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Abstract: The majority of installed offshore wind turbines are supported on large-diameter,
open-ended steel pile foundations, known as monopiles. These piles are subjected to vertical
and lateral loads while in service. In current design practice, interaction of vertical and lateral
loads are not considered, rather piles are designed to resist vertical and lateral loads independently.
Whilst interaction effects are widely studied for shallow foundations, the limited research on this
topic for pile foundations often produces conflicting results. This paper reviews the research of
the influence of vertical loading on the lateral response of pile foundations under combined loads,
from the perspective of analytical research, numerical research, and experimental research from tests
performed on 1-g (gravitational acceleration) model, centrifuge, and full-scale piles. The potential
reasons for the differences among the results of previous research are discussed. Some guidance for
future research on the effect of vertical loads on the lateral response of piles is provided.

Keywords: monopile; vertical load; lateral response; interaction effects

1. Introduction

The offshore wind sector has experienced significant growth in recent years driven largely by
development and innovation in turbine capacity. The industry is seen as one of the most proven
ways for society to transition away from carbon to renewable energy sources. The European Green
Deal [1] sets an ambitious target of achieving a carbon-neutral continent by 2050 and offshore wind
developments are currently the leading technology to assist in achieving this aim. Offshore wind
already supplies over 11% of Europe’s energy demand [2], with projections this will increase to 30%
or more by 2030. To maintain momentum, turbine technology has been developing at a rapid pace,
and many near shore sites have been exploited to date. Future developments are looking towards
far offshore deeper water sites, which require significant engineering advances to overcome the
novel challenges.

Over 87% of offshore wind turbines (OWTs) are founded on single, large diameter piles known as
monopiles, which currently have typically diameters, D in the range 4–6 m, and embedded lengths,
L between 20 m and 30 m [2,3]. In the present paper, the term “length” denotes embedded length
unless otherwise stated. Increased turbine sizes and deeper water sites mean that in the near future
piles with diameters of 10 m or more will be deployed. To date, OWTs have been considered as
light, flexible structures, with lateral loading predominantly from wind and waves, and overturning
moments due to the high load eccentricity [4,5]. With the evolution in new high capacity and heavier
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energy converters, vertical loading (V) is becoming more prominent, whilst the L/D ratios are reducing
to values of≈2–3 [6] (similar to shallow foundations), leading to renewed questions over vertical–lateral
load interaction effects.

Previous research has produced conflicting findings on whether the presence of vertical loading
on piles increases or reduces lateral displacements under corresponding lateral loads. A variety
of mechanisms have been postulated in an attempt to explain the behavior observed in previous
research. Understanding whether and how vertical loading reduces or increases lateral displacements
is becoming increasingly important for accurate design of combined-loaded pile systems, such as
those used to support emerging OWTs. This paper presents a review on the topic, and focuses on
analytical research, numerical modeling, scaled, and full-scale field tests, and centrifuge modeling
research that has been conducted by researchers to date in an attempt to develop an understanding of
the primary mechanisms contributing to the problem. Elements of focus include the influence of soil
type and density/stiffness, pile slenderness, the sequence of applied loads, boundary conditions of
the pile, pile material, cross-sectional shape, and the relative magnitude of applied vertical to lateral
loading. This review establishes the state-of-the-art in vertical-lateral load interaction for foundation
piles and suggests elements of focus for future research to further understand the underlying behavior.
Section 2 focuses on analytical research, Section 3 focuses on numerical research, Section 4 reviews
full-scale pile tests, Section 5 details scaled 1-g (gravitational acceleration) model tests, and Section 6
reviews recent centrifuge analyses. Finally, Section 7 presents a discussion of the main findings, and
Section 8 concludes the study.

2. Analytical Research

The behavior of piles under combined vertical and lateral loading has been theoretically
investigated by several researchers. Davisson and Robinson [7] developed an approximate procedure
applicable to partially embedded piles under lateral, vertical, and moment loading. The solution
procedure considers partially embedded piles as freestanding with an equivalent fixed-base below
ground level, and considers both systems with a constant subgrade reaction modulus with depth
and systems with a linearly increasing subgrade reaction modulus with depth. Using their model,
results suggest that the application of vertical loads tends to magnify lateral displacement and bending
moments experienced at the pile head. Similarly, Shakhirev and Yanyshev [8] showed that the presence
of vertical loading (surcharge) leads to a reduction in lateral resistance of single piles, and note that
the lateral displacement of flexible piles can increase by a factor of two or more in the presence of
vertical loading. Using a model of a beam on an elastic Winkler foundation [9–12], Goryunov [13]
analyzed the deformation behavior of a flexible tubular pile with length/diameter (L/D) of 48 under the
action of a vertical load of 2 MN and a lateral load of 0.1 MN. In agreement with the aforementioned
research, this study shows that at a given applied lateral load, the lateral displacement, and pile
bending moment increase under increasing vertical loads. The model considered three densities for
soil to characterize the Winkler springs; namely dense, medium dense, and loose soil, all underlain
by dense soil. The generation of an additional secondary moment, namely the P-Delta influence,
is postulated as the reason for the increase in lateral displacement. Figure 1 reproduces some of the
results from this study and shows how lateral displacement and bending moment vary with applied
vertical loading for a given lateral load. As evident, the lateral displacement and bending moment
vary nonlinearly with increasing applied vertical loading.
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Figure 1. Influence of vertical loading on the lateral displacement and maximum bending moment of a
laterally-loaded pile [13].

