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ABSTRACT
To achieve excellent performance with modern neural networks,
having the right network architecture is important. Neural Architec-
ture Search (NAS) concerns the automatic discovery of task-specific
network architectures. Modern NAS approaches leverage super-
networks whose subnetworks encode candidate neural network
architectures. These subnetworks can be trained simultaneously,
removing the need to train each network from scratch, thereby
increasing the efficiency of NAS.

A recent method called Neural Architecture Transfer (NAT) fur-
ther improves the efficiency of NAS for computer vision tasks by
using a multi-objective evolutionary algorithm to find high-quality
subnetworks of a supernetwork pretrained on ImageNet. Building
upon NAT, we introduce ENCAS — Evolutionary Neural Cascade
Search. ENCAS can be used to search over multiple pretrained su-
pernetworks to achieve a trade-off front of cascades of different
neural network architectures, maximizing accuracy while minimiz-
ing FLOPs count.

We test ENCAS on common computer vision benchmarks (CIFAR-
10, CIFAR-100, ImageNet) and achieve Pareto dominance over pre-
vious state-of-the-art NAS models up to 1.5 GFLOPs. Additionally,
applying ENCAS to a pool of 518 publicly available ImageNet clas-
sifiers leads to Pareto dominance in all computation regimes and
to increasing the maximum accuracy from 88.6% to 89.0%, accom-
panied by an 18% decrease in computation effort from 362 to 296
GFLOPs.

CCS CONCEPTS
• Computing methodologies → Neural networks; Genetic
algorithms; Ensemble methods.
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1 INTRODUTION
In recent years, deep neural networks have been successfully ap-
plied in domains ranging from text summarization [7] to medical
image segmentation [20]. Much of this success has been enabled by
task-specific neural network architectures that are designed manu-
ally while making use of expert knowledge. The research direction
of Neural Architecture Search (NAS) [58] has the goal of making ar-
chitecture design automatic and data-driven. Tremendous progress
has been made since the first approaches: performance of the found
models improved [25, 39], their size decreased [15, 32] (smaller
models usually work faster and require less storage space), and the
search process itself became much more efficient (with required
GPU-hours decreasing from tens of thousands [33] to single-digit
numbers [42]).

These search efficiency gains can mostly be attributed to the
idea of weight sharing via a supernetwork [32] (with performance
prediction [3, 50] also playing a role). Instead of training the weights
of each candidate architecture from scratch, a supernetwork is
constructed such that each architecture in the search space is a
subset of the supernetwork (see Fig. 1). To evaluate the quality of
an architecture, the weights of the relevant part of the supernetwork
are copied. With various architectures potentially sharing the same
operations (e.g. convolution [24], attention [2]), the amount of
training needed decreases drastically.

However, by requiring that each architecture is a path within
a supernetwork, the supernetwork approach inherently limits the
diversity of architectures that can be produced. Thus, the manual
choice of which supernetwork to use for the automated NAS pro-
cedure plays a large role, as it restricts the search space before the
search algorithm even starts. With the growing number of available
supernetworks, the issue of choosing the supernetwork is becoming
increasingly important, and yet, to the best of our knowledge, there
exists no method taking it into account.

There are many ways to improve neural network performance
that are different from NAS. Ensembling [36] is one such technique
that involves passing the same input through several different mod-
els and combining their predictions to get a better final prediction.
It has been shown to work well if the models’ mistakes are inde-
pendent [18], which is helped by the models being different from
each other [51]. NAS has been used [11, 56] to produce models
that together make a good ensemble. Modern supernetwork-based
approaches seem very fitting to this purpose because they do not
incur additional training costs for ensembles of arbitrarily large size
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(once a supernetwork is trained, weights for trained subnetworks
can be extracted from it and used without additional retraining1).

Input Output
Operation 1

Operation 2

Operation 1

Operation 2

Operation 1

Operation 2
...

Input Output
Operation 1

Operation 2

Operation 1

Operation 2

Operation 1

Operation 2
...

Input Output
Operation 1

Operation 2

Operation 1

Operation 2

Operation 1

Operation 2
...

Supernetwork

Examples of subnetworks

Figure 1: A schematic of a generic supernetwork.

Cascading [47] is a particular case of ensembling with the fo-
cus on efficiency: whereas an ensemble requires that every input
is processed by every model, a cascade proceeds in a sequential
manner, invoking a larger model only if the predictions of smaller
models are not confident enough (judged by the confidence func-
tion, see Section 2.3 for details). Thus, easy inputs consume less
computational resources, while harder inputs can still be predicted
well by utilizing every model in the cascade. Despite the potential
of cascades to produce efficient and effective models, they remain
underexplored in the context of deep learning [49], and in particular
no work has yet been done on combining NAS with cascade search.

