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ABSTRACT

The process in which a smooth laminar flow transits to a chaotic to a chaotic, turbulent
state, is a topic of particular interest in the sectors of energy technology and aerodynam-
ics. To study the different paths that can be followed during the transition process, vari-
ous tools and methods have been developed. A preliminary investigation of the response
of a laminar flow to an internal or external disturbance can be performed by applying
Linear Stability Theory principles. In the recent years, the Direct Numerical Simulations
of flows offer a more insightful method to study the transition process, since the flow
fields are numerically solved using high computational power. Previous research has
primarily focused on the stability and transition of Ideal Gas flows, with little attention
to the effects of a highly Non-Ideal behaviour. The present work aims to develop a DNS
code that can be used to investigate the stability of compressible boundary layers in the
vicinity of the Widom Line.

For the initialization of a DNS, a two dimensional base flow profile is required. For
the calculation of the base flow, a self-similar solution is obtained, using a MATLAB script
that has been developed for the purpose of this study. The DNS code is developed in
FORTRAN. An inviscid characteristic wave analysis is utilized for the implementation of
the boundary conditions, along with numerical sponges to avoid reflections. To trigger
the instabilities, periodic suction and blowing is incorporated. For the simulations of
non-ideal fluids, a thermodynamic table interpolation tool is incorporated. For the vali-
dation of the results obtained by the DNS code, an in-house MATLAB script is used to for
the calculation of the growth rate and fluctuation amplitude profiles using LST.

Initially, the FORTRAN code is used on ideal-gas simulations, to investigate how dif-
ferent computational parameters will affect the flow field. The parameters are related to
mesh resolution, boundary conditions and numerical sponges.

To investigate the stability of non-ideal fluids, cases of different free-stream tempera-
tures and Eckert numbers are simulated. The free-stream temperature is altered to con-
trol the non-ideal gas effects, whereas the Eckert number is used to control the com-
pressibility effects. In general, the flow is stabilized as non-ideal gas and compressibility
effects become more prominent. However, a second unstable mode is observed in the
case where the temperature profile crosses the pseudo-critical point. This second mode
has a higher growth rate of instabilities, compared to the first mode. All the results are
validated using the LST predicted profiles.
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amplitude of the stream-wise velocity ûmax . . . . . . . . . . . . . . . . . . . 64

6.11 (a) Stability diagram for T∞ = 280K and Ec∞ = 0.20, presenting the two
unstable modes. The span of the computational domain in the stream-
wise direction is marked by the horizontal dashed line and the location of
the perturbation by (⋆). (b) Growth rate profile using DNS and LST for
F = 75.0×10−6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.12 Validation of growth rate profile using DNS and LST for F = 75.0×10−6 on
a shorter domain and lower perturbation amplitude. . . . . . . . . . . . . . 65

6.13 Fourier transformation of ρ′ for DNS using (a) A1 = 1.0×10−5 and (b) A1 =
1.0×10−8 at Reδ = 1900.00 and y = 0.64. . . . . . . . . . . . . . . . . . . . . . 66

6.14 Contour lines of wall-normal velocity. The six colored regions correspond
to a particular physical behaviour exhibited by the flow. . . . . . . . . . . . 67

6.15 Fluctuation amplitudes |q̂ |1 obtained from DNS. Profiles are compared with
LST eigenvectors at (a) Reδ = 1000.52 for Mode I and (b) Reδ = 1700.03 for
Mode I I . Values are normalised by the maximum amplitude of the stream-
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u′ Fluctuation of a quantity

u∗ Dimensional quantity

ui Imaginary component

ur Real component

us Static quantity

ut Total quantity

u∞ Free-stream quantity

umax Maximum value

umax Minimum value

upc Value at the pseudo-critical point

ur e f Reference value

usc Value at the critical point

uw Wall quantity





1
INTRODUCTION

Hydrodynamic stability is a field that has its origins back in the 19th century and aims
to study the response of a laminar flow to a disturbance of low or moderate amplitude
[32]. In general, a disturbance triggers instabilities in the flow field, that might decay and
the flow will return to its original state, hence the flow is characterized as stable. Another
scenario is that the instabilities will keep growing in space and time, making the flow
unstable and leading to a chaotic state, also referred to as turbulence. To illustrate the
transition of a flow from laminar to turbulent, figure 1.1 is provided.

Figure 1.1: Illustration of laminar to turbulent transition of cigarette smoke, labelling the three different zones
[36].

In the laminar region the flow is smooth, without the presence of instabilities. Once
instabilities start to develop, the flow enters the transitional region, in which instabili-

1



2 1. INTRODUCTION

ties grow in space and time, until secondary mechanisms further destabilize and lead to
breakdown further downstream. Breakdown is the final step before the transition to tur-
bulence. In the turbulent zone a chaotic behaviour is exhibited by the flow, accompanied
by the presence of multiple vortices.

To mathematically describe the behaviour of any flow, a solution to the flow con-
servation equations (Navier-Stokes or Euler equations) is required. These equations are
non-linear which makes it difficult to obtain an analytical solution. For simple geome-
tries, obtaining an analytical solution might be possible through various assumptions
and simplifications on the conservation equations. For more complicated problems, the
utilization of numerical methods and computational techniques is required.

To study the turbulent behaviour of flows, researchers use various techniques. One
technique employs temporal averaging of the flow variables and incorporates turbu-
lence models to model the turbulent behaviour of flows as a steady-state solution, known
as Reynolds-Averaged Navier-Stokes (RANS). Another common technique is Large eddy
simulations (LES), which utilizes temporal and spatial averaging of the small features of
the flow, while numerically solving the flow conservation equations on coarser grids, re-
solving the larger flow structures. These techniques are relatively cheap, in terms of com-
putational power, and can be used to model various flow geometries. Although these
methods provide information about the turbulent structures of the flow, the origins of
turbulence cannot be determined. To obtain an accurate solution of the flow field, a
massive amount of computational resources is required for the numerical integration of
the conservation equations, through Direct Numerical Simulations. This method pro-
vides all the information that is required to determine the mechanisms that lead to tur-
bulent transition as well as accurately resolves all flow structures. Since this method is
computationally expensive, it is limited to the simulation of simple flow geometries.

Another technique that provides insight the transition to turbulence is Linear Sta-
bility Theory. This method is used to determine whether an external perturbation will
grow inside the flow field, or decay. It is not a computationally expensive method since
a linearized form of the conservation equations is solved as an eigenvalue problem to
reveal the parameters related to a disturbance that will trigger growth of instabilities in
the flow.

In recent research, the field of flow stability, control and transition to turbulence is
deemed crucial. This area of research developed rapidly during the last century, in an
attempt to delay the transition on airplane wings, since turbulence is the primary source
of drag force, eventually increasing fuel costs. Nowadays, the stability of non-ideal fluid
flows is an area that remains, mostly, unexplored. The incorporation of non-ideal flu-
ids, like supercritical carbon dioxide in power cycles has a great potential in increasing
thermal efficiency; the turbine efficiency of organic Rankine cycles can also improve[2],
whereas higher efficiency of mixing and combustion in air breathing and liquid rocket
engines can be achieved [38]. Hence the mechanisms of transition in non-ideal fluids
need to be further explored and understood, so that broader utilization of such fluids is
possible.
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1.1. LITERATURE REVIEW

The investigation on stability of compressible ideal gas boundary layers was first initi-
ated during the 1940s with the work of Lees and Lin [12], who proved that for an inviscid
instability to occur in compressible flows, a generalized inflection point must exist in
the velocity profile, similarly to what was stated by the work of Rayleigh for incompress-
ible flows. It was, later, revealed by Mack that for high-speed flows, a second unstable
mode occurs at a free-stream Mach number of 4, which belongs to the family of trapped
acoustic waves and has a greater growth rate than the first viscous mode [15].

With the introduction of hypersonic vehicles, there was a rise in the interest of high-
temperature chemical effects on boundary layer stability, during the 90s. Effects like
dissociation and recombination of species, surface ablation, radiation or ionization are
referred to as real gas effects and might occur at high temperatures. Malik and Ander-
son [16] investigated the instability of a Mack 10 boundary layer through linear stability
analysis and found out that hypersonic effects tend to stabilize the first but destabilize
the second Mack’s mode. Further research in real gas effects involves the investigation of
chemical reaction models by Franco, MacCormack and Lele [7] and Lyttle and Reed [14].
Surface roughness induced transition was investigated by Stemmer et al. [34] whereas
surface ablation effects by Mortensen and Zhong [22]. More advanced research was
conducted by the incorporation of parabolic stability equations (PSE) by Cang et al. [4],
Johnson and Candler[8] and Malik [17]. The investigation of stability was further pur-
sued using direct numerical simulations (DNS) by Marxen et al.(2013) [20], Marxen et al.
(2014) [19] and Wang [37].

To model the behaviour of a fluid operating close to the thermodynamic critical
point, complex equations of state are utilized. Since the incorporation of supercritical
fluids in industrial applications [3] is an emerging topic of research, more interest is
drawn on the characterization of turbulence and heat transfer. The first DNS of tran-
scritical boundary layer was performed by Kawai [9] and revealed that turbulent mass
flux terms are much higher compared to the case of an ideal gas, in the turbulent kinetic
energy equation, for the same free stream Mach number. A review by Pizzarelli [25],
showed that future applications, in terms of heat transfer, are limited due to the current
knowledge of heat transfer deterioration in supercritical fluids. To investigate the stabil-
ity of Poiseuille flows of highly non-ideal fluids, Ren et al. [28] performed a recent study
based on linear stability analysis. Their work proved that for different thermodynamic
regimes, flows might become more stable, unstable or inviscid unstable, compared to
ideal gases in the same conditions. Another study conducted by Ren et al. [29], involved
the linear stability analysis of non-ideal boundary layers, and the validation using DNS.
It was revealed that for a fluid in transcritical conditions, a second unstable mode, with
higher growth rate, occurs which is not related to Mack’s second mode.

The largest part of literature is primarily focused on the behaviour of ideal gas flows
and hypersonic or high temperature effects, which are more relevant in the sector of
aerospace engineering. In the field of energy, examining the real gas effects on flow sta-
bility has more value, which serves as the motivation behind the present study.
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1.2. RESEARCH OBJECTIVE
The primary focus of the present study is the development of a FORTRAN code that can
be utilized for the direct numerical simulations of supercritical carbon dioxide boundary
layers, for the investigation of transitional behaviour. Through this study, knowledge is
gained on the optimal computational parameters that can be used for the setup of a DNS
code. The work of Ren et al. [29] is used as the primary reference for the validation of the
results presented.

By modifying an existing in-house DNS code that is used for the simulation of fully
developed turbulent channel flows, a DNS code that can be used for boundary layers
is developed. To modify the existing code, new boundary conditions, computational
sponges and thermodynamic table interpolation tools are implemented.

To test the resulting code, the stability of an ideal gas boundary layer is investigated,
by varying computational parameters and determining the optimal values that can be
used for the simulations of non-ideal gases. For the validation of the DNS results, the
predictions obtained by Linear Stability Theory are utilized.

After determining the optimal set of parameters, the stability of supercritical carbon
dioxide boundary layers is investigated using DNS and validated with LST predictions.
Although results provided by the two methods can be compared, they are not entirely
identical since the latter method assumes a parallel flow.

1.3. THEORETICAL FRAMEWORK
The theoretical concepts adapted in this study are presented in this section. A brief ex-
planation of laminar to turbulent transition is provided, along with a description of the
fluid behaviour in the thermodynamic region of interest.

1.3.1. FLOW STABILITY AND TRANSITION
The various paths that can lead to turbulence have been identified and summarized by
Morkovin [21] and are presented in figure 1.2. In general, transitional mechanisms are
triggered by disturbances in the flow, which might be either acoustic or vortical. De-
pending on the intensity of the initial disturbance, a different path is followed.

One possible route that can lead to turbulence is the linear growth of instabilities
caused by low amplitude disturbances that excite the natural modes of the flow. The
growth of primary instabilities is succeeded by the formation of secondary instabilities
that cause a breakdown of the laminar state, resulting to turbulence. In figure 1.2 it is
marked as path a. Path b, corresponds to higher disturbance amplitudes. In this case,
secondary instabilities are formed as a result of the linear superposition of the natural
modes that grow for a short time, without the occurrence of primary instabilities. For
disturbances of excessively high amplitude, all the mode excitation process is bypassed
and a non-linear growth is exhibited which immediately generates turbulent structures.

Terms associated with the transition to turbulence are explained below.

• Receptivity Mechanisms: The mechanisms through which an external disturbance
triggers the growth of instabilities in the flow. For strong external disturbances,
non-linear growth might be induced, directly leading to turbulence. For weaker
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Non-Linear 
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Non-Linear 
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Growing Disturbance Amplitude

Figure 1.2: Routes of Laminar to Turbulent Transition [21].

disturbances, free disturbances within the flow are triggered, leading to a linear
growth.

• Primary Instabilities: Refers to the initially excited modes, which grow within a
linear regime. Depending on the amplitude of the external disturbance, the insta-
bilities might either keep growing until the growth is no longer linear, for high dis-
turbance levels. For lower disturbance levels, the primary instabilities might decay
and the flow will return to its laminar state. The free disturbances that correspond
to the natural modes of a boundary layer, are referred to as Tollmien-Schlichting
(TS) waves.

• Secondary Mechanisms: Once the developing instabilities grow beyond the linear
level, secondary mechanisms further destabilize leading to an exceedingly high
growth rate until the eventual breakdown and transition to turbulence.

• Breakdown: Refers to the last stage before the transition to turbulence. In this
stage, the exceedingly strong, non-linear instabilities break down and form com-
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plex, chaotic structures that mark the transition to turbulence. Breakdown is asso-
ciated with the emergence of multiple new time and length scales in the flow.

• Turbulence: A chaotic state that is reached after breakdown. It is characterised by
a wide range of time and length scales in three dimensions, hence very complex.

• Non-Linear Saturation: This term refers to a state in which the instabilities no
longer grow in space, indicating saturation. It is caused by the excessive growth
of primary instabilities, however, instead of the emergence of secondary instabil-
ities, the flow reaches a new periodic state which is more complicated compared
to the initial laminar state.

For a boundary layer, the transitional behaviour that follows path a, is provided in fig-
ure 1.3. Initial disturbances trigger the growth of instabilities, in the linear regime. The
instabilities keep growing until secondary mechanisms introduce more complex struc-
tures, in the weakly non-linear regime. In the non-linear regime, the excessive growth
of secondary instabilities leads to breakdown, the formation of irregular structures and
chaotic behaviour, indicating a turbulent flow.

Linear Stage

Weakly  

Non-Linear 

Stage

Fully Non-Linear Stage

Boundary Layer Thickness δ*

u*=u*(y)

u
∞
*

Development of Instabilities

Initial Disturbances

Figure 1.3: Laminar to turbulent transition for a flow over a flat plate.

The main focus of this study is centered around the linear regime. To study the sta-
bility of boundary layer flows, a weak initial perturbation is introduced to trigger the TS
waves that grow in space and then decay. This behaviour can, also, be predicted using
Linear Stability Theory which is used for the validation of the results of the direct numer-
ical simulations.

1.3.2. CARBON DIOXIDE IN THE SUPERCRITICAL REGIME

To investigate how non-ideal gas properties affect the stability of boundary layer flows,
supercritical carbon dioxide is selected. The critical pressure of carbon dioxide is p∗ =
74.77 bar , for the purposes of this study, a pressure of p∗ = 80.0 bar is selected, which
corresponds to the superctitical regime. A contour plot of the compressibility factor Z =
p∗/(ρ∗R∗T ∗) is provided in figure 1.4.
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Figure 1.4: Contour plot of compressibility factor Z as a function of specific volume V ∗ and temperature T∗.
The Widom line is marked by the white dashed line and the p∗ = 80.0 bar isobar, by the light blue line. The
critical point is marked by (⋆), whereas the pseudo-critical point by (⋆).

By identifying the point of maximum heat capacity Cp along the p = 80.0 bar isobar,
the pseudo-critical point is found at T ∗

pc = 307.77 K . The line that is formed by identi-
fying the pseudo-critical points on all supercritical isobars, defines the Widom line and
corresponds to a region where highly non-ideal behaviour is exhibited by the fluid [33],
[27]. The low compressibility factor values around the Widom line in figure 1.4 also sup-
port this statement, since Z = 1.0 corresponds to ideal gas. When the temperature of
carbon dioxide is increased from below the pseudo-critical point to a temperature above
the pseudo-critical point, the fluid exhibits a dramatic change from dense, liquid-like to
vapor-like behaviour. The thermodynamic and transport properties undergo enormous
variations, as well.