Reddy and Ramasamy [14] investigated the influence of pile head fixity on the resulting interaction
effects between lateral and vertical loading on uniformly tapering circular piles. Three types of fixity
were considered; namely fixed–fixed, fixed–free, and free–free, referring to the top and bottom boundary
conditions of the pile, respectively. The pile behavior is characterized by two zones: the top plastic zone
and bottom elastic zone. Analyses considered different combinations of lateral and vertical loading
with varying tapers on the resulting pile head displacements and bending moments. In agreement with
the findings of previous research, the application of increasing vertical loads increased the displacement
and maximum bending moments at equivalent lateral loads. Additionally, the head displacement of
the pile with fixed head and free base condition is considerably less than that with free head and free
base under the same combination of vertical and lateral loads.

Valsangkar et al. [15] investigated interaction effects on combined loaded piles and presented
generalized solutions, which take into account the elasto-plastic nature of both cohesive and cohesionless
soils. For cohesive soils, the governing differential equation to be solved for the upper region of the
pile (where ultimate soil resistance is reached) is shown in Equation (1), and the differential equation
for the region where the soil resistance-lateral displacement (p-y) relationship is linear, is as shown in
Equation (2).

EI
d4y

dx4
+ V

d2y

dx2 + t + t1x = 0, 0 ≤ x ≤ L1 (1)

EI
d4y

dx4
+

d
dx

[
V
{
1−ϕ1

(x− L1

L

)}dy
dx

]
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where y = lateral displacement of the pile, x = distance from the groundline, E = Young’s modulus
of the pile, I = second moment of area, V = vertical load, t and t1 are coefficients of the ultimate soil
resistance, L = pile length, L1 = depth to which soil has entered plastic condition, and ϕ1 = a coefficient
that depends on skin friction mobilization. In the case of cohesionless soils, the governing differential
equation for the top (plastic) zone is shown in Equation (3), and for the lower elastic zone is shown in
Equation (4).
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where t2 and t3 are coefficients of plastic resistance, ϕ2 = vertical load variation coefficient. K0 and K1

are subgrade reaction moduli. The results indicated that the flexural behavior of combined loaded
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piles is influenced considerably by the nature of the plastic resistance mobilized, as well as variations
in operational soil modulus and boundary conditions at the pile head. Broadly speaking, it was found
that applying vertical loads increases the lateral displacement at given applied lateral loads.

Xingman [16] (referenced in Ming and Ming-Hua [17]) analyzed piles under inclined loads applied
at ground level and suggested solutions for estimating the displacement and internal forces of these
systems. They suggest that for piles under combined vertical and lateral loading, the principle of
superposition no longer applies, essentially in agreement with the findings of previous research. Vertical
loads tend to increase lateral displacement and bending moments due to the P-Delta effect. Wentian [18]
derived the differential equation governing the deflection of piles with uniform cross-sectional properties
under combined vertical and lateral loading within a Winkler-type [9–11] framework, as shown in
Equation (5).

EI
d4y

dx4
+ V

d2y

dx2 + Ky = 0 (5)

where EI = flexural rigidity of the pile, V is the vertical load, y is the lateral displacement of the pile,
x is the distance from the groundline, and K is modulus of subgrade reaction. The solution of the
equation enables displacement, rotation, bending, and shear behavior be calculated. The interaction
effects between vertical and lateral loading were found to depend on the compressive strain of the
cross-section in slender piles. Applying vertical and lateral loads, and using this model, the pile
head lateral displacement and rotation were found to be twice and 1.78 times larger, respectively,
than for the case where no interaction mechanism is considered. Han and Frost [19] investigated
the influence of vertical loading on the lateral response of piles using the variational approach.
In agreement with previous research, they found that applying vertical loads increases corresponding
lateral displacements. Moreover, they suggest that the increase in lateral displacement is nonlinear
with respect to the applied vertical loading, similar to the findings of Goryunov [13]. They suggest
that under certain values of vertical load, the corresponding lateral displacements almost double
their value compared with in the absence of vertical loading. Han and Frost [19] also considered
the effect of boundary conditions on the responses and noted that the load-displacement behavior
is highly dependent on the boundary condition of the pile in the ground. Similar to Reddy and
Ramasamy [14], they note that the response is highly influenced by the pile top fixity condition.
Ming and Ming-Hua [17] developed a laterally layered isotropic and elastic half-space soil model and
analyzed the influence of vertical loads on lateral pile behavior. The model was calibrated against
model tests. They report the results of laterally loaded free-headed aluminum pipe piles with varying
geometrical properties, which were partially embedded in sand. This analysis considered many factors
including variations in pile stiffness, length, and loading eccentricity. No firm conclusions were given
on the influence of vertical loading on pile lateral response features in this work.

Li et al. [20] derived power-progression solutions for the displacement of single piles in single and
multi-layer soils under combined vertical and lateral loading. The presence of gravity, pile-soil friction,
external load distribution, and pile inclination are taken into account, as well as the P-Delta effect.
Pile inclination has the greatest influence on the load-displacement characteristics of the pile from
the calculation results presented. This paper agrees with the previous research and notes that when
minor inclination is induced on the pile the corresponding displacements and rotations increase, as a
result of the P-Delta effect. Zhang et al. [21] suggest a method to improve the design reliability of
flexible single piles under combined loading, based on a subgrade reaction model. In their analysis,
the ultimate soil resistance and subgrade reaction coefficient were assumed constant with depth.
As with the previous research, the lateral displacement and bending moment increase with increasing
vertical loads and load eccentricity under corresponding lateral loads, and decrease with increasing
pile stiffness, subgrade reaction coefficient and soil yielding displacement. Figure 2 presents the results
of the analyses from Zhang et al. [21] and shows the relationship between the lateral pile displacement
and maximum bending moment under increasing vertical loads for varying lateral loads (H) and
applied moments (M).
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The results from the various analytical models discussed above can be summarized as follows:

• The findings agree that the presence of vertical loading causes an increase in lateral displacement
under corresponding lateral loads, as per the P-Delta hypothesis.