To perform any kind of NAS, efficient search algorithms are
indispensable. Evolutionary Algorithms (EAs) are particularly fit to
the task, as they do not require the search space to be continuous,
are known to solve real-world problems efficiently [12], and excel
in solving multi-objective and dynamic problems [5, 41, 46].

Driven by the observations above, in this paper we present an
algorithm called Evolutionary Neural CAscade Search (ENCAS).
ENCAS is supernetwork-based and designed to take advantage of
various pretrained supernetworks. ENCAS can search over a user-
specified set of arbitrary supernetworks that may have e.g. different
operations or numbers of layers (the only restriction being that
subnetworks extracted from a supernetwork require no retraining).
Our algorithm is multi-objective with the goal of finding models
on the optimal effectivity-efficiency trade-off front.

The main contributions of our paper are threefold:
• This work is the first to research the combination of NAS
and cascades.

• This work is the first to investigate the feasibility of using
several different supernetworks in NAS. We explore whether
the additional diversity they provide is helpful for creating
cascades.

• The ENCAS algorithm is introduced to search for efficient
and effective cascades.

2 RELATEDWORK
2.1 Neural Architecture Search
The first methods to learn neural network architectures trained
each candidate architecture from scratch, taking tens of thousands
1This holds for modern state-of-the-art approaches [8, 39, 48] but does not hold for all,
especially older, approaches [25, 42].

of GPU hours [58]. ENAS [32] introduced the ideas of weight shar-
ing and supernetworks, which drastically decreased search costs.
Multiple algorithms followed, most famously DARTS [25] that re-
formulated the problem of operation selection as a continuous one,
achieving great efficiency.

However, supernetwork weights were discarded after NAS, with
the final model being retrained from scratch (because it led to better
results). This becomes costly whenmore than one model is required,
e.g. considering both server-based and smartphone-based deploy-
ment. OnceForAll (OFA) [8] introduced an algorithm for training
supernetwork weights such that they could be used in extracted
subnetworks without any further training . AttentiveNAS [48] and
AlphaNet [39] introduced training techniques that lead to even
better performance (albeit using a different search space).

Neural Architecture Transfer [27] (NAT) is an approach for fine-
tuning a pretrained supernetwork for smaller datasets. The key
difference from the previous approaches is that the architectures
are adapted together with the weights in a multi-objective search
procedure, trading off size and accuracy. The main idea is training
only subnetworks close to the currently known trade-off front. To
this end, a population of networks is evolved by Non-dominated
Sorting Genetic Algorithm III (NSGA-III) [13], a prominent many-
objective EA. In this work, we aim to reproduce and to build upon
NAT. It should be noted that NAT uses two sets of supernetwork
weights that share the same search space2; in contrast, in this work
we are primarily interested in supernetworks that represent differ-
ent search spaces.

2.2 Search for architectures of neural ensembles
Neural Ensemble Search [56] (NES) is the first approach to search
architectures of neural ensembles. It trained multiple networks sep-
arately, without weight sharing. The follow-up work, Multi-headed
Neural Ensemble Search [30] (MH-NES), utilizes weight sharing by
having different ensemble members share first layers of the net-
work. MH-NES achieves gains in robustness, search efficiency and
model efficiency. Neural Ensemble Architecture Search (NEAS) [11]
is a similar approach with the key idea of gradual removal of the
least promising operations from the supernetwork.

Neural Ensemble Search via Sampling (NESS) [40] is supernet-
based but does not require the ensemble models to have the same
first layers. For this, a supernetwork is first trained, then subnet-
works are sampled via novel sampling algorithms.

Our algorithm, ENCAS, substantially differs from all the ones
discussed above. Firstly, ENCAS searches for architectures of cas-
cades, for which no prior work exists (to the best of our knowledge).
Secondly, ENCAS is truly multi-objective, with a single run pro-
ducing multiple networks on a trade-off front of model size and
performance, whereas NES, MH-NES, and NESS do not directly
optimize model efficiency; NEAS uses model size as a constraint
in single-objective optimization, which thus needs to be run once
for each target model size. Thirdly, none of the existing algorithms
take advantage of pretrained supernetworks, while we purpose-
fully design our algorithm to rely on them, bearing in mind that

2This was not clear to us from [27], but it was explained to us in private communication
with the authors.
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pretraining plays a huge role in the success of deep learning ap-
proaches [14]. Finally, all existing algorithms require the user to
specify the ensemble size in advance. Our algorithm has the maxi-
mum cascade size as a hyperparameter, meaning that it can output
cascades with fewer networks if adding more networks does not
improve the performance.

