

Delft University of Technology

A toolkit for real-time analysis of dynamic large-scale networks (invited paper)

van de Bovenkamp, R; Kuipers, FA

DOI
10.1109/SCVT.2013.6735997
Publication date
2013
Document Version
Accepted author manuscript
Published in
Proceedings 20th Annual Symposium on Communications and Vehicular Technology

Citation (APA)
van de Bovenkamp, R., & Kuipers, FA. (2013). A toolkit for real-time analysis of dynamic large-scale
networks (invited paper). In A. Solheid, & L. Schumacher (Eds.), Proceedings 20th Annual Symposium on
Communications and Vehicular Technology (pp. 1-6). IEEE. https://doi.org/10.1109/SCVT.2013.6735997

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SCVT.2013.6735997
https://doi.org/10.1109/SCVT.2013.6735997

A Toolkit for Real-time Analysis of Dynamic
Large-Scale Networks

(Invited Paper)

Ruud van de Bovenkamp and Fernando Kuipers
Network Architectures and Services

Delft University of Technology

Abstract—Networks are used in many research domains to
model the relationships between entities. We present a publicly
available toolkit to extract graphs from datasets or data streams
and to analyse the properties of the extracted graphs. The graph
extraction is based on a set of rules that define the links between
entities in a set or stream of self-contained events involving sets
of entities. As the extracted graph is dynamic and, moreover, can
be spread over multiple machines, we include the class of gossip
algorithms to analyse them. In addition, the toolkit also contains
algorithms to compute metrics of static snapshots of the dynamic
graph.

I. INTRODUCTION

Many research domains use networks as modelling tools.
Networks can represent vastly different objects including
physical infrastructures such as rail, road and waterways [1],
[2], flight routes and shipping lanes [3], [4], but also sewage
systems and power grids [5], and, of course, the internet.
Networks can be constructed from financial transactions [6],
friendship or collaboration relations among individuals [7],
sports players or online gamers that have played on the same
team [8], and more abstract things such as functional brain
networks where the nodes in the network are brain regions
that share a link when they show correlated activity [9], or
co-purchase networks where nodes are items in a shop that
share a link when they were purchased together [10]. In short,
everything that can be represented as a collection of entities
that have a relation can be modeled as a network.

The study of complex networks currently faces two main
challenges: 1) The size of the studied networks has grown
enormously. Especially online communities such as social
networking sites have exploded in size and easily contain
hundreds of millions of nodes. In addition, the availability of
machine-readable data has enabled companies and researchers
to construct increasingly large networks.

Very large networks are a problem for two reasons. First,
in some cases the networks are so big that it is no longer
possible to process them in a single machine. Often, the
networks are not even stored in a single location, but are
distributed over multiple servers in multiple locations. Second,
the time complexity of the algorithms used to calculate certain
properties does not scale well with the network size.

Simple network properties that are limited in scope to
single nodes are not challenging to calculate. When our scope
encompasses the entire network, however, the real challenges

begin. Calculating how many of the shortest paths in a net-
work go via a particular link (link betweenness), for example,
is computationally expensive; other properties, such as the
isoperimetric constant or the facility location problem, are
even NP-hard to determine.
2) The second challenge that network science faces is that
of network dynamics. Real networks are not fixed in time;
they are constantly changing. In an online social network, for
example, new users sign up and existing users leave, thereby
changing the number of nodes. At the same time users make
new friends or break old ties, which changes the topology. If
we are not just interested in the links between user profiles, but
only consider the users to be present in the network when they
are logged in, the network changes are quick and substantial.
Since a social network is very large, it is currently impossible
to accurately track changes in network metrics as a function of
time. Traditional methods of calculating properties of networks
break down for very large and dynamic networks.

Even before graph analysis can begin, however, there is
the challenge of extracting a graph from a dataset or a data
stream. We have developed a suite of tools, which is publicly
available [11], that can be used for all steps needed to analyse
the relationships between entities in datasets or data streams.
Although alternatives exist for the tools we have developed
such as Jung, Igraph, Pajek, and Cytoscape for static network
analysis, Gephi and NetLogo for visualisation, and PeerSim
for simulating gossip algorihtms, the strength of our suite
is that all the components are in one place, using the same
underlying data structures, and that we consider dynamic
networks.