• There is a general agreement that the pile head fixity has an effect on the results.
• The pile and soil stiffness also exhibit an influence, though the trend remains that vertical loads

tend to exacerbate lateral displacements and lead to the generation of higher bending moments
under applied lateral loads than in their absence.

3. Numerical Research

The previous section reviews literature based on performing research using analytical models.
The majority of the research produced similar findings, namely applying vertical loads to laterally
loaded piles tends to exacerbate lateral displacements. In this section, literature that utilized numerical
models to research the combined loaded pile problem is reviewed.

Most research to date on combined loading of piles uses numerical modeling, such as finite-element
analysis. Poulos and Davis [22], and Anagnostopoulos and Georgiadis [23] were among the first to
attempt to analyze the influence of vertical loading on pile lateral responses using two-dimensional
finite-element analysis. Since pile-soil interaction is an inherently three-dimensional problem,
two-dimensional finite-element analysis has some limitations. Recognizing this, other researchers
have used three-dimensional finite-element analysis to study the lateral behavior of piles under lateral
loading, for example [24–26]. Research on the interaction effects between vertical and lateral loading
applied to piles using three-dimensional analyses are discussed in the following paragraphs.

Some of the numerical research produces findings that broadly agree with those of the analytical
research (discussed in Section 2), specifically Davisson and Robinson [7], Shakhirev and Yanyshev [8],
Goryunov [13], Reddy and Ramasamy [14], Xingman [16], Han and Frost [19], Li et al. [20], and Zhang
et al. [21] that vertical loads tend to increase corresponding lateral displacements of laterally loaded
piles. Madhav and Sarma [27] investigated the response of long piles in clay under both vertical and
lateral loading using the finite-difference method. The analysis considered a pile under combined
loading and compared it to the situation where only lateral loads are applied. The results suggest that
the application of vertical loading causes an increase in pile top lateral displacement and bending
moment along the embedded pile length. In the case considered, these response features doubled in
value in the presence of vertical loading. Meera et al. [28] developed a generalized procedure to analyze
and predict the flexural behavior of vertically and laterally loaded piles in liquefiable loose sand using
the finite-difference method. Their analysis considered a 7 m long concrete pile with cross-sectional



J. Mar. Sci. Eng. 2020, 8, 1029 6 of 18

dimensions of 0.35 m × 0.35 m. Loading comprised vertical loads from a superstructure and lateral
loading from wind, waves, and inertial and kinematic effects (from seismic actions). Vertical loading
was found to have a significant effect on the lateral response of piles in liquefiable soils and should
be explicitly considered in design. The presence of vertical loading was found to exacerbate lateral
pile head displacements and bending moments. It is suggested that if the vertical load exceeds a
threshold value, pile failure during liquefaction occurs not solely due to lateral spreading, but also due
to vertical loading.