2.3 Cascades of neural networks
As mentioned, cascading is a way of efficiently combining multi-
ple available models. It requires the user to choose a confidence
function and confidence thresholds. The confidence function es-
timates how confident a model is in its prediction for a specific
input. An example of that could be the maximum predicted proba-
bility or the gap between the largest and the second-largest logit
values [43]. The confidence thresholds are used to decide when to
stop evaluation and to return the current output. A cascade oper-
ates sequentially in the following way: the current model makes a
prediction and a confidence value for it is determined by the confi-
dence function; if this value is above the confidence threshold for
the current model, the cascade is terminated, otherwise the process
is repeated for the next model. Note that the output of a cascade
can be either the output of the last used model [43] (i.e. the outputs
of unconfident models are discarded), or the averaged outputs of all
the used models [49]. We follow [49] in using the averaged outputs.

Cascades are popular in machine learning [23, 54], but in deep
learning there are only a few works utilizing them [1, 10]. Recently,
[49] pointed out that cascades can dominate single models in terms
of performance, efficiency, and training time. Cascades in [49] were
constructed via an exhaustive search of a small search space of
predefined networks.

GreedyCascade [43] achieved good results by designing an effi-
cient greedy algorithm for cascade selection from a somewhat larger
number of networks. GreedyCascade has a fundamental limitation:
by construction, it cannot produce a cascade that would perform
better than the best model in the model pool. Our algorithm does
not have this limitation in its design. In addition, GreedyCascade
scales quadratically in the number of networks.

Our algorithm searches in a search space that is substantially
larger than ever used before for cascade search (it contains hundreds
of networks instead of dozens). Also, ENCAS is multi-objective and
requires only a single run to create the trade-off front, unlike the
exhaustive search procedure of [49].

2.4 Evolutionary algorithms
An EA is a population-based optimization algorithm that relies
on the ideas of (1) fitness-based selection and (2) variation (most
often mutation and crossover, i.e. information transfer between
solutions in the population). EAs achieve SOTA results on a variety
of benchmark and real-world problems [4, 12, 31].

In this paper, we use NSGA-III [13] (as part of NAT) and the
Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm
(MO-GOMEA) [29]. NSGA-III relies on non-dominated sorting and
pre-supplied reference points to keep the population spread-out in
the objective space. The two key ideas behind MO-GOMEA are link-
age learning (which leads to dependent variables being exchanged
between solutions as a single group) and Gene-pool Optimal Mixing

(which ensures that crossover always leads to a fitness improve-
ment). Since we use the algorithm without any modifications, we
refer the interested reader to [29, 45] for details. We choose to use
this algorithm because it performs well in many problems [28, 35]
and because it does not require setting any hyperparameters (such
as population size, crossover type, or mutation rate).

3 METHODS
3.1 Searching for cascades of dynamic size
Let us assume that a supernetwork has been trained via the NAT
procedure. In addition to the supernetwork weights, the procedure
generates a trade-off front of network architectures. The architec-
tures from this front will be used in ENCAS.

Creating a cascade of a specific size out of a predefined model
pool comes down to selecting the appropriate sequence of models,
and their confidence thresholds. Let us focus on the models first.
Each out of 𝑁 models can be encoded as a categorical value 1..𝑁 .
To consider cascades with fewer models (or even a single model),
we add the value 0 to encode a "no operation" model — a model
that does nothing. Then, a solution to the problem of searching for
a cascade of maximum size 𝑘 can be encoded as a list of 𝑘 values,
each ranging from 0 to 𝑁 . In the interest of robustness we do not
search for the weights of the models in the cascade, and take a
simple average of their outputs instead.

As to the confidence threshold values, they are encoded as 𝑘 − 1
additional categorical variables. In our experiments we use 51 pos-
sible values from 0.0 to 1.0 with step size 0.02. If all thresholds are
equal to 1, the cascade becomes an ensemble, since the confidence
of any model will always be smaller than 1, and thus all the models
will be used.

A visual representation of a solution can be seen in Figure 2.

Model 

index1

Model 

index2

...
Model 

indexk

Threshold

index1

...
Threshold

indexk-1

k ≥ 2 k - 1

Figure 2: Representation of a solution for ENCAS.

