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In supersonic turbulent boundary layers over isothermal walls, we investigate how
the wall heat flux affects turbulent statistics and velocity scaling laws. To distinguish
local Reynolds number and compressibility effects, we consider a conventional ideal
gas with Sutherland’s law and a fluid for which the dynamic viscosity is proportional
to the square root of density, such that the semi-local Reynolds number is constant in
the wall-normal direction. The results clearly indicate that the changes of the semi-local
Reynolds number within the boundary layer affect the coherent turbulent structures, which
induces the deviation of the viscous stress, Reynolds stress, and semi-local transformed
mean velocity between different wall temperature conditions. For the cases with constant
semi-local Reynolds number, we observe that the wall heat flux does not affect the
turbulent structures and that the velocity profiles perfectly collapse among each other,
indicating the importance of the semi-local Reynolds number, rather than the temperature
or density themselves, on turbulent statistics and structures. Also, the conditional averaged
analysis for the near-wall turbulent phenomena indicates a clear relationship between the
turbulent structures and the mean velocity gradients. Additionally, an existing analytical
temperature-velocity relation is verified based on the examinations of the applied equilib-
rium flow assumptions, and the results explain the disagreement between the present data
and the analytical solutions in the outer boundary layer region, especially for isothermal
wall cases.

DOI: 10.1103/PhysRevFluids.6.124603

I. INTRODUCTION

Wall-bounded turbulent flows with wall heat transfer appear in many engineering applications.
Common examples are nozzles in rocket engines, combustion chambers in gas turbines, or heat
exchangers in virtually any energy conversion system. In these applications, the wall temperature
or the wall heat transfer rate often becomes one of the design constraints, and near-wall turbulence
plays a significant role in increasing the thermal conductivity characteristics of fluids by its turbulent
thermal diffusion effects. Too high temperature can cause material damage and consequently failure
of the device, and yields structural failures or decrease in performances of the fluid machinery.
Therefore, wall turbulence must be predicted accurately to assure the safety of thermal-fluid
systems, which require a detailed understanding of turbulent physics in wall-heated or -cooled flows.

Thermal properties of wall-bounded turbulent flows have been investigated theoretically, ex-
perimentally, and numerically in the past decades. In incompressible flows, which have negligible
variations in thermophysical properties, the temperature is a passive scalar and does not influence
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turbulent dynamics. On the other hand, the higher the flow speed, the larger the variations in ther-
mophysical properties, which result in nonlinear couplings between kinetic and thermal quantities
that make the estimations of the velocity and temperature fields difficult [1,2]. Therefore, physical
relationships between velocity and temperature based on the momentum or energy transport have
been addressed and proposed, and the typical example is the Reynolds analogy [3–5] for mean
physical quantities. The original Reynolds analogy [3] was obtained for incompressible flows,
which has been modified for compressible flows as the Crocco-Busemann relation [4] or turbulent
boundary layers as Walz’s equation [5]. Walz’s equation often has been applied to wall-heated or
-cooled flows, and many studies have reported the good performance of the equation [6–8]. On
the other hand, regarding the turbulent fluctuations, relationships between the streamwise velocity
fluctuations and the temperature fluctuations have been proposed and called the strong Reynolds
analogy (SRA) [6,9–15]. The original SRA [9] also has been extended for several flow conditions
and some modified SRAs that can consider wall heat flux effects have been proposed by Huang
et al. [13] (Huang’s modified SRA, HSRA) or Guarini et al. [14]. HSRA has given the collapsed
profiles under various wall temperature conditions, shown in Refs. [16–18]. Further, Zhang et al.
[15] proposed the generalized Reynolds analogy based on a formal generalization of the SRA, and
it has shown improvements compared with Walz’s equation, in the cooled-wall hypersonic case
[17,19].

The other universal theory in wall turbulence is scaling laws that make physical quantity profiles,
such as velocity [20–24], temperature [20], or Reynolds stress collapse for several flow conditions.
Especially for the mean velocity, the representative scaling theory is the law of the wall for the
incompressible condition, proposed by Kármán, which uses the velocity and wall-normal coordinate
nondimensionalized by wall quantities as

u+ = u

uτ

, y+ = y

lv
, (1)

where u is the mean velocity, y is the wall-normal coordinate, uτ = √
τw/ρw is the friction velocity,

lv = μw/(ρwuτ ) is the viscous length scale, ρ is the density, μ is the dynamic viscosity, τ is
the viscous stress, and the subscript w denotes the quantities at the wall. Later, the van Driest
transformation [24], which can be applied to compressible flows by taking account of density
variations, has been proposed as

u+
vD =

∫ u+

0

√
ρ

ρw

du+. (2)

The accuracy of the van Driest transformation has been reported for a large range of Reynolds or
Mach numbers, for adiabatic-wall flows [6]. However, in wall-heated or -cooled turbulent flow cases,
disagreements of the van Driest transformed velocity profiles have been reported [25–27] so that
the more proper transformation is required. Regarding the length scale y+ in Eq. (1), many previous
studies have shown that a better collapse for different wall temperature cases can be obtained by
replacing it with the semi-local length scale [28] given as [17,25,27,29]

y∗ =
√

ρ
√

τwy

μ
. (3)

Also for the velocity scale u+
vD, Trettel and Larsson [22] and Patel et al. [23] recently proposed an

extension of the van Driest transformation that utilizes the effectiveness of the semi-local length
scaling as

u∗ =
∫ u+

vD

0

(
1 + y

Re∗
τ

d Re∗
τ

dy

)
du+

vD =
∫ u+

0

(
ρ

ρw

)1/2(
1 + 1

2

y

ρ

dρ

dy
− y

μ

dμ

dy

)
du+, (4)
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where Re∗
τ = √

ρ
√

τwδ99/μ is the semi-local Reynolds number. This transformation successfully
obtains the better collapse of mean velocity profiles for almost the entire inner layer. How-
ever, Eq. (4) still shows some disagreements from the ideal universal profiles, as reported in
Refs. [27,30,31]. Huang et al. [30] performed cooled-wall hypersonic Ma∞ = 11, 14 turbulent
boundary layer simulations and reported an upwards shift of the transformed velocity profiles in the
inertial sublayer, compared with that of quasi-adiabatic-wall supersonic boundary layers. Volpiani
et al. [31] also reported the upwards shift in the inertial sublayer of heated-wall hypersonic Ma∞ = 5
turbulent boundary layers. The cause of these disagreements appears to depend on several factors:
the degree of wall heating or cooling, Mach number, or inherent differences in channels or boundary
layers. However, a clear insight on the cause is still missing.

In the present work, we further investigate wall-heated or -cooled supersonic turbulent boundary
layers to identify key parameters affecting turbulence structures and the velocity scaling law. We
performed large-eddy-simulations (LES) for three different wall-temperature conditions: quasia-
diabatic, heated, and cooled walls. To distinguish between effects related to Mach number and
semi-local Reynolds number variations, we also performed simulations for which the semi-local
Reynolds number is constant in the wall-normal direction. The present paper is arranged as follows.
Numerical methods and settings are given in Sec. II. Case parameters of the present numerical
simulations are given in Sec. III. Results are shown in Sec. IV; spatially developed temperature
fields are verified through the analyses of the temperature-velocity relations (i.e., Walz’s equation) in
Sec. IV A; performances of mean-velocity transformations are reported in Sec. IV B; relationships
between the extended van Driest transformation shown in Eq. (4) and viscous stress are derived
in Sec. IV C; streamwise stress components that relate to viscous stress analytically are shown in
Sec. IV D; finally, connections between turbulent statistics and turbulent structures are discussed in
Sec. IV E. Conclusions are presented in Sec. V.