Klein and Karavaev [29] performed finite-element analysis on a pile that was subjected to both
vertical and lateral loads. The analysis considered a geometrically nonlinear formulation of a reinforced
concrete end-bearing pile, embedded 2 m into the ground, with a 2.5 m stick up, and with cross-sectional
dimensions of 0.3 m × 0.3 m. Results suggested that the presence of vertical loading both increases
and decreases the pile lateral bearing capacity (and resulting displacements) based on the soil type
considered. For dense soil, vertical loading leads to an increase in lateral capacity (reduction in
corresponding lateral displacements), while for weak soil, a decrease in lateral capacity (increase in
displacements) was observed. Karthigeyan et al. [30] investigated combined load effects on concrete
piles with cross-sectional dimensions of 1.2 m × 1.2 m embedded 10 m in both homogeneous clayey and
sandy soils. A Von Mises constitutive model with associated flow rule and a Drucker–Prager constitutive
model with non-associated flow rule were used to simulate the stress-strain behavior for the clayey
and sandy soils, respectively. Combined loading was applied in two stages: firstly, vertical loading
was applied, and secondly, lateral loads were applied while maintaining a constant vertical load.
The presence of vertical loading was observed to cause an increase and a decrease in corresponding
lateral displacements under given applied lateral loads, which depended on the soil type and how
the loads were applied. For sandy soils, an increase in lateral capacity of 40% (decrease in lateral
displacement) was observed, whereas for clayey soils, a decrease in lateral capacity (increase in
displacement) of 20% was observed. For sandy soil, the increasing vertical load leads to an increase
in vertical confining stress at various depths around the pile, which enabled larger lateral and shear
stresses to develop along the pile’s frictional interface. For the clayey soil, the reduced capacity is
likely attributable to the early failure of interface resistance due to the presence of the vertical loading.
The bending moments increased for both piles in sandy and clayey soils. In sandy soil, an increase in
maximum bending moment of 30–35% was observed, whereas for clayey soil, the maximum bending
moment increased by 10–15% for a pile with L/D < 15, and 30% for longer piles. Figure 3 shows the
influence of vertical loading on the lateral response of piles in sandy and clayey soils, respectively,
and Figure 4 presents the variation in lateral displacement along the pile in sandy soil for a certain
lateral load.
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Some numerical research disagrees with the findings of the analytical research.
Karthigeyan et al. [31] studied the influence of vertical loading on laterally loaded pile behavior
in sandy soils using a three-dimensional finite-element program GEOFEM3D [32]. The pile was treated
as a linear-elastic material and the soil was idealized using a Drucker–Prager constitutive model
with a non-associated flow rule. The pile had cross-sectional dimensions of 1.2 m × 1.2 m and was
10 m in length. Both loose and dense sand were considered. It was found that the lateral response
of vertically loaded piles depends on many parameters including the sequence of load application,
the shear strength of the soil, the boundary conditions of the pile, and the pile slenderness (L/D).
Under a given applied lateral load, the pile lateral displacement decreased with increasing vertical
load. When vertical and lateral loads are applied simultaneously, the effect of vertical loading is
only apparent at greater displacement levels (there is less of an influence). When vertical loading
is applied prior to lateral loading, the effect of the vertical load is considerable at all displacements,
and reduces the corresponding displacements at each lateral load. The influence is furthermore more
significant in dense sand than in loose sand, and is equally significant for piles with free head and fixed
head conditions. As piles become longer, the effect of the vertical load becomes less. Achmus and
Thieken [33] developed a numerical model to simulate and quantify the effects of combined loading on
a pile installed in sand. The model simulated a closed-ended circular pile with diameter, D = 1 m, and
length, L = 20 m. The pile and surrounding soil were discretized as 8-noded volume elements using
the commercial software, ABAQUS, and an elasto-plastic material law with Mohr–Coulomb failure
criterion and stress-dependent stiffness was adopted. Results of simulations conducted show that
under a given applied vertical load, the lateral capacity was observed to increase (with corresponding
reduction in lateral displacements), essentially in agreement with Karthigeyan et al. [31]. However, it
was noted that the interaction is quite complex, and under certain loading conditions, the opposite
effects can occur. Under combined vertical and lateral loading, it was initially observed that increasing
vertical loads lead to an increased lateral stiffness. Once the vertical loads passed a threshold value,
larger lateral displacements were observed. A parametric study showed that compact piles with
low slenderness and rigid piles exhibited strong interaction effects under combined loading. It was
concluded that the interaction effects on the lateral stiffness and capacity were small.

Taheri et al. [34] investigated, via numerical modeling, the influence of combined loading on a
reinforced concrete pile installed in silty sand. Using ABAQUS, two piles with lengths 34.9 m and 7 m,
respectively, were developed to investigate the effects incorporating pile slenderness. Both piles had
the same diameter of 1.5 m. The modulus of subgrade reaction was estimated from back-analysis of
the response. The soil behavior was modeled as a linear-elastic perfect-plastic Mohr–Coulomb model
with non-associated flow rule, and the pile behavior varied using different stress–strain relationships
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for the concrete material [35]. The results of the analyses broadly agreed with Karthigeyan et al. [31],
and showed that the lateral displacements reduced considerably due to the presence of vertical loading,
for both the long and short piles. The magnitude of the reduction was observed to increase for higher
values of lateral load.

The results of numerical modeling of the problem of combined loading on piles can be
summarized herein:

• The research has revealed contradictory findings, which likely depend on soil type, modeling
assumptions, constitutive laws, relative load magnitude, pile slenderness, boundary conditions,
and other considerations such as load application sequence.

• There is no general consensus on whether vertical loading increases or decreases subsequent
lateral displacements under applied lateral loads from the research in this section.

4. Full-Scale Pile Tests

Several authors reported field tests designed to shed further light on the governing mechanisms
contributing to combined loaded pile behavior.

The majority of reported field tests suggest that the application of vertical loading decreases
lateral displacements under subsequent applied lateral loads. This finding is directly in contrast to the
majority of reported works on analytical models in Section 2. Evans [36] conducted a series of field
tests on various types of piles subjected to lateral loading and combined vertical and lateral loading.
The study considered steel H-piles, precast concrete piles, Raymond step-tapered piles, and tubular
piles, installed vertically and as battered piles into loam soil (silty sand). The considered piles were
installed between 10.2 m and 17.4 m. The results of a number of combined load tests are reproduced in
Figure 5, which shows the lateral load-displacement response of two piles under both zero and 400 kN
vertical loads.
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The results in Figure 5 show that for a given pile, the action of applying a vertical load is to
decrease the corresponding lateral displacements at equivalent applied lateral loads. Bartolomey [37]
studied the behavior of single pre-stressed concrete piles under pure lateral and combined loading
installed in clay. The square piles had a cross-section 300 mm × 300 mm, and varied between 5 m and
12 m in length. The results of the tests suggested that the lateral resistance of piles subjected to vertical
loads increased by between 15–30%, as compared to the lateral resistance in the absence of vertical loads
being applied. Increased lateral resistance leads to a reduction in corresponding lateral displacement,
in agreement with the results of Evans [36]. In addition to the observed load-displacement behavior,
piles that were subjected to pure lateral loading were observed to crack, as compared to those under
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combined loading. It is suggested that the presence of the vertical loading reduces the development of
bending moments in the piles, so corresponding tension cracks are reduced.