To evaluate a solution, every subsequent model is used to only
update probabilities of inputs for which previous models were
not confident (once the confidence for an input is above the cur-
rent threshold, cascading stops). The final probabilities are used as
cascade predictions to evaluate its performance. The FLOPs of a
cascade are computed as a weighted sum of the FLOPs of all the
models in the cascade, where each weight is the fraction of the total
number of inputs that this model was used on. Since the models
in the model pool are known in advance, their outputs on the val-
idation set can be precomputed, which leads to fast search times
of under 1 GPU-hour even on a large dataset (e.g. ImageNet) and
with hundreds of base models to choose from.

Note that this approach is trivial to extend to multiple super-
networks by adding the models from the trade-off fronts of all the
supernetworks to the model pool. Since the algorithm relies on
network outputs, the problem of different supernetworks having
different operations is side-stepped.
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Any multi-objective search algorithm can be run to maximize
validation accuracy and minimize FLOPs. We use MO-GOMEA [29].
Pseudocode of ENCAS is listed in Algorithm 1.

Algorithm 1: ENCAS
Input :Supernetworks {𝑆𝑖 }, possible thresholds {𝑡𝑖 },

maximum cascade size 𝑘
model_pool = []
for 𝑆𝑖 in {𝑆𝑖 } do

trade_off_front𝑖 = NAT(𝑆𝑖 )
model_pool = model_pool ∪ trade_off_front𝑖

fitness_func = make_fitness_func(model_pool, {𝑡𝑖 }, 𝑘)
/* make_fitness_func defines the procedure for decoding and

encoding the values (see Fig. 2), and for evaluating a

solution, i.e. a cascade (see Section 2.3). */

cascades = MO-GOMEA(fitness_func)
return cascades // the trade-off front

Empirically, we observed that ENCAS finds hundreds of cascades.
To reduce that number and to combat overfitting, the trade-off front
found by ENCAS is filtered: we traverse the non-dominated front
from least accurate to most accurate cascades, and a cascade is
kept if its accuracy on the validation set after rounding to the first
significant digit is higher than the accuracy of the previous cascade.

3.2 Joint training and cascade search
In ENCAS, only the models from the trade-off front of each super-
network are considered. Thismeans that ENCASworkswithmodels
that are very good on their own, but it also means that it cannot
create cascades of models that might be subpar individually but ex-
tremely good together. Models with weights that complement each
other in this way may not even exist in separately-trained super-
networks, so ideally the training of a supernetwork and the cascade
search should happen simultaneously. To investigate whether this
idea is feasible, we construct a version of ENCAS called ENCAS-
joint (indicating that training and search are performed jointly).

ENCAS-joint extends NAT to training several different supernet-
works simultaneously. Whereas in NAT a solution represents an
architecture of a single model, in ENCAS-joint a solution represents
architectures of all the models in a cascade, their target positions,
and the threshold values. Confidence thresholds are restricted to
10 possible values from 0.1 to 1.0 with step size 0.1 to decrease the
search space size; the confidence threshold of the last network is not
used. These per-supernetwork representations are concatenated to
encode the whole cascade. Figure 3 visualizes the encoding.

... Target

position1

Threshold

index1

Supernetwork1

... ... Target

positionk

Threshold

indexk

Supernetworkk

Figure 3: Representation of a solution in ENCAS-joint.

Note that our encoding of the order of the networks is generally
inefficient (i.e. a permutation would be more efficient), but since we

use a small number of supernetworks (5), the number of possible
orderings is quite small, and our Cartesian encoding should suffice.

Before evaluating a cascade, the networks are ordered (with ties
broken arbitrarily), after which the cascade is evaluated as usual.
NAT requires defining a surrogate that predicts the fitness of an
architecture. To extend this to multiple supernetworks in a simple
way, we create such a surrogate for each supernetwork used, and
an additional surrogate that combines outputs of supernetwork-
wise surrogates for a prediction for the whole cascade. Yet another
surrogate is used to estimate the FLOPs count for a cascade from
FLOPs of individuals models, target positions, and thresholds (this
is necessary because changing thresholds or the order of networks
impacts not only its performance but also the FLOPs count). Each
of the surrogates is a Radial Basis Function (RBF) [6] ensemble, the
same as in NAT.

Each supernetwork is trained separately based on which sub-
networks from it are present in the population. In order not to
disadvantage supernetworks that might require more training to
achieve good accuracy, we train all the supernetworks for an equal
number of steps. To avoid tuning hyperparameters of NSGA-III to
the new scenario, we exchange it for MO-GOMEA, for which no
hyperparameters are tuned.

