<]
TUDelft

Delft University of Technology

The relationship between inundation duration and Spartina alterniflora growth along the
Jiangsu coast, China

Li, Runxiang; Yu, Qian; Wang, Yunwei; Wang, Zhengbing ; Gao, Shu; Flemming, Burg

DOI
10.1016/j.ecss.2018.08.027

Publication date
2018

Document Version
Accepted author manuscript

Published in
Estuarine, Coastal and Shelf Science

Citation (APA)

Li, R, Yu, Q., Wang, Y., Wang, Z., Gao, S., & Flemming, B. (2018). The relationship between inundation
duration and Spartina alterniflora growth along the Jiangsu coast, China. Estuarine, Coastal and Shelf
Science, 213, 305-313. https://doi.org/10.1016/j.ecss.2018.08.027

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.ecss.2018.08.027
https://doi.org/10.1016/j.ecss.2018.08.027

O© 00O ~NO O WN P

ggooag oD DIMDEEDEDNEDRDNDWOWWWWWWWWWWNDNNDNDNNMNNDNNNNRPEPEPEPERPERPERPERPRER
O~NOO O PR WNPFPOOONOOOPMNWNPODOONOUOPMWNPODOONOOUPRAWNPODOONOOOG P WNEO

© 2018 Manuscriptversion made available under CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

The relationship between inundation duration and Spartina alterniflora growth along the
Jiangsu coast, China
Runxiang Li', Qian Yu?*, Yunwei Wang* *, Zheng Bing Wang'#, Shu Gao’, Burg Flemming®
* Corresponding authors. E-mail addresses: gianyu.nju@gmail.com (Qian Yu);
ms.ywwang@ gmail.com (Yunwei Wang);

!Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1,
2624 GA Delft, The Netherlands;
2 MOE Laboratory for Coast and Island Development, Nanjing University, 210093 Nanjing;
3College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing, China;
“Deltares, 2600 MH Delft, The Netherlands,

State Key Laboratory of Estuarine and Coastal Research, East China Normal University,
Shanghai 200062, China

¢ Senckenberg Institute, Wilhelmshaven D-26382, Germany

Abstract

The above-ground biomass of Spartina alterniflora salt marsh meadows is influenced by
numerous interacting factors, among them elevation, tidal range and inundation duration. Bio-
geomorphological models make use of either linear or quadratic equations, but it is important
to be aware that the variables are area specific and hence not generic. In order to explore the
vegetation growth pattern and its influencing factors along the Jiangsu coast, China, field
surveys were conducted in two typical S. alterniflora marshes along the coast of Dafeng and
Rudong. To combine the influence of elevation and the effect of tidal range, the inundation
ratio (/R) is introduced as a novel parameter, which is the ratio between inundation duration
and the duration of the whole tidal period concerned. The relationship between above-ground
biomass and /R can be expressed by a quadratic equation. The optimal inundation ratio for S.
alterniflora along the Jiangsu coast ranges from 0.21~0.26, which is much lower than, for
example, that for the marsh of North Inlet (0.35), South Carolina, and the Virginia Coast
Reserve (0.41), USA. Tidal range plays a significant role in that a larger tidal range leads to a
smaller optimal /R, and that the landward and seaward limits are displaced toward higher

ground elevations. In macrotidal regions the submergence depth is larger, which results in
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enhanced submergence and salinity stress for the entire marsh, causing it to shift toward higher
elevations. Tidal range is an important factor influencing the growth pattern of S. alternifiora,
but geomorphological factors such as topographic profiles, and the presence of cliffs and tidal
creeks must also be taken into account.

Keywords: [to be added at proof stage]

1. Introduction

Salt marshes are one of the most productive ecosystems in the world (Gallagher et al.,
1980), providing numerous habitats to vertebrate and invertebrate faunae, and being an
invaluable natural resource to coastal residents. Marsh vegetation protects the coast from storm
surges by dissipating wave energy, reducing tidal currents, enhancing sediment retention and
accelerating tidal flat expansion (Allen, 2000; Temmerman et al., 2013; Gao et al., 2014).
Because of these ecosystem services, the response of coastal marshes to sea-level rise has
become an important research topic. Sea-level rise leads to longer time periods over which
suspended sediments can deposit (Friedrichs and Perry, 2001). At the same time, longer
submergence increases soil anoxia, which may eventually exceed the tolerance of halophytes
(Bertness and Ellison, 1987; Morris et al., 2002; Voss et al., 2013) and the balance between
rates of sea-level rise and accretion rates determines whether salt marshes can survive a rise in
sea level (Morris et al., 2002; Mudd et al., 2010; Kirwan et al., 2016).