Karasev et al. [35] performed field tests on single, cast-in-situ short concrete piles, with diameter
600 mm and length 3 m, installed in sandy soil. The behavior of the piles under combined loading
was investigated, whereby vertical loads were first applied until a threshold settlement was achieved,
and a lateral load was subsequently applied. The results indicated that the application of the vertical
load leads to an increase in shear stresses along the pile wall, which increased the lateral resistance and
subsequently leads to a decreased lateral displacement under equivalent lateral loads. The mechanism
for the increased lateral resistance is likely due to changes in the mean stress level in the soil vicinity
surrounding the pile. The results of a given load test from Karasev et al. [35] are reproduced in Figure 6,
which shows that increasing the vertical loading decreased the subsequent lateral displacements.
The points marked a–b in the plot are the results of removing the vertical load, which implies that
the lateral displacements are restored somewhat after load removal, implying the increased lateral
resistance from the vertical loading only applies while the pile is loaded.
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Zhukov and Balov [38] performed combined loaded field tests on precast concrete piles, with square
cross-sections 300 mm × 300 mm, installed in both homogeneous weak saturated clay and very stiff
slump-prone soils. The embedment of tested piles were 2 m and 4 m, with loading eccentricities of
2.4 m to 2.5 m. The results of combined load tests suggested that lateral pile displacements increased
under vertical loads in weak saturated soil, and decreased in stiff soils, suggesting soil stiffness has
an inherent influence on the results. In the weak saturated soils, the lateral capacity was observed
to decrease under vertical loading by approximately 15%, whereas in the stiff soil it increased by
≈1.9 times.

• The results of the documented field tests broadly agree that vertical loading leads to a decrease in
subsequent lateral displacements, which directly disagrees with the predictions of the analytical
models postulated in Section 2.

• The effect of plugging and partial plugging in the case of tubular piles on the observed behavior
should be investigated to ascertain if this has an influence on the mechanism.

5. 1-g Small-Scale Model Pile Tests

Due to the difficulty and costs in performing full-scale field trials, an alternative strategy adopted by
various researchers is to perform scaled model testing. These offer a viable means to test a wider variety
of conditions, with the limitation that the stress conditions are not similar to the full-scale situations.
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Meyerhof and Sastry [39] performed combined loading tests on closed-ended steel pipe piles with
a diameter 75 mm, and length of 990 mm, installed in loose sand. They suggest an expression for the
load interaction, as shown in Equation (6).(

Vθ cos θ
Vult

)2

+

(
Vθ sin θ

Hult

)2

= 1 (6)

where Vθ is the applied vertical load under an inclination angle θ to the vertical direction, and Vult

and Hult are the ultimate vertical and lateral capacities, respectively. It is suggested that the ultimate
vertical and lateral capacities in Equation (6) are dependent on the load inclination angle θ. Under the
action of small vertical loads, a larger ultimate lateral capacity was observed than in the absence of
vertical loading, similar to the findings of Achmus and Thieken [33]. It is suggested the application of
vertical loading resulted in lower lateral displacements.

The opposite effect was observed in a study by Jain et al. [40], who performed combined load
tests on fully and partially embedded long flexible single piles and pile groups. The model piles
were fabricated from aluminum, with a diameter of 32 mm and length of 1000 mm. In their tests,
the relative density of the sand sample equated to 78%. In order to apply the vertical loading without
introducing any rotational fixity, a roller system was incorporated between the actuator and the pile.
The results of their tests suggest that the application of vertical loading increases corresponding lateral
displacements, which is in agreement with the analytical research described in Section 2. The results of
their tests are reproduced in Figure 7, which shows the results for both the single pile and pile groups.
The results of this analysis might provide insight related to the influence of boundary conditions on the
results, as the use of the roller system to avoid additional rotational fixity may be partly responsible for
the observed phenomena.
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(a) single pile, (b) pile group.

Similar to Jain et al. [40], Lee [41] and Lee et al. [42,43] also performed model pile tests to
assess the influence of combined loading on piles installed in sand. In these studies, two kinds of
instrumented circular piles were tested, both driven and non-displacement, in dry sand with varying
densities. The model piles were stainless steel pipe piles, with a diameter of 30 mm, thickness 2 mm,
and embedment 1200 mm. Increasing vertical loads were applied to investigate combined loading
effects, varying among 0, 0.25, 0.5, and 0.75 times the ultimate vertical capacity. The tests were
conducted in dense, medium dense, and loose sand samples. In each case, vertical loading was
applied prior to application of lateral loads. The results indicate that vertical loading increases lateral
displacements at corresponding lateral loads. When compared to the case of a pile under pure lateral
loading, additional lateral displacements of approximately 8% of the pile diameter were observed
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under a vertical load of 0.75 times the ultimate capacity at the same lateral load level. Bending moments
were also observed to increase substantially under combined loading. The results of these studies agree
with the findings of the analytical research in Section 2. Furthermore, the effect of vertical loading was
observed to be greater in the case of dense sand than for medium dense or loose sand, suggesting soil
density potentially plays a role in the observed behavior.

Anagnostopoulos and Georgiadis [23] obtained inconclusive findings when they performed
laboratory-scaled combined load tests on aluminum closed-ended piles (diameter = 19 mm, pile wall
thickness = 1.5 mm, and embedment = 500 mm), installed in soft clay. Tests were performed on
single piles under both vertical and lateral loads. Vertical loads were applied using dead weights.
The pile-testing program involved applying a variety of vertical and lateral loads in different sequences.
The results of the tests were not conclusive, as there appeared to be no dominant trend with limited
effect observed. This is similar to the findings of Shahrour and Meimom [44], Trochanis et al. [45],
and Abdel-Rahman and Achmus [46], who observed similar results through finite-element analyses.
It is also similar to the findings of Sastry and Meyerhof [47], from model pile tests. Authors suggested
that an alternative approach to study the potential interaction effects could be to use finite-element
analyses and they suggest that approaches based on elastic half-space models or subgrade reaction
methods would provide limited insight.