Note that this approach has a limitation of not allowing a cascade
to contain several models from the same supernetwork. Therefore,
it is possible to further improve results by running ENCAS on the
supernetworks trained by ENCAS-joint (we refer to this combina-
tion as ENCAS-joint+). In the next section we compare all versions
of our algorithm.

4 EXPERIMENTS
We conduct experiments on established computer vision benchmark
datasets: ImageNet (ILSVRC2012) [37], CIFAR-10 [22], and CIFAR-
100 [22]. In our experiments, we consider the bi-objective problem
of maximizing top-1 accuracy while minimizing the FLOPs count.
Note that hyperparameter selection and all search procedures were
performed on the validation subsets, while the experimental results
are reported on the test sets. This means that a trade-off front that
is monotonous when evaluated on the validation set often becomes
non-monotonous when evaluated on the test set. Since one should
not use the test set to select models, we show all the models, even
if they are dominated once the test accuracy is considered.

The validation sets for CIFAR-10 and CIFAR-100 consist of 10,000
images randomly split off from the training set (that contain 50,000
images; test sets contain 10,000 images). For ImageNet we rely
on the pretrained networks that use the whole training set and
report the results on the ILSVRC2012 validation set, as is established
practice, since the true test set is not publicly available. Images
seen during training cannot be used during the search because
their activations have different statistics [43], and for comparability
our results should be reported on the ILSVRC2012 validation set
(which is treated as the test set). As the actual validation set, we
therefore used 20,683 images from ImageNetV2 [34], which is a
dataset designed to match the ImageNet collection procedure as
closely as possible3. We would prefer to avoid using this additional

3ImageNetV2 contains three sets of 10,000 images that were collected slightly differ-
ently, we use images from all three sets: removing duplicates gives 20,683 images.
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data, but cannot; as the number of these images is only 1.6% of the
ImageNet training set size, we assume that the unfair advantage
we gain by using it is negligible.

We use the normalized hypervolume indicator [57] as a metric of
the quality of a trade-off front (see Appendix F for details). Every ex-
periment is run 10 times, mean and standard deviation are reported.
We plot the median run (in terms of hypervolume), along with a
shaded area delimited by the worst and best fronts achieved over
all the runs. Appendix A contains our hyperparameters. Search
time is measured on a single Nvidia 2080TI GPU. For statistical
testing we use the Wilcoxon signed-rank test [53] with Bonferroni
correction [17] (target 𝑝-value=0.01, 20 tests, corrected 𝑝=0.0005,
mentions of statistical significance in the text imply smaller 𝑝 , all
𝑝-values are reported in Appendix E).

Our code is public4. We have worked with our own implementa-
tion of NAT because we did not have access to the authors’ code of
NAT that was used for the NAT article.

4.1 Baseline supernetworks
We are interested in utilizing pretrained supernetworks, as training
one from scratch takes on the order of thousands of GPU-hours [8].
Unfortunately, many papers do not release either code or pretrained
weights. As more supernetworks become available in the future,
the value of searching across supernetworks should only increase.

In our experiments we rely on five different supernetworks pre-
trained on ImageNet: AttentiveNAS [48], AlphaNet [39], Proxyless-
NAS [9], OFA-w1.0 [8], OFA-w1.2 [8]. All of them are built from
inverted residual blocks [38]. Moreover, ProxylessNAS, OFA-w1.0,
OFA-w1.2 have the same search space, with only width multipliers
being different (to get the actual number of neurons in a layer, the
base number of neurons is multiplied by the width multiplier). At-
tentiveNAS and AlphaNet are from the same search space, but the
weights were trained via different approaches.

To adapt a supernetwork to CIFAR-10 and CIFAR-100, we apply
the NAT procedure for each supernetwork separately. This produces
trade-off fronts of models, which in the following sections will be
used for cascade construction. For CIFAR-10 and CIFAR-100 we
also reproduce NAT with its original hyperparameters using OFA-
w1.0 and OFA-w1.2 (due to computational constraints, we do not
reproduce NAT for ImageNet). For ImageNet, there is no need to
further update the weights, however the trade-off front still needs
to be found. For this reason, we run a version of NAT with no
training and no reevaluation of the already evaluated networks.