We will describe our toolkit in four sections: Section II
will provide an overview of the elements in the toolkit and
how they can be combined for real-time analysis of dynamic
graphs. In Section III the graph extraction from either a dataset
or data stream is introduced in detail, after which in Section
IV we include the class of gossip algorithms as a way to
compute properties of the extracted graph. Finally, in Section
V we briefly describe the available tools in the toolkit to do
static graph analysis on snapshots of the dynamic graph, and
Section VI discusses some future work and conclusions.

II. OVERVIEW TOOLKIT

The main idea behind the toolkit is to combine three parts,
graph extraction, static and dynamic graph analysis, to analyse

Extract Graph

DataStream

Run Gossip Algorithm

Graph Properties

Figure 1. Main steps in the data stream analysis. The data stream is passed
through a filter to extract a dynamic graph containing the relations between
entities of interest in the data stream. On this large and dynamic graph a
gossip (or alternative) algorithm is ran to compute properties of interest.

data streams. The analysis is illustrated in Figure 1. The data
stream that we want to analyse is passed through a filter that
extracts a dynamic graph based on a set of rules. This set of
rules determines what will become nodes in the graph and
what will become links. We call this mapping a dataset onto
a graph. The details of how to extract graphs from a dataset
and how different mappings influence the resulting graph are
explained in more detail in Section III. The novel application
here is that instead of mapping a fixed or static dataset onto a
static graph, we apply these techniques to a data stream. The
result of mapping a data stream onto a graph is not a static
graph but a dynamic one. The filter continuously outputs graph
dynamics: nodes and links are joining or leaving the graph
depending on the data that is streamed through the filter.

We use a gossip algorithm to continuously compute or
update those graph properties that we are interested in, al-
though other dynamic algorithms could also be used. Gossip
algorithms have proven to be ideal candidates to perform
computations in large, dynamic and distributed systems. In
Section IV we will introduce gossip algorithms in more detail
and explain how we simulate gossip algorithms. We will give
an example algorithm to compute averages or to find minima
and maxima over node values.

III. GRAPH EXTRACTION

Graphs are commonly used as models to study the properties
of various different physical or non-physical problems. A
communication network, for example, can consist of a group
of computers connected via Ethernet links. For this network
we can then compute how many links can be removed without
losing connectivity. In this example the step from the physical
world of computers and cables to the more abstract graph
model is very intuitive. The computers are our nodes, and the
cables are our links.

When we study less tangible networks, such as social
networks or implicit networks in datasets, we have to decide
what are going to be the nodes in the graph and what are going
to be the links. More formally, a dataset D is mapped onto
graph G via a mapping function M(D). A simple undirected

and unweighted graph G = (N ,L) consists of a set N of N
nodes and a set L of L links. In a weighted graph a link weight
w is associated to every link in L. In a directed network, a
link between two nodes also has a direction.

A. Extraction rules

A mapping is a set of rules that define the nodes and
links in a graph. Entities are often mapped to nodes, while
relations between entities are mapped to links. Entities are
usually readily identifiable as persons, events, or objects and
are therefore intuitively mapped onto nodes.

Mapping relations to links, however, is more challenging.
Entities can be related to each other in many different and
often subtle ways and due care should be given to which
relations produce insightful graphs. For example, some re-
lations between entities may be the result of chance, while
others have a clear origin. The difference between random
and meaningful relations is often expressed by a notion of
strength. Strength, represented by a link weight, adds another
dimension of complexity to representing and understanding
the characteristics of a network.

Our tools to extract graphs from datasets was developed
in the context of identifying implicit social networks in the
game data from online social games [8], but are not restricted
to be used in the gaming or social network setting. Graphs can
be extracted from every dataset that consists of a collection
of self-contained events that involve a group or groups of
entities. In [8], the self-contained events were matches played
in an online game and the groups of entities were two (not
necessarily equally sized) teams of players. The data was
crawled from a website and then parsed into a Match object
containing meta-data such as the start and end times of the
match, and score-related information.