The main findings are summarized as follows:

• The majority of laboratory-scale studies agree with the analytical research that vertical loads
exacerbate lateral displacements under equivalent lateral loads.

• This directly contradicts the majority of full-scale studies that suggest the opposite is true.
• There are several possible reasons for the disagreement, for example: the pile head boundary

condition applied by loading actuators, the variation in in-situ stress conditions (between scaled
and full-scale tests), and geometrical and material considerations.

6. N-g Centrifuge Model Pile Tests

Geotechnical centrifuge testing offers a unique opportunity to investigate full-scale behavior of
geotechnical models at reduced scales, where the stresses experienced by the full-scale systems can
be simulated on laboratory models [4,48–51]. Since the results of the 1-g scaled tests discussed in the
previous section tend to disagree with those of the full-scale tests discussed above, it is likely that
stress differences play a role in observed behavior. A limited number of centrifuge tests have been
performed to study the influence of vertical loading on lateral pile behavior.

Choo et al. [52] carried out centrifuge testing to investigate the lateral behavior of a 6 m diameter
monopile with an embedment of 31 m (at prototype scale), used as a foundation for an offshore wind
turbine. Different soil and rock characteristics were considered in the tests; two tests simulated a
monopile installed in a dense sand and socketed into rock [53], while another two tests simulated
monopiles installed in homogeneous sand with relative density of 85%. While combined loading was
not explicitly considered, it is suggested that the self-weight of the monopile and extension rod acting
as an additional vertical load may be one reason for the observed lateral displacements being larger
than expected, when compared against those predicted by design codes [54].

Mu et al. [55] conducted a series of centrifuge tests to investigate the influence of vertical loading
on the lateral response of monopiles installed in sand. The pile model had a prototype diameter of
6 m and length 50 m, and was closed-ended. Vertical and lateral loading was simultaneously applied,
with vertical loads having a magnitude of between 10% and 90% the vertical pile capacity. It was found
that the presence of vertical loading lead to a decrease in the lateral displacement of the monopile,
the opposite result to that observed in Choo et al. [52]. Lu and Zhang [56] performed centrifuge testing
on a free-headed monopile with prototype diameter 1 m and length 16.5 m, installed in saturated
sand. A half-model arrangement was used whereby the pile displacements could be observed using a
transparent window in the model. Vertical loads were added using dead weights applied to the pile
top in the model. In terms of application sequence, vertical loads were first applied followed by lateral
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loads. It was observed that for a given applied lateral load, the lateral displacement decreased with
increasing vertical load, in agreement with Mu et al. [55]. It was postulated that the presence of a
vertical load densifies the soil near the pile, leading to a reduction in lateral displacements. On the
other hand, the applied vertical loading leading to additional bending moments on the pile from the
P-Delta effect may begin to play a role at higher values of displacement, as observed in Choo et al. [52].
It was concluded that the observed behavior may be a trade-off between both competing mechanisms.

7. Discussion and Recommendations

This paper reviewed literature that investigates the influence of vertical loading on the lateral
response of piles, where authors undertook analytical research, numerical modeling, full-scale and
laboratory-scale physical testing, and centrifuge modeling. The consensus on whether vertical loading
increases or decreases lateral displacements under equivalent lateral loads remains inconclusive.
Some of the reasons postulated for the results obtained are discussed and summarized in this section.
Some recommendations for future research are provided, based on the issues identified.

The analytical research in Section 2 broadly agrees that vertical loading exacerbates lateral
displacements due to the P-Delta effect, where the eccentricity caused by lateral displacements induces
a further secondary moment, further increasing displacement [7,8,13–16,18–21]. This research also
postulates that the boundary conditions of the pile may influence the nature of the results.

The numerical research in Section 3 presents contradictory findings, whereby some authors
suggest that vertical loading increases lateral displacements under applied lateral loads [27,28],
some research presents conflicting findings [29,30], and some research concludes that vertical loading
reduces corresponding lateral displacements [31,33,34]. It is suggested by Klein and Karavaev [29]
that soil density may be one reason for contradictory findings; in dense soil vertical loading may lead
to a reduction in corresponding lateral displacements, whereas in weak soil, increased displacements
might be observed. Karthigeyan et al. [30] also suggest soil type might have an influence, as well as
the sequence of how loads are applied. They report that in sandy soils, a decrease in corresponding
lateral displacements under vertical loading might be observed, whereas in clayey soils an increase
might be observed. For the sandy soil, the increase in confining stress from the applied vertical load
is potentially responsible for the development of shear stresses around the pile, which subsequently
influence the lateral displacements (mean stress effects). In clay, early failure of interface resistance is
possibly responsible for the conflicting behavior. Karthigeyan et al. [31] further suggest that boundary
conditions and pile slenderness may play a part in the observed behavior.