Results of using NAT with each supernetwork are presented in
Fig. 4. It can be seen that the choice of the supernetwork impacts
the resulting trade-off front significantly, with supernetworks that
perform better on ImageNet also performing better on CIFAR-10
and CIFAR-100, as expected [21]. Additionally, our reproduced NAT
achieves results inferior to those reported in [27], even after we
introduced changes that were not in the article but suggested by the
authors in private communication (see Appendix A). This prompted
us to look for better hyperparameters, which are used in all our
experiments (including those in Fig. 4). With these hyperparam-
eters, search time is 30 GPU-hours for OFA-w1.0, OFA-w1.2, or
ProxylessNAS, and 45 GPU-hours for AlphaNet or AttentiveNAS.

4https://github.com/AwesomeLemon/ENCAS
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Figure 4: Results of running NAT [27] with different super-
networks on CIFAR-10, CIFAR-100, ImageNet.

4.2 Cascading best NAT results
Figure 5 and Tables 1, 2, 3 show that using ENCAS on the NAT
results with the single best supernetwork leads to the models on
the fronts becoming more efficient across all datasets, with hyper-
volumes increasing (statistically significant; difference in maximum
accuracy is not statistically significant). Visually, the effect is small
on ImageNet, and noticeable on CIFAR-10 and CIFAR-100.
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Figure 5: Comparing ENCAS to the baselines.
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Table 1: ImageNet performance, "acc." is top-1 accuracy. The
method producing the highest accuracy is in bold.

Method Hyper-
volume

Max
acc.

Max
MFLOPs

EfficientNet B0-B3 [44] 0.464 81.6 1800
EfficientNet C0-C3 [49] 0.482 82.2 1800
MobileNetV3 [19] 0.396 76.6 350
OFA (#75) [8] 0.451 80.0 595
NEAS [11] 0.458 80.0 574
NSGANetV2 [26] 0.477 80.4 593
AlphaNet [39] 0.490 80.8 709
BigNAS [55] 0.480 80.9 1040
NAT (best) [27] 0.506±0.001 81.69±0.02 1962±33
GreedyCascade [43] 0.520±0.002 81.72±0.11 927±36
ENCAS (1 supernet) 0.509±0.001 81.78±0.05 1929±424
ENCAS (5 supernets) 0.537±0.001 82.72±0.10 2616±221

4.3 Cascading all NAT results
The next question is whether using supernetworks other than the
best one will improve the results of ENCAS. As shown in Figure 5,
the results are strongly improved, with the differences in hyper-
volume and maximum accuracy to the best NAT baseline (and to
ENCAS with 1 supernetwork) being statistically significant. We hy-
pothesize that inclusion of better and more diverse supernetworks
would make the gap even larger. Search time of ENCAS is 1 GPU-
hour (with approximately 300 base models). Since we report all the
cascades found by ENCAS (several dozen), we do not name them,
but for the ease of reference we name a subset (see Appendix D).

4.4 Comparison to SOTA
We compare ENCAS with the SOTA cascade search algorithm
GreedyCascade [43] by applying it to the same model pool. As can
be seen in Figure 5, ENCAS matches the performance of GreedyCas-
cade for smaller FLOPs on all datasets, and can find cascades with
better accuracy than the best baseline model, which GreedyCascade
cannot do. Note that the runtime of both algorithms (under 1 hour)
is negligible in comparison to the supernetwork adaptation time
(tens of hours). Differences in hypervolume and maximum accuracy
between ENCAS and GreedyCascade are statistically significant.

Our results are also compared with those of previous efficient
NAS algorithms (see Tables 1, 2, 3). Fig. 6 shows that the trade-off
fronts produced by ENCAS dominate other NAS approaches under
1.5 GFLOPs across the datasets. But it can also be seen that for
CIFAR-100 while ENCAS is on par with EfficientNet-B0 to B2, it is
outperformed by B3, even though the supernetworks we use out-
perform EfficientNet B0 to B3 on ImageNet. This may occur because
training an individual network is much easier than training a super-
network (in our experience, training a supernetwork is hard due to
subnetworks having to share both weights and hyperparameters).

Note that we do not compare search times of different algorithms
because the corresponding publications often report times that are
not comparable due to e.g. using different hardware, not accounting
for supernetwork training or final network retraining time. A fair
comparison would require us to run all the algorithms, for which

Table 2: CIFAR-100 performance, "acc." is top-1 accuracy. The
method producing the highest accuracy is in bold.

Method Hyper-
volume

Max
acc.