Both organic and inorganic deposition contributes to salt marsh accretion. The amount of
deposition is, amongst others, related to various properties of the vegetation, in particular
biomass, stem density, stem diameter and leaf area. Organic deposition is directly related to the
vegetation biomass. Inorganic deposition includes sediment trapping by vegetation and direct
settling on the salt marsh surface. Sediment trapping by vegetation is determined by leaf arca
and the projected total area (Yang, 1998; Chen et al., 2018). Sediment settling can be enhanced
by vegetation because it decreases flow velocity and turbulence (Shi et al., 1995; Bouma et al.,
2007; Nepf, 2012; Chen et al., 2016), and also dampens wave action (Wang et al., 2006; Feagin
et al., 2011; Yang et al., 2012). Projected stem area and stem diameter, which are the main
parameters from which the damping effect of vegetation is calculated, are both related to
biomass (Morris and Haskin, 1990), which is thus a good proxy from which to estimate the

effect of vegetation on fluid and sediment. Biomass or vegetation density are therefore the most
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widely used parameters in bio-geomorphological modeling (Mudd et al., 2004; Morris, 2006;
D’Alpaos et al., 2007; Kirwan and Murray, 2007; Mariotti and Fagherazzi, 2010; Mudd ef al.,
2010).

Vegetation growth is limited by the flooding frequency and duration due to raised soil
salinity and anoxia (Phleger, 1971; Naidoo et al., 1992; Morris, 1995; Wijte and Gallagher,
2013), indicating that the elevation of a marsh determines the flooding condition of the
vegetation. Morris et al. (2002) found that the above-ground biomass (B) of Spartina
alterniflora (S. alterniflora) in North Inlet, South Carolina (USA), is related to the depth below
mean high tide (D) by the following relationship:

B=aD?+bD + ¢ (1)
where a, b and ¢ are numerical values relating to the form of the regression.

The above-ground biomass has a hump-shaped cross-shore pattern in that it increases
with decreasing elevation, reaches a maximum at the optimal elevation, and then decreases as
the elevation drops below the optimal level. There is commonly an upper and a lower elevation
limit between which S. alterniflora can survive (e.g., Gray, 1992). The seaward limit is
determined by soil anoxia due to excessive submergence (Naidoo et al., 1992; Wijte and
Gallagher, 2013). Toward the landward end of the marsh, the decreasing submergence rate
leads to high evapotranspiration and increased soil salinity, which is ultimately fatal to
halophytes (Phleger, 1971; Morris, 2000). Although the data from North Inlet only covered the
area above optimal elevation (Morris et al., 2002), eq. (1) also predicts the area below optimal
elevation. This predictive potential was shown to be correct by other investigations (Kirwan et
al., 2012). Nevertheless, in some cases, geomorphological models have also made use of
parabolic equations (Morris, 2006; Kirwan and Murray, 2007; Mariotti and Fagherazzi, 2010;
Hagen ef al., 2013; Alizad et al., 2016; Rodriguez et al., 2017).

Because the data of Morris et al. (2002) only cover the rising part of the hump-shaped
curve, a linear relationship is often used to describe the spatial pattern of the vegetation (Mudd

et al., 2004, 2009, 2010; D’ Alpaos et al., 2005, 2007):

Zmax =~ Zb
B = BmaX fOI‘ Zmin < Zp < Zmax (2)

Zmax ~ Zmin

where z,, is the local marsh elevation, By,,, the maximum biomass, z,,,, and z,;, the growth limits
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of the marsh. This linear equation provides a simple and efficient prediction, and is therefore
particularly useful for modeling purposes, especially if the marsh is located above the optimal
clevation. As pointed out by Morris (2006), the choice of a biomass model and associated
variables should always be based on the site-specific (regional) conditions.

