree-preserving rewiring (up to roughly 150% rewired

links) from about 0.25 to almost 1, which is the maximum

possible due to μN−1 ≤ dmin, the minimum degree, and

dmin = 1 as follows from the insert in Fig. 4. Finally, Fig. 6

plots the disassortative counter part of Fig. 3: the spectral

gap λ1 − λ2 reduces with the percentage of rewired links,

while the spectral range λ1 − λN does not significantly

change. The maximum difference maxρD−minρD is de-

duced from the inserts in Fig. 6 and Fig. 3 and appears to

be slightly more than one, such that the adaptivity ratio

in assortativity, maxρD−minρD
2 , is about 50%.

Summarizing, in order to suppress virus propagation

via air transport while guaranteeing connectivity, disas-
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sortative degree-preserving rewiring is advocated, which,

in return, enhances the topological robustness.
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Fig. 5. The twenty smallest eigenvalues of the Laplacian versus

the percentage of rewired links. The insert shows the disassor-

tative degree-preserving rewiring.

5.3 Generalizing the observations

Degree-preserving rewirings on various other real-world

complex networks confirm the above observations: (a) as-

sortative degree-preserving rewiring increases λ1, (b) but

also decreases the algebraic connectivity μN−1, even lead-

ing to disconnectivity of the network into many clusters.

(c) Disassortative degree-preserving rewiring decreases λ1,

but (d) increases the algebraic connectivity μN−1 initially

(roughly up to 100%) and thus strengthens the topological

connectivity structure of the network.

Often, the value of a network lies in the number of

its links L (relations between items), which grows as L =

O
¡
N2
¢
in terms of the nodes at most, and in its connectiv-

ity, the ability that each node can reach each other node. A

second value pillar of networking lies in positive synergetic

coupling: when two nodes interact, their total impact on

the network’s functioning is larger than the sum of their

individual functioning. Sometimes, even additional func-

tionality is created. In order to establish positive synergy,

the properties in the nodes often complement each other,

which reflects disassortativity. We have shown that disas-

sortativity decreases λ1, implying that dynamic processes

such as epidemic information spread and synchronization

of coupled oscillators are “slowed-down” (as their phase-

transition threshold increases). In return, disassortativity

increases the algebraic connectivity μN−1, thus the ease

to tear the network apart is lowered. Consequently, we

argue that in most biological, infrastructural, or collab-

orative complex networks, disassortativity is the natural

mode, because nodes with different properties connect to

each other to create a network with “win-win” proper-

ties. Moreover, disassortativity favors good connectivity.

Assortative networks, where nodes of the same type seek

to interconnect, are less natural: either these networks are

very regular and regularity is their distinguishing strength,

or the nodes are selfish and only exchange with those that

reward them equally, thereby excluding the lesser ones to

participate in the networking.

It is interesting to mention that these inferences agree

with Newman’s observations [14]: Most of the biological

and technical networks are disassortative, while social net-

works are found to be assortative.
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Fig. 6. The disassortative counterpart of Fig. 3.

6 Conclusions

We have reformulated the linear degree correlation coeffi-

cient ρD, introduced by Newman [14, eq (21)] as a measure

for assortativity, in terms of the total number Nk of walks

in the graph with k hops. This reformulation allows us

to derive a new formula from which a degree-preserving

rewiring algorithm is deduced, that, in each rewiring step,

either increases or decreases ρD. We have investigated the

degree-preserving rewiring problem in networks with a

same degree vector, and presented a solution that finds the

maximum assortativity ρD. Various lower bounds for the

largest eigenvalue λ1 of the adjacency matrix have been

presented that all increase with ρD. The largest eigenvalue

λ1 characterizes the effect of the topology on dynamic

processes on graphs. The degree-preserving rewiring al-

gorithm is applied to a real-world network, the USA air

transportation network, with the aim to make this net-

work more robust against virus spread, given that re-

sources, the number of flights in each airport, are constant.

A general observation is that, increasing λ1 by increas-

ing the assortativity, relatively rapidly leads to disconnec-

tivity, while increasing disassortativity seems to increase

the algebraic connectivity μN−1, thus the topological ro-

bustness. The latter agrees with the upper bound (16) on

μN−1, that indeed decreases with ρD.
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A Erdős-Rényi random graph

As mentioned in Section 2, we need to compute ρ (Dl+ ,Dl−),

where Dl+ = Di − 1 and node i is connected to node j.

The fact that Gp (N) is connected restricts p > pc ∼ logN
N ,

where pc is the disconnectivity threshold. We first compute

the joint probability Pr [Di (N) = k,Dj (N) = m|aij = 1],

where node i and node j are random nodes in Gp (N).

Given the existence of the direct link aij = 1, the direct

link is counted both in Di and in Dj such that

Pr [Di (N) = k,Dj (N) = m|aij = 1]

= Pr [Di (N − 1) = k − 1] Pr [Dj (N − 1) = m− 1]

Introducing the binomial density of Pr [Di (N) = k], we

obtain

Pr [Di (N) = k,Dj (N) = m|aij = 1]

=

µ
N − 2
k − 1

¶
pk−1 (1− p)N−1−k

µ
N − 2
m− 1

¶
pm−1 (1− p)N−1−k
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The joint expectation is

E [Di (N)Dj (N) |aij = 1]

=
N−1X
k=0

N−1X
m=0

mkPr [Di (N) = k,Dj (N) = m|aij = 1]

=
N−1X
k=0

µ
k

µ
N − 2
k − 1

¶
pk−1 (1− p)N−1−k ·

N−1X
m=0

m

µ
N − 2
m− 1

¶
pm−1 (1− p)N−1−k

!

= (1 + (N − 2)p)2

Next,

E [Di (N) |aij = 1] = 1 + (N − 2)p

such that, for all N and p > pc,

Cov [Di (N) ,Dj (N) |aij = 1]

= E [Di (N)Dj (N)]−E [Di (N)]E [Dj (N)] = 0

and, hence, ρD = 0: the connected Erdős-Rényi random

graph Gp (N) is zero-assortative.