Max
MFLOPs

EfficientNet B0-B3 [44] 0.664 89.9 1800
NSGANetV2 [26] 0.658 88.3 796
GDAS [16] — 81.87 519
SETN [15] — 82.75 722
NAT (reproduced) [27] 0.523±0.012 81.53±0.54 682±298
NAT (best) [27] 0.659±0.004 87.94±0.23 1277±287
GreedyCascade [43] 0.665±0.005 87.25±0.25 341±30
ENCAS (1 supernet) 0.663±0.005 88.09±0.21 1051±353
ENCAS (5 supernets) 0.699±0.003 88.96±0.17 1401±420
ENCAS-joint 0.681±0.005 88.55±0.19 6678±1735
ENCAS-joint+ 0.701±0.005 89.10±0.22 1750±418
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Figure 6: Comparing ENCAS with SOTA NAS algorithms.

we lack compute. For future reference, the runtime associated with
each part of our pipeline is mentioned in the section describing it.

4.5 Joint training and cascade search
Is joint weight training and search of cascade architectures benefi-
cial? In Fig. 7 we can see that ENCAS-joint finds a trade-off front
that is worse than the one found by ENCAS. This likely happens
due to the increased size of the search space. However, the trade-off
front found by ENCAS-joint is better than the best NAT one.

We further see that ENCAS-joint+ (running ENCAS on the su-
pernetworks trained by ENCAS-joint) improves upon ENCAS-joint
on both CIFAR-10 and CIFAR-100. But is it better than running EN-
CAS on separately trained supernetworks? Although ENCAS-joint+
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Table 3: CIFAR-10 performance, "acc." is top-1 accuracy. The
method producing the highest accuracy is in bold.

Method Hyper-
volume

Max
acc.

Max
MFLOPs

EfficientNet B0-B2 [44] 0.863 98.4 1000
NSGANetV2 [27] 0.904 98.4 468
GDAS [16] — 97.18 519
SETN [15] — 97.31 722
DARTS [25] — 97.24 547
NAT (reproduced) [27] 0.899±0.003 96.80±0.13 361±119
NAT (best) [27] 0.911±0.002 98.46±0.08 1390±274
GreedyCascade [43] 0.935±0.002 98.31±0.05 191±16
ENCAS (1 supernet) 0.911±0.002 98.45±0.09 698±321
ENCAS (5 supernets) 0.941±0.002 98.60±0.09 749±298
ENCAS-joint 0.935±0.002 98.68±0.04 4858±1126
ENCAS-joint+ 0.943±0.002 98.68±0.08 1060±444
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Figure 7: Investigating benefits of joint training and search.

appears to outperform ENCAS in terms of hypervolume and maxi-
mum accuracy (see Tables 2, 3), these results are not statistically
significant.

Note that these experiments are not performed on ImageNet due
to limitations in computational power. Training supernetworks
jointly is computationally intensive in general (search time of
ENCAS-joint is 240 GPU-hours) while also lacking flexibility, as
adding or removing a network means restarting the whole process
from scratch. Given inconclusiveness of improvements brought by
ENCAS-joint+, we recommend using ENCAS and separate training
of supernetworks (see Section 6 for further discussion).

4.6 Applying ENCAS to SOTA ImageNet models
ENCAS relies on the architectures discovered via supernetwork-
based NAS. However, using a supernetwork means that these archi-
tectures are necessarily not very large. Because of this, NAS results
are typically evaluated in the context of a mobile phone setting,
which is usually taken to mean ≤ 600 MFLOPs.

However, nowadays there are hundreds of large well-performing
ImageNet-pretrained models available online. Can our good results
be extended from the mobile phone setting to dominating the com-
plete trade-off front? To answer this question, we take 518 ImageNet

models from the Pytorch Image Models (timm) [52] library, and run
our search procedure on them.
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Figure 8: ENCAS discovers a dominating trade-off front on
ImageNet by searching for cascades of 518 timmmodels (from
which only the models on the trade-off front are shown).

As shown in Figure 8, this indeed leads to a dominating trade-
off front. The increase of 0.4 percentage points in the maximum
ImageNet performance leads to our largest cascade achieving the
highest ImageNet accuracy of publicly available models (89.01±0.10),
while simultaneously decreasing FLOPs by 18% (from 362 GFLOPs
to 296±77 GFLOPs). Our cascades outperform those in [49], in large
part thanks to the ability of our algorithm to use a search space con-
taining hundreds of models, which is not feasible for the exhaustive
search approach used in [49].

5 ADDITIONAL EXPERIMENTS
In this section we further investigate the impact of using more
than one supernetwork. Due to space constraints, a comparison to
ensembles is provided in Appendix B and a comparison to random
search is provided in Appendix C.