II. NUMERICAL METHODOLOGY

A. Governing equations and fluid properties

The simulations in the present paper are obtained by solving the spatially filtered compressible
Navier-Stokes equations, which are given in differential form as

∂ρ

∂t
+ ∂ (ρu j )

∂x j
= 0, (5)

∂ (ρui )

∂t
+ ∂ (ρuiu j + pδi j − τi j )

∂x j
= 0, (6)

∂ (ρE )

∂t
+ ∂ (ρEuj + pu j + q j − uiτi j )

∂x j
= 0, (7)

where the quantities are spatially filtered, xi = (x, y, z) are the coordinates in the streamwise, wall-
normal, and spanwise directions, ui = (u, v,w) are the corresponding velocity components, ρ is the
fluid density, E = e + uiui/2 is the total energy, e = p/ρ(γ − 1) is the internal energy, γ (=1.4) is
the heat capacity ratio, p = ρRT is the pressure, R is the gas constant, T is the temperature, τi j is
the viscous stress tensor, and qj is the heat flux vector. The viscous stress tensor is

τi j = 2(μ + μSGS)

[
1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 1

3

∂uk

∂xk
δi j

]
(8)

and the heat flux vector is

q j = − 1

γ − 1

( μ

Pr
+ μSGS

PrSGS

)∂a2

∂x j
, (9)
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FIG. 1. Computational domains of the present large eddy simulations of the zero-pressure gradient turbu-
lent boundary layer with heated and cooled walls. δin is the time-averaged boundary layer thickness at the inlet
of the rescaling domain. Streamwise velocity contours at side, cross, and wall-parallel planes.

where a is the speed of sound, μ is the dynamic viscosity, Pr(=0.72) is the Prandtl number, μSGS is
the subgrid-scale dynamic viscosity, and PrSGS(=0.9) is the subgrid-scale turbulent Prandtl number.

In this paper, two approaches are used to specify the dynamic viscosity μ. The first one is based
on Sutherland’s law, which uses the kinetic theory of ideal gases and the idealized intermolecular
potential. Sutherland’s law is commonly used for ideal gases as

μ

μ∞
=

( T

T∞

) 3
2 T∞ + T1

T + T1
, (10)

where the subscript ∞ denotes the freestream quantities, T1 = 110.4 K, and T∞ = 255.0 K.
The second approach of setting the dynamic viscosity ensures that the semi-local Reynolds

number, defined as

Re∗
τ =

√
ρ

ρw

μw

μ
Reτ , (11)

where the subscript w denotes the quantities at the wall, remains constant within the boundary
layer. In Eq. (11), Reτ = √

ρw

√
τwδ99/μw is the friction Reynolds number, with the 99% freestream

velocity boundary layer thickness δ99. The semi-local Reynolds number Re∗
τ can be considered as a

similarity parameter of flows with thermophysical property variations, which has been discussed in
the previous research [23,32]. For ensuring a constant value of Re∗

τ , the dynamic viscosity is thus
set proportional to the square root of the fluid density as

μ

μ∞
=

√
ρ

ρ∞
. (12)

B. Case setup and numerical methods

Figure 1 shows the schematic of the present simulations, which represent the setup of zero-
pressure-gradient turbulent boundary layers. The computational domain is divided into the rescaling
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TABLE I. Reynolds number, Mach number, wall temperature, and abbreviation for all cases. Black,
quasiadiabatic; red, heated; blue, cooled; gray, incompressible as references. Solid, ideal gas cases used
Sutherland’s law Eq. (10); dashed, constant Re∗

τ cases used Eq. (12).

Case Reτ Ma∞ Tw/Tr Tw/T∞ Abbrev. Line style

Quasiadiabatic 650 2.28 1.0 1.93 AD
Heated 305 2.28 2.0 3.84 HE
Cooled 1515 2.28 0.5 0.97 CO
Quasiadiabatic, constant Re∗

τ 566 2.28 1.0 1.93 ADcRe
Heated, constant Re∗

τ 505 2.28 2.0 3.84 HEcRe
Cooled, constant Re∗

τ 654 2.28 0.5 0.97 COcRe
Incompressible high Re [41] 1437 1.0 1.0 IncHi
Incompressible low Re [42] 578 1.0 1.0 IncLo

domain (left domain in Fig. 1) and the main domain (right domain in Fig. 1). The size of the
rescaling domain is (Lx, Ly, Lz ) = (15δin, 10δin, 6δin ), and that of the main domain is (Lx, Ly, Lz ) =
(40δin, 10δin, 6δin ) in streamwise (x), wall-normal (y), and spanwise (z) directions, respectively.
Note that δin denotes the time-averaged boundary layer thickness at the inlet location of the rescaling
domain.

The incoming boundary conditions of the rescaling domain are taken from a position 12δin

downstream of the inlet by using the rescaling-reintroduction method of Urbin and Knight [33].
Also, the incoming flow of the main domain is taken from 10δin of the rescaling domain. Isothermal
wall temperature conditions are given to the lower walls for both domains. The wall temperatures
Tw are chosen based on the recovery temperature as

Tr = T∞

[
1 + (γ − 1)r

M2
∞

2

]
, (13)

where r(=0.9) is the recovery coefficient. At the rescaling domain, wall temperatures are fixed as
a quasiadiabatic condition Tw = Tr . At the main domain, specifying the recovery temperature ratio
s = Tw/Tr , the wall temperature transitions smoothly from the quasiadiabatic to the heated (s > 1.0)
or cooled (s < 1.0) condition by using a hyperbolic tangent function as

Tw(x) = Tr

[
1 + s − 1

2

(
1 + tanh

2(x − xtrans)

δin

)]
, (14)

where xtrans = 8δin is the transition position of wall temperature [34]. The wall to recovery temper-
ature ratios for all cases are summarized in Table I. The wall boundary condition is the isothermal
nonslip condition and the periodic boundary condition is imposed in the spanwise direction. The
grid spacing is uniform in both streamwise and spanwise directions, while a stretched grid is used
in the wall-normal direction with a maximum grid stretching ratio of 1.044 within the boundary
layers and 1.079 at the freestream regions, respectively. More details of the mesh resolutions for the
different cases are shown in Table II. All the results presented in this study are at the station of 33δin

downstream of the main domain, unless otherwise noted. .
A sixth-order compact finite difference scheme is used [35] to compute the spatial derivatives,

coupled with an eighth-order compact low-pass filter [35,36], with the filter parameter α f fixed
at 0.49, to prevent numerical instabilities. Our prior studies [37,38] suggest the appropriateness
of the employed α f for turbulent flow computations. The equations are integrated in time using
a third-order TVD Runge-Kutta method [39], and a selective-mixed-scale model [40] is used to
compute the subgrid-scale dynamic viscosity μSGS. We note that, although the subgrid-scale model
is used in this study, the contributions of the subgrid-scale stresses are negligible throughout the
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TABLE II. Number of grid points Nx , Ny, and Nz, and spatial mesh resolutions �x, �y, and �z. η,
Kolmogorov length scale. �y+ is extracted at uniform grid spacing outer-boundary layer regions.

Abbrev. Nx Ny Nz �x+ �y+
w �y+ �z+ (�x/η)max (�y/η)max (�z/η)max

AD 1601 182 491 10.05 0.80 8.94 5.02 7.10 0.57 3.55
HE 1601 182 491 4.24 0.34 3.78 2.12 3.08 0.25 1.54
CO 2801 254 851 14.09 0.79 16.45 7.04 9.87 0.55 4.93
ADcRe 1601 182 491 9.30 0.74 8.27 4.65 6.47 0.52 3.24
HEcRe 1601 182 491 7.83 0.63 6.97 3.92 5.43 0.43 2.71
COcRe 2801 254 851 6.18 0.35 7.21 3.09 4.28 0.24 2.14

boundary layers, due to the sufficiently fine grid resolutions employed in this study, as will be
discussed in Table II.

III. CASE DESCRIPTION

Several heated and cooled developed boundary layers have been considered in this study to
investigate the influence of thermophysical property variations on turbulent statistics and their
self-similar scaling characteristics. The cases are summarized in Table I, where all six compressible
boundary layer simulations are performed under the assumption of a calorically perfect gas using the
ideal equation of state and assuming constant specific heats. Three different thermal wall conditions
have been considered, namely, a quasiadiabatic (black line), a heated (red), and a cooled (blue)
isothermal wall temperature. For the first three cases, indicated by solid lines in the subsequent
discussions, the dynamic viscosity follows Sutherland’s law as given in Eq. (10). These cases are
referred to hereafter as ideal gas cases. For the second set of three simulations, indicated by dashed
lines, the dynamic viscosity is proportional to the square root of density as defined by Eq. (12).
For these cases, the semi-local Reynolds number Re∗

τ is constant in the wall-normal direction and
they are referred to as constant Re∗

τ (cRe) cases. The last two cases correspond to incompressible
boundary layers at different Reynolds numbers from Refs. [41,42] and are used as references for
comparison.