Graphs were extracted from the Match objects based on
two different sets of rules: global rules and local rules. Global
rules apply to the dataset as a whole: for example, a link exists
between two players that were present in the same game. Local
rules apply to individual potential links. For example, while a
global rule dictates that two players have a link if they have
been in a match together, a local link can dictate that that
match must have had a duration of at least 20 minutes.

Both local and global rules can either be simple, or com-
pound. Simple rules consist of a single requirement such as
“in the same game together” or “played in the afternoon”,
whereas compound rules are logical combinations of simple
rules. The rules can be specified in a configuration file in
bracket notation, for example ([link won] & [duration > 20])
| ([link lost] & [duration < 10]).

Although all our examples are in the setting of online
games, the same machinery can be used in different settings.
For example, the self-contained events could be items in a
shopping cart, or people on a bus, etc. The flexibility of our
tools for graph extraction enabled us to study the effect of
different mappings and thresholding on the social networks
extracted from gaming data.

B. Link Set

Every time a link is formed as a result of the extraction rules,
it is stored in a link set. However, we might want a link to be
formed a few times before we want to consider it as a valid
link in the graph. To achieve this, we count how many times
a link is formed (we increment the link weight every time it is
formed) and only add it to the graph when the link occurred
more than a threshold value. In this case, the link set can be
seen as an intermediate step between the data stream and the
graph. The link set is implemented as a balanced search tree,
which is a data structure that is designed to have approximately
the same number of nodes to the left and right of each node.
The fact that a tree is balanced guarantees that a search in the
tree will be of O(log n), where n is the number of entries in
the tree. The balanced search tree that we use in the link set
is an implementation of the red and black tree [12].

Each link that is added to the tree has a unique value
associated with it that serves as an identifier for the link but
also enables links to be ordered lexicographically. The link
id is simply the binary concatenation of the ids of the source
and destination nodes. If links are bidirectional, the link id is
the concatenation of the bigger and smaller node ids of the
endpoints.

Every time a link is added to the link set, its link id is
compared to that of the root node. If it is greater than that
of the root node, it is compared to the right child of the root
node, otherwise to the left child. This continues until either
(i) a node is found that has the same value as the link to be
inserted, or (ii), it is smaller (larger) than the current node but
larger (smaller) than its left (right) child. In the first case, the
link weight of that link will be incremented; in the second
case, the link is added to the tree in the current position and
the tree is rebalanced.

Since the link set can take up quite some memory, especially
when it contains hundreds of millions of links, it is not unlikely
that the tree runs out of memory. The solution to this problem
depends on whether the tree is used to store the links from
a static dataset or a data stream. For the static case, the link
set can be stored to disk when it reaches a certain size. After
storing the link set to disk it is cleared and can be filled again
until it reaches the predefined size again, after which it is
merged with the tree on disk. In this fashion, the stored link set
can grow very large. The stored link set can be read from disk
once to extract the graph, possibly while applying a threshold
on the link weight. By writing the link set to disk it is also
easier to create graphs from a link set using different threshold
settings later.

If the link set is the result of streaming data through
the filter, writing an intermediate file to disk if memory
consumption grows too large is no longer an option because
of the long disk access time which makes merging the tree
in memory with the tree on the disk too slow. Also, since we
want to have exact knowledge of when a link is added to the
network, we would have to merge the tree in memory and the
one on disk after each link addition. This effectively reduces

New Link

Hashing function

LinkSet Tree
Link Set Tree Nodes

Figure 2. Schematic overview of inserting links in the distributed link set. A
new link is first passed through a hashing function to get a hash of the link.
The link and hash are then offered to the centre node of the LinkSet tree.
Based on the hash, the link will end up in one of the partial link sets in the
tree.

the link set to exist on disk only. As the entire link set has to
be kept in memory, we either have to use a machine with a
very large amount of memory, or we have to spread the link
set over a number of machines in a computation cluster.

We have implemented a tree structure of partial link sets that
allows the link set to be distributed over multiple machines.
Each individual partial link set is used to store a part of the
links. The simplest way to spread the possible links over the
link sets is to divide the space between the highest and lowest
known link evenly between the number of link sets. However,
since it is not known beforehand how many links will be stored
in the link set, the distribution over the partial link sets might
become skewed over time. If the links are too unevenly spread
over the partial link sets, they have to be rebalanced to make
sure that all link sets grow at approximately the same rate.