5.1 Impact of increasing the number of
supernetworks

Figure 9 shows the impact of increasing the number of supernet-
works used in ENCAS from 1 to 2 to 5. A trend of increasing hyper-
volume can be clearly observed.

For joint training (ENCAS-joint), the hypervolume also increases,
but not as much. This can be explained by the increase in the search
space that every additional supernetwork brings. Interestingly, the
hypervolume obtained with ENCAS-joint+ grows about as fast as
with ENCAS, which we interpret to mean that the joint training and
search over an increasing number of supernetworks is beneficial
for weights while harmful for the simultaneous search (given the
same search budget). The larger search space may require a larger
search budget to achieve better results, and therefore ENCAS-joint
may have higher potential to benefit from more compute. Running
ENCAS using the weights trained by ENCAS-joint (i.e. ENCAS-
joint+) realizes the benefit of better weights and ameliorates the
downside of a larger search space.
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Figure 9: Impact of increasing the number of supernetworks
in ENCAS, ENCAS-joint, ENCAS-joint+.

5.2 Is using different supernetworks better than
using the best one trained several times?

Experiments in section 4.3 demonstrated that using several super-
networks is better than using just the best one. But is the source
of the effect the diversities of architectures found, or just the in-
creased quantity of networks with different weights? To answer
this question, we train (via NAT) the best supernetwork 5 times
with different seeds on CIFAR-10 and CIFAR-100 and apply ENCAS
to the resulting trade-off fronts.
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Figure 10: Comparison between hypervolumewhen using dif-
ferent supernetworks, or the best supernetwork trained with
different seeds on (top left) CIFAR-10, (bottom left) CIFAR-
100. (right) shows comparison between trade-off fronts of
5 supernetworks, or 5 seeds of the best supernetwork on
CIFAR-10.

In Fig. 10 (left) we see that using different runs of the best su-
pernetwork barely increases hypervolume, in contrast to using
different supernetworks. If we inspect the trade-off fronts in Fig. 10
(right) for 5 supernetworks and for 5 seeds of the best supernetwork
on CIFAR-10, we can see that the difference is in low-FLOPs models
that are missing from the best supernetwork but are present in
other supernetworks. Therefore, using diverse supernetworks is
helpful for obtaining a larger trade-off front coverage. However, on
the side of the most accurate networks, using multiple restarts of
NAT with the best supernetwork is sufficient to get close to the best
performance, unlike what could be expected, since the diversity in
architectures and weights is arguably lower.

6 DISCUSSION
While our approach achieves good results with limited resource
usage, it still suffers from limitations. Notably, it relies on pretrained
supernetworks, which are currently not very diverse, architecture-
wise. Additionally, these supernetworks need to allow extraction
and usage of subnetworks without retraining in order for our ap-
proach to work, which limits their selection even further.

In our experiments, we find that performing search after the
supernetwork weights have been adapted is not much worse than
joint training and search. This can mean that there is not a lot of
benefit to be gained by fine-tuning architecture choices of different
cascade components to each other; alternatively, perhaps ENCAS-
joint was simply not able to realize these benefits, for instance
because it may require more computational resources than we used
in our experiments.

This paper has demonstrated the benefits brought by the usage of
cascades. This reinforces the main thesis of [49]: researchers should
pay more attention to cascades. However, the warnings of [49]
should also be repeated, as they apply to any cascade approach,
including ours: the decrease in FLOPs brought by cascades can
be realized either when processing images one-by-one, or when
processing a large amount of images offline. The benefits are not
realized in online batch processing: once a batch has been created,
due to the parallel nature of GPU accelerators, processing a part of
a batch takes approximately the same resources as processing the
whole batch.

7 CONCLUSION
In this paper, we considered the automatic creation of cascades of
deep neural networks. We developed an effective algorithm called
ENCAS that builds upon the literature on efficient NAS by searching
for cascades across pretrained supernetworks either simultaneously
with weight training or after weight training. ENCAS is the first
NAS algorithm that searches for cascade architectures. It does so by
solving the multi-objective optimization problem of finding well-
performing small cascades with the help of an EA (MO-GOMEA).

ENCASwas found to outperform SOTA efficient NAS approaches
on several image classification datasets. Its search procedure can
also be applied to an arbitrary model pool. By applying it to well-
performing publicly available ImageNet models, we achieved a
dominating trade-off front on ImageNet.

Finally, we find that searching for neural network architectures
in more than one pretrained supernetwork is beneficial despite the
limited diversity of the currently available supernetworks, which
is expected to only increase with time.
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