Direct numerical simulations are performed for various temperatures along the p∗ =
80 bar isobar for carbon dioxide and the effects of non-ideal behaviour on boundary
layer stability are examined.

1.4. THESIS OUTLINE

Chapter 2 includes the mathematical description and the governing equations that de-
fine the problem.

Chapter 3 presents the tools that have been developed and used for the mathematical
modelling of the problem, as well as the solution methods that are incorporated.

Chapter 4 provides an analytical explanation of the numerical parameters that are uti-
lized for the configuration of the direct numerical simulations.
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Chapter 5 presents the results of direct numerical simulations for an ideal gas. In this
chapter the computational parameters of the code are varied and the influence of each
parameter is determined.

Chapter 6 presents the results of direct numerical simulations for a non-ideal gas. The
stability of non-ideal boundary layers is investigated in this chapter.

Chapter 7 summarizes the work presented and provides recommendations for aspects
that require further investigation, based on the results of this study.



2
GOVERNING EQUATIONS

The mathematical description of the present study will be provided in this chapter. The
basis behind the concepts that are utilised, are the flow conservation equations that are
modified to produce a self-similar solution, which will be used as the base flow, and the
equations that are required for the Linear Stability Theory.

2.1. FLOW CONSERVATION EQUATIONS
A fluid flow is mathematically described by the conservation laws of mass, momentum
and energy, also known as the Navier-Stokes equations. In differential and dimension-
less form they are expressed as

∂ρ

∂t
+ ∂

(
ρu j

)
∂x j

= 0,

∂
(
ρui

)
∂t

+ ∂
(
ρui u j +pδi j −τi j

)
∂x j

= 0,

∂
(
ρE

)
∂t

+ ∂
(
ρEu j +pu j +q j −uiτi j

)
∂x j

= 0,


(2.1)

where ui = (u, v, w) are the velocity components in streamwise, wall-normal and span-
wise directions respectively and xi = (x, y, z) are the corresponding coordinates, with t
being the time. The fluid density and pressure are expressed by ρ and p, respectively.
The total internal energy is E = e+ui ui /2 where e the internal energy. The viscous stress
tensor, τi j , and the heat flux vector, q j , are given by

τi j = µ

Re∞

(
∂ui

∂x j
+ ∂u j

∂xi

)
+ λ

Re∞
δi j

∂uk

∂xk
,

q j =− κ

Re∞Pr∞Ec∞
∂T

∂x j
.

 (2.2)

In equation (2.2), µ stands for the dynamic viscosity and λ = µb −2/3µ the second vis-
cosity with µb the bulk viscosity. A study conducted by Ren et al. [28], showed that the

9
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effect of µb is very limited in the linear stability for channel flows, hence for the results
of the present study it is assumed that µb is equal to zero. In the expression for the heat
flux vector q j , κ indicates the thermal conductivity and T the fluid temperature.

Equations 2.1 and 2.2 have been non-dimensionalized by the following reference val-
ues

u = u∗

u∗∞
, xi =

x∗
i

l∗0
, t = t∗u∗∞

l∗0
, p = p∗

ρ∗∞u∗2∞
, ρ = ρ∗

ρ∗∞
,

T = T ∗

T ∗∞
, E = E∗

u∗2∞
,µ= µ∗

µ∗∞
, κ= κ∗

κ∗∞
. (2.3)

The superscript ∗ indicates dimensional values, while subscript ∞ the value of a variable
in the free-stream. The characteristic length scale that is selected for a particular flow is
expressed as l∗0 .

In fluid dynamics, a flow can be characterised by dimensionless parameters that re-
sult from scaling analysis. Flows with similarities in the values of these parameters, will
exhibit similar behaviour. The most important dimensionless parameters for a flow over
a flat plate are listed below, based on free-stream quantities

Reynolds Number : Re∞ = Inertial Forces

Viscous Forces
= ρ∗∞u∗∞l∗0

µ∗∞
, (2.4)

Prandtl Number : Pr∞ = Momentum Diffussivity

Thermal Diffussivity
=

C∗
p∞µ∗∞
κ∗∞

, (2.5)

Eckert Number : Ec∞ = Kinetic Energy

Enthalpy
= u∗2∞

C∗
p∞T ∗∞

, (2.6)

Mach Number : Ma∞ = Flow Velocity

Speed of Sound
= u∗∞

c∗∞
. (2.7)

In the above equations Cp stands for the specific heat capacity of the fluid and c for the
speed of sound. It is, also, noted that for an ideal gas Ec∞ = (γ−1)M a2∞, where γ is the
ratio of specific heat capacities.

A description of the physical significance for each of the dimensionless parameters
is given below

• The Reynolds number (Re) is used to express the dominance of inertial forces in
a flow, over the viscous forces. In general, increasing the Reynolds number will
result to transition to turbulence.

• The Prandtl number (Pr ) provides information about the dominant heat trans-
fer mechanism in a medium. In substances with high Prandtl number, convec-
tive heat transfer is more effective than heat conduction whereas in substances
with low Prandtl number, conduction of heat is dominant. In boundary layers, a
high Prandtl number (Pr > 1) indicates that the velocity boundary layer is thicker
compared to the thermal boundary layer, since momentum dissipates through the
fluid at a higher rate compared to heat.
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• The Eckert number (Ec) can be used to express the effect of viscous heat dissipa-
tion in viscous flows. Higher Eckert numbers imply that viscous heating will be
prominent in the flow and in non-ideal fluids this causes gradients in the thermo-
dynamic and transport properties.

• The Mach number (M a) is a measure of the compressibility effects on the flow.
For flows with M a < 0.3 these effects are considered negligible, hence the flow is
incompressible.

Another important parameter, in the present analysis, is δ∗, which is used to express
the order of magnitude of the boundary layer thickness. The value of this parameter is
calculated by

δ∗ =
√

µ∗∞x∗

u∗∞ρ∗∞
, (2.8)

which leads to the following formulation for the Reynolds number, by setting l∗0 = δ∗;

Reδ =
ρ∗∞u∗∞δ∗

µ∗∞
=

√
ρ∗∞u∗∞x∗

µ∗∞
=

√
Rex . (2.9)

Other parameters, associated with the boundary layer can be expressed in terms of the
order of magnitude of the boundary layer thickness. For example the displacement
thickness δ∗1 ≈ 1.721δ∗ and the momentum thickness δ∗2 ≈ 0.664δ∗ can be obtained by
applying the Blasius solution on an incompressible flow [31]. The analytical expression
for each of these quantities is provided below

δ∗1 =
∫ ∞

0

(
1− ρ∗u∗

ρ∗∞u∗∞

)
d y∗, δ∗2 =

∫ ∞

0

ρ∗u∗

ρ∗∞u∗∞

(
1− u∗

u∗∞

)
d y∗. (2.10)

2.2. LAMINAR BASE FLOW
For the investigation of boundary layer stability, it is essential to utilize a self-similar
solution, for a flow over a flat plate, that will serve as the base flow for the Linear Stability
Theory and as the initial condition for the Direct Numerical Simulations.

2.2.1. SIMPLIFICATION OF CONSERVATION EQUATIONS
Prior to the wider employment of computational methods, the numerical solution of
the Navier-Stokes equations had been nearly impossible. However the necessity for
such solutions, led to the simplification of the conservation equations through order-
of-magnitude analysis. Consequently, for a flow over a flat plate, a simpler form of the
Navier-Stokes equations was derived for viscous flows. The following derivation can be
found in [1].

Considering the flow over a flat plate, two important length scales characterize the
flow. One is the boundary layer thickness δ∗ and the other is the length of the plate L∗.
The first assumption in this analysis is that the boundary layer thickness is extremely
small compared to the length of the plate, hence

δ∗ << L∗. (2.11)
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In two dimensional, steady form the continuity equation is written as

∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0. (2.12)

The streamwise coordinate x∗, varies from 0 to L∗, while the wall-normal coordinate y∗
varies from 0 to δ∗. By assuming that L∗ is a unit length, x = O(1) and y = O(δ∗). Con-
sidering that the streamwise velocity u ranges from 0 at the wall to 1 in the free-stream,
similarly for the density ρ and by scaling equation 2.12 appropriately, the following ex-
pression results

[O(1)][O(1)]

O(1)
+ [O(1)][v]

O(δ∗)
= 0. (2.13)

The wall normal velocity v , needs to scale with δ∗, so that the continuity equation is
satisfied. Hence v =O(δ∗).

The steady streamwise momentum equation is expressed as

ρu
∂u

∂x
+ρv

∂u

∂y
=−∂p

∂x
+ 1

Re∞
∂

∂y

[
µ

(
∂v

∂x
+ ∂u

∂y

)]
, (2.14)

and scaling each term separately, gives the following

ρu
∂u

∂x
=O(1), ρv

∂u

∂y
=O(1),

∂p

∂x
=O(1),

∂

∂y

(
µ
∂v

∂x

)
=O(1),

∂

∂y

(
µ
∂u

∂y

)
=O

(
1

δ∗2

)
.

Additionally, it is assumed that the Reynolds number is large enough, hence

1

Re∞
=O(δ∗2),

and equation 2.14 can be written in order-of-magnitude form as,

O(1)+O(1) =−O(1)+O(δ∗2)

[
O(1)+O

(
1

δ∗2

)]
. (2.15)

From equation 2.15, it observed that the term (1/Re∞)∂/∂y(µ ∂v/∂x) scales with δ∗2, and
can be neglected, since it is of a lower order of magnitude compared to the other terms.
The final form of the momentum equation in the streamwise direction becomes, then

ρu
∂u

∂x
+ρv

∂u

∂y
=−∂p

∂x
+ 1

Re∞
∂

∂y

(
µ
∂u

∂y

)
. (2.16)

By applying a similar order-of-magnitude analysis on the momentum in the wall-normal
direction and the energy conservation equations, the final form of the conservation equa-
tions in dimensional form, for boundary layers, is
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∂
(
ρ∗u∗)
∂x∗ + ∂

(
ρ∗v∗)
∂y∗ = 0,

ρ∗u∗ ∂u∗

∂x∗ +ρ∗v∗ ∂u∗

∂y∗ + dp∗∞
dx∗ − ∂

∂y∗

(
µ∗ ∂u∗

∂y∗

)
= 0,

∂p∗

∂y∗ = 0,

ρ∗u∗ ∂h∗

∂x∗ +ρ∗v∗ ∂h∗

∂y∗ −u∗ dp∗∞
dx∗ − ∂

∂y∗

(
κ∗ ∂T ∗

∂y∗

)
−µ∗

(
∂u∗

∂y∗

)2

= 0.


(2.17)

2.2.2. SELF-SIMILAR SOLUTION
For a better explanation of the concept of a self-similar solution, figure 2.1 is provided.
In the physical plane, the flow variables are a function of both, the stream-wise and the
wall-normal coordinates. In fugure 2.1, the stream-wise velocity component is plotted
on the left, at two different stream-wise locations and it is evident that the profile is dif-
ferent at each location. By introducing a transformation on the physical coordinates x
and y , it is possible to obtain a solution that is independent of the stream-wise location,
as shown on the right part of figure 2.1.

Physical Plane Transformed Plane

y y η

ξ
1

x
2

x
1 ξ

2

η

u
∞

u
∞

u
∞

u
∞

u(x
1
,y) u(x

2
,y) u(ξ

2
,η)u(ξ

1
,η)

Figure 2.1: Illustration of a self-similar transformation.

The transformation that will be used for the purposes of the present study, is based
on the work of Dorodnitsyn [6] in the 1940s and was later refined by Levy [13] and Lees
[11]. The physical coordinates x and y are mapped to the transformed coordinates ξ

and η, respectively in order to produce a self-similar solution. In Anderson Jr. [1] this
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transformation is referred to as the Lees-Dorodnitsyn transformation and is formulated
as

dξ= ρ∗
∞µ∗

∞u∗
∞ dx∗,

dη= ρ∗u∗∞√
2ξ

dy∗.

 (2.18)

Applying the transformation on equations 2.17, transforms the partial differential equa-
tions into ordinary differential equations. This is done in four steps.

1. Derivatives over independent variables x∗ and y∗ are transformed into derivatives
over the transformed variables ξ and η, using the chain rule.

2. Dependent variables are transformed by defining a function f (ξ,η) such that

u∗

u∗∞
= ∂ f

∂η
≡ f ′. (2.19)

3. Identify a correlation between the stream-function ψ and f .

4. Apply the transformation on equations 2.17 and obtain the final form of the bound-
ary layer equations for a self-similar solution.

Finally, the transformed self-similar boundary layer equation is

∂

∂η

(
Cl

∂2 f

∂η2

)
+ f

∂2 f

∂η2 = 0,

∂

∂η

(
Cl

Prl

∂g

∂η

)
+ f

∂g

∂η
+Cl

u∗2∞
h∗

s∞

(
∂2 f

∂η2

)2

= 0,

 (2.20)

where

g = h∗
s

h∗
s,∞

, Cl =
ρ∗µ∗

ρ∗∞µ∗∞
, Prl =

µ∗C∗
p

κ∗ . (2.21)

In equations 2.20 and 2.21, h∗
s stands for the local static enthalpy in J/kg and Prl is the

local Prandtl number.

2.3. LINEAR STABILITY THEORY

The research of the field of fluid flow stability has its roots back in the 19th century, first
studied by Reynolds and Rayleigh. For the better comprehension of modal growth and
transition to turbulence, Linear Stability Theory is an appropriate method of approach
to the problem of flow stability. Although this method does not provide a detailed de-
scription of flow patterns, it is extremely useful since it can predict the growth of small
disturbances both in time and space, provided the corresponding base flow.

The main idea behind the derivation of the Linear Stability equations, lies behind
the expression of flow variables as the summation of a mean value (denoted by 0) and a
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fluctuation (denoted by ′) , as shown below

ui = ui ,0 +u
′
i ,

ρ = ρ0 +ρ
′
,

E = E0 +E ′,

T = T0 +T
′
,

p = p0 +p
′
,

µ=µ0 +µ
′
,

κ= κ0 +κ
′
.

(2.22)

Having expressed the flow variables as mentioned above, the following procedure is
adapted. Firstly, the equations 2.22 are substituted in the conservation equations 2.1 and
the terms containing only mean values are dropped by subtracting each corresponding
conservation equation that only contains the mean of each parameter. Next, a parallel
assumption is introduced for boundary layer flows. This assumes that the wall normal
velocity component is zero at all wall normal locations, hence v0 = 0. Also, it is assumed
that the instabilities develop slowly in the stream-wise direction, in the sense that the
length scale of the instabilities is much smaller than the length scale of the base flow.
Finally, since the fluctuations are assumed to have a small value, all the non-linear terms,
containing the products of fluctuation terms are omitted.

For compressible systems consisting of one single-phase, non chemically reacting
substance, only two thermodynamic properties are required in order to fully define the
thermodynamic state. In the current study, all the thermodynamic and transport prop-
erties are determined as functions of fluid density ρ and temperature T .

The fluctuation terms for each quantity are expressed as

q
(
x, y, z, t

)= q̂
(
y
)

exp
(
iαx + iβz − iωt

)+ c.c, (2.23)

where c.c stands for the complex conjugate, and q = (ρ
′
,u

′
, v

′
, w

′
,T

′
)T . The variables

β and ω are the span-wise wavenumber and angular frequency, respectively, while α is
a complex number, of which the real part corresponds to the stream-wise wavenumber
and the imaginary part corresponds to the local growth rate of the fluctuation. Express-
ing the Linearised Stability equations in terms of q , gives

Lt
∂q

∂t
+Lx

∂q

∂x
+L y

∂q

∂y
+Lz

∂q

∂z
+Lq q

+Vx x
∂2q

∂x2 +Vx y
∂2q

∂x∂y
+Vx z

∂2q

∂x∂z
+Vy y

∂2q

∂y2 +Vy z
∂2q

∂y∂z
+Vz z

∂2q

∂z2 = 0, (2.24)

with Lt , Lx , L y , Lz , Lq , Vx x , Vx y , Vx z , Vy y , Vy z and Vz z being 5×5 matrices. Their full
form can be found in Ren et. al [28]. Since the present study mainly focuses on the
spatial growth of instabilities, β and ω are prescribed variables and a solution of the
resulting eigenvalue problem is obtained for α.