Figure 2 shows the distributions of mean density and dynamic viscosity, both normalized by
their respective freestream values. The heated cases show the largest variations of both density
and dynamic viscosity due to the large increase of temperature within the boundary layers. In the
adiabatic cases, the density and viscosity change within the boundary layers because of the viscous

FIG. 2. Distributions of (a) mean density ρ/ρ∞ and (b) mean dynamic viscosity μ/μ∞. Lines as in Table I.
Both two lines of incompressible cases overlap each other.
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FIG. 3. Distributions of semi-local Reynolds number Re∗
τ . Lines as in Table I.

heating, although the changes are smaller compared to the heated cases. On the other hand, the
cooled cases show a local peak value in both density and dynamic viscosity, because the wall value
is approximately the same as the freestream value. Regarding the constant Re∗

τ cases (dashed lines),
their density distributions are similar to the ideal gas cases (solid lines) in Fig. 2(a). However, as
for the dynamic viscosity distributions shown in Fig. 2(b), the constant Re∗

τ cases show the opposite
behavior to the ideal gas cases due to the different dynamic viscosity formulation given in Eq. (12).

Figure 3 shows the distributions of the semi-local Reynolds number, Re∗
τ . The ideal gas cases,

indicated by solid lines, show similar characteristics as the density shown in Fig. 2(a). By design,
the constant Re∗

τ cases, indicated by dashed lines, have a constant distribution of Re∗
τ . The two

incompressible cases are chosen such that their Reynolds numbers are either comparable to the
constant Re∗

τ cases or to the freestream value of Re∗
τ of the ideal gas cases.

Table II shows the number of grid points and spatial mesh resolutions for all cases. The spatial
resolutions are evaluated in wall units �x+, �y+, and �z+, or by comparisons with the Kolmogorov
length scale η = [(μ/ρ )3/(ε/ρ )]0.25, where ε is the local dissipation rate of turbulent kinetic energy.
The spatial resolutions are comparable to those used in previous works of DNS [23,43], which
satisfy the �x < 12η, �y < 2η, and �z < 6η, and thus the present numerical grids are sufficiently
fine for LES.

IV. RESULTS AND DISCUSSIONS

First, the spatially developed temperature field of the compressible cases in Table I is verified
through the analyses of the temperature-velocity relations. Second, the cases are analyzed based
on their scaled mean velocity profiles and differences are highlighted. Third, the total shear stress
balance is compared among the cases and the consequence of keeping Re∗

τ constant is investigated.
Fourth, we discuss changes in turbulence structures for all ideal gas and constant Re∗

τ cases, which
provides a clarification for the observation made in the stress balance. Finally, we will suggest a
coupling relation between the turbulent structure changes and the velocity gradient features. In the
following, the turbulent statistics are computed by averaging in time for a time interval of more
than 246δin/u∞ as well as in the homogeneous spanwise direction to ensure convergence of flow
statistics, where f and f̃ denote the Reynolds and Favre averaging quantities where f = f + f ′ and
f = f̃ + f ′′.
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A. Spatially developed temperature field: Temperature-velocity relations

The spatially developed temperature field in compressible flow cases is verified through the
analyses of the temperature-velocity profiles compared with Walz’s equation. Walz’s equation [5]
describes the temperature-velocity relationship as

T

T∞
= T w

T∞
+ Tr − T w

T∞

u

u∞
+ T∞ − Tr

T∞

(
u

u∞

)2

, (15)

where Tr is the recovery temperature shown in Eq. (13). This relation is obtained from the total
energy equation in Eq. (7). By assuming the inner layer of developed equilibrium boundary layers
(i.e., parallel flow and no pressure gradient assumptions), the averaged energy equation becomes

d

dy

[
(μ + μt )u

du

dy
+ Cp

(
μ

Pr
+ μt

Prt

)
dT

dy

]
= 0, (16)

where μt is the RANS (Reynolds-averaged Navier-Stokes) turbulent viscosity and Prt is the RANS
turbulent Prandtl number. After integrating in the wall-normal direction, one may obtain

μ�u
du

dy
+ Cp

μ�

Pr�
dT

dy
= −qw, (17)

where μ� = μ + μt , Pr� = μ�/(μ/Pr + μt/Prt ), and qw = −Cp(μ�
w/Pr�w )(dT w/dy)|w. Further, us-

ing du2/dy = 2u du/dy and assuming Pr� and Cp constant, it can be shown that

d
(

1
2 Pr�u2

)
dy

+ d (CpT )

dy
= −Pr�

μ�
qw. (18)

The additional assumption to obtain Walz’s equation is the total stress balance obtained by the
streamwise momentum equation in Eq. (6) under the equilibrium boundary layer assumption as

τw ≈ μ
du

dy
− ρũ′′v′′ ≈ (μ + μt )

du

dy
= μ� du

dy
, (19)

and thus Eq. (18) can be rewritten as

d
(

1
2 Pr�u2

)
dy

+ d (CpT )

dy
= −Pr�qw

τw

du

dy
. (20)

Equation (20) is again integrated in a wall-normal direction by assuming the Pr�qw/τw constant

1

2
Pr�u2 + Cp(T − T w ) = −Pr�qw

τw

u. (21)

By assuming adiabatic wall conditions (i.e., qw = 0) and defining the T and u as the freestream
values (T∞ and u∞), here the relation between the wall temperature and freestream velocity can be
obtained as

T w = T∞ + 1

2

Pr�

Cp
u2

∞ = Tr [if Pr� = r = (0.9)]. (22)

The T w in Eq. (22) is equivalent with the recovery temperature Tr shown in Eq. (13) when the
mixed Prandtl number Pr� is given as a constant recovery coefficient (=0.9). Subtracting Eq. (22)
from Eq. (21) and transforming Eq. (22), the following equations can be obtained:

Pr�qw

Cpτw

= T w − Tr

u∞
, −1

2

Pr�

Cp
= T∞ − Tr

u2∞
. (23)
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FIG. 4. Temperature-velocity profiles compared with Walz’s equation. (a) Ideal gas cases; (b) constant Re∗
τ

cases. Solid lines and dashed lines as in Table I. Dashed-dotted lines, the profiles at x/δin = 10, 20; dotted
lines, the profiles at x/δin = 28, 38. Black solid, dashed-dotted, and dotted lines overlap each other. Circles,
Walz’s equation; triangles, Zhang’s equation [15]. Circles and triangles almost overlap each other.

Finally, Walz’s equation (15) may be derived by substituting the relations Eq. (23) to Eq. (21).
Figure 4 shows the comparisons between the temperature-velocity profiles obtained by the present
LES and Walz’s equation. It is observed that all the present LES at u/u∞ � 0.5 converge to Walz’s
equation by increasing the streamwise location x, whereas the AD and ADcRe cases show a good
agreement throughout the boundary layers (a similar result is also found in Ref. [34]). This suggests
that the temperature field is sufficiently developed by the present LES at x/δin � 28. We note that,
in the heated (red lines) and cooled (blue lines) wall cases, there are clear deviations between the
present data and Walz’s equation in the velocity range corresponding to the outer boundary layer
regions, u/u∞ � 0.6. In prior studies [34,44], similar discrepancies are also observed for wall-
heated or -cooled turbulent boundary layers, and they concluded that the discrepancies originate
from the step change of wall temperature. In this study, we revisit the discrepancies in the outer layer
of the boundary layers with heated/cooled walls by analyzing the temperature-velocity equation in
the following.