The full-scale field tests mostly suggest that vertical loading leads to a reduction in corresponding
lateral displacements [35–37], with one study [38] suggesting both results can occur. The mechanism
responsible for the observed results is suggested to be that vertical loads lead to increased shear stresses
along a pile wall, which lead to increased lateral resistance. The results of Zhukov and Balov [38]
showed that pile lateral displacements increased in weak soils under applied vertical loading, and
decreased in stiff soils, which is somewhat in agreement with the numerical research by Karthigeyan
et al. [30]. Scaled 1-g testing tends to disagree with the results of the full-scale field tests, except for
Meyerhof and Sastry [39], who showed that vertical loads lead to a reduction in corresponding lateral
displacements. This general disagreement is likely attributable to the difference in stress conditions.
Most of the scaled 1-g testing studies agree with the findings of the analytical research, that vertical
loading increases lateral displacements [40–43]. The boundary conditions are suggested as one reason
for the results obtained, similar to Karthigeyan et al. [31], and soil density is proposed as another factor.
The scaled testing suffers the common drawback that the stress conditions are not equivalent to the
full-scale situation, which may influence the results.

In centrifuge studies, some contradictory results were also obtained, with Choo et al. [52]
suggesting vertical loading exacerbates lateral deflections; while Mu et al. [55] and Lu and Zhang [56]
suggest lateral displacements decrease under vertical loading. The study in Choo et al. [52] could
only provide a qualitative assessment on the influence of vertical loading, as this was not quantified
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directly in the study, and is therefore potentially less reliable than the remaining studies. One reason
for the observed behavior proposed in Lu and Zhang [56] is that vertical load densifies the soil around
the pile, leading to reduced lateral displacements, essentially in agreement with other studies who
proposed similar mechanisms [30]. The results of the centrifuge studies are mostly in agreement with
those of the full-scale field tests, which suggests that the matching stress conditions is an important
element in the research, and potentially contributes to the governing mechanism.

In terms of the boundary conditions across all testing approaches, no definitive trend is observed
about whether this governs the response or not (it likely plays a role, but other factors might overshadow
this). For the analytical research, all models resulted in vertical loads increasing corresponding
lateral displacements, even though pile boundary conditions varied from free-free to fixed-free.
In the numerical research, piles with a free-free boundary condition resulted in cases where lateral
displacements increased under vertical loading and decreased in other cases. Similar conflicting results
occurred for the scaled 1-g testing. It is therefore not directly possible to suggest how the pile boundary
effects influenced the results, based on the reviewed works.

For the pile slenderness, L/D, flexible systems with L/D > 10 once again show no consistent trend
in terms of the effect of vertical load increasing or decreasing lateral displacements (results depended
more on the nature of the tests conducted). For rigid piles with L/D < 10 (applicable to offshore wind
foundations), some studies report that vertical loading decreases corresponding lateral displacements
but others report that both decreases and increases can occur. It is therefore difficult to conclude the
nature of the influence pile slenderness plays in this respect, which has tangible ramifications for the
offshore wind sector in particular.

From the reviewed works, it would generally appear that there is little agreement on the governing
mechanisms contributing to the problem, with a variety of mechanisms likely occurring. In order to
investigate the underlying mechanisms contributing to the observed behavior, centrifuge modeling is
the most acceptable recourse, as it enables a large amount of testing with the ability to vary both soil
and pile parameters, which limits the bias observed in full-scale field testing. Moreover, centrifuge
testing enables tests to be performed at representative real-life stress conditions. It is recommended to
undertake a comprehensive centrifuge program with piles of varying materials, lengths, and slenderness,
installed in different soil types with varying stiffness profiles and properties, under a variety of boundary
conditions. The installation method should also be varied, as this governs the in-situ stress condition,
which is suggested to play a role in observed behavior of combined loaded piles. Installing a pile
in-flight leads to a more realistic stress state than installing at 1-g, for centrifuge tests. The load
application sequence should be varied, as there is some evidence that the order of application of vertical
and lateral loads may contribute to the observed response. Moreover, the relative magnitude of applied
vertical and lateral loading ratio (V/H) should be varied, as it is likely that the governing mechanism for
whether lateral displacements are increased or decreased will depend on which resistance mechanism is
mobilized (increased shear resistances due to vertical loading may result in lower lateral displacements,
whereas the P-Delta effect might overcome this at a certain lateral load magnitude resulting in increased
displacements)—this requires careful attention. In terms of the boundary conditions, this is an issue
for centrifuge modeling in general as the actuators used to apply loads may also inflict certain fixity
to the test piles [4]. It is therefore recommended to develop mechanisms to enable application of
lateral and vertical loads without causing additional rotational fixity, using ball-type connections and
dead weights, as developed in Li et al. [4]. Furthermore, as the issues related to combined loading are
becoming relevant for emerging wind turbines, the behavior of these systems with low L/D subjected
to cyclic loading is also of interest, and has not received much attention in the literature. It would be of
interest to assess if cyclic loading influences the nature of the responses obtained in combined loading
systems, and is therefore recommended as future work.

The observations from the various reviewed works are summarized in Table 1.
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Table 1. Summary of research findings.