3
SOLUTION METHODS AND

MATHEMATICAL APPROACH

The governing equations mentioned in chapter 2 are solved using the methods that are
explained in detail in this chapter.

Figure 3.1: Workflow diagram of the present study.

Firstly, the boundary layer solver is used to obtain the self-similar solution for a flow
over a flat plate. The self-similar solution is used by the Linear Stability solver in or-
der to calculate the neutral stability curve which provides the growth rate of instabil-

17
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ities at each stream-wise location. Also, the self-similar solution is interpolated on a
two-dimensional mesh and the resulting flow field is used as the initial condition for
the direct numerical simulations, which provide an accurate solution of the flow. By
post-processing the resulting flow fields, it is possible to validate the results of the Linear
Stability solver. This process is illustrated in figure 3.1.

3.1. SELF-SIMILAR SOLUTIONS AND LAMINAR BASE FLOW CAL-
CULATION

For the calculation of the self-similar solution, a MATLAB script is utilized to numerically
solve equations (2.20) in the transformed plane (ξ and η plane) and translate the solution
back to the physical plane (x and y plane). The script was developed for the purposes of
the present study.

3.1.1. BOUNDARY CONDITIONS

To fully define the physical problem, it is necessary to utilize the proper boundary con-
ditions. In the case of boundary layers, the following conditions apply.

1. For isothermal wall

u(y = 0) = 0, u(y →∞) = 1,

T (y = 0) = T ∗
w

T ∗∞
, T (y →∞) = 1,

 in the physical plane (3.1)

f (η= 0) = f ′(η= 0) = 0, f ′(η→∞) = 1,

g (η= 0) = h∗
s,w

h∗
s,∞

, g (η→∞) = 1.

 in the transformed plane (3.2)

2. For adiabatic wall

u(y = 0) = 0, u(y →∞) = 1,

∂T

∂y (y=0)
= 0, T (y →∞) = 1,

 in the physical plane (3.3)

f (η= 0) = f ′(η= 0) = 0, f ′(η→∞) = 1,

g ′(η= 0) = 0, g (η→∞) = 1.

}
in the transformed plane (3.4)

In order to satisfy the free-stream boundary conditions (η→∞) , the numerical domain
for η needs to be long enough to ensure that the top boundary is far from the boundary
layer.
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3.1.2. THERMODYNAMIC PROPERTIES
To fully define the thermodynamic conditions of a flow, two thermodynamic properties
should be known and an equation of state must be selected. In the present study re-
sults are provided for both, non-ideal and ideal gases, hence two different methods are
employed for the definition of the flow conditions which will be explained in this section.

Figure 3.2: Graphical representation of one-dimensional property tables for Carbon Dioxide at p∗ = 80bar
and comparison with Ideal Gas equation of state. Properties are plotted as functions of fluid temperature.
Plots present (a) fluid density ρ∗, (b) viscosity µ∗, (c) specific heat capacity C∗

p and (d) thermal conductivity
κ∗.

Ideal Gas Equation of State
For gases that exhibit ideal behaviour, an Ideal Gas equation of state is utilized for

the calculation of the thermodynamic properties and Sutherland’s Law for viscosity as
presented below.

p∗ = ρ∗R∗T ∗,

h∗
s =C∗

p T ∗,

}
Ideal Gas Equation of State (3.5)

µ∗

µ∗
r e f

=
(

T ∗

Tr e f

)1.5 T ∗
r e f +S∗

T ∗+S∗ ,

}
Sutherland’s Law for Viscosity (3.6)

where R∗ is the ideal gas constant which is set to 287.1J/kg K and S∗ is the Suther-
land constant which has a value of 101K . Reference values µ∗

r e f and T ∗
r e f are set to

1.789× 10−5Pa s and 288K , respectively. All the selected values correspond to air that
exhibits ideal gas behaviour. The solution of equations (2.20) provides the local static
enthalpy value, therefore one more thermodynamic property needs to be provided for
the calculation of the other properties. Hence, it is assumed that the pressure is constant
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along the wall-normal direction, and equal to 1atm, to fully define the thermodynamic
state. Finally, constant Prandtl number (Prl ) and ratio of specific heats (γ) are assumed
with values set at 0.75 and 1.4 respectively.

One-Dimensional Table Interpolation for Non-Ideal Gases

One of the main objectives of the present study is to investigate the stability of fluid
flows close to the pseudo-critical point, where non-ideal behaviour is exhibited, hence
the Ideal Gas law is no longer applicable. In this case, to calculate the thermodynamic
properties, table interpolation is utilized. The tables are generated by REFPROP for Car-
bon Dioxide at p∗ = 80bar , using the GERG 2004 equation of state. Since the boundary
layer equations (2.20) are derived based on the assumption that the pressure is fixed at a
certain value, all properties are functions of only one thermodynamic variable, as shown
in figure 3.2. A complete formulation of the equation of state and transport property
models can be found in [10].

3.1.3. NUMERICAL METHODS

Since 2.20 is a system of second and third order ODEs, it is decomposed into a system of
first order ODEs as follows,

f ′ = F,

F ′ = A

Cl
,

A′ =− f A

Cl
,

g ′ = Prl

Cl
B ,

B ′ =−Prl

Cl
f B − h∗

s∞
Cl u∗2∞

A2.



(3.7)

For the numerical integration of equations (3.7), a fourth order Runge-Kutta scheme
is utilized as formulated below, for f ′;

d f

dη
= f ′(η,F ),

fn+1 = fn + 1

6
∆η(k f ,1 +2k f ,2 +2k f ,3 +k f ,4), (3.8)
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with ∆η the step of the discretized η coordinate and terms k f ,i defined as;

k f ,1 = f ′ (ηn ,Fn
)

,

k f ,2 = f ′
(
ηn + ∆η

2
,Fn +∆η

kF,1

2

)
,

k f ,3 = f ′
(
ηn + ∆η

2
,Fn +∆η

kF,2

2

)
,

k f ,4 = f ′ (ηn +∆η,Fn +∆ηkF,3
)

.

Equations (3.7) need to be solved simultaneously. For the discretization of each of the
left-hand side terms, the RK-4 scheme is applied. Terms k∼,i are evaluated for all left-
hand side variables before proceeding to the calculation of k∼,i , where ∼ corresponds
to each of the left-hand side variables. In the case where a left-hand side variable is a
function of more than one of the other left-hand side variables, the evaluation of ki is
modified accordingly. For instance, to evaluate kA,3, the following expression is used,

kA,3 = A′
[
ηn + ∆η

2
, fn +∆η

k f ,2

2
, An +∆η

kA,2

2
,Cl

(
gn +∆η

kg ,2

2

)]
.

The system of equations (3.7) consists of five ODEs, hence for the numerical integra-
tion of the system, five wall boundary conditions are required. According to equations
(3.2) and (3.4), only three boundary conditions are imposed at the wall, therefore the two
remaining boundary conditions need to be assumed. To achieve that, a shooting method
is employed, which makes use of the free-stream boundary conditions in order to esti-
mate proper values for the remaining wall boundary conditions. The shooting method
is applied by the following procedure, as described in Anderson Jr. [1]. An illustration of
the shooting method is provided in figure 3.3.

1. Values for f ′′(η= 0) and g ′(η= 0) for isothermal wall are assumed, or for f ′′(η= 0)
and g (η= 0) for adiabatic wall. Values between 0.5 and 1.0 are good initial guesses.

2. Using the selected integration scheme (RK-4 for this case), the system of equations
is integrated along η.

3. If the resulting values of f (η → ∞) and g (η → ∞) match the free-stream bound-
ary conditions, then the self-similar solution has been calculated. Otherwise, new
values for the wall boundary conditions need to be assumed and the steps are re-
peated until the free-stream boundary conditions are satisfied. To determine an
appropriate set of new wall values after each iteration, the built-in MATLAB func-
tion lsqnonlin is utilized.

The transformed wall-normal coordinate η is discretized into 2000 equidistant grid
points and the maximum value (ηmax ) is set to 10, which is found to be sufficiently far
from the boundary layer.
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Figure 3.3: Shooting method applied on the normalized stream-wise velocity u∗/u∗∞ and normalized enthalpy
hs /hs,∞. The velocity gradient and enthalpy at the wall are altered after each iteration until the free-stream
boundary conditions are satisfied.

3.1.4. TWO-DIMENSIONAL BASE FLOW
The numerical integration of the system of equations (2.20) provides the desired self-
similar solution, which means that the velocity, temperature, density and viscosity pro-
files are calculated along η. To obtain the two-dimensional profiles, it is necessary to
transform the self-similar solution back to the physical plane. Rearranging equations
(2.18) and combining with (2.8), results to

y∗

δ∗
=

∫ ηmax

0

p
2

ρ
dη, (3.9)

which allows the mapping of each point from the η domain to the y∗/δ∗ domain. For the
numerical integration of equation (3.9), an Explicit Euler scheme is employed, as shown
below.

d f

dη
= f ′(η, f ),

fn+1 = fn +∆η f ′ (ηn , fn
)

. (3.10)

An example of this transformation is provided in figure 3.4.
Since δ∗ is only a function of x∗, the one-dimensional profiles along the new coordi-

nate y∗/δ∗ can be easily translated into two-dimensional. Firstly, the two-dimensional
computational domain is determined in terms of dimensions and the distance from the
leading edge (which corresponds to the location of the inlet). By calculating the value of
δ∗ at each stream-wise location of the computational domain, the self-similar solution is
mapped and interpolated, using spline interpolation, on the two-dimensional grid that
is used for the direct numerical simulations. The details regarding the type of grid are
discussed in section 4.1.
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Figure 3.4: Self-similar solution for supercritical carbon dioxide at T∗∞ = 280K and Ec∞ = 0.20, using table
interpolation. Plot (a) presents the normalised quantities along η and plot (b) the profiles mapped on y∗/δ∗.

To obtain the two-dimensional profile for the wall-normal velocity component v , the
steady-state form of the continuity equation is used as shown below;

∂
(
ρv

)
∂y

=−∂
(
ρu

)
∂x

. (3.11)

To evaluate the right-hand side of the equation, a 2nd Order Central finite difference
scheme is incorporated, using the interpolated two-dimensional profiles of u and ρ.
The left-hand side is integrated using an Explicit Euler scheme as described by equation
(3.10).

The calculated two-dimensional profiles serve as the base flow and are used as the
initial condition for the direct numerical simulations. Specifically, the stream-wise and
wall-normal velocity fields, along with the density and temperature are required. The
example of figure 3.4 is presented in two-dimensional form in figure 3.5.

At this point it is convenient to determine the value of a new parameter, δ∗99,i n which
will serve as the characteristic length scale l∗0 for all the simulations presented in this
study. This parameter expresses the actual thickness of the boundary layer, at the inlet
of the computational domain. It corresponds to the wall-normal distance at which the
stream-wise velocity component has a value of u = 0.99 and it is computed numerically.
This parameter is, also, used to normalize the flow coordinates. Hence, Re∞ is defined
as;

Re∞ =
ρ∗∞u∗∞δ∗99,i n

µ∗∞
. (3.12)
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Figure 3.5: Example of two-dimensional flow profiles for supercritical carbon dioxide at T∗∞ = 280K and
Ec∞ = 0.20. Plots present (a) stream-wise velocity component u, (b) wall-normal velocity component v , (c)
Temperature T and (d) density ρ profiles.

3.2. LINEAR STABILITY THEORY SOLVER
The eigenvalue problem defined by equation (2.24), is solved using a MATLAB script, de-
veloped by Dr. ir. Jie Ren. More details about the numerical techniques can be found in
[28].

The spatial discretization in the y direction utilizes Chebyshev collocation points and
differentiation matrices to discretize the equations.

For the solution of the eigenvalue problem, the independent thermodynamic prop-
erties are ρ0 and T0. The thermodynamic (E0 and p0) and transport (µ0 and κ0) prop-
erties as well as their first and second derivatives with respect to ρ0 and T0 are obtained
from the REFPROP library using GERG 2004 equation of state. For the case of ideal gases,
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an Ideal Gas equation of state and Sutherland’s Law for viscosity are used as described
by equations (3.5) and (3.6).

By providing values of ω, Reδ and β the stability equations (2.24) are solved as an
eigenvalue problem, resulting to an eigenspectrum that consists of all the eigenmodes of
that particular flow. A typical eigenspectrum is presented in figure 3.6a for a boundary
layer flow.

Figure 3.6: (a) Eigenspectrum for a supercritical carbon dioxide boundary layer with T∗∞ = 320K , Ec∞ = 0.10,
Reδ = 1400, F = 21×10−6 and β= 0. Eigenmodes are represented by (*). (b) The eigenvector corresponding to
the unstable mode. Values are normalised with respect to the maximum amplitude of the stream-wise velocity
component fluctuation u′.

The vertically aligned modes are referred to as the entropy/ vorticity modes, whereas
the continuous modes with greater and lower real parts, are the fast and slow acoustic
modes, respectively. The unstable modes appear as discrete points in the eigenspec-
trum with negative imaginary part, as indicated in figure 3.6a. All modes are excited
when the flow is perturbed, however only the unstable modes will grow in space and
time. It is noted that some of the modes are not physical and could still appear on the
eigenspectrum diagram even though convergence has not been achieved.

For every eigenmode exists a corresponding eigenvector, which represents the am-
plitude of the fluctuations q̂ along the y direction, for each quantity. These profiles can
be validated with results obtained from DNS. Figure 3.6b is provided to illustrate a typical
eigenvector that corresponds to an unstable mode.

As previously mentioned, the absolute value of the imaginary part of an eigenvalue,
corresponds to the local growth rate of the perturbation. From this point on, the growth
rate of instabilities will be referred to as αi , for brevity. By identifying the imaginary parts
of the unstable modes for a range of F and Reδ, the Stability Diagram is constructed. A
contour plot of the growth rate as function of F = ω/Re∞ and Reδ is provided in figure
3.7. By selecting a value for F , it is possible to plot αi as a function of Reδ, observing
the growth and decay of instabilities along the stream-wise direction. These plots are
validated with results obtained by DNS.
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Figure 3.7: Stability diagram representing perturbation growth rate αi as a function of F and Reδ for supercrit-
ical carbon dioxide with T∗∞ = 320 and Ec∞ = 0.10.

The contour that corresponds to a growth rate αi = 0, defines the Neutral Stability
Curve and separates the stable from the unstable region in the stability diagram. A flow
is characterized as more unstable if the extent of the neutral stability curve and the max-
imum growth rate that is observed in the stability diagram, are larger.
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DIRECT NUMERICAL SIMULATIONS

The direct numerical simulations are performed using an in-house FORTRAN code which
was initially developed by Dr. ir. Rene Pecnik and ir. Simone Silvestri for the simulation
of compressible turbulent channel flows. For the purposes of this study, new boundary
conditions and a table interpolation tool for the calculation of thermodynamic proper-
ties are implemented, so that the simulations of non-ideal boundary layers are possible.

The flow conservation equations (2.1) are numerically solved, completely resolving
flow structures at all scales, hence direct numerical simulations is a computationally ex-
pensive method that requires high spatial and temporal resolution. To study the sta-
bility of a boundary layer flow, the domain is truncated to the region of interest and a
low-amplitude, periodic perturbation is introduced to trigger the growth of instabilities.
Once the simulations are finished, the resulting flow fields are post-processed in order
to validate the growth-rate curve predicted by the Linear Stability Theory.

4.1. COMPUTATIONAL GRID AND NUMERICAL SCHEMES
For the numerical integration of equations (2.1), a Cartesian collocated grid arrangement
is used. That means that the values of each quantity are calculated at the corners of the
computational grid cell. In this application the grid is equidistant in the stream-wise
and span-wise directions, however in the wall-normal direction the grid is fine closer to
the wall and gradually becomes coarser towards the free-stream. This is achieved by the
positioning the wall-normal grid points according to the following expression,

ζ= 1

2

j −1

jmax −1
− 1

2
,

y( j ) = Ly

[
1+ tanh(ζs f )

tanh(0.5S f )

]
, (4.1)

where Ly is the total domain length in the wall-normal direction and S f is a stretching
factor that makes the grid finer towards the wall when increased.

27
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For the spatial discretization, a standard sixth-order central finite difference scheme
is employed for the calculation of first derivatives and a fourth-order central scheme
for the second derivatives. Close to the boundaries, the order is decreased accordingly.
Specifically,

• For i = 3 and i = imax − 2: 4th Order Central Scheme for 1st derivatives and 4th

Order Central Scheme for 2nd derivatives.