To understand the discrepancies from Walz’s equation observed by the cases with wall heat
transfer and also the good match throughout the boundary layers between the adiabatic cases and
Walz’s equation, we examine the two main assumptions used in the derivations of Walz’s equation,
i.e., equilibrium boundary assumptions (parallel flow and no pressure gradient assumptions) in the
total energy equation in Eq. (16) and the momentum equation in Eq. (19). Assuming a statistically
steady 2D flow (such as flat-plate boundary layers) and averaging in time and the homogeneous
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spanwise direction, integrating the total energy equation in the wall-normal direction gives

�����
∫ y

0

∂ (ρE )

∂t
= −

∫ y

0

∂

∂x j
{ρEuj + pu j + q j − uiτi j}dy = 0, (24)

and then

−
∫ y

0

∂

∂x j

{
1

2
ρuiuiu j + ρu jh + q j − uiτi j

}
dy = 0, (25)

where the enthalpy h = e + p/ρ = γ p/ρ(γ − 1). Taking the Reynolds and Favre decomposition
and dividing into the wall-normal (y) and streamwise (x) components, Eq. (25) is represented as

−1

2
ρũiũĩv − 1

2
ρũ′′

i u′′
i ṽ − ρũiũ′′

i v
′′ − 1

2
ρ ˜u′′

i u′′
i v

′′

− ρṽh̃ − ρṽ′′h′′ − qy + qw + ũiτ iy + u′′
i τ iy + u′′

i τ
′
iy

−
∫ y

0

∂

∂x

{
1

2
ρũiũiũ + 1

2
ρũ′′

i u′′
i ũ + ρũiũ′′

i u′′ + 1

2
ρ ˜u′′

i u′′
i u′′

+ ρ ũ̃h + ρũ′′h′′ + qx − ũiτ ix − u′′
i τ ix − u′′

i τ
′
ix

}
dy = 0. (26)

Finally, the wall-normal integrated total energy equation can be arranged as

ũμ
du

dy︸ ︷︷ ︸
term 1

−ρũũ′′v′′︸ ︷︷ ︸
term 2

+Cp
μ

Pr

dT

dy︸ ︷︷ ︸
term 3

+ qw︸︷︷︸
term 4

−ρṽ′′h′′︸ ︷︷ ︸
term 5

+ nonequilibrium terms︸ ︷︷ ︸
term 6

= 0, (27)

where τ xy � μ(du/dy), qy = −Cp(μ/Pr)(dT /dy), and the term 6,

nonequilibrium terms = −1

2
ρũiũĩv − 1

2
ρũ′′

i u′′
i ṽ − ρṽṽ′′v′′ − 1

2
ρ ˜u′′

i u′′
i v

′′

− ρṽh̃ + ṽτ yy + u′′
i τ iy + u′′

i τ
′
iy

−
∫ y

0

∂

∂x

{
1

2
ρũiũiũ + 1

2
ρũ′′

i u′′
i ũ + ρũiũ′′

i u′′ + 1

2
ρ ˜u′′

i u′′
i u′′

+ ρ ũ̃h + ρũ′′h′′ + qx − ũiτ ix − u′′
i τ ix − u′′

i τ
′
ix

}
dy. (28)

The first five terms in Eq. (27) correspond to the integrated total energy equation under the
equilibrium boundary layer assumptions, which are the same as Eq. (16), the origin of the derivation
of Walz’s equation. This indicates that the nonequilibrium terms in Eq. (28) are neglected in Walz’s
equation. We note that the nonequilibrium terms usually become dominant in outer boundary layer
regions. First, we address the reason for the agreement between the adiabatic cases and Walz’s
equation throughout the boundary layers, although the nonequilibrium terms (which are neglected
in the derivation of Walz’s equation) are not negligible in the outer layer of the boundary layers.
Figure 5 shows the profiles of each term of the integrated total energy equation in Eq. (27). The sum
of the first five terms is represented as black lines. If the sum (black line in Fig. 5) is zero, it indicates
that Eq. (16), which is the basis of Walz’s equation, is satisfied. In the adiabatic cases, the viscous
diffusion (term 1, red lines) and the local heat flux (term 3, blue lines), and the turbulent diffusion
(term 2, orange lines) and the turbulent heat flux (term 5, cyan lines) are balanced, respectively.
As for the nonequilibrium terms (term 6, gray dashed lines), although each of the terms shown in
Eq. (28) has a non-negligible value in the outer-layer regions (although not shown individually in the
figure), they almost cancel each other out. As a result, the sum of the nonequilibrium terms becomes
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FIG. 5. Profiles of the components of the integrated energy equation shown in Eq. (27). (a) AD, (b) ADcRe,
(c) HE, (d) HEcRe, (e) CO, and (f) COcRe. Red lines, term 1; orange lines, term 2; blue lines, term 3; green
lines, term 4; cyan lines, term 5; black lines, sum from term 1 to term 5; gray dashed lines, term 6.

almost zero throughout the adiabatic boundary layers, which means that the assumption of Eq. (16)
is satisfied even in the outer layer of the boundary layers. Furthermore, related to the equilibrium
assumption for the momentum equation, when the wall heat flux qw is zero (i.e., T w ≈ Tr), the
right-hand side of Eq. (20), which includes the wall shear stress τw approximated by the momentum
balance Eq. (19) for equilibrium boundary layers, becomes zero. Therefore, the induced errors from
the equilibrium boundary layer assumption in the total shear stress balance equation do not need
to be included in the adiabatic cases. As a result, the adiabatic cases collapse with Walz’s equation
throughout the boundary layers.

On the other hand, for the heated and cooled cases, the wall heat flux is either positive or negative,
and a balance of the viscous diffusion, local heat flux, turbulent diffusion, and the turbulent heat
flux cannot be achieved as shown in Fig. 5. In the outer-layer region, the sum of the first five terms
in Eq. (28) converges to the wall heat flux, because these terms, except for the wall heat flux,
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become zero at the outer layer of the boundary layer. Furthermore, in the outer-layer region, the
heated and cooled cases do not satisfy the equilibrium boundary layer assumptions and thus the
total shear stress balance Eq. (19) is not valid (as will be shown in Fig. 7). The results indicate that
the equilibrium boundary layer assumptions in Eqs. (16) and (19), and thus the results of Walz’s
equation, cannot be applied in the outer boundary layer regions for the heated and cooled cases. The
analyses indicate that Walz’s equation, and similarly formulated temperature-velocity relationships
[4,15], is not applicable to represent the correct temperature-velocity relations for the cases with
wall heat transfer in outer boundary layer regions, since the effects of the nonequilibrium terms
in the outer-layer region [i.e., the terms shown in Eq. (28)] cannot be neglected. Note that a more
detailed analysis of the nonequilibrium terms is shown in Appendix A.

To conclude, the spatially developed temperature and velocity fields obtained by the present LES
are sufficiently developed at x/δin � 28. The discrepancies between the LES and Walz’s equation in
the outer layer are not due to the insufficient streamwise length from the heated/cooled switching
point but due to the nonequilibrium boundary layer’s effects that are neglected in Walz’s equation.
On the other hand, the good agreement in the adiabatic cases throughout the boundary layers is
that the nonequilibrium effects are canceled out with each other, resulting in the validity of Walz’s
equation throughout the boundary layers.

B. Mean velocity profiles

Figure 6 shows several mean-velocity scales, namely u/u∞, u+, u+
vD, and u∗, which are defined

as

u+ = u

uτ

, (29)

u+
vD =

∫ u+

0

√
ρ

ρw

du+, (30)

u∗ =
∫ u+

vD

0

(
1 + y

Re∗
τ

d Re∗
τ

dy

)
du+

vD =
∫ u+

0

(
ρ

ρw

)1/2(
1 + 1

2

y

ρ

dρ

dy
− y

μ

dμ

dy

)
du+, (31)

where uτ = √
τw/ρw is the friction velocity, y is the wall-normal coordinate, and Re∗

τ is the semi-
local Reynolds number defined in Eq. (11). Each of these transformations is capable of collapsing
mean velocity profiles for certain cases, e.g., u+ for isothermal (incompressible) flows, u+

vD for
adiabatic compressible flows, and u∗ for compressible flows involving wall heat transfer [22,23],
while none of these mean-velocity scales collapse all the cases to the incompressible law of the wall.
Note that u∗ can be given with two expressions as shown in Eq. (31): the first expression is based
on the function of the semi-local Reynolds number as proposed by Patel et al. [23] and the second
expression was proposed by Trettel and Larsson [22]. While both expressions are mathematically
equivalent, we will use the first expression in our later discussions. Also, we note that u+

vD and u∗

are equivalent for the constant Re∗
τ cases, since d Re∗

τ /dy = 0, and also the semi-local wall distance
y∗ = √

ρ
√

τwy/μ is identical to the wall coordinate y+ = √
ρw

√
τwy/μw, because of Eq. (12).