Our approach to spread links over the partial link sets is
centred around a hashing function. An ideal hashing function
has a uniform output probability for every input. If each of the
partial link sets is responsible for a part of the output range
of the hashing function, a new link has equal probability of
being assigned to any of the partial link sets. In this way,
the distribution of the links over the partial link sets will be
uniform. The implementation of our tree of partial link sets is
based on the LinkSetTreeNode as illustrated in Figure 2. First
the link id of a new link is hashed. The link and its hashed
id are offered to the central node in a LinkSetTree. From the
central node the link is passed on until the LinkSetTreeNode
where the link should be stored is found.

The pseudo-code in Algorithm 1 illustrates how the correct
LinkSetTreeNode is found. Each LinkSetTreeNode has a lower
and upper limit of link ids that it is responsible for. It also
has a pointer to a smaller and larger LinkSetTreeNode. When
a link is offered to the node, it checks whether the (hashed) id
is smaller or larger than the lower and upper limit, and, if it is,
it passes the link on to the smaller or larger node. If the hashed
link id is within the range of the current LinkSetTreeNode, it
will send the link to its partial link set via a TCP connection.

The distributed link set is essentially a client-server applic-
ation where the server uses the LinkSetTree to find out which
client should store which link. The clients use an ordinary
link set as described above to store the links. Clients do not
all have to have the same amount of memory available. Each
client can indicate the maximum number of links it thinks it

Object LinkSetTreeNode()
Fields:
int lowerlimit, upperlimit
LinkSetTreeNode() smaller, larger

Method insert(link)
if link.id < lowerlimit then

smaller.insert(link)
return

end
if link.id > upperlimit then

larger.insert(link)
return

end
send link to link set via tcp
return

Algorithm 1: Link insertion in distributed link set

can store when it contacts the server. The server can use this
information to distribute the output range of the hash function
in such a way that each client is responsible for a part of the
range proportional to its storage capacities.

In addition to a distributed implementation of the link set,
the partial link sets can also be exploited to speed up the
storage in a single large memory machine. Figure 3 shows
a measurement of the running time of adding a billion links
to the link set in three different scenarios as a function of
the number of partial link sets. Our test machine featured
16 logical cores and 48 GB of memory. In this experiment
the added links are randomly generated. The source and
destination nodes are drawn uniformly from a set of integers
between 0 and N −1, where N is the number of nodes in the
graph and is chosen to range from 104 to 4×104. Clearly, the
larger N is, the larger the number of possible unique links.
In our experiment the number of recorded unique links was
approximately 5× 107, 2× 108and 5.7× 108. Also shown in
Figure 3 is the rate of link additions. A link addition in this
case is simply an offered link, of which there were 109 in
every experiment.

Figure 3 shows that using more partial link sets leads to
lower running times. The reduction in running time is larger
when the number of unique links in the tree is larger. This is
caused by the computational complexity of finding the right
insert point in the search tree for larger trees. Figure 3 also
shows that for a small number of unique links in the tree,
the overhead of sending the links over TCP outweighs the
computational efficiency of smaller trees. For example, there
is virtually no benefit of using 16 in stead of 8 partial link
sets for a graph with 50 million unique links.

C. Graph dynamics

Going from a link set to an evolving graph involves two
opposing processes: growing and shrinking. The growing
dynamics are more easily extracted from the link set. Every
time a link is found in the streamed data, it is inserted into
the link set as described above. If the link was not yet in

1400

1200

1000

800

600

400

200

ru
n

n
in

g
 t

im
e

(s
ec

o
n

d
s)

161412108642

number of Link Set Tree Nodes

5

4

3

2

1

lin
k
 ra

te
 (m

illio
n

 p
e

r s
e

c
o

n
d

)

10k nodes time rate
20k nodes time rate
40k nodes time rate

Figure 3. Running time for the addition of 109 links to the distributed link
set as a function of the number link set tree nodes for three different random
graphs. The number of unique links in the tree is approximately 5 × 107,
2× 108 and 5.7× 108 for the three curves.

the link set, it is added, otherwise, the weight of the link
already present in the link set is incremented by one. While
incrementing the link weight, it is easy to check whether it
goes from just below the threshold to over the threshold, and,
if it does, to add the link to the graph. If either of the nodes
adjacent to the link is not present in the graph yet, it is also
added. This process will, however, lead to an ever growing
graph. It is probably desirable to include a mechanism to
remove links that are no longer deemed important.