• For i = 2 and i = imax − 1: 2nd Order Central Scheme for 1st derivatives and 2nd

Order Central Scheme for 2nd derivatives.

• For i = 1: 2nd Order Forward Scheme for 1st derivatives and 2nd Order Forward
Scheme for 2nd derivatives.

• For i = imax : 2nd Order Backward Scheme for 1st derivatives and 2nd Order Back-
ward Scheme for 2nd derivatives.

A two-dimensional example of the computational grid is provided in figure 4.1, along
with the spatial discretization schemes that are described above, applied in the wall-
normal direction.

Second Derivative

Variable

First Derivative
j=1
j=2

j=3

j=j
max
-2

.

.

.

j=j
max
-1

j=j
max

Scheme Accuracy (Order): 2nd 2nd 4th 6th 2nd 2nd 4th

Figure 4.1: Schematic of the two-dimensional computational grid. The spatial discretization schemes are il-
lustrated for the calculation of first and second derivatives, along the wall-normal direction.

A generalized conservative approximation method, proposed by Pirozzoli [24] is em-
ployed for the evaluation of the convective terms. This method is based on the applica-
tion of standard central finite difference schemes on split forms of the convective terms,
guaranteeing numerical stability and high energy conservation. This implies that no
additional filters need to be applied, making the simulations more computationally effi-
cient.
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For the temporal integration an explicit third-order Runge-Kutta scheme is used, as
formulated below;

d f

dt
= f ′(t , f ),

fn+1 = fn + 1

6
∆t (k1 +2k2 +k3), (4.2)

with ∆t being the time step and terms ki defined as;

k1 = f ′ (tn , fn
)

,

k2 = f ′
(

tn + ∆t

2
, fn +k1

∆t

2

)
,

k3 = f ′ (tn +∆t , fn −k1∆t +2k2∆t
)

.

4.2. BOUNDARY CONDITIONS

Many applications of direct numerical simulations are performed using periodic bound-
ary conditions, as is the case of a fully turbulent channel flow. However, boundary layer
flows cannot be simulated using this kind of boundary conditions since spacial periodic-
ity is not exhibited by the flow. For the simulation of non-periodic flows, inlet and outlet
boundaries must be treated accordingly. To determine the appropriate equations that
can be applied at the flow boundaries, an inviscid characteristic wave analysis was first
carried out by Thompson [35] and later, Poinsot and Lele [26] derived a formulation that
can be easily implemented in direct numerical simulations, considering ideal gas flows.
A generalized form of the boundary conditions is provided by Nora Okongo and Josette
Bellan [23], allowing the utilization of characteristic wave boundary conditions for non-
ideal gas simulations. The methods developed by these authors is implemented for the
purposes of this study, along with some alternatives which are also presented in this sec-
tion.

4.2.1. INVISCID CHARACTERISTIC WAVE ANALYSIS

The main purpose of the characteristic analysis is to provide an alternative method of
calculating the convective terms at the domain boundaries, since their exact calculation
requires information from the outside the computational domain. The convective terms
are expressed in terms of characteristic wave amplitude variations with information ob-
tained from the interior of the domain and the conservation equations are solved at the
boundaries.

The amplitude variations of characteristic waves crossing a boundary are expressed
by Li . For waves travelling along the stream-wise direction, they are calculated using
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the following expressions:

L1 =λ1

(
∂p

∂x
−ρc

∂u

∂x

)
, (4.3)

L2 =λ2

(
∂p

∂x
− c2 ∂ρ

∂x

)
, (4.4)

L3 =λ3
∂v

∂x
, (4.5)

L4 =λ4
∂w

∂x
, (4.6)

L5 =λ5

(
∂p

∂x
+ρc

∂u

∂x

)
, (4.7)

with λi being the wave velocities given by:

λ1 = u − c, (4.8)

λ2 = u, (4.9)

λ3 = u, (4.10)

λ4 = u, (4.11)

λ5 = u + c. (4.12)

For sub-sonic flows, sound waves travel at velocities λ1 and λ5 in the negative and pos-
itive stream-wise direction, λ2 is the velocity of entropy waves and λ3 and λ4 are the
velocities at which v and w will travel. The spatial derivatives that are present in these
expressions, are calculated using one-sided schemes so that information from the inte-
rior domain is obtained.

To incorporate the wave amplitude variations in the flow conservation equations,
vector d is introduced and is calculated by,

d1 = 1

c2

(
L5 +L1

2
−L2

)
, (4.13)

d2 = L5 −L1

2ρc
, (4.14)

d3 =L3, (4.15)

d4 =L4, (4.16)

d5 = L2

c2 . (4.17)

The elements of d are used to substitute the corresponding convective terms in equa-
tions (2.1), hence at a boundary that is normal to the stream-wise direction, the conser-
vation equations become,
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∂ρ

∂t
+d1 +

∂
(
ρv

)
∂y

+ ∂
(
ρw

)
∂z

= 0, (4.18)

∂
(
ρu

)
∂t

+ud1 +ρd2 +
∂
(
ρuv

)
∂y

+ ∂
(
ρuw

)
∂z

= ∂τ1 j

∂x j
, (4.19)

∂
(
ρv

)
∂t

+ud1 +ρd3 +
∂
(
ρv v

)
∂y

+ ∂
(
ρv w

)
∂z

=−∂p

∂y
+ ∂τ2 j

∂x j
, (4.20)

∂
(
ρw

)
∂t

+ud1 +ρd4 +
∂
(
ρw v

)
∂y

+ ∂
(
ρw w

)
∂z

=−∂p

∂z
+ ∂τ3 j

∂x j
, (4.21)

∂
(
ρE

)
∂t

+ht d1 +
∂
(
ρht v

)
∂y

+ ∂
(
ρht w

)
∂z

+ρud2 +ρvd3 +ρwd4 +
Cp

αV
d5 =

∂
(
uiτi j

)
∂x j

− ∂q j

∂x j
,

(4.22)

with ht the total enthalpy, calculated as ht = E +p/ρ and αV the thermal expansion co-
efficient given by αV = 1/V (∂V /∂T )p with V being the specific volume. It is worth men-
tioning that the pressure gradient along the stream-wise direction ∂p/∂x is accounted
for while calculating d2 and is not included in equation (4.19). It is noted that for waves
crossing boundaries normal to other directions, the above equations need to be adjusted
accordingly, by taking the derivatives along the desired direction and substituting the
corresponding convective terms in equations (2.1).

4.2.2. IMPLEMENTATION
Depending on the type of boundary condition, the calculation of Li might differ from
equations (4.4) to (4.7). Also for some cases, some of the equations (4.18) to (4.22) are
not used to advance the solution in time. The different types of boundary conditions are
presented below.

• Inlet boundary conditions

At the inlet of the domain two different methods are utilised for the implementa-
tion of the of boundary conditions. The influence of each method on the results if
the simulations is discussed in later chapters. The first method is primarily based
on inviscid characteristic wave analysis and is referred to as Non-Reflective bound-
ary condition or NRBC, for brevity. The other method employs interpolation of
variables from the interior domain to advance the inlet variables in time, in this
study referred to as the Standard boundary condition.

1. Non-Reflective Condition

The density ρ and all velocity components ui are kept fixed, hence equations
(4.18) to (4.21) are not used to advance the variables in time.

Amplitude variation of L1 is determined from equation (4.4) and the interior,
since this is the only wave that travels outside of the domain. All other am-
plitude variations are set to zero except from L5 which is set to be L5 =L1.

Equation (4.22) is used to advance ρE in time.



32 4. DIRECT NUMERICAL SIMULATIONS

2. Standard Condition

This method is implemented as described in [39] and [40] and is only appli-
cable to boundary layer simulations.

Velocity components at the inlet are kept fixed and the pressure is extrapo-
lated from the interior domain using second-order extrapolation close to the
wall and zeroth-order in the free-stream, as described by the following equa-
tions:

p(xi=1) = b1p(xi=2)+b2p(xi=3)+b3p(xi=4), (4.23)

b = [1−u(xi=1)]bw +u(xi=1)b f s ,

where bw = [3 −3 1] and b f s = [1 0 0].

– For an adiabatic wall, density ρ at the inlet is kept fixed and ρE is ad-
vanced in time by using the equation of state, since two thermodynamic
properties are known (ρ and p).

– For an isothermal wall, temperature T at the inlet is kept fixed while ρ

and ρE are advanced in time by using the equation of state, provided
that T and p are known.

• No-slip Wall Boundary Conditions

The wall boundary conditions are implemented in a similar manner as the inlet
boundary conditions. A Fully-Reflective condition is considered, which is based on
inviscid characteristic wave analysis along with a Standard condition. For both of
these conditions, all velocity components are set to zero, since a no-slip condition
applies, hence equations (4.19) to (4.21) are not used.

1. Fully-Reflective Condition

Since the wall-normal velocity component vw is equal to zero, L2 = L3 =
L4 = 0. The outgoing wave amplitude variation L1, is calculated using equa-
tion (4.4) and the interior. The reflected wave amplitude is, then, L5 =L1.

– For an adiabatic wall, the wall normal heat flux in equation (4.22) is equal
to zero, as shown below:

∂T

∂y
= 0. (4.24)

To advance ρ and ρE in time, equations (4.18) and (4.22) are used.

– For an isothermal wall, since the wall temperature is fixed, equation (4.22)
is discarded and only equation (4.18) is used to advance ρ in time.

2. Standard Condition

This type of boundary condition, also derives from inviscid characteristic
analysis, however the implementation does not involve integrating equations
(4.18) and (4.22). By equating L5 to L1, the following condition results, at the
wall:

∂P

∂y
= 0. (4.25)

The pressure at the wall is set so that condition 4.25 is satisfied.
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– For an adiabatic wall, the temperature is set so that condition 4.24 is sat-
isfied.

– For an isothermal wall the wall temperature is fixed.

To advance ρ and ρE in time, the equation of state is used, provided that p
and T are known.

• Outlet Boundary Condition

The same type of boundary condition is applied at the top boundary (free-stream)
and the outlet. Equations (4.18) to (4.22) are used to advance all the variables in
time.

The wave amplitude variation of the reflected wave is calculated using the follow-
ing equations:

L1 =K (p −p∞), (4.26)

K =σBC
(1−Ma2∞)c

L
, (4.27)

where p∞ is the value of the free-stream pressure and is assumed to have a con-
stant value, σBC is a constant and L is the domain length in the direction normal to
the boundary (i.e. for the outlet L corresponds t Lx and for the free-stream bound-
ary it corresponds to Ly ). By setting the value of σBC equal to zero, the condition
becomes perfectly non-reflective since L1 becomes zero. For the purpose of this
study a value of 0.25 is used for the free-stream boundary and 0.0 for the outlet of
the domain.

The other amplitude variations are calculated by equations (4.5) to (4.7) and the
interior.

• Span-wise Boundary Condition

In the span-wise direction, it is assumed that the flow is periodic, hence a periodic
boundary condition is implemented for the case of three-dimensional simulations.

• Periodic Blowing and Suction

In studies of flow stability, it is necessary to artificially introduce periodic blowing
and suction (briefly referred to as perturbation) inside the computational domain,
in order to trigger the physical instabilities that will eventually develop into tur-
bulence. The intensity (amplitude) of the perturbation determines whether the
instabilities grow and flow transits to turbulence or decay as predicted by Linear
Stability. Large amplitudes might trigger stronger primary instabilities that will
later develop to turbulence, following one of the paths mentioned in section 1.3.1,
while a small amplitude will trigger weak instabilities that will decay further down-
stream.

To implement the perturbation, the flow receives a wall-normal velocity compo-
nent in a narrow strip between x1 and x2 at the wall, according to the following
equations, as used in [30].
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vw (x, z, t ) = A1 f (x)sin(ω1t )+ A2 f (x)g (z)sin(ω2t ), (4.28)

f (x) =
{

15.1875ξ5 −35.4375ξ4 +20.25ξ3 for x1 ≤ x ≤ xm

−15.1875ξ5 +35.4375ξ4 −20.25ξ3 for xm ≤ x ≤ x2
, (4.29)

ξ=
{

x−x1
xm−x1

for x1 ≤ x ≤ xm
x2−x

x2−xm
for xm ≤ x ≤ x2

, (4.30)

g (z) = cos

(
2πz

λ0

)
, (4.31)

where xm = (x1+x2)/2, ω1 is the fundamental angular frequency of oscillation and
ω2 is an additional frequency which can be a harmonic of ω1 and λ0 is the span-
wise wavenumber. In two-dimensional simulations the second term of equation
(4.28) is neglected.

Angular frequency ω is related to the dimensionless frequency F , as follows

F = 2πF∗µ∗∞
ρ∗∞U∗2∞

= ω

Re∞
. (4.32)

The time step that is used for time integration is based on the fundamental angular
frequency of the perturbation, so that the an equal amount of samples of the flow
fields is saved during each forcing period.

∆t = 2π

Ktω1
. (4.33)

Factor Kt is a multiple of the amount of samples that is saved during each forcing
period and is selected so that the resulting C F L number [5] of the simulation is 0.8,
at maximum, which implies numerical stability.

4.3. COMPUTATIONAL SPONGE IMPLEMENTATION
Because the derivation of inviscid characteristic boundary conditions, relies heavily on
the assumption of an inviscid flow, inlet and outlet boundary conditions are not com-
pletely non-reflective. In fact they might introduce non-physical oscillations that affect
the flow field. To tackle this issue, computational sponges are introduced at the bound-
aries, to damp the incident and reflected waves. Sponges are implemented by adding
one extra term in right-hand side of each of the conservation equations (2.1), as shown
below:

∂ρ

∂t
+ ∂

(
ρu j

)
∂x j

=σ
(
ρr e f −ρ

)
,

∂
(
ρui

)
∂t

+ ∂
(
ρui u j +pδi j −τi j

)
∂x j

=σ
[
(ρui )r e f −ρui

]
,

∂
(
ρE

)
∂t

+ ∂
(
ρEu j +pu j +q j −uiτi j

)
∂x j

=σ
[
(ρE)r e f −ρE

]
,


(4.34)
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where all reference values are the base flow values and σ is the sponge damping coef-
ficient, which is a function of x or y , depending on which direction the damped waves
are travelling towards. In this case σ is selected to have a quadratic profile, hence for a
sponge acting close to the outlet, it is given by,

σ(x) =σmax

(
x −Lx +Lsp

Lsp

)2

for x ≥ Lx −Lsp , (4.35)

where Lsp is the sponge length. Equation (4.35) suggests that σ increases towards the
outlet, where the maximum damping occurs. For a sponge that is acting close to the
inlet, equation (4.35) is modified so that the maximum σ value corresponds to the inlet.

To measure the total sponge strength, Ali Mani [18] introduces ηt ar g which is calcu-
lated by

ηt ar g =−20
2loge

1−Ma2∞

∫ Lsp

0
σ(x)d x, (4.36)

and expresses the sound-sound target reflectivity of the sponge in dB . For a quadratic
sponge, expression (4.36) becomes,

ηt ar g =−20
2loge

1−Ma2∞

(
σmax Lsp

3

)
. (4.37)

The effect of varyingηt ar g on the resulting flow fields is discussed in later chapters. In the
present study, sponges are applied at the inlet, the outlet and free-stream boundaries.

4.4. THERMODYNAMIC PROPERTIES
To fully define the thermodynamic conditions of the flow ρ and E are used since they
are calculated by integrating equations (2.1). As mentioned in section 3.1.2, results are
presented for both ideal and non-ideal gases, hence both cases are implemented in the
FORTRAN code.

4.4.1. IDEAL GAS EQUATION OF STATE
For ideal gases equations (3.5) are used to calculate thermodynamic properties and equa-
tion (3.6) is used to calculate viscosity, in their dimensionless form. However, since the
integration of conservation equations provides ρE and ρ, the temperature is calculated
using

T = γ−1

R
E . (4.38)

Thermal conductivity κ is calculated by assuming constant Pr and Cp in the whole do-
main, hence

κ= γR

(γ−1)Pr∞
µ. (4.39)

4.4.2. TWO-DIMENSIONAL TABLE INTERPOLATION FOR NON-IDEAL GASES
For the simulation of non-ideal boundary layer flows, a table interpolation tool is devel-
oped for two dimensional tables. Interpolations are performed using 4th order Lagrange
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polynonomials in two directions, to calculate the thermodynamic (h, T , p, Cp and αV )
and transport (µ, κ and c) properties that are required, provided ρ and E .