As expected, the u/u∞ velocity profiles show different trends with respect to changes in wall
temperature for the ideal gas and the constant Re∗

τ cases in Figs. 6(a) and 6(b). The ideal gas
cases show differences mainly for y/δ99 < 0.1, where it can be seen that the higher the wall
temperature, the lower the near-wall velocity gradients. On the other hand, the constant Re∗

τ cases
show larger differences around y/δ99 ≈ 0.2, where the highest velocity is obtained for the heated
case. Compared to the incompressible velocity profiles, all the cases show a higher velocity for
y/δ99 > 0.1. Qualitatively similar observations are also reported in Ref. [45]. The u+ profiles are
shown in Fig. 6(c). Almost all the compressible cases show large deviations from the incompressible
law of the wall, and the trends are similar for the cases with the same wall temperature; e.g., the HE
and HEcRe case are below the incompressible law of the wall. The van Driest transformed velocity
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FIG. 6. Distributions of streamwise mean-velocity u. (a), (b) Mean velocity normalized by the freestream
value [(a) ideal gas cases; (b) constant Re∗

τ cases], (c) mean velocity normalized by the friction velocity,
(d) van Driest transformed velocity, and (e), (f) transformed velocity based on semi-local scaling [22,23]
[(e) ideal gas cases; (f) constant Re∗

τ cases]. Gray dotted lines, incompressible law of the wall [y+ = u+ and
y+ = ln(u+)/0.41 + 5.2]; other lines, as in Table I.

u+
vD is shown in Fig. 6(d), which is known to collapse adiabatic compressible boundary layer flows

with ideal gases to the incompressible law of the wall. However, both the heated and cooled case
show disagreements with the adiabatic case, which clearly suggests that the wall heat flux must be
considered for the van Driest velocity scaling [7,16,29]. Figures 6(e) and 6(f) show the velocity
transformation u∗ proposed by Trettel and Larsson [22] and Patel et al. [23]. Figure 6(e) shows
small deviations among the three ideal gas cases compared with u+ in Fig. 6(c) or u+

vD in Fig. 6(d),
although there is a slight offset in the log-layer regions, which is larger in the heated case and
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smaller in the cooled case. Similar tendencies for isothermal boundary layer cases are also observed
in other work [46]. On the other hand, the constant Re∗

τ cases are in good agreement with each
other from the wall to the log layer, but again with a slight log-law offset, shown in Fig. 6(f). Also,
some deviations are observed in the wake region between the compressible and incompressible
cases, which are larger in the compressible cases and smaller in the incompressible one. The reason
behind the collapsed mean velocity in Fig. 6(f) and the discussions on how the constant semi-local
Reynolds number affects the transformed mean-velocity profiles are provided in Appendix B.

In summary, two conclusions can be made. First, the van Driest velocity transformation appears
to overlap with the incompressible law of the wall, only in the limit of ideal gas flows over adiabatic
walls. For nonideal gases, such as for the constant Re∗

τ cases with an adiabatic wall [Fig. 6(f)] or
for ideal gas flows with wall heat transfer [Fig. 6(d)], no collapse with the incompressible law is
observed. Second, the u∗ transformation is capable of collapsing the velocity profiles, irrespective
of adiabatic, heated or cooled walls, or ideal and nonideal gases. For the ideal gas cases, the
deviations in the viscous sublayer and the log layer become smaller compared with the van Driest
transformation; however, the observed deviations have a significant physical meaning which is
related to changes in near-wall turbulence structures, as we will discuss later. Moreover, a log-law
offset is observed for all u∗ profiles with respect to the incompressible case [e.g., see colored dashed
lines and gray dot-dot-dashed line in Fig. 6(f)]. This suggests a Mach number effect, which must be
taken into account; see, for example, work by Zhang et al. [21].

C. Relation between transformed velocity u∗ and viscous stress

We saw in Sec. IV B that u∗ shows a slightly higher log law for all the cases if compared to the
incompressible cases. In this section, the derivation of the velocity transformation u∗ is summarized
in detail, and a clear connection between u∗ and the viscous stress is established.

The u∗ velocity transformation is derived from the viscous stress τ xy/τw, based on the observa-
tion that τ xy/τw collapses for turbulent channel flows with arbitrary density and dynamic viscosity
variations [23]. The viscous stress is defined as a product of dynamic viscosity and streamwise
velocity gradient as

τ xy

τw

=
μ du

dy

τw

≈
μ du

dy

τw

. (32)

Equation (32) can be replaced with a formulation used semi-local Reynolds number Re∗
τ and

transformed velocity u+
vD as

μ du
dy

τw

= δ99

Reτ

μ

μw

du+

dy
= δ99

Re∗
τ

du+
vD

dy
. (33)

Using the chain rule, the velocity gradient in Eq. (33) can be expanded as du+
vD/dy =

(dy∗/dy)du+
vD/dy∗. Thus we can rewrite Eq. (33) as

δ99

Re∗
τ

du+
vD

dy
= δ99

Re∗
τ

dy∗

dy

du+
vD

dy∗ . (34)

Here, the semi-local length scale y∗ = Re∗
τ y/δ99, and thus dy∗/dy can be expanded by using the

Leibniz rule as

δ99

Re∗
τ

dy∗

dy

du+
vD

dy∗ = δ99

Re∗
τ

(
dy

dy

Re∗
τ

δ99
+ d Re∗

τ

dy

y

δ99

)
du+

vD

dy∗ . (35)
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Summarizing the above equations [from Eq. (32) to Eq. (35)], a relationship between the viscous
stress and the formulation of u∗ is shown as

τ xy

τw

=
μ du

dy

τw

≈
μ du

dy

τw

=
(

1 + y

Re∗
τ

d Re∗
τ

dy

)
du+

vD

dy∗ = du∗

dy∗ . (36)

After all, transformed velocity u∗ can be approximated as

u∗ ≈
∫ y∗

0

τ xy

τw

dy∗, (37)

and Eq. (37) suggests that the viscous stress profile affects the disagreement in u∗ directly. In the
next subsection, the viscous stress will be shown with the streamwise total shear stress balance,
which explains the log-law offset of u∗ in Fig. 6.

D. Streamwise momentum balance

For a developing turbulent boundary layer flow, the streamwise stress balance equation can be
written as

−
∫ y

0

(
d p

dx

)
dy −

∫ y

0

(
ρu

∂ ũ

∂x
+ ρv

∂ ũ

∂y

)
dy − ρũ′′v′′ + τ xy ≈ τw, (38)

where the terms from left to right correspond to the pressure gradient, the convection, the Reynolds
shear stress, and the viscous stress. We now investigate this stress balance equation to understand the
differences between the ideal gas and constant Re∗

τ cases more clearly. Figure 7 shows the profiles
of each term in Eq. (38), normalized by the total shear stress τw. Figures 7(a) and 7(b) show the
viscous stress profiles, and some small deviations among the ideal gas cases can be observed in the
left figure. On the other hand, in the right figure for the constant Re∗

τ cases, a very good agreement
among the compressible cases is seen, but with a slight offset compared to the incompressible
case, similar to what is observed for the transformed velocity u∗ in Fig. 6(f). Also, the primary
differences of the viscous stress profiles for the ideal gas cases are observed at y∗ � 100. Therefore,
the discussions hereafter are focused on the range of y∗ � 100.