There are various options available for shrinking the graph
and the link set. First of all it is possible to periodically remove
all the links from the link set whose link weight is smaller than
a certain threshold value. A periodic cleaning of the link set
reduces the amount of memory that is used by links that were
formed only once or twice, probably as the result of a chance
encounter. If the cleaning threshold is lower than the threshold
used to create the graph, however, the periodic cleaning does
not lead to links being removed from the graph.

Another way to introduce shrinking is to use the time
information of link creation. It is possible to use (i) full time
information: each increment has a time stamp, (ii) partial time
information: only the time stamp of increments within a fixed
window from the last increment are kept, and possibly the
maximum number of increments ever recorded in that interval,
or (iii) minimal time information: only the time stamp of the
last increment is used. By keeping this time information, it is
possible to apply global rules such as “a link exists between
players that played more than 10 times together within any 24
hour period.” Obviously, the more time information is kept, the
more storage is needed. Even when storing time information,
shrinking of the link set and graph will have to be done
periodically and involves variations on the theme of removing
links that have not been formed the last x time units.

IV. DYNAMIC GRAPH ANALYSIS

In order for the dynamic graph resulting from the graph
extraction to offer insight in the relationships between entities

in the data stream, graph properties should be computed.
Ideally, algorithms that update a metric following graph dy-
namics, instead of recomputing the metric, are used. However,
this is not always possible. Moreover, if the link set (and
graph) is spread out over multiple machines, both distributed
and dynamic algorithms are needed. Gossip algorithms have
proven to be useful to determine properties of large, distributed
and dynamic graphs, which makes them ideal to analyse the
graph extracted from a data stream.

In a gossip algorithm, nodes typically select one of their
neighbours periodically to send, request or exchange inform-
ation with. Depending on whether nodes send, request or
exchange information, the process is called Push, Pull, or
Push-Pull. The timing of nodes becoming active can either
be synchronous or asynchronous. In the synchronous case,
each node becomes active once during a time window. Nodes
will need to be able to loosely synchronise to prevent too
much misalignment of time windows. In the asynchronous
case, a node typically becomes active when an exponentially
distributed timer expires. In other words, the node’s activity
follows a Poisson process.

In a gossip algorithm, nodes send a limited amount of
information and keep very little state information. Nonetheless,
these algorithms are capable of delivering global network
information to all nodes without central control while being
robust against message delivery failure. Data aggregation is
a particularly fruitful application of gossip algorithms. The
goal of aggregation algorithms is to inform every node in
the network about some global property without the aid of a
central authority. In the setting of a sensor network, this could
be the average reading over all sensors, or the maximum or
minimum reading. The work of Boyd [13] contains a wealth
of references on distributed averaging. Also, see [14] for
applications of gossip algorithms in signal processing.

The simple format of gossip algorithms makes them very
suitable to be deployed in a general setting. Our toolkit offers
such a setting where a set of data structures and functions is
offered to simulate the behaviour of the algorithm in a some-
what idealised setting. The simulator offers both a synchronous
and asynchronous mode of operation. The pseudo-code of the
synchronous simulation mode is given in Algorithm 2. In the
synchronous mode, the node ids are stored in an array which
is shuffled each iteration. During the iteration, the nodes are
processed in the order of which they appear in the array. The
shuffling and iteration-wise operation of the simulation ensures
that every node will be active only once during an operation
window and at the same time it mimics the behaviour of
loosely synchronized clocks at the nodes. Without shuffling
the nodes will be processed in the same pattern every iteration.
Alternatively, the node array can be shuffled after a particular
number of cycles.