Tables are generated using A MATLAB script was developed for the generation of the
tables that contain the thermodynamic properties which utilizes data from REFPROP li-
brary and GERG 2004 equation of state. The range and resolution of the tables are ad-
justed suitably for each case, ensuring the desired accuracy. Examples of the generated
tables are presented in figure 4.2 in contour form. Tables are generated according to the
following procedure.

1. Vectors are generated containing the desired ρ∗ and E∗ values, referred to as ρ∗
v

and E∗
v .

2. A vector containing T ∗ ranging from 220 K to 500 K is generated with ∆T ∗ = 0.1 K
(which is a high resolution). This vector is referred to as T ∗

v

3. The saturation line is calculated as a function of ρ∗
v and T ∗

v , resulting to a new
vector T ∗

sat .

4. For each element of ρ∗
v , all the values of T ∗

v that are greater than the corresponding
value of T ∗

sat are provided to REFPROP. This is necessary, since directly providing
a pair of ρ∗ and E∗, introduces convergence issues near the saturation line. The
values of E∗ and all the desired thermodynamic and transport properties are re-
turned. At this point a vector E∗

i nt er p is generated, which is a function of one ele-

ment of ρ∗
v and all the elements of T ∗

v . All other properties are also stored in the
same manner, i.e. p∗

i nt er p is the vector that contains p∗ as a function of T ∗
v and

one particular ρ∗ value.

5. Each vector that contains a property as a function of T ∗
v , is interpolated on the E∗

v
vector, using the E∗

i nt er p vector. This is repeated for all the values of ρ∗
v .

6. The saturation line is calculated as a function of ρ∗
v and E∗

v , resulting to a new
vector E∗

sat .

7. For each value of ρ∗
v , the tables are filled with zeros for every value of a property

that corresponds to E∗ < E∗
sat .

At the boundaries of the computational domain, it is necessary to define the ther-
modynamic state, based on a different pair of properties, other than ρ and E . In the case
where one of these properties (ρ or E) is known, it is possible to perform the interpola-
tion using the table of figure 4.2a, if p is the second known property or 4.2b, if T is the
second known property.
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Figure 4.2: Graphical representation of two-dimensional property tables for Carbon Dioxide. Properties are
plotted as functions of fluid density ρ∗ and internal energy E∗. Contours correspond to (a) pressure p∗, (b)
temperature T∗, (c) viscosity µ∗ and (d) thermal conductivity κ∗. The white line indicates the 80 bar isobar
and (⋆) the Supercritical Point.

In the case that neither ρ nor E are known, it is necessary to use a table that contains
p∗ as a function of ρ∗ and T ∗, as shown in figure 4.3. For known T and p, it is possible
to calculate ρ and using the table of figure 4.2b E is computed. Once both ρ and E are
known, it is possible to interpolate for all the thermodynamic and transport properties
required.

Figure 4.3: Graphical representation of two-dimensional property tables for carbon dioxide. Pressure p∗ is
plotted as a function of fluid density ρ∗ and temperature T∗. The white line indicates the 80 bar isobar and
(⋆) the Supercritical Point.





5
IDEAL GAS SIMULATIONS

In this chapter, results are presented for the simulations of an Ideal Gas boundary layer
for atmospheric air. The main purpose of this chapter is to investigate how the utilization
of different computational implements (boundary conditions, sponges and grid-related
parameters), affects the results of the direct numerical simulations. This is performed by
comparing the post-processed results with the growth rate αi profile that is calculated
from Linear Stability Theory or by examining and comparing the flow profiles that are
calculated in each case. For the purpose of this investigation, one set of flow conditions
is selected and the simulations are performed with varying values associated with the
computational implements. The guidelines that are determined will, then, be followed
to perform the non-ideal gas simulations, which will be presented in the next chapter.

5.1. SELF-SIMILAR SOLUTION AND FLOW PARAMETERS

For the simulations presented this chapter, a boundary layer over an adiabatic wall is
selected with T ∗∞ = 300 K , Pr∞ = 0.75 and γ = 1.4. Figure 5.1 provides the self-similar
solutions of flows characterized by these parameters, with varying Ec∞, as a reference.

From the plots of figure 5.1, it is evident that viscous heating, increases the wall
temperature. This effect becomes more intense with increasing Ec∞. Temperature in-
crease, leads to a drop in density, making compressibility effects more significant for
larger Ec∞. The viscosity follows an exponential relationship with temperature, as sug-
gested by Sutherland’s law in equation (3.6), hence it increases with temperature. As a
result, the boundary layer thickness increases for greater Ec∞ values.

To perform the Direct Numerical simulations, the case of Ec∞ = 0.05 is selected, and
marked in figure 5.1 with a red solid line. For this case, compressibility effects are mi-
nor, which is justified by the relatively low M a∞, which has a value of 0.35. This is a
case of sub-sonic flow, which is, also, suitable for studying the effectiveness of inviscid
characteristic wave boundary conditions.

39
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Figure 5.1: Self-similar solutions for Ideal Gas at T∗∞ = 300K , Pr∞ = 0.75 andγ= 1.4. Panels contain (a) temper-
ature, (b) density, (c) viscosity and (d) stream-wise velocity, normalized by the free-stream values, as functions
of the wall-normal coordinate y∗ normalized by δ∗.

5.2. POST-PROCESSING
Once the DNS are completed, the following procedures are followed for the processing
of the resulting data, so that they can be compared to the LST predictions. To avoid
confusion, it is noted that the stream-wise and wall-normal locations in the LST are de-
termined by Reδ and y∗/δ∗, respectively, whereas in the DNS by x∗/δ∗99,i n and y∗/δ∗99,i n .
To compare the results between the two methods, the coordinates are transformed ac-
cordingly.

5.2.1. CALCULATION OF FLUCTUATION AMPLITUDE AND GROWTH RATE
To compare the results of the direct numerical simulations with the results of the LST, it is
first necessary to analyse the flow fields after the flow has reached temporal periodicity.
Periodicity is achieved when the simulations run for a sufficient amount of time steps,
which varies according to the case. To determine whether this is achieved, the flow fields
are Fourier-transformed and observed until the amplitude of the subharmonic is at least
one order of magnitude lower than the fundamental perturbation.

Once a periodic solution is reached, one hundred samples of each quantity are av-
eraged within two forcing periods to obtain the mean profile q0. To obtain the fluctua-
tion q ′ of a variable, the mean profile is subtracted from each sample. Fluctuations are
Fourier-transformed in time to obtain the fluctuation amplitude |q̂ |1 at every location
within the domain. Subscript 1 corresponds to the fundamental mode, that inherits the
frequency of the perturbation.

To calculate the growth rate of instabilities αi in the stream-wise direction, the fol-
lowing equation is used,

αi (x) =− Reδ
Re∞

1

|q̂ |max
1

∂|q̂ |max
1

∂x
, (5.1)

where |q̂ |max
1 stands for the maximum amplitude fluctuation along the y direction, at
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one specific x location.

5.2.2. FILTERING

In certain occasions, the resulting growth rate profiles exhibit oscillatory features which
are filtered out. To perform the filtering, local averaging of the fluctuation amplitude is
utilized, along the stream-wise direction according to the following equation,

|q̂| f i l ter ed
1,i = 1

2N +1

N∑
c=−N

|q̂ |un f i l ter ed
1,i+c , (5.2)

where index i corresponds to the index of the grid point in the stream-wise direction
and N is a constant that corresponds to the number of points that the are used for the
averaging in one direction. For this study N = 3, hence the averaging is performed by
utilizing three points behind and three points ahead of point i .

5.3. REFERENCE VALUES FOR DNS AND VALIDATION OF GROWTH

RATE PREDICTED BY LST
For all the cases that are presented in this chapter, the values presented in table 5.1 are
used, changing one value at a time, to investigate how the results will be affected. The
case that utilizes the values of table 5.1 unchanged, is called the Reference Case.

Table 5.1: Values Used for the Direct Numerical Simulation of the Reference Case.

Computational Grid Values Time Stepping
Lx 967.95 Kt 20000
Ly 20.0 nsteps 1000000
nx 2112 Perturbation Related Parameters
ny 200 F 33×10−6

S f 4.0 A1 0.5×10−6

Computational Sponge Parameters Reδ(xm) 680.0

Inlet
Lsp 20.0 x1 −x2 11.92
σmax 0.5 Boundary Conditions

Outlet
Lsp 20.0 Inlet Standard, Adiabatic
σmax 0.5 Wall Standard, Adiabatic

Free-Stream
Lsp 1.0 Outlet NRBC, σbc = 0.0
σmax 0.5 Free-Stream NRBC, σbc = 0.25

For the cases presented in this chapter, no filtering was applied during the post-
processing, since it would remove features that are investigated in this chapter. The
calculation of the growth rate of instabilities αi is performed using samples for the wall-
normal velocity.

The simulation that utilizes all the values of table 5.1, yields results that validate the
predicted quantities of the Linear Stability Theory and can be used for the investigation
of flow stability. Since all the cases that are presented in this chapter, are compared to
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the Reference case, the post-processed results of the simulation are presented in figure
5.2.

Figure 5.2: (a) Stability diagram for T∗∞ = 300K and Ec∞ = 0.05. The span of the computational domain in the
stream-wise direction is marked by the horizontal dashed line and the location of the perturbation by (⋆). (b)
Growth rate profile using DNS and LST for F = 33.0×10−6.

To illustrate the development of the instabilities, a contour plot of the wall-normal
velocity profile is provided in figure 5.3, which results from the DNS.

Figure 5.3: Contour lines of wall-normal velocity. The five colored regions correspond to a particular physical
behaviour exhibited by the flow.

Five physical regions are identifiable in figure 5.3. At the inlet of the domain (re-
gion 1), the flow exhibits unperturbed behaviour. In region 2, the periodic suction and
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blowing is introduced, hence the receptivity stage of the flow in which the T-S waves are
excited. Modal decay is exhibited in region 3, before reaching modal growth in region 4
where the growth of instabilities starts to follow the LST prediction for positive αi . Fi-
nally, in region 5 the instabilities decay, as predicted by the LST in the region of negative
αi .

The development of instabilities can, also, be illustrated by plotting the integral of
the kinetic energy fluctuation along the y-direction, as shown in figure 5.4. This quantity
is calculated by the following expression,

I ′Ek =
∫ Ly

0
E ′

k d y = 1

2

∫ Ly

0
ρ′(u′2 + v ′2)d y, (5.3)

where I ′Ek stands for the integral of the kinetic energy fluctuation and Ek is the kinetic
energy.

Figure 5.4: Integral of kinetic energy fluctuation I ′Ek as a function of the stream-wise coordinate. The five
colored regions correspond to a particular physical behaviour exhibited by the flow.

5.4. GRID INDEPENDENCY STUDY
To conduct a grid independency study, the spatial grid resolution is varied until the dif-
ference between the results becomes insignificant.

Initially, three cases of differing stream-wise resolution are considered. A coarse mesh
case with nx = 1344, a medium mesh case with nx = 2112 and a fine mesh case with
nx = 2880. The resolution of all three cases in the wall-normal direction remains the
same, using ny = 200. To compare the results, the stream-wise growth rate profile that
is calculated from the Direct Numerical Simulations is plotted and compared with the
profile that is produced from Linear Stability Theory.

From figure 5.5 it is observed that the coarse mesh over-estimates the growth rate
predicted by the LST, while with a fine mesh it is under-estimated. For the coarse case,
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small oscillatory features are observed on the growth rate profile, which are an indication
that the instabilities are not well resolved in the stream-wise direction. The medium
mesh matches the growth rate profile, slightly deviating towards the outlet.

Figure 5.5: Growth rate profile αi comparison between DNS results for three cases with different stream-wise
resolution and LST for F = 33.0×10−6.

The real part of eigenvalue α, that is calculated by the LST, corresponds to the local
wave-number of the fluctuations. The local wavelength λw is calculated by;

λw = 2π

αr

Reδ
Re∞

. (5.4)

In figure 5.6 λw is provided as a function of Reδ.

Figure 5.6: Local wavelength of instabilities as a function of Reδ calculated by LST for F = 33.0×10−6.
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Based on figure 5.6, the minimum wavelength that occurs inside the growth zone
is λw,mi n = 19.58. For the coarse case, an instability with the minimum wavelength is
resolved in 27 points in the stream-wise direction, in 42 for the medium and 58 points
for the fine case.

To further investigate the effect that the grid resolution has on the calculation of the
growth rate profile, a higher resolution in the wall-normal direction is used for the case
of nx = 2880 by making ny = 275. The resulting profiles are presented in figure 5.7

Figure 5.7: Growth rate profile αi comparison between DNS results for 2112×200 and 2880×275 grids and LST
for F = 33.0×10−6.

By increasing the grid resolution in both directions, the resulting growth rate pro-
file validates the LST predicted profile, again with a slight deviation towards the outlet,
which proves that spatial resolution is not the cause of the deviation. By comparing the
two curves, a difference of ∼ 3% is calculated. The medium grid case uses 422,400 com-
putational points and the fine grid case uses 792,000 points, requiring almost twice the
computational power to run the simulation. While improved accuracy is important, in
this case the computational cost is relatively high.

5.5. INFLUENCE OF DOMAIN HEIGHT
Another factor that affects the results of the DNS is the length of the domain in the wall-
normal direction. In this section results are presented for different domain heights by
adjusting Ly and ny , maintaining similar spatial resolution.

Three cases are considered in this section. One case has a low domain height with
Ly = 8.0 and ny = 80, the second case has a medium domain height with Ly = 14.0 and
ny = 140 and the third case has a high domain height with Ly = 20.0 and ny = 200. Again,
the growth rate profile is plotted and the results are compared with the LST predicted
profile in figure 5.8.

For the Ly = 14.0 case, the growth rate profile is similar to the profile calculated for
Ly = 20.0 and matches the LST predicted profile. As observed in figure 5.8, low domain
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Figure 5.8: Growth rate profile αi comparison between DNS results for Ly = 8.0, Ly = 14.0, Ly = 20.0 and LST

for F = 33.0×10−6.

height causes a mismatch between the profiles that are calculated from DNS and LST.
This effect can be investigated by looking at the amplitude of the instabilities along the
y direction, as shown in figure 5.9. The amplitudes of the fluctuations slightly differ,
however since growth is exponential, significant deviation is observed on the growth rate
curve.

Figure 5.9: Fluctuation amplitude |q̂ |1 obtained from DNS with different domain heights. In plots (a) the den-
sity fluctuations, in (b) the stream-wise and (c) the wall-normal velocity are presented. Profiles are compared
with LST eigenvectors at Reδ = 1300.07. Values are normalised by the maximum amplitude of the stream-wise
velocity ûmax . (Note: Ly = y ∗/δ∗99,i n ).

The free-stream boundary condition combined with the sponge that is implemented
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at the top of the computational domain, causes the suppression of growing instabilities.
The two dimensional profiles of v are provided in figure 5.10 to illustrate this effect (case
of Ly = 14.0 is not illustrated since the profile is similar to the case of Ly = 20.0).

Figure 5.10: Two dimensional profile comparison of wall-normal velocity for (a) Ly = 8.0 and (b) Ly = 20.0.

These results lead to the conclusion that domain height needs to be large enough
so that growing instabilities do not interfere with the free-stream boundary and the top
sponge. The threshold domain height at which interference ceases to occur, depends
on the flow properties and stability. Additional results are provided in Appendix A for
non-ideal gas, supporting this observation.

5.6. INFLUENCE OF BOUNDARY CONDITIONS

5.6.1. INLET BOUNDARY CONDITIONS

As mentioned in section 4.2, two different methods are considered for the implementa-
tion of the inlet boundary conditions. Two simulations are set up, each utilizing a dif-
ferent inlet boundary condition, while both utilize an inlet sponge. To compare the two
methods, the growth rate and the pressure fields close to the inlet are plotted.

According to figure 5.11, both methods can be used for the calculation of the growth
rate profile. The difference between the profiles calculated with each individual method
is < 0.1%.

Figure 5.12 provides information about the pressure close to the inlet of the compu-
tational domain, at two different y locations. The pressure exhibits spatial oscillatory
behavior in both cases, although for the NRBC case it is more evident and extends for
longer inside the domain. However, the amplitude of these oscillations is insignificant
compared to the local value of the pressure (amplitude is < 1×10−4% of the local value).
These oscillations do not advance in time, hence they do not influence the calculation
of the growth rate. It is, also observed that the oscillations are more evident inside the
boundary layer, rather than in the free-stream. This behaviour results from the assump-
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tion of inviscid flow in the derivation of characteristic boundary conditions since the
flow is highly viscous inside the boundary layer.