In Figs. 7(c) and 7(d), the pressure term shows very small contributions (for y∗ � 100) for all the
cases, which suggests that it can be ignored in the stress balance for all the present cases. Also, for
the convective terms in Figs. 7(e) and 7(f), all of the compressible cases show a comparable value
to the incompressible case (i.e., around 0.1 or less), which can be considered as negligible for the
inner-layer stress balance. In contrast to the pressure and convection terms, the Reynolds shear stress
term, shown in Figs. 7(g) and 7(h), has a dominant contribution in the inner layer for all the cases.
The viscous stress and the Reynolds stress balance each other in the viscous- and log-layer regions
given the equilibrium boundary layer assumption, as Eq. (19). The variations in the Reynolds stress
profiles, for example, among the three ideal gas cases in Fig. 7(e), or between constant Re∗

τ and
incompressible cases in Fig. 7(f), are directly connected to the variations in the viscous stress profiles
shown in Figs. 7(a) and 7(b). Judging from this similar behavior of the Reynolds and viscous stress
profiles, the Reynolds stresses are thus related with the viscous stresses and affect the disagreement
of the transformed velocity u∗ profiles. The difference in the Reynolds stress profiles indicates the
change of near-wall turbulent structures, which is considered to be caused by the changes in the
semi-local Reynolds number. Therefore, the turbulent physics corresponding to the stress balance
changes will be analyzed in Sec. IV E.

E. Near-wall turbulent structures

The Reynolds stress, discussed in Sec. IV D, is a result of the turbulent physics in boundary
layers, and changes in Reynolds stress indicate directly some form of changes in near-wall turbulent

124603-15



RYO HIRAI, RENE PECNIK, AND SOSHI KAWAI

FIG. 7. Wall-normal distributions of each term in the streamwise stress balance equation (38). (a), (b) Vis-
cous term; (c), (d) pressure term; (e), (f) convective term; (g), (h) Reynolds shear stress term. Left column,
ideal gas cases; right column, constant Re∗

τ cases. Lines as in Table I.
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FIG. 8. Instantaneous streamwise velocity fluctuations
√

ρu′′/
√

τw on (x, z) plane at y∗ � 15 using x-z
coordinates. White boxes with the size of Lx∗ = 3500 and Lz∗ = 1000, where Lx∗ = √

ρ
√

τwLx/μ and Lz∗ =√
ρ
√

τwLz/μ are semi-local inner-layer length scales. Left column, ideal gas cases; right column, constant Re∗
τ

cases. (a) AD, (b) ADcRe, (c) HE, (d) HEcRe, (e) CO, and (f) COcRe.

structures. Because of this, we now discuss near-wall turbulent structures for all the compressible
cases to quantify the influences of thermophysical property variations.

Figure 8 shows the instantaneous streamwise velocity fluctuations at y∗ � 15 to give an im-
pression of the near-wall turbulent structures. Near-wall, low-speed streaks and high-speed streaks
are visualized as black and white streamwisely elongated structures [47]. The ideal gas cases (left
column) indicate larger turbulent length scales for the heated case [Fig. 8(c)], while they are smaller
for the cooled one [Fig. 8(e)], if compared to the simulation with the adiabatic boundary condition
[Fig. 8(a)]. To some extent, a similar behavior can be seen for the constant Re∗

τ cases (right column)
in Figs. 8(b), 8(d), and 8(f), which show the quasiadiabatic, heated, and cooled cases, respectively.
It is important to note that the turbulent structures in Fig. 8 are plotted as a function of outer-layer
length scales in relation to the boundary layer thickness δin. Therefore, the apparent changes in size
of the turbulent structures can be associated to changes in local Reynolds number at the wall-parallel
planes displayed in these figures.

To substantiate the previous statement, Fig. 9 shows the turbulent structures as a function of
the inner-layer length scale defined by y∗. Note that the domains of the contour plots in Fig. 9
correspond to the white boxes shown in Fig. 8, which all have the same size in terms of semi-
local (inner-layer) length scales l∗

v = μ/(
√

ρ
√

τw ). Regarding the ideal gas cases (left column), the
heated case [Fig. 9(c)] shows smaller structures and the cooled case [Fig. 9(e)] shows larger ones,
opposite to what has been observed in Fig. 8. Note that the tendency of the ideal gas cases shown
in Fig. 9 is similar to the results in Ref. [7] that are obtained with several wall temperature cases
having an almost same value of the friction Reynolds number. On the other hand, the constant Re∗

τ

cases (right column) seem to have the same turbulent length scales independent of adiabatic, heated,
and cooled walls. Further, the differences between the ideal gas cases and the constant Re∗

τ cases in
Fig. 9 are consistent with the Reynolds stress profiles shown in Fig. 7: a larger difference in ideal gas
cases and a good agreement among the constant Re∗

τ cases. Quantitative comparisons of turbulent
structures are shown in Fig. 10 as spanwise correlations. Figures 10(a) and 10(b) correspond to
Figs. 8 and 9, respectively, and the changes in turbulent length scale between the different wall
temperature cases are consistent between the instantaneous and statistical results. In Fig. 10(a),
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FIG. 9. Instantaneous streamwise velocity fluctuations
√

ρu′′/
√

τw on (x, z) plane at y∗ � 15 using x∗-z∗

coordinates (extracted white box as in Fig. 8). Left column, ideal gas cases; right column, constant Re∗
τ cases.

(a) AD, (b) ADcRe, (c) HE, (d) HEcRe, (e) CO, and (f) COcRe.

which is scaled by the outer-layer length δ99, a distance to a zero-correlation point becomes larger in
the heated cases and smaller in the cooled cases. On the other hand, in Fig. 10(b), which is scaled by
semi-local length l∗

v , the zero-correlation points become closer to each other, while the length scale
of the cooled ideal gas case becomes larger and the heated ideal gas case becomes smaller, opposite
to Fig. 10(a). In the constant Re∗

τ cases, the correlation profiles collapse well with each other in
Fig. 10(b), just as shown in Fig. 9. The results shown in Figs. 9 and 10(b) indicate the importance of
the semi-local Reynolds number on the scaling turbulent structures, regardless of the distributions
of thermodynamic properties, such as temperature, density, or viscosity, between the cases. We

FIG. 10. Distributions of two-point correlations of streamwise velocity at y∗ ≈ 15. (a) Outer-layer length
scale; (b) semi-local (inner-layer) length scale. Lines as in Table I. Black and blue dashed lines almost overlap
each other in (b).
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FIG. 11. Joint probability density function consisting of
√

ρu′′/
√

τw and
√

ρv′′/
√

τw at y∗ � 15. (a) HE
and (b) CO, compared with AD. (c) HEcRe and (d) COcRe, compared with ADcRe. Black, quasiadiabatic;
red, heated; blue, cooled.

note that similar observations on the scaling of turbulent statistics and structures with respect to
semi-local Reynolds number distributions are reported in prior studies. For example, Ref. [32] shows
that the turbulent statistics can also be collapsed between cases with similar semi-local Reynolds
number distributions in the wall-normal direction, not only for the cases with the constant semi-local
Reynolds number. This clearly shows the appropriateness of the semi-local Reynolds number to
characterize variable property flows.

To indicate the differences in the near-wall turbulent structures more clearly, weighted joint
probability density functions (JPDF) consisting of streamwise and wall-normal velocity fluctuations
(
√

ρu′′/
√

τw and
√

ρv′′/
√

τw) at y∗ � 15 are shown in Fig. 11. The quadrant analysis decomposes
the Reynolds shear stress into four events [48]: quadrant 1 (Q1) events have u′′ > 0 and v′′ > 0,
Q2 events (called “ejection”) have u′′ < 0 and v′′ > 0, Q3 events have u′′ < 0 and v′′ < 0, and Q4
events (called “sweep”) have u′′ > 0 and v′′ < 0. Near-wall low-speed and high-speed streaks are
associated with each Q2 ejection and Q4 sweep events, respectively. In the upper figures, which
show the ideal gas cases, the adiabatic case (black contour lines) is compared to the heated (red
contour lines) and cooled (blue contour lines) case, respectively. As can be seen, a decrease in√

ρu′′/
√

τw and an increase in
√

ρv′′/
√

τw are observed in the Q2 and Q4 events for the heated
case, while the opposite occurs for the cooled case. On the other hand, much smaller differences of
the turbulent structures are seen for the constant Re∗

τ cases. The changes in JPDF in the ideal gas
cases with heated/cooled walls and the agreement of JPDF obtained by the constant Re∗