Method Reference Effect of Vertical Load
on Lateral Response Soil Info. Pile Info. L/D (Rigid/Flexible) Installation Method Boundary Conditions Load Application Sequence Load Ratio (V/H)

Analytical [7] Increased Sand/Clay Concrete - Driven Free-Free - -

[8] Increased - - - - - - -

[13] Increased Sand Steel 48 Driven Fixed-Free - Up to 30

[14] Increased Sand Tapering
circular - Driven Fixed-FixedFixed-Free

Free-Free - -

[15] Increased Sand/Clay - (Flexible) - Free-Free - -

[16] Increased - - - - - - -

[18] Increased - Concrete (Flexible) - Free-Free H prior to V -

[19] Increased Dense/Loose Various 20–80 - Fixed-Free Free-Free - -

[20] Increased Single/Multilayered Concrete 24 Wished-in-place Free-Free Simultaneously -

[21] Increased Medium dense
sand Concrete 22 - Fixed-Free Free-Free H prior to V Up to 40

Numerical [27] Increased Clay - (Flexible) Driven - - -

[28] Increased Loose sand Concrete 20 - Free-Free
Fixed-Free - -

[29] Increased/Decreased Dense/Weak soil Concrete ≈7 Non-displacement Free-Free Simultaneously -

[30] Increased/Decreased Dense sand/Clay Concrete ≈8 Non-displacement Free-Free V prior to H Up to 3

[31] Decreased Dense/Loose sand Concrete ≈8 Non-displacement Free-Free V prior to H/Simultaneously Up to 3

[33] Inconclusive Medium dense
sand Concrete 20 - Free-Free Simultaneously 0 to∞

[34] Decreased Silty sand Concrete ≈23
≈5 Bored Free-Free V prior to H Up to 8.8

Full-scale
Field Tests [36] Decreased Silty sand Steel and

concrete Driven - - -

[37] Decreased Clay Concrete ≈17–40 Non-displacement - - -

[35] Decreased Sand Concrete 5 Non-displacement Fixed-Free V prior to H Up to 3.75

[38] Increased/
Decreased Weak/Stiff clay Concrete ≈7–≈13 Driven - V prior to H Up to 14

1-g
Small-scale
Model Pile
Tests

[39] Decreased Loose sand/Soft
clay Steel ≈13 - Fixed-Free Simultaneously Up to 2

[40] Increased Dense sand Aluminum ≈31 - Fixed-Free Free-Free - -

[41–43] Increased Sand Steel 40 Driven/non-displacementFixed-Free V prior to H Up to 2.5

[23] Inconclusive Soft clay Aluminum ≈26 Jacked - V prior to H Up to 1.23
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Table 1. Cont.

Method Reference Effect of Vertical Load
on Lateral Response Soil Info. Pile Info. L/D (Rigid/Flexible) Installation Method Boundary Conditions Load Application Sequence Load Ratio (V/H)

N-g
Centrifuge
Model Pile
Tests

[52] - Dense sand Steel ≈5 Non-displacement Free-FreeFree-Fixed V prior to H -

[55] Decreased Dense sand Aluminum ≈8 Non-displacement - V prior to H Up to 4

[56] Decreased Dense sand Aluminum 16.5 Non-displacement Free-Free V prior to H Up to 2.5
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8. Conclusions

The influence of vertical loading on the lateral response characteristics of laterally loaded piles
has been reviewed and discussed in this paper. The purpose of the review is to attempt to understand
the reasons for the contradictory findings reported in published literature on whether vertical loading
increases or decreases corresponding lateral displacements on laterally loaded piles. The research is
timely due to the advent of emerging large capacity and heavy offshore wind generators, which subject
pile foundations to combined lateral and vertical loading. The paper analyses research from a number
of perspectives; analytical models, numerical research, full-scale and scaled pile tests, and centrifuge
model tests. Specific focus is placed on soil type and density, pile L/D, load application sequence,
pile boundary conditions, pile material, and applied load relative magnitude (V/H) in order to attempt
to derive an understanding of the contributing issues. There is little agreement on what mechanisms
govern the response characteristics from the reviewed literature, so some common discussion points
were extracted with a view to identifying a plan of action for future research, and this is discussed in
Section 7 of the paper. It is recommended that in order to develop a more rounded understanding of
the relative importance of the various operating parameters, centrifuge tests should be conducted,
which offer the most viable routeway to identify the interplay between mechanisms.

Author Contributions: Conceptualization, Q.L., K.G. and A.A.; methodology, Q.L. and L.J.P.; investigation, Q.L.;
writing—original draft preparation, Q.L. and L.J.P.; writing—review and editing, A.A. and K.G.; supervision, A.A.,
K.G. and L.J.P.; funding acquisition, K.G. and A.A. All authors have read and agreed to the published version of
the manuscript.

Funding: China Scholarship Council (CSC) and Section of Geo-Engineering, Delft University of Technology.

Acknowledgments: The authors would like to acknowledge the support of the Section of Geo-Engineering,
Delft University of Technology, and the funding from the CSC. L.J.P. wishes to acknowledge the Faculty of
Engineering, University of Nottingham for travel funding to facilitate this collaboration.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. EU. The European Green Deal; EU: Brussels, Belgium, 2019.
2. Wind Europe. Offshore Wind in Europe—Key Trends and Statistics; WindEurope: Brussels, Belgium, 2018.
3. Peder Hyldal Sørensen, S.; Bo Ibsen, L. Assessment of foundation design for offshore monopiles unprotected

against scour. Ocean Eng. 2013, 63, 17–25. [CrossRef]
4. Li, Q.; Prendergast, L.J.; Askarinejad, A.; Chortis, G.; Gavin, K. Centrifuge modeling of the impact of

local and global scour erosion on the monotonic lateral response of a monopile in sand. Geotech. Test. J.
2020, 43. [CrossRef]

5. Arany, L.; Bhattacharya, S.; Macdonald, J.; Hogan, S.J. Design of monopiles for offshore wind turbines in
10 steps. Soil Dyn. Earthq. Eng. 2017, 92, 126–152. [CrossRef]

6. Byrne, B.; McAdam, R.; Burd, H.; Houlsby, G.; Martin, C.; Zdravković, L.; Taborda, D.; Potts, D.; Jardine, R.;
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