Figure 5.11: Growth rate profile αi comparison between DNS results for Standard Inlet, NRBC and LST for
F = 33.0×10−6.

Figure 5.12: Pressure profile comparison for Standard Inlet Boundary Conditions and Non-Reflective Bound-
ary Conditions. Plots (a) corresponds to y = 0.15 and (b) to y = 10.37.

5.6.2. WALL BOUNDARY CONDITIONS

To compare the two types of adiabatic wall boundary conditions (Standard and FRBC),
two simulations, each utilizing a different type of boundary condition, are set up. For the
comparison of these methods, the growth rate profile is provided for both cases. Addi-
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tionally, the wall-normal fluctuation amplitude profiles are plotted for further compari-
son.

Figure 5.13: Growth rate profile αi comparison between DNS results for Standard Adiabatic Wall, FRBC and
LST for F = 33.0×10−6.

As observed in figure 5.13, the utilization of FRBC causes some transient behaviour
near the beginning of the growth zone which translates to an oscillatory behaviour in the
growth rate profile. The Standard condition matches the LST predicted profile without
causing amplitude variations in the flow. It can, also, be observed that the growth rate
calculated using an FRBC is slightly higher than using a Standard condition.

Figure 5.14: Fluctuation amplitude |q̂|1 obtained from DNS using (a) Standard Condition and (b) FRBC at the
bottom of the computational domain. Profiles are compared with LST eigenvectors at Reδ = 876.37. Values are
normalised by the maximum amplitude of the stream-wise velocity ûmax .
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To further investigate the cause of the oscillations in the growth rate profile, the am-
plitudes of the fluctuations along the y-direction for the two cases are provided and val-
idated with the eigenvectors from LST, in figure 5.14.

Although slight differences might be observed between the two cases, the amplitudes
of the fluctuations are matched to the LST predicted profiles. By plotting the Fourier
transformation of one of the flow variables, it is possible to determine whether unwanted
noise is introduced into the sampled time period. The Fourier transformation for the
density ρ′ in the two cases is presented in figure 5.15.

Figure 5.15: Fourier transformation of ρ′ for DNS using (a) Standard Condition and (b) FRBC at the bottom of
the computational domain at Reδ = 876.37 and y = 1.19.

Based figure 5.15 it can be inferred that using an FRBC introduces numerical noise
in the simulation, which is not the case for the Standard condition. In figure 5.15a all the
harmonics have decayed, leaving only the fundamental mode, which allows for a correct
estimation of the amplitude. The same does not occur in 5.15b, where some spectral
leakage is observed indicating the presence of noise in the sampled period, leading to a
less accurate calculation of the amplitude of the perturbation.

5.7. INFLUENCE OF COMPUTATIONAL SPONGES

5.7.1. INLET SPONGE

To investigate the influence of including a sponge at the inlet of the domain, two simu-
lations are set up. One simulation utilizes a sponge at the inlet, while the other does not.
For comparison, the growth rate profiles are presented for each simulation, as well as the
pressure profiles close to the inlet of the domain. The values for ηt ar g that are presented
in this section are calculated using equation 4.36.

The utilization of a sponge at the inlet of the domain does not influence the resulting
growth rate of instabilities, as shown in figure 5.16. The percentage difference between
the results of the two simulations is < 0.1%. Pressure profiles at the domain inlet are
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compared in figure 5.17.

Figure 5.16: Growth rate profile αi comparison between DNS results with an active and inactive sponge at the
inlet and LST for F = 33.0×10−6.

Figure 5.17: Pressure profile comparison for active and inactive inlet sponge. Plots (a) corresponds to y = 0.15
and (b) to y = 10.37.

The inlet pressure differs slightly (∼ 0.001%) at the boundary between the two cases,
and converges further downstream. A pressure drop is, also, observed in the region
where the sponge is present. This mismatch appears to be insignificant and constant
in time, hence not influencing the calculation of the growth rate.
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5.7.2. FREE-STREAM SPONGE
Two simulations are compared to examine the impact of including a sponge at the top of
the computational domain. Again, one simulation utilizes a sponge while the other does
not. For comparison the growth rate profile is provided for the two cases in figure 5.18.

Figure 5.18: Growth rate profile αi comparison between DNS results with and without sponge at the top of the
computational domain and LST for F = 33.0×10−6.

Figure 5.19: Fluctuation amplitude |q̂ |1 obtained from DNS (a) with and (b) without a sponge at the top of the
computational domain. Profiles are compared with LST eigenvectors at Reδ = 876.37. Values are normalised
by the maximum amplitude of the stream-wise velocity ûmax

Based on figure 5.18, not implementing a sponge at the top of the domain has a large
influence on the resulting growth rate. Large oscillations appear at the beginning of the
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growth zone as well as close to the domain outlet. These oscillations are indications of
transient phenomena occurring inside the domain, which interfere with the flow. The
interference causes inaccuracies in the calculation of the amplitude of the physical in-
stabilities using Fourier transformation.

Figure 5.19 presents the amplitude of the fluctuations along the y direction within
the region that the oscillations are observed on the growth rate diagram. In figure 5.19b
the case that does not use a sponge, does not validate the profiles that are predicted by
the LST, which confirms that the amplitude of the fluctuations is miscalculated. The
Fourier transformation of the for the density in the two cases is provided in figure 5.20.

Figure 5.20: Fourier transformation of ρ′ for DNS (a) with and (b) without a sponge at the top of the computa-
tional domain at Reδ = 876.37 and y = 1.19.

Based on the bar charts of figure 5.20, it is evident that modal decay does not occur
in the case of no sponge implementation, due to the occurrence of transient behaviour
caused by reflections at the top boundary. This leads to miscalculation of the amplitude
of the instabilities as can be seen by comparing the peak values in figures 5.20a and 5.20b.

5.7.3. OUTLET SPONGE
Sponge implementation at the outlet of the domain is used to avoid reflections from the
boundary. To study the effectiveness of sponges, four cases of varying length Lsp and
strength ηt ar g are considered. Additionally, results are presented for a case without a
sponge at the outlet of the domain.

Initially, the growth rate profiles are compared for the considered cases, as shown in
figure 5.21. By omitting to use a sponge at the outlet of the domain, oscillations appear
close to the boundary, indicating non-physical transient behaviour. It is, also, observed
that the inlet of the domain is affected, since oscillations are more evident before the
growth zone, compared to the sponged cases. One possible explanation for these ob-
servations is that waves reflected from the outlet, travel upstream and interfere with the
inlet boundary and sponge.
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Figure 5.21: Growth rate profile αi comparison between DNS results with varying sponge properties at the
outlet and LST for F = 33.0×10−6.

For the comparison of the sponged cases, an illustration of the damping of the pres-
sure fluctuations is provided in figure 5.22. It can be inferred that for this particular flow
all the sets of the used parameters can be used to calculate the growth rate of instabil-
ities, according to figure 5.22. Based on the analysis of Ali Mani [18], the optimal set of
parameters is, also, a function of the velocity (or M a) and wavelength of the incident
waves, hence more simulations should be set up, using different M a and perturbation
frequencies (F ) to obtain a better understanding of the sponge behaviour.

Figure 5.22: Pressure fluctuation amplitude |p̂|max
1 for varying sponge properties at the domain outlet.

What can be deduced from the present analysis, is that a small part of the domain
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upstream of the sponge is affected by the damping of the sponge in all cases. However,
for Lsp = 20.0 this "extra" space is longer compared to the case of Lsp = 40.0 and it ap-
pears to further increase for stronger sponges. Hence, it is easier to control the size of
the domain that is affected by the sponge if Lsp is higher, although longer sponges af-
fect a bigger part of the domain. By looking at the slope of the growth rate curves, it is
confirmed that stronger sponges damp incident waves more sharply.

In general, setting up a sponge is a trade-off between having a small part of the do-
main affected by the sponge, while maintaining an efficient damping of the incoming
waves by selecting the appropriate sponge strength. Although in this case, a short and
weak sponge appears to perform well, it is possible that in other cases this would not
be the case. For example in cases where instabilities have higher amplitudes or in fully
turbulent simulations, a longer and stronger sponge would be required to ensure that no
reflections occur.

5.8. CONCLUSIONS
By examining the results presented in this chapter, some conclusions can be reached,
which can serve as guidelines for the development of a DNS code.

• Based on figure 5.5, using a mesh not fine enough to resolve the growing instabili-
ties in the stream-wise direction, cases an over-estimation of the growth rate, while
oscillatory features might appear on the growth rate curve. To avoid an under-
resolving mesh, a good starting point would be to identify the minimum wave-
length λw,mi n that occurs inside the growth zone, using the LST predictions and
calculate the number of points that resolve the λw,mi n .

• From figures 5.5 and 5.7 it can be inferred that an increase of stream-wise resolu-
tion needs to be accompanied by an increase in the resolution of the wall-normal
direction. In general, a finer mesh improves the accuracy of the simulations, how-
ever, increasing the mesh resolution leads to a high increase in the computational
cost while the increase in accuracy is not significant.

• The results of section 5.5, suggest that domain height has a crucial role in DNS. It is
important that the domain is high enough so that the amplitude of growing insta-
bilities is not influenced by the free-stream boundary condition, or the sponge. A
good practice would be to check the eigenvectors that are calculated from LST and
select a domain height at which the amplitude of the fluctuations is low enough.
For the cases that are presented in this study, a domain height of Ly = 20.0 is found
to be sufficient.

• For the inlet of the domain, both Standard and NRBC can be utilized, according
to section 5.6.1, if the purpose of the simulation is to obtain the growth rate curve.
However, for boundary layers, a NRBC introduces oscillating patterns at the inlet
of the domain which, although minimal, are not desired, hence a Standard condi-
tion is preferred in this case. It is possible that the source of oscillations lies in the
assumption of inviscid flow during the inviscid characteristic wave analysis. Since
a boundary layer flow is highly viscous, it is possible that the inlet is not modelled
accurately.
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• According to the results of section 5.6.2, a FRBC at the wall introduces some un-
wanted noise in the simulation. The effects of this noise appear as mild oscillations
on the growth rate curve. A Standard boundary condition is preferred. The source
of the noise should be further investigated. It would be possible that a FRBC can
be noise-free if used with a different spatial discretization scheme (higher order
schemes provide better accuracy, while lower order schemes are more stable), or a
higher grid resolution along the y-direction.

• The inlet of the domain might not require the implementation of the sponge since
no significant difference is observed on the growth rate profile shown in figure
5.16. However an inlet sponge damps waves that are reflected from the outlet or
the free-stream of the domain, hence it is advised that the inlet of the domain is
accompanied by a sponge to avoid the accumulation noise in the simulation.

• At the top of the computational domain the presence of a sponge is deemed nec-
essary, as observed in the results of section 5.7.2. The free-stream boundary condi-
tion, introduces a significant amount of noise in the computational domain, which
can be avoided by the implementation of a weak and short sponge at the top of the
domain.

• From figure 5.21, it is inferred that the outlet of the domain requires a sponge
since waves reflected from the domain outlet, propagate upstream, introducing
noise in the computational domain. It is observed, that longer sponges with lower
strength, damp the incident waves smoothly, compared to stronger and shorter
sponges. However a longer sponge occupies larger space in the computational
domain, meaning that there is an optimal combination of sponge strength and
length, that yields the desired effect. Factors that should be accounted for, while
implementing a sponge, are the velocity, amplitude and wavelength of the incident
waves, according to Ali Mani [18].
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NON-IDEAL GAS SIMULATIONS

In this chapter, results of direct numerical simulations are presented for non-ideal gas.
The results of the previous chapter are used as guidelines for the selection of param-
eters that are associated with DNS, in order to obtain proper results and validate the
corresponding quantities that are predicted from Linear Stability Theory. As mentioned
previously, flows of carbon dioxide at 80 bar are studied to investigate the stability of
boundary layer flows in the vicinity of the Widom Line.

6.1. SELF-SIMILAR SOLUTIONS
To illustrate the effects of a non-ideal gas, on a boundary layer figures 6.1 and 6.2 are
provided for an adiabatic boundary layer. In the figures, cases with four different T ∗∞ are
shown, with Ec∞ varying from 0.05 to 0.20. The self-similar solutions are validated with
results presented in Ren et al. [29], in Appendix C.

Figure 6.1: Self-similar solutions for stream-wise velocity u as a function of y∗/δ∗, for non-ideal gas flows at
(a) T∗∞ = 240K , (b) T∗∞ = 280K , (c) T∗∞ = 320K and (d) T∗∞ = 360K , for varying Ec∞. The stability of the cases
marked in red is investigated using Direct Numerical Simulations.

It is worth pointing out the suitability of using Ec∞ over M a∞ for measuring com-
pressibility effects in non-ideal flows, as mentioned in Ren et al. [29]. Due to the sharp

57
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drop of the speed of sound near the pseudo-critical point, the value of M a∞ might sig-
nificantly rise with increasing temperature (assuming a constant u∗∞) since M a is a func-
tion of u∗. On the other hand, Ec is a function of u∗2, hence, an increase in temperature
does not dramatically reduce the value of Ec, even if the change in C∗

p is high.

Figure 6.2: Self-similar solutions for flows at T∗∞ = 240K , T∗∞ = 280K , T∗∞ = 320K and T∗∞ = 360K , for varying
Ec∞. In panels (a) temperature, (b) density and (c) viscosity are provided, normalized by the corresponding
values at the pseudo-critical point, as functions of y∗/δ∗. The stability of the cases marked in red is investi-
gated using Direct Numerical Simulations.

Below the pseudo-critical temperature T ∗
pc = 307.7 K , carbon dioxide exhibits a liquid-

like, whereas, above the pseudo-critical point it exhibits a vapor-like behaviour. Based
on the self-similar solutions shown in figure 6.1, the boundary layer thickness tends to
decrease with increasing Ec∞ for the cases where T ∗∞ < T ∗

pc , since viscous forces are
weaker close to the wall due the drop of viscosity, whereas in the cases where T ∗∞ > T ∗

pc ,
the opposite is observed, since viscosity variation is not as prominent.

In all cases, an increase of temperature is observed at the wall, due to viscous heat-
ing, leading to a drop in density. In the case of T∗∞ = 280 K ,Ec∗∞ = 0.20, the temperature
profile crosses the pseudo-critical temperature, hence the flow transits from suprecriti-
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cal at the wall, to subcritical in the free-stream and a large density gradient is observed
compared to the other cases. This case is referred to as transcritical and, also exhibits
the most notable decrease in boundary layer thickness, due to non-ideal gas effects, as
can be seen in figure 6.1b.

From figure 6.2c, it is observed that the viscosity decreases with increasing temper-
ature for most cases, contrary to the case of an ideal gas. However, in the supercritical
regime, the viscosity begins to increase, with temperature, although the variation is com-
paratively small.

6.2. VALIDATION OF LINEAR STABILITY THEORY PREDICTIONS
Stability diagrams are generated using Linear Stability Theory for the cases that are marked
in red in figures 6.1 and 6.2. For each of the cases a forcing frequency F is selected and
direct numerical simulations are performed, to validate the corresponding growth rate
profile. For further validation, the amplitudes of the fluctuations along the wall normal
direction, are compared to the eigenvectors that correspond to the unstable modes of
the flow. The numerical details for all the simulations that are presented in this section
are tabulated in Appendix B.

6.2.1. THE SUPERCRITICAL CASES

For the supercritical regime three cases are examined and presented in this section. By
using different sets of T ∗∞ and Ec∞ it is possible to infer the influence of non-ideality and
compressibility effects on the stability of the flow.
Case 1: T ∗∞ = 320 K and Ec∞ = 0.05

For this flow M a∞ = 0.97 and Pr∞ = 1.75. The stability diagram is provided in figure
6.3, along with the growth rate profile that results from the post-processed DNS.

Figure 6.3: (a) Stability diagram for T∞ = 320K and Ec∞ = 0.05. The span of the computational domain in the
stream-wise direction is marked by the horizontal dashed line and the location of the perturbation by (⋆). (b)
Growth rate profile using DNS and LST for F = 21.0×10−6.
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The DNS calculated growth rate of instabilities validates the LST predicted profile
sufficiently. It is noted that in this case the outlet of the domain extends to Reδ = 2200.00,
and that the mismatch that is observed in the latter half of the growth rate profile, is less
significant compared to the ideal gas case in figure 5.2.