τ cases
are consistent with the observations for the turbulent length scale of the streaks in Fig. 9: the
larger differences in the ideal gas cases and the similar ones in the constant Re∗

τ cases. Moreover,
notable changes in the JPDF distributions occur in the Q2 ejection events for the ideal gas cases.
Therefore, we focus on the Q2 ejection events and investigate the turbulent structures in more
detail in the following discussion. The coherent turbulent structures are time and space dependent
unsteady phenomena so that the conditional averaging process for capturing the instantaneous
physics is needed to evaluate the features of the structures [49]. The conditionally averaged ejection
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FIG. 12. Conditional averaged flow fields taken as identified by the Q2 conditions along y∗ � 15 (black
solid lines). (a) AD, (b) ADcRe, (c) HE, (d) HEcRe, (e) CO, and (f) COcRe. Black solid lines, y∗ � 15; black
dashed lines, spanwise center of the averaged domain.

phenomena, which are the dominant turbulent motions’ near-wall regions of turbulent boundary
layers, are obtained by taking conditional averages of streamwise velocity fluctuations, as identified
by the Q2 (u′′ < 0 and v′′ > 0) conditions. The Q2 events are detected spanwisely along y∗ � 15
(black solid lines in Fig. 12), and the size of the averaging window for capturing low-speed streaks
is 8 < y∗ < 50 in wall-normal and Lz∗ = 80 in spanwise direction, respectively. Note that the hat

·̂ denotes time and spatial conditional averaged values. The center regions of
√̂

ρu′′/
√

τw, which
correspond to low-speed streak, are shown in Fig. 12. Clear differences can be seen. For the ideal
gas cases (left column), stronger negative velocity fluctuations are observed for the cooled case,
which is also confirmed in Fig. 11. The structures of the low-speed streak may be identified in
Fig. 12. The low-speed streak is elongated in the wall-normal direction for the heated case and in
the spanwise direction for the cooled case when compared to the adiabatic case. On the other hand,
in the constant Re∗

τ cases (right column), both the strength of the negative velocity fluctuations and
the structures are similar among the cases, and the characteristics are consistent with the results in
Figs. 9 and 11. We note that the differences in mean wall-normal velocity distributions are observed
in the same y∗ range of Fig. 12, which is similar to the vertical changes of conditionally averaged
turbulent structures among the different wall temperature cases: the greater the ejection height, the
larger the mean wall-normal velocity. This indicates that the generation of the wall-normal velocity
causes the vertical changes of turbulent structures.

Finally, the conditional-averaged velocity distributions and their wall-normal derivatives are
shown in Fig. 13. The line plots are extracted from the black dashed lines in Fig. 12. In Fig. 13(a),
the streamwise velocity fluctuations have a peak at y∗ � 15 in all the cases, which are correspond-
ing to the low-speed streak shown in the center of Fig. 12. Figures 13(b) and 13(c) show the
conditional-averaged velocity and its wall-normal derivative, respectively. The larger mean velocity
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FIG. 13. Distributions of conditional averaged flow fields (profiles along dashed lines in Fig. 12).

(a) Streamwise velocity fluctuations
√̂

ρu′′/
√

τw , (b) streamwise velocity û/uτ , (c) wall-normal derivative of
streamwise velocity d (̂u/uτ )/dy∗, and (d) second derivative of streamwise velocity d2 (̂u/uτ )/dy∗2. Lines as in
Table I.

and wall-normal derivative are obtained by the cooled cases, and lower distributions are obtained by
the heated cases, in both the ideal gas and constant Re∗

τ cases. The observed relationship between the
wall-normal derivatives and the streamwise velocity fluctuations around y∗ � 15 (i.e., the larger the
velocity gradient is, the stronger the velocity fluctuations occur) qualitatively follows a conventional
gradient-diffusion hypothesis used frequently for turbulent diffusion modeling [50]. Also, compared
with the ideal gas cases, the constant Re∗

τ cases show smaller deviations in Figs. 13(a), 13(b)
and 13(c). The differences between the heated and cooled ideal gas cases and smaller deviations
among the constant Re∗

τ cases are consistent in the results shown in Figs. 9, 11, and 12. Further, the
second derivatives in Fig. 13(d) show a local maximum around y∗ � 15 and approach toward zero,
where the peak of the velocity fluctuations is observed. Based on a streak instability as discussed
in Refs. [51–53], the inflectional velocity distributions are considered to cause strong instabilities
and breakdown of the low-speed streaks, which induce the large velocity fluctuations. To conclude,
the results in Fig. 13 indicate a clear relationship between the velocity fluctuations and the mean
velocity gradients.

V. CONCLUSIONS

In this paper, the effects of the semi-local Reynolds number in wall heated and cooled supersonic
turbulent boundary layers were evaluated from the viewpoints of mean-velocity scaling laws, stress
balance, and turbulent structures. Adiabatic, heated, and cooled wall turbulent boundary layer
simulations have been performed at a Mach number of 2.28. In order to distinguish between Mach
number and semi-local Reynolds number effects, in addition to the cases with the conventional
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dynamic viscosity μ given by Sutherland’s law (i.e., the semi-local Reynolds number Re∗
τ changes

in wall-normal direction), we performed simulations for which the semi-local Reynolds number
is constant in wall-normal direction. This is achieved by setting μ/μw = √

ρ/ρw, whereby the
semi-local Reynolds number is then constant.

One of the noticeable matters in this study is the effects of the semi-local Reynolds number.
Regardless of the wall temperature (i.e., wall heat flux), the constant wall-normal profiles of the
semi-local Reynolds number give a similar turbulent structure, and thus the resultant mean velocity
and stress balance show collapsed profiles. On the other hand, typically, these physical quantities
cannot be collapsed in the ideal gas cases, because of the changes in the semi-local Reynolds
number. The results indicate the importance of the semi-local Reynolds number Re∗

τ rather than
the density or temperature themselves and Re∗

τ is considered to be a similarity parameter for flows
involving thermophysical variations.

For the velocity transformation which was proposed recently by Trettel and Larsson [22]
and Patel et al. [23], the cases with a constant semi-local Reynolds number perfectly col-
lapse on top of each other, compared with the ideal gas cases. However, they have a
log-law offset to the incompressible case, indicating that this is related to a Mach number
effect. Also, regarding the differences in the turbulent structures which affect the mean ve-
locity profiles, the relevance to the velocity gradients is shown in the conditional averaged
field for the ejection events of coherent turbulent structures in the near-wall region. As with
Prandtl’s mixing theory, there is a possibility that the turbulent properties induced by the
changes of the semi-local Reynolds number can be identified and modeled by the velocity
gradients.

Additionally, the verification of the spatially well developed temperature field evaluated with
the temperature-velocity relations (i.e., Walz’s equation) indicates that the analytical temperature-
velocity relation cannot represent the temperature-velocity profiles in the outer layer of boundary
layers, especially for the heated and cooled cases, because of the inapplicability of the equi-
librium boundary layer assumptions that are used in the derivation of the temperature-velocity
equation.
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APPENDIX A: ANALYSIS OF NONEQUILIBRIUM TERMS OF THE INTEGRATED TOTAL
ENERGY EQUATION

The budgets of the nonequilibrium terms in Eq. (28) are shown in Fig. 14, which are classified as

convective terms (streamwise) = −
∫ y

0

∂

∂x

{
1

2
ρũiũiũ + 1

2
ρũ′′

i u′′
i ũ + ρ ũ̃h

}
dy, (A1)

convective terms (wall normal) = −1

2
ρũiũĩv − 1

2
ρũ′′

i u′′
i ṽ − ρṽh̃, (A2)

turbulent diffusion terms (streamwise) = −
∫ y

0

∂

∂x

{
ρũiũ′′

i u′′ + 1

2
ρ ˜u′′

i u′′
i u′′ + ρũ′′h′′

}
dy, (A3)

turbulent diffusion terms (wall normal) = −ρṽṽ′′v′′ − 1

2
ρ ˜u′′

i u′′
i v

′′, (A4)
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FIG. 14. Distributions of the nonequilibrium term components in the integrated total energy equation,
shown in Eqs. (A1) to (A6). (a) AD, (b) ADcRe, (c) HE, (d) HEcRe, (e) CO, and (f) COcRe. Red lines,
convective terms Eqs. (A1) and (A2); blue lines, turbulent diffusion terms Eqs. (A3) and (A4); green lines,
viscous diffusion terms Eqs. (A5) and (A6); gray dashed lines, total nonequilibrium terms Eq. (28). Solid lines,
wall-normal components; dashed lines, streamwise components. Blue and green lines are almost zero.