In the asynchronous case, the simulator has to keep track
of the expire times of every node’s internal timer. These times
are stored as tickets in a time line. A ticket consists of a time
value and an owner value. The owner value indicates which
node issued the ticket and the time value indicates when the

Data: array order containing node ids
while true do

shuffle order;
for node n in order do

activate n;
end

end
Algorithm 2: Synchronous Simulation

timer of that node expires. The time line is implemented as a
balanced search tree. Storing the expire times in a tree makes
it easy to chance the distribution of the waiting times. The
simulator continuously takes the ticket with the smallest time
value from the tree and makes the node perform its action.
When the node is done, it issues a new ticket to be inserted
in the time line with a time value that is an exponentially
distributed random value removed in time from the current
moment. The tree structure ensures that insert and remove
operations take O(logN) time, where N is the number of
tickets in the time line.

Data: Timeline T
while true do

take ticket from T ;
activate ticket.owner;
ticket.time += random waiting time;
insert ticket in T ;

end
Algorithm 3: Asynchronous Simulation

The network structure that is used in the gossip simulation
is designed to make it easy to facilitate network dynamics. All
nodes are stored in a linked list, making additions easy and
quick. Removals are slower since the node to be removed has
to be located first. In case of heavy churn, nodes could also be
stored in a search tree, just like the tickets in the asynchronous
simulation mode. Each node internally also stores a linked
list with pointers to its neighbours. Just as node dynamics is
optimised for growing networks, the linked lists for the links
between nodes also favours adding links in terms of running
time. For heavy link removal it could also be better to use a
tree structure. Every time a node tries to send a message over
a link, it has to check whether the node the link points to is
still present. If not, it should remove the link.

In addition to the timing and network dynamics the sim-
ulator also offers a structured way of implementing a gossip
algorithm. Every class implementing the node behaviour inter-
face can be loaded as a gossip algorithm. The simulator offers
two ways of performing the actual contact between nodes: the
direct method and the message method. In the direct method,
the active node can directly interact with the procedures and
fields of the behaviour code of its neighbours. This makes
the interaction between nodes quicker, but it requires all the
nodes to be in a single machine. In the message method, the
active node prepares a message containing all the values that it

wants to exchange with its neighbour and passes that message
to the simulator. The simulator then delivers the message to
the target neighbour and takes care that the reply of the target
neighbour is again delivered to the active node. Although this
requires a few intermediate steps, this method allows nodes
to be spread over different machines. Spreading nodes over
different machines can be beneficial when the network grows
very large.

A basic example of a gossip-algorithm that can be used
to compute properties of the large dynamic graph that is
the output of the graph extraction filter is Gossipico [15].
Gossipico can be used to sum, average or find the minima
and maxima over node related values. A typical example
function of Gossipico is to count the number of nodes and
links in the graph and to compute the maximum degree. These
functions can be combined in Gossipco, but it is also possible
with the current simulation framework to run multiple gossip
algorithms in the same network.

V. ADDITIONAL FEATURES

An alternative to the dynamic graph analysis described
in Section IV is to take snapshots of the dynamic graph
and perform traditional static graph analysis. Depending on
the metric of choice, a dynamic/gossip algorithm may not
realise a significant speed-up compared to a static algorithm.
To minimize the need of additional programs, our toolkit
contains a set of implemented algorithms to compute various
network metrics. The spectral metrics (eigenvector centrality,
algebraic connectivity, spectral gap) rely on the eigenvalue
decomposition of the CERN Colt libraries in some cases. In
other cases an implementation of the power method is used.

The hop-count related metrics, such as the average shortest
path or the eccentricity can be computed individually or
as a by-product of computing the node betweenness. The
betweenness code is an implementation of Brandes’ work
[16] on betweenness algorithms. The coreness algorithm is an
implementation of Batagelj [17]. Other supported operations
are the computation of the number of connected components
and various ways of exporting networks including Cytoscape
and Pajek formats.

Another feature that is offered by the graph analysis tools is
the ability to generate synthetic networks according to numer-
ous different network models. The code to generate Erdős-
Rényi random graphs and preferential attachment graphs is
based on work by Batagelj and Brandes [18].