By comparing figure 6.3 to figure 5.2 it is observed that non-ideal gas and compress-
ibility (M a∞ is higher in this case) effects tend to stabilize the flow, since the extent of
the unstable region appears to be smaller in this case.

To validate the amplitude of the fluctuations along the wall normal direction Reδ =
1399.73 is selected. The resulting profiles are shown in figure 6.4.

Figure 6.4: Fluctuation amplitude |q̂|1 obtained from DNS. Profiles are compared with LST eigenvectors at
Reδ = 1399.73. Values are normalised by the maximum amplitude of the stream-wise velocity ûmax .

The fluctuations of stream-wise velocity dominate in this case, as is observed for an
Ideal Gas. However the density fluctuation appears to have a much higher amplitude in
this case, due to non-ideal gas and compressibility effects compared to what is shown in
figure 5.14a.
Case 2: T ∗∞ = 320 K and Ec∞ = 0.10

For this flow M a∞ = 1.38, which indicates a super-sonic flow, and Pr∞ = 1.75. The
stability diagram and corresponding growth rate validation with DNS are provided in
figure 6.5.

For the removal of numerical oscillations on the growth rate curve a filter is applied
in this case, using equation (5.2).The unfiltered amplitude of the fluctuations is provided
in appendix E, along with the Fourier transformation of wall-normal velocity, to confirm
that the results are noise-free.

In this case, the DNS-resulting growth rate under-estimates the LST predictions. The
initial perturbation in this case, is implemented very close to the beginning of the growth
zone hence the modal decay zone is skipped (zone 3 in figure 5.3) and the initial pertur-
bation is partially inside the growth zone. This causes a strange behaviour in the growth
of primary instabilities, as can be seen in figure E.1. Since growth is exponential, even a
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small discrepancy in the amplitude, might lead to a significant difference in the growth
of instabilities.

Figure 6.5: (a) Stability diagram for T∞ = 320K and Ec∞ = 0.10. The span of the computational domain in the
stream-wise direction is marked by the horizontal dashed line and the location of the perturbation by (⋆). (b)
Growth rate profile using DNS and LST for F = 21.0×10−6.

It is evident that compressibility effects stabilize the flow in this case, by comparing
figure 6.3a and figure 6.5a. Increasing the Eckert and, consequently, Mach numbers,
results to a smaller unstable band in the stability diagram.

To validate the amplitude of the fluctuations along the wall normal direction Reδ =
1399.73 is selected. The resulting profiles are shown in figure 6.6.

Figure 6.6: Fluctuation amplitude |q̂ |1 obtained from DNS. Profiles are compared with LST eigenvectors at
Reδ = 1399.73. Values are normalised by the maximum amplitude of the stream-wise velocity ûmax .
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The amplitude of the fluctuations in this case, is dominated by the density fluctua-
tion. This can be explained by looking at the linearized continuity equation,

(iαu0 − iω)ρ′+ iαρ0u′+ dρ0

d y
v ′+ρ0

d v ′

d y
= 0. (6.1)

Increasing Ec∞ or bringing T ∗∞ closer to the pseudo-critical point, the density gradi-
ent of the base flow dρ0/d y becomes greater, hence the density fluctuation ρ′ requires
a decrease to balance the equation, resulting to a greater amplitude. This effect is, also,
illustrated in Ren et al. [29].
Case 3: T ∗∞ = 360 K and Ec∞ = 0.05

The corresponding dimensionless numbers for this flow are M a∞ = 0.61 and Pr∞ =
1.03. In figure 6.7, the stability diagram and corresponding growth rate validation with
DNS are provided.

Figure 6.7: (a) Stability diagram for T∞ = 360K and Ec∞ = 0.05. The span of the computational domain in the
stream-wise direction is marked by the horizontal dashed line and the location of the perturbation by (⋆). (b)
Growth rate profile using DNS and LST for F = 33.0×10−6.

The growth rate profile that is calculated by the DNS sufficiently validates the LST
predicted profile, with a slight over-estimation in the latter half of the domain.

In this case, the free stream temperature has increased, hence the non-ideal gas ef-
fects are less prominent. This results to the destabilization of the flow, as is observed by
comparing figures 6.3a and 6.7a.

To validate the amplitude of the fluctuations along the wall normal direction Reδ =
1200.08 is selected. The resulting profiles are shown in figure 6.8.

In this case, the fluctuation amplitudes are stream-wise velocity dominated, since
compressibility and non-ideal gas effects are less prominent.

The LST-predicted growth rate and amplitude profiles presented in this section, are
sufficiently validated by the DNS, confirming the predicted behaviour of the flow.
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Figure 6.8: Fluctuation amplitude |q̂ |1 obtained from DNS. Profiles are compared with LST eigenvectors at
Reδ = 1200.08. Values are normalised by the maximum amplitude of the stream-wise velocity ûmax .

6.2.2. THE SUBCRITICAL CASE

In this section, direct numerical simulations are performed using the case of T ∗∞ = 280 K ,Ec∞ =
0.05 for the validation of the growth rate profile and the eigenvectors that are provided
by Linear Stability Theory.

For this particular flow M a∞ = 0.33 and Pr∞ = 2.13. In figure 6.9, the stability dia-
gram and the validation of the growth rate profile with DNS are provided.

Figure 6.9: (a) Stability diagram for T∞ = 280K and Ec∞ = 0.05. The span of the computational domain in the
stream-wise direction is marked by the horizontal dashed line and the location of the perturbation by (⋆). (b)
Growth rate profile using DNS and LST for F = 33.0×10−6.
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Again, the DNS-calculated growth rate validates the LST prediction, slightly over-
estimating the latter half of the profile.

Since the free-stream temperature is close to the pseudo-critical point, non-ideal gas
effects stabilize the flow, hence the unstable zone appears smaller on the stability dia-
gram, compared to the supercritical cases. In Ren et al. [29] it is proved that an increase
in Ec∞ tends to stabilize the flow up to some point, before the reaching the transcritical
case.

To validate the amplitude of the fluctuations along the wall normal direction Reδ =
1300.39 is selected. The resulting profiles are shown in figure 6.10.

Figure 6.10: Fluctuation amplitude |q̂|1 obtained from DNS. Profiles are compared with LST eigenvectors at
Reδ = 1300.39. Values are normalised by the maximum amplitude of the stream-wise velocity ûmax .

The fluctuation amplitudes are dominated by the stream-wise velocity, which is an
indication that compressibility effects are not prominent in this flow, as expected for a
flow of low Eckert number.

6.2.3. THE TRANSCRITICAL CASE
For the case when T ∗∞ = 280 and Ec∞ = 0.20, the coexistence of two unstable modes is
predicted by the LST. On the stability diagram, Mode I has a similar shape as for the sub-
critical regime, however Mode I I is much larger in size of the unstable zone and growth
rate. Further investigation on the appearance of a second unstable mode is carried out
by Ren en al. [29].

To validate this behaviour using DNS, a long computational domain is used, so that
both modes are captured and a perturbation amplitude A1 = 1.0×10−5. Stability diagram
and validation of the growth rate curve are provided in figure 6.11

The DNS resulting growth rate is filtered during the post-processing to remove nu-
merical oscillations. The unfiltered amplitude of the fluctuations is provided in appendix
E, along with the Fourier transformation of wall-normal velocity, to confirm that the re-
sults are noise-free.

In general, a good match is obtained between the LST and DNS, however a mismatch
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Figure 6.11: (a) Stability diagram for T∞ = 280K and Ec∞ = 0.20, presenting the two unstable modes. The
span of the computational domain in the stream-wise direction is marked by the horizontal dashed line and
the location of the perturbation by (⋆). (b) Growth rate profile using DNS and LST for F = 75.0×10−6.

occurs after Reδ = 1750.00, where the growth rate drops to zero, indicating a constant
amplitude of the growing instabilities. To further investigate the source of this mismatch,
another simulation is set up, with a shorter domain length and a lower perturbation am-
plitude A1 = 1.0−8. The resulting growth rate curve is presented in figure 6.12.

Figure 6.12: Validation of growth rate profile using DNS and LST for F = 75.0×10−6 on a shorter domain and
lower perturbation amplitude.

It is worth pointing out that the initial perturbation is implemented at Reδ = 1300.00,
hence inside the growth zone of the second mode. This causes oscillations on the growth
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rate curve until Reδ = 1700.00, where the growth of instabilities starts to follow the LST
predicted profile. Comparing the results presented in figures 6.11 and 6.12, it can be
inferred that the excessive growth of instabilities, causes the amplitude to grow up to a
certain point and then no further growth is observed; the flow reaches a new periodic
state rather than a secondary instability. Since the amplitude of growing instabilities is
directly related to the amplitude of the initial perturbation, this effect does not occur in
the second case, where the amplitude of the perturbation is lower, and the instabilities
keep growing beyond Reδ = 1750.00, as predicted by the LST. This indicates the occur-
rence of non-linear effects inside the flow field and prevent the further growth of insta-
bilities, also referred to as non-linear saturation. Since the phenomenon is caused by
non-linear mechanisms, it is not predicted by the LST. The Fourier transformation of the
density is presented in figure 6.13 for the comparison of modal growth in the two cases.

Figure 6.13: Fourier transformation of ρ′ for DNS using (a) A1 = 1.0× 10−5 and (b) A1 = 1.0× 10−8 at Reδ =
1900.00 and y = 0.64.

Based on figure 6.13 it is observed that in the case of A1 = 1.0×10−5, the second, third
and fourth harmonics begin to grow, which is not the case for A1 = 1.0×10−8. It is also
evident that the amplitude of growing instabilities, is heavily dependent on the ampli-
tude of the perturbation, since the amplitude of the fundamental mode is two orders of
magnitude larger in the first case, compared to the second case. Hence, it can be inferred
that the excessive growth of primary instabilities, leads to the growth of superharmonic
modes which tend to prevent the further growth of instabilities.

To illustrate the development of the instabilities in two modes, a contour plot of the
wall-normal velocity profile is provided in figure 6.14. Six physical regions are numbered,
each corresponding to a different behaviour. In region 1, the flow exhibits unperturbed
behaviour whereas in region 2, the periodic suction and blowing is introduced, hence
the receptivity stage of the flow. In region 3, modal decay is exhibited, before reaching
modal growth in region 4 for the first mode. The modal switch occurs in region 5 and is
succeeded by the excessive growth that occurs in the second mode, in region 6.
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Figure 6.14: Contour lines of wall-normal velocity. The six colored regions correspond to a particular physical
behaviour exhibited by the flow.

Eigenvectors are plotted in this case for both modes, in figure 6.15.

Figure 6.15: Fluctuation amplitudes |q̂|1 obtained from DNS. Profiles are compared with LST eigenvectors at
(a) Reδ = 1000.52 for Mode I and (b) Reδ = 1700.03 for Mode I I . Values are normalised by the maximum
amplitude of the stream-wise velocity ûmax .

The eigenvectors of the first mode are not validated sufficiently, possibly because
the perturbation amplitude that is used in the DNS is relatively high, causing excessive
growth of the instabilities, as is evident by the large deviation of ρ̂ in figure 6.15a. The
second mode eigenvectors are validated sufficiently by the DNS. In both cases, the den-
sity fluctuation dominated due to the large ∂ρ0/∂y term in the base flow. From the LST
predicted profiles, it is observed that in both modes û and v̂ are similar, while ρ̂ increases
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drastically in the second mode, indicating that the existence of Mode I I , occurs due to
large variations of thermodynamic and transport properties [29].

6.3. CONCLUSIONS
The results presented in this chapter lead to the conclusions regarding the stability of
non-ideal fluids and the validation of Linear Stability Theory predictions with Direct Nu-
merical Simulations. A list of the conclusions is provided below.

• For the cases in which the base flow temperature profile does not cross the pseudo-
critical point, stabilization of the flow occurs due to compressibility and non-ideal
gas effects. Compressibility effects intensify by incresing Ec∞, while non-ideal gas
effects occur the closer the free-stream temperature T ∗∞ is to the pseudo-critical
temperature T ∗

pc . This is observed by comparing the corresponding stability dia-
grams for each case.

• For the transcritical case, a second mode appears on the stability diagram, which is
comparatively more unstable than the first mode. The occurrence of this mode is
caused by the large variations in thermodynamic properties, since the flow transits
from supercritical at the wall to subcritical in the free-stream. This behaviour is
validated with DNS, confirming the existence of a second mode.

• In the DNS of the transcritical case, the phenomenon of non-linear saturation oc-
curs inside the second unstable mode. The excessive growth of primary instabili-
ties, leads to the growth of higher harmonics, obstructing the further growth of the
fundamental mode. Primary instabilities stop growing in space, thus the growth
rate becomes zero. Since this phenomenon is caused by non-linear effects occur-
ring in the flow field, it is not predicted by the LST. By lowering the amplitude of
the initial perturbation, non-linear saturation is not exhibited by the flow and the
amplitude of instabilities keeps growing in space, as predicted by the LST.

• The compressibility effects on the stability of the flow can be observed by inspect-
ing the fluctuation amplitudes along the wall normal direction. For flows that ex-
hibit large density gradients in the base flow, the amplitude of the density fluctua-
tions are greater in magnitude that the other variables.

• For most cases the DNS validate the LST predictions sufficiently, although a slight
mismatch is observed in the latter half of the growth rate curve. One possible ex-
planation would be the non-parallel behaviour of the flow, which is assumed to
be negligible in LST. However, non-parallel effects are less prominent far from the
leading edge (the magnitude of wall-normal velocity exponentially drops with in-
creasing x 3.5b), which does not justify the mismatch at higher Reδ. In figures 6.3b
and 6.12 it is observed that the mismatch is less evident, compared to the other
cases. In both these cases, the outlet of the computational domain is located at
Reδ > 2000.00 which indicates that the outlet boundary condition and sponge, af-
fect the growth of instabilities, and can possibly cause a mismatch between the
DNS and LST results.
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• For cases in which the growth rate of instabilities is relatively low (T ∗∞ = 320 K ,Ec∞ =
0.10 and first mode of T ∗∞ = 280 K ,Ec∞ = 0.20), the amplitude of instabilities ex-
hibits an oscillatory behaviour, which is filtered out. The origin of these oscilla-
tions is not entirely clear, based on the results of the present study, however several
speculations can be made. One possibility is that the amplitude of the initial per-
turbation is too high, which could mean that the triggering of instabilities occurs at
the limit before the non-linear regime. Another possibility is that the perturbation
is implemented, very close to the growth zone. By placing the perturbation inside
the modal decay zone, upstream of the growth zone, the triggered instabilities are
physically damped before they begin to grow. Finally, it is possible that the present
DNS do not capture lower amplitudes sufficiently, hence the computational pa-
rameters require further optimization. Parameters like the extent and strength of
the sponges, the height and resolution of the domain, the thermodynamic table
resolution or the numerical schemes that are used, could be adjusted.





7
DISCUSSION

In this chapter, the methodology and results are summarized and suggestions for further
research are provided.

7.1. SUMMARY
The main objective of this study is the development of a FORTRAN code that can be used
for direct numerical simulations to study the stability and transition of non-ideal bound-
ary layer flows. Boundary conditions, numerical sponges and thermodynamic table in-
terpolation tools have been implemented on a code that was previously used to simulate
Poiseuille channel flows for ideal gas. The code is tested on an ideal gas case, in order
to study the effect of various sets of parameters and boundary conditions for the simu-
lations of linear stability. To check the accuracy and reliability of the used methods, the
results from the DNS are compared to the quantities predicted by Linear Stability Theory.
After selecting the proper parameters for the DNS code, the stability of Carbon Dioxide
boundary layers at 80 bar is investigated.

For the initialization of the DNS, the laminar base flow needs to be provided. To
obtain the base flow, a MATLAB tool is developed to calculate the self-similar boundary
layer solution and then interpolate on a two-dimensional mesh.

Boundary conditions are implemented using an inviscid characteristic wave analy-
sis and some alternatives are provided for the inlet and the wall. Numerical sponges are
employed at the inlet, outlet and free-stream boundaries to avoid reflections. A peri-
odic suction and blowing is implemented to trigger the Tollmien-Schlichting waves that
will initiate the development of instabilities. Finally, a Lagrange interpolation method
is utilized for the calculation of thermodynamic properties using tables obtained from
REFPROP library.