viscous diffusion and local heat flux terms (streamwise) = −
∫ y

0

∂

∂x
{qx − ũiτ ix − u′′

i τ ix −u′′
i τ

′
ix}dy,

(A5)

viscous diffusion terms (wall normal) = ṽτ yy + u′′
i τ iy + u′′

i τ
′
iy. (A6)

In Fig. 14, the turbulent diffusion (blue lines) and viscous diffusion (and heat flux) terms (green
lines) are negligible, and the convection terms (red lines) are dominant at the outer-layer regions
for all of the cases, although the balances of the streamwise and wall-normal convective terms
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FIG. 15. Distributions of the convective terms Eqs. (A1) and (A2). (a) Ideal gas cases; (b) constant Re∗
τ

cases. Solid lines, wall-normal components; dashed lines, streamwise components. Black, quasiadiabatic; red,
heated; blue, cooled.

are different between the wall temperature cases. The two profiles almost balance each other in the
adiabatic cases; on the other hand, the streamwise/wall-normal components become more dominant
in the heated/cooled cases. As a result, the total nonequilibrium terms (gray dashed lines) do not
become zero at outer-layer regions of wall heated and cooled cases. Furthermore, Fig. 15 shows
a comparison of the convective terms, where it can be seen that for the ideal gas cases (a) the
wall-normal components deviate from each other above y∗ � 100, while the streamwise components
nearly collapse. It is indicated that the differences in the wall-normal convective components mainly
affect the changes of the outer-layer nonequilibrium terms in the ideal gas cases. On the other
hand, in Fig. 15(b) of the constant Re∗

τ cases, both streamwise and wall-normal components change
between the different wall temperature cases: increase/decrease of the wall-normal components
and decrease/increase of the streamwise ones in the heated/cooled case. Figure 16 shows the
distributions of the wall-normal velocity, which is one of the variables contained in the wall-normal
convective components. In the ideal gas cases, the heated case shows the largest and the cooled case
the smallest values, which are consistent with the tendencies of the wall-normal convective compo-
nents shown in Fig. 15(a). This suggests that for the ideal gas cases the differences in wall-normal
convective components (i.e., differences in the total nonequilibrium terms in outer-layer regions)
are caused by an increase or decrease of the wall-normal velocity. Similarly, also the constant Re∗

τ

FIG. 16. Distributions of the mean wall-normal velocity normalized by the friction velocity. (a) Ideal gas
cases; (b) constant Re∗

τ cases. Lines as in Table I.
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cases show deviations of the wall-normal velocity distributions. However, the differences cannot
be concluded as the dominant cause of the changes in the total nonequilibrium terms, because the
streamwise convective components also contribute to the changes.

APPENDIX B: EFFECTS OF CONSTANT SEMI-LOCAL REYNOLDS NUMBER
ON MEAN-VELOCITY SCALING

As shown in Fig. 6(f), for the constant semi-local Reynolds number cases, the van Driest
transformed velocity profiles collapse well at the different wall temperature conditions. In this
section, we investigate the reason behind the collapsed mean velocity and discuss how the constant
semi-local Reynolds number affects the transformed mean-velocity profiles.

The van Driest transformation defined in Eq. (30) can be derived from the equilibrium inner-layer
stress balance

τ xy − ρũ′′v′′ = τw. (B1)

In log-layer regions, the viscous stress τ xy is negligible and the Reynolds stress ρũ′′v′′ may be
modeled by Prandtl’s mixing length theory. The stress balance in Eq. (B1) now can be rewritten as

−ρũ′′v′′ ≈ μt
du

dy
= ρ

(
κy

du

dy

)2

= τw, (B2)

where κ (=4.1) is the Kármán constant and μt = ρ(κy)2(du/dy) is the turbulent eddy viscosity
defined in Prandtl’s mixing length theory. Equation (B2) may be written by the wall scaled quantities
u+ = u/uτ = u/

√
τw/ρw and y+ = y/Lτ = √

ρw

√
τwy/μw as

ρ

(
κy

du

dy

)2

= ρ

(
κy+ du+

dy+ uτ

)2

= τw

ρ

ρw

(
κy+ du+

dy+

)2

= τw. (B3)

Therefore, √
ρ

ρw

du+

dy+ = 1

κy+ . (B4)

Finally, integrating Eq. (B4) gives the logarithmic law of the wall with the definition of the van
Driest transformed velocity u+

vD as

u+
vD ≡

∫ u+

0

√
ρ

ρw

du+ = 1

κ
ln y+ + B, (B5)

where B is a constant. Equation (B5) suggests that the van Driest transformed velocity u+
vD follows

the law of the wall in the log-layer regions.
On the other hand, another velocity transformation may be derived for the viscous sublayer. In

the near-wall viscous dominated region, the Reynolds stress ρũ′′v′′ is negligible, so that the stress
balance in Eq. (B1) may be written as

τ xy ≈ μ
du

dy
= τw. (B6)

Similar to the formulation in Eq. (B3), the stress balance in Eq. (B6) can be written by using the
wall scaled quantities u+ and y+ as

μ
du

dy
= μ

du+

dy+
uτ

Lτ

= τw

μ

μw

du+

dy+ = τw. (B7)
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FIG. 17. Distributions of the transformed streamwise mean-velocity u+
vs. (a) Ideal gas cases; (b) constant

Re∗
τ cases. Gray dotted lines, incompressible law of the wall [y+ = u+ and y+ = ln(u+)/0.41 + 5.2]; other

lines, as in Table I.

Therefore, the linear law of the wall in the viscous sublayer is derived for the transformed velocity
u+

vs as

u+
vs ≡

∫ u+

0

μ

μw

du+ = y+. (B8)

We note that the transformed velocity u+
vs has been derived by Carvin et al. [54]. Equation (B8)

suggests that the transformed velocity u+
vs follows the law of the wall in the viscous sublayer.

In the constant Re∗
τ cases, the condition between the dynamic viscosity and density in Eq. (12)

is imposed for ensuring the constant distributions of the semi-local Reynolds number. By imposing
Eq. (12), Eqs. (B5) and (B8) yield

u+
vD = u+

vs

(
∵

√
ρ

ρw

= μ

μw

)
, (B9)

which means that the transformed velocity u+
vD and also u+

vs satisfy the law of the wall throughout
the viscous sublayer and logarithmic region. Figure 17 shows the distributions of the transformed
velocity u+

vs. In the ideal gas cases of Fig. 17(a), the profiles agree well to the law of the wall in
the viscous sublayer, although there are large discrepancies in the log region. On the other hand,
all the compressible cases collapse each other from the wall to the log layer in the constant Re∗

τ

cases as shown in Fig. 17(b). The collapsed profiles throughout the viscous sublayer and log layer
in Fig. 17(b) indicate the validity of the analysis given in Eq. (B9), where u+

vs becomes equivalent to
u+

vD when Eq. (12) is imposed. However, in the constant Re∗
τ cases, a log-law offset is observed for

the compressible flows (also reported in Sec. IV B). The offset is equivalent to the differences in a
constant of integration B, which is not guaranteed to be the same value of the incompressible case
(≈5.2), even though Eq. (B9) is held.

As the above discussions, Eq. (B9) explains why the van Driest transformed velocity collapses
each other from the wall to the log layer in the constant Re∗

τ cases. However, we stress that Eq. (B9)
holds only when a constant distribution of the semi-local Reynolds number is imposed. On the other
hand, the prior study [32] shows that the mean velocity and turbulent statistics agree well between
the cases with similar semi-local Reynolds number distributions, including similar wall-normal
variations. The prior study indicates that the distribution of the semi-local Reynolds number is a
crucial parameter for the scaling of turbulent statistics and structures, and the density and viscosity
themselves, as in Eq. (12), are not crucial parameters.
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