VI. CONCLUSIONS

We have presented a toolkit that offers all necessary tools
to analyse datasets or data streams using network science.
The links between entities in the dataset or data stream can
be extracted using different types of link rules. These links
are stored in a link set that can be spread out over multiple
machines if the link set becomes large. When a data stream
is analysed, the link set and extracted graph will be dynamic.
In order to analyse the properties of a large dynamic graph
that is possibly spread out over multiple machines, we have

offered the class of gossip algorithms. The toolkit comes with
a simulation environemnt for gossip algorithms as well as
traditional metrics to study snapshots of a dynamic graph.

Although the dynamic and distributed link set is fully im-
plemented in the toolkit, as well as a sample gossip algorithm,
more work is needed to determine which graph metrics can be
computed using gossip algorithms and which cannot. For those
metrics that cannot be computed using gossip algorithms, new
(preferably dynamic) algorithms are needed.

We have performed basic measurements of the rate at which
links can be inserted in the link set as a function of how
many partial link sets are used, but how large the link set can
realistically grow remains unexplored. Future work is needed
to determine the absolute performance limits of our toolkit.

REFERENCES

[1] E. Jenelius, T. Petersen, and L. Mattsson, “Importance and exposure in
road network vulnerability analysis,” Transportation Research Part A:
Policy and Practice, vol. 40, no. 7, pp. 537–560, 2006.

[2] P. Angeloudis and D. Fisk, “Large subway systems as complex net-
works,” Physica A, vol. 367, pp. 553–558, 2006.

[3] P. Kaluza, A. Kölzsch, M. Gastner, and B. Blasius, “The complex
network of global cargo ship movements,” Journal of the Royal Society
Interface, vol. 7, no. 48, pp. 1093–1103, 2010.

[4] R. Guimera, S. Mossa, A. Turtschi, and L. Amaral, “The worldwide air
transportation network: Anomalous centrality, community structure, and
cities’ global roles,” PNAS, vol. 102, no. 22, pp. 7794–7799, 2005.

[5] R. Albert, I. Albert, and G. Nakarado, “Structural vulnerability of the
north american power grid,” PRE, vol. 69, no. 2, p. 025103, 2004.

[6] H. Wang, E. van Boven, A. Krishnakumar, M. Hosseini, H. van Hooff,
T. Takema, N. Baken, and P. Van Mieghem, “Multi-weighted monetary
transaction network,” Advances in Complex Systems, vol. 14, no. 5, pp.
691–710, 2011.

[7] M. E. J. Newman, “The structure of scientific collaboration networks,”
PNAS, vol. 98, no. 2, pp. 404–409, 2001.

[8] R. van de Bovenkamp, S. Shen, A. Iosup, and F. A. Kuipers, “Under-
standing and recommending play relationships in online social gaming,”
in COMSNETS 2013, 2013.

[9] C. J. Stam, A. Hillebrand, H. Wang, and P. Van Mieghem, “Emergence
of modular structure in a large-scale brain network with interactions
between dynamics and connectivity,” Frontiers in Computational Neur-
oscience, vol. 4, no. 133, 2010.

[10] G. Oestreicher-Singer and A. Sundararajan, “Recommendation networks
and the long tail of electronic commerce,” Available at SSRN 1324064,
2010.

[11] R. van de Bovenkamp. Network analysis toolkit. [Online]. Available:
https://github.com/TUDelftNAS/

[12] R. Bayer, “Symmetric binary b-trees: Data structure and maintenance
algorithms,” Acta informatica, vol. 1, no. 4, pp. 290–306, 1972.

[13] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508–2530, 2006.

[14] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione, “Gossip
algorithms for distributed signal processing,” Proceedings of the IEEE,
vol. 98, no. 11, pp. 1847–1864, 2010.

[15] R. van de Bovenkamp, F. A. Kuipers, and P. Van Mieghem, “Gossip-
based counting in dynamic networks,” in Networking 2012, 2012.

[16] U. Brandes, “On variants of shortest-path betweenness centrality and
their generic computation,” SOCIAL NETWORKS, vol. 30, no. 2, 2008.

[17] V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decompos-
ition of networks,” CoRR, vol. cs.DS/0310049, 2003.

[18] V. Batagelj and U. Brandes, “Efficient generation of large random
networks,” PRE, vol. 71, no. 3, p. 036113, 2005.