For the post-processing of the DNS results, a MATLAB script is used to obtain the
Fourier transformation of the resulting flow fields, in order to calculate the growth rate
of instabilities. In some cases, filtering is applied to remove numerical oscillations that
might occur during the simulations.
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The stability diagrams and eigenvectors are obtained by a MATLAB tool that has been
developed by Jie Ren, and are utilized for the validation of the post-processed results
obtained from the DNS.

From the DNS of the ideal gas boundary layer, it is inferred that the stream-wise res-
olution needs to be high enough to resolve the growing instabilities, while keeping in
mind that an increase in stream-wise resolution needs to be accompanied by an increase
in the wall-normal resolution. Also, the height of the domain plays an important role in
the accurate calculation of the amplitude of growing instabilities. Inviscid characteristic
boundary condtitions may be applied at the inlet, though, a standard implementation
yields less oscillations. For the wall boundary condition it is preferred to use a stan-
dard implementation, since the inviscid characteristic option introduces mild numeri-
cal noise. It is, further, observed that the utilization of numerical sponges is necessary at
the outlet and top of the computational domain, whereas optional for the inlet.

For the case of non-ideal gas, the stability of the flow is influenced by compressibility
and non-ideal gas effects. Flows for which the temperature profile does not cross the
pseudo-critical temperature, are stabilized when non-ideal gas (T ∗∞ is close to T ∗

pc ) or
compressibility (higher Ec∞) effects are present. In cases where compressibility effects
are more intense, the density fluctuation amplitude becomes larger that the stream-
wise velocity amplitude, due to the high density gradients and the balancing mecha-
nism of the linearized continuity equation. In the case that the temperature profile
crosses the pseudo-critical temperature (transcritical case), the flow exhibits destabiliza-
tion through the appearance of a second unstable mode on the stability diagram. This
behaviour is validated by the DNS, however for very large amplitudes of the growing in-
stabilities, a behaviour that is not predicted by the LST is exhibited, since the growth of
instabilities becomes zero, leading the flow to a new periodic state. This phenomenon
does not occur for a lower amplitude of the initial perturbation.

7.2. PROPOSAL FOR FURTHER RESEARCH
The findings of this study, lead to new questions about the development of a DNS code
and the stability of non-ideal boundary layer flows. Some suggestions for topics that
require further investigation are listed in this section.

• This entire study is conducted for adiabatic wall boundary layers. A similar study
can be conducted to investigate the stability of isothermal wall boundary layers.
It would, also, be possible to study more complicated geometries and investigate
the effects of curvature or surface roughness on the stability of flows.

• The investigation of Chapter 5, should be repeated using different flow conditions.
It is already evident from the results presented in Chapter 6, that following the
guidelines presented in this study is not sufficient for some cases, since the post
processed result required filtering to validate the LST predictions. The possibility
that some of the presented parameters are dependent on the flow conditions is
high, and should be further investigated so that guidelines for the development of
a DNS code that is used to study the stability and transition of flows can be drawn.
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• The effect of oblique perturbations can be further investigated with DNS, by set-
ting up three-dimensional simulations and using small perturbation amplitudes.

• The saturation in the growth rate of instabilities in the transcritical case, should
be further investigated since the cause of this phenomenon is not entirely clear,
based on the results of the present study. The mechanism that leads to constant
amplitude of the growing instabilities should be identified, since it might obstruct
the development of turbulence in larger simulations.

• To unveil the transitional behaviour of non-ideal boundary layers, simulations in
three dimensions should be set up, using span-wise disturbances and higher per-
turbation amplitudes to trigger the instabilities, leading to a controlled transition
to turbulence.





A
DOMAIN HEIGHT INFLUENCE ON

DNS OF NON-IDEAL GAS

As supplementary material to the study conducted in section 5.5, figure A.1 is provided
to illustrate the effect of varying the domain height for the case of supercritical Carbon
Dioxide at T ∗∞ = 320 K and Ec∞ = 0.05. Four cases are considered using Ly = 8.0, Ly =
10.0, Ly = 14.0 and Ly = 20.0.

Figure A.1: Growth rate profile αi comparison between DNS results for domain heights Ly = 8.0, Ly = 10.0,

Ly = 14.0, Ly = 20.0 and LST for supercritical Carbon Dioxide at T∗∞ = 320 K , Ec∞ = 0.05, and F = 21.0×10−6.

In this case the effects of a lower domain height are more severe than for the ideal gas
case, since for height as low as Ly = 8.0, the growth rate has only negative values even in
the range that the LST predicts positive values. The importance of using a high height
domain is highlighted in this case.
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B
COMPUTATIONAL PARAMETERS

FOR DNS OF NON-IDEAL GAS

The values of the computational and flow parameters for the simulations that are pre-
sented in Chapter 5 are tabulated and provided in this appendix.

Table B.1: Values Used for the Direct Numerical Simulation of the T∗∞ = 320 K ,Ec∞ = 0.05 case.

Flow Parameters
T ∗∞ 320.0 K Ec∞ 0.05
M a∞ 0.97 Pr∞ 1.75
Reδ,i n 700.00 Reδ,out 2200.00

Computational Grid Values Time Stepping
Lx 1228.89 Kt 20000
Ly 20.0 nsteps 2000000
nx 2112 Perturbation Related Parameters
ny 200 F 21×10−6

S f 5.0 A1 1.0×10−5

Computational Sponge Parameters Reδ(xm) 800.0

Inlet
Lsp 20.0 x1 −x2 15.13
σmax 0.5 Boundary Conditions

Outlet
Lsp 20.0 Inlet Standard, Adiabatic
σmax 0.5 Wall Standard, Adiabatic

Free-Stream
Lsp 1.0 Outlet NRBC, σbc = 0.0
σmax 0.5 Free-Stream NRBC, σbc = 0.25

Thermodynamic Table Parameters
ρ∗

mi n 180.0 kg /m3 E∗
mi n 3.8×105 J/kg T ∗

mi n 300.0 K
ρ∗

max 300.0 kg /m3 E∗
max 4.2×105 J/kg T ∗

max 340.0 K
nρ 200 nE 200 nT 200
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Table B.2: Values Used for the Direct Numerical Simulation of the T∗∞ = 320 K ,Ec∞ = 0.10 case.

Flow Parameters
T ∗∞ 320.0 K Ec∞ 0.10
M a∞ 1.38 Pr∞ 1.75
Reδ,i n 700.00 Reδ,out 2200.00

Computational Grid Values Time Stepping
Lx 1191.37 Kt 20000
Ly 20.0 nsteps 2000000
nx 2112 Perturbation Related Parameters
ny 200 F 21×10−6

S f 5.0 A1 1.0×10−5

Computational Sponge Parameters Reδ(xm) 780.0

Inlet
Lsp 20.0 x1 −x2 14.67
σmax 0.5 Boundary Conditions

Outlet
Lsp 20.0 Inlet Standard, Adiabatic
σmax 0.5 Wall Standard, Adiabatic

Free-Stream
Lsp 1.0 Outlet NRBC, σbc = 0.0
σmax 0.5 Free-Stream NRBC, σbc = 0.25

Thermodynamic Table Parameters
ρ∗

mi n 150.0 kg /m3 E∗
mi n 3.8×105 J/kg T ∗

mi n 300.0 K
ρ∗

max 300.0 kg /m3 E∗
max 4.4×105 J/kg T ∗

max 360.0 K
nρ 200 nE 200 nT 200
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Table B.3: Values Used for the Direct Numerical Simulation of the T∗∞ = 360.0 K ,Ec∞ = 0.05 case.

Flow Parameters
T ∗∞ 360.0 K Ec∞ 0.05
M a∞ 0.61 Pr∞ 1.03
Reδ,i n 650.00 Reδ,out 1900.00

Computational Grid Values Time Stepping
Lx 982.56 Kt 20000
Ly 20.0 nsteps 2000000
nx 2112 Perturbation Related Parameters
ny 200 F 33×10−6

S f 4.0 A1 1.0×10−5

Computational Sponge Parameters Reδ(xm) 720.0

Inlet
Lsp 20.0 x1 −x2 12.10
σmax 0.5 Boundary Conditions

Outlet
Lsp 20.0 Inlet Standard, Adiabatic
σmax 0.5 Wall Standard, Adiabatic

Free-Stream
Lsp 1.0 Outlet NRBC, σbc = 0.0
σmax 0.5 Free-Stream NRBC, σbc = 0.25

Thermodynamic Table Parameters
ρ∗

mi n 130.0 kg /m3 E∗
mi n 4.3×105 J/kg T ∗

mi n 340.0 K
ρ∗

max 170.0 kg /m3 E∗
max 4.7×105 J/kg T ∗

max 400.0 K
nρ 200 nE 200 nT 200
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Table B.4: Values Used for the Direct Numerical Simulation of the T∗∞ = 280 K ,Ec∞ = 0.05 case.

Flow Parameters
T ∗∞ 280.0 K Ec∞ 0.05
M a∞ 0.33 Pr∞ 2.13
Reδ,i n 680.00 Reδ,out 1900.00

Computational Grid Values Time Stepping
Lx 966.58 Kt 10000
Ly 20.0 nsteps 1000000
nx 2112 Perturbation Related Parameters
ny 200 F 33×10−6

S f 4.0 A1 1.0×10−5

Computational Sponge Parameters Reδ(xm) 750.0

Inlet
Lsp 20.0 x1 −x2 11.90
σmax 0.5 Boundary Conditions

Outlet
Lsp 20.0 Inlet Standard, Adiabatic
σmax 0.5 Wall Standard, Adiabatic

Free-Stream
Lsp 1.0 Outlet NRBC, σbc = 0.0
σmax 0.5 Free-Stream NRBC, σbc = 0.25

Thermodynamic Table Parameters
ρ∗

mi n 840.0 kg /m3 E∗
mi n 2.0×105 J/kg T ∗

mi n 260.0 K
ρ∗

max 950.0 kg /m3 E∗
max 2.3×105 J/kg T ∗

max 300.0 K
nρ 200 nE 200 nT 200
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Table B.5: Values Used for the Direct Numerical Simulation of the T∗∞ = 280 K ,Ec∞ = 0.20 case.

Flow Parameters
T ∗∞ 280.0 K Ec∞ 0.20
M a∞ 0.66 Pr∞ 2.13
Reδ,i n 620.00 Reδ,out 2100.00

Computational Grid Values Time Stepping
Lx 1542.75 Kt 10000
Ly 20.0 nsteps 2000000
nx 2880 Perturbation Related Parameters
ny 200 F 75×10−6

S f 5.0 A1 1.0×10−5

Computational Sponge Parameters Reδ(xm) 720.0

Inlet
Lsp 20.0 x1 −x2 13.93
σmax 0.5 Boundary Conditions

Outlet
Lsp 100.0 Inlet Standard, Adiabatic
σmax 1.0 Wall Standard, Adiabatic

Free-Stream
Lsp 2.0 Outlet NRBC, σbc = 0.0
σmax 1.0 Free-Stream NRBC, σbc = 0.25

Thermodynamic Table Parameters
ρ∗

mi n 250.0 kg /m3 E∗
mi n 1.8×105 J/kg T ∗

mi n 260.0 K
ρ∗

max 1000.0 kg /m3 E∗
max 4.0×105 J/kg T ∗

max 340.0 K
nρ 800 nE 800 nT 800
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Table B.6: Values Used for the Direct Numerical Simulation of the short T∗∞ = 280 K ,Ec∞ = 0.20 case with
lower perturbation amplitude.

Flow Parameters
T ∗∞ 280.0 K Ec∞ 0.20
M a∞ 0.66 Pr∞ 2.13
Reδ,i n 1200.00 Reδ,out 2100.00

Computational Grid Values Time Stepping
Lx 588.07 Kt 10000
Ly 20.0 nsteps 2000000
nx 2112 Perturbation Related Parameters
ny 200 F 75×10−6

S f 5.0 A1 1.0×10−8

Computational Sponge Parameters Reδ(xm) 1300.0

Inlet
Lsp 20.0 x1 −x2 13.93
σmax 0.5 Boundary Conditions

Outlet
Lsp 100.0 Inlet Standard, Adiabatic
σmax 1.0 Wall Standard, Adiabatic

Free-Stream
Lsp 2.0 Outlet NRBC, σbc = 0.0
σmax 1.0 Free-Stream NRBC, σbc = 0.25

Thermodynamic Table Parameters
ρ∗

mi n 250.0 kg /m3 E∗
mi n 1.8×105 J/kg T ∗

mi n 260.0 K
ρ∗

max 1000.0 kg /m3 E∗
max 4.0×105 J/kg T ∗

max 340.0 K
nρ 800 nE 800 nT 800



C
VALIDATION OF NON-IDEAL GAS

BASE FLOW WITH LITERATURE

The base flow profiles presented in section 6.1, are validated with the profiles presented
in Ren et al. [29]. Some of the cases that are simulated in Chapter 5 are presented in
figure C.1, validated with the reference profiles.

Figure C.1: Validation of base flow profiles for Carbon Dioxide at 80 bar for (a) T∗∞ = 280 K , Ec∞ = 0.05, (b)
T∗∞ = 280 K , Ec∞ = 0.20, (c) T∗∞ = 320 K , Ec∞ = 0.05 and (d) T∗∞ = 320 K , Ec∞ = 0.20.
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D
INFLUENCE OF TABLE RESOLUTION

ON THE DNS OF THE

TRANSCRITICAL CASE

The Direct Numerical Simulations of the transcritical case, have been performed using
two different values for the resolution of the thermodynamic tables. To compare the two
cases, figure D.1 is provided, presenting the growth rate profile. In the tables for these
cases density ranges from 250.0 kg /m3 to 1000.0 kg /m3 and internal energy ranges from
1.8×105 J/kg to 4.0×105 J/kg .

Figure D.1: Growth rate profile αi comparison between DNS results for table resolution of 400×400 and 800×
800, and LST for T∗∞ = 280,Ec∞ = 0.20.

According to the results of figure D.1, even the thermodynamic table with low reso-
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lution is suitable for the simulation of the transcritical case. The growth rate calculated
for the two cases is identical, hence tables do not require further refinement to produce
accurate results.



E
UNFILTERED FLUCTUATION

AMPLITUDES FOR DNS

In chapter 6 the amplitude of fluctuation profiles that is calculated from the DNS, is fil-
tered using equation (5.2) for the cases with T ∗∞ = 320 K ,Ec∞ = 0.10 and T ∗∞ = 280 K ,Ec∞ =
0.20. In this appendix, the unfiltered profiles are presented, along with the Fourier trans-
formations of each case, to examine the possibility of transient phenomena occurring
inside the computational domain.

• Carbon dioxide at T ∗∞ = 320 K and Ec∞ = 0.10

In figure E.1 the unfiltered fluctuation amplitude profiles of wall-normal velocity
are presented, along with the resulting filtered result.

Figure E.1: Amplitude of wall-normal velocity fluctuations |v̂ |max
1 before and after filtering for supercritical

Carbon Dioxide at T∗∞ = 320 K , Ec∞ = 0.10, and F = 21.0×10−6.
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The fluctuation amplitude exhibits a strange behaviour from Reδ = 780.00 until
Reδ = 1250.00. To investigate whether this behaviour is exhibited due to numerical
noise, the Fourier-transformation of the wall-normal velocity is presented in figure
E.2 for Reδ = 900.00 and y = 0.64.

Based on figure E.2, it can be inferred that the strange behaviour is not exhibited
due to unwanted noise inside the computational domain, since only the funda-
mental mode is present.

Figure E.2: Fourier transformation of v ′ for DNS at Reδ = 900.00 and y = 0.64.

• Carbon dioxide at T ∗∞ = 280 K and Ec∞ = 0.20

The unfiltered amplitude fluctuation profile of the wall-normal velocity is pre-
sented in figure E.3.

Figure E.3: Amplitude of wall-normal velocity fluctuations |v̂ |max
1 before and after filtering for supercritical

Carbon Dioxide at T∗∞ = 280 K , Ec∞ = 0.20, and F = 75.0×10−6.

Oscillatory behaviour is exhibited inside the growth zone of the first mode, where
the amplitude of the fluctuations is small, compared to the amplitude in the sec-
ond mode. To identify whether the oscillatory behaviour results from noise, the
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Figure E.4: Fourier transformation of v ′ for DNS at Reδ = 1000.52 and y = 0.64.

Fourier transformation of the wall-normal velocity is provided in figure E.4 for
Reδ = 1000.52 and y = 0.64.

Again, all modes, apart from the fundamental, have decayed, which indicates the
absence of any transient phenomena occurring inside the computational domain.
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