In fact, elevation is not the only determining factor of marsh biomass distribution. Also
landform, tidal range and latitude can influence the vegetation pattern (e.g., Gray, 1992). Due
to the presence of tidal creeks, the flooding duration increases near the tidal creeks. Tidal range
may also influence marsh distribution by altering the growth range of the vegetation. In fact,
growth range was found to be proportional to tidal range (McKee and Patrick, 1988; Balke et
al., 2016). Whereas the landward limit of a salt marsh is influenced by latitude and species
competition, the seaward (i.e. lower) limit is determined by the tolerance to submergence,
salinity and anoxia (McKee and Patrick, 1988). Because the tidal range differs at different
geographic locations, a unifying proxy is needed to identify the effect of hydrodynamic
condition and geomorphology on vegetation. The non-dimensional depth is calculated by the
ratio of the difference between mean high water level (MHW) and the bed elevation to the mean
tidal range. It is a useful proxy of the submergence intensity and easy to calculate (Morris et al.
2013; Alizad et al. 2016). The rising or lowering rate of water level is not constant during the
tidal cycle. The rate is maximum at the middle of flood and ebb, while the rate is minimum at
high or low water. Therefore, the actual submergence duration is not linear to non-dimensional
depth. The non-dimensional depth may generate deviations from the actual submergence
duration.

The inundation ratio (IR) is based on the actual submergence duration and thus has the
direct physical meaning. /R, which is the ratio between inundation duration and the whole time
span of the associated tidal cycles, is here proposed for that purpose. In practice, and assuming
the relevant time span covers n tidal cycles and is long enough to remove the spring-neap

variation, IR can be defined as:

n
Zi =1t

IR =— 3)

where ¢ is the inundation duration in the ith tidal cycle and T is the duration of total n tidal

cycles. By this definition, the effects of tidal range and bed elevation are merged into a single
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predictive parameter (cf. also Bockelmann et al., 2002; Mudd et al., 2004).

The variables need to be determined regionally by using the biomass model to predict the
marsh pattern. Morris et al. (2002) obtained the variables by performing long-term monitoring
of the salt marsh in the North Inlet estuary, South Carolina, USA. Interestingly, Kirwan et al.
(2012) derived the same equation on the basis of different variables derived from observations
in the Virginia Coast Reserve, USA. This suggests that, due to regional differences in
environmental conditions, more in situ investigations are required in geographically different
regions in order to explore the comparability of the interaction between vegetation and
geomorphology on a global scale.

Although S. alternifiora is a native species to the east coast of America, it has been
introduced to China in 1979. Since then it has spread widely, especially along the coast of
Jiangsu Province. The reason for its introduction to the Jiangsu coast was for the purpose of
coastal protection and the claim of new land (Chung and Zhuo, 1985; Chen et al., 2004; Chen
et al., 2005; Zhang et al., 2004). The broad and flat expanses of the tidal flats along the Jiangsu
coast provide excellent habitats for S. alterniflora and it is thus not surprising that research on
the evolution of S. alterniflora salt marshes from originally bare tidal flats has a high priority
in China (Zhang et al., 2004; Zuo et al., 2013; Gao et al., 2014). Within this context, our
research has the following three purposes: (a) to generate the local salt marsh variables for
geomorphological modeling in order to assess the effects of future sea-level rise and land claims;
(b) to explore the effects of geomorphology and tidal range on salt marsh vegetation growth;
and (c) to contribute to the worldwide S. alterniflora salt marsh data base with the aim of

establishing a universal salt marsh model.

2. Methods
2.1. Study area

As study two S. alterniflora marshes were chosen, one located in Dafeng, the other in
Rudong, both located in the middle sector of the Jiangsu coast, China (Fig. 1). Due to the
sediment supply of the Subei Coastal Current and nearshore residual currents influenced by the
abandoned Yellow River Delta, the coast-normal profile is characterized by a wide and gentle

slope, the tidal flat being composed of fine-grained sediment. The tidal regimes in Dafeng and
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Rudong are irregular semidiurnal with average tidal ranges of 3 m and 4.5 m respectively (Ren,
1986; Wang et al., 2012). The Dafeng coast is relatively more exposed compared to Rudong,
the longer fetch and more open environment leading to stronger wind-wave influence in the
former case, where the annual mean significant wave height is 0.48 m (measured at the B1
buoy; Fig. 1a). The Rudong coast, by contrast, while being exposed to stronger tidal currents,
is shielded from wave action by the radial sand ridges which emerge during low tide.
Correspondingly, the annual mean significant wave height measured at the B2 buoy (Fig. 1a),
which is located in a similar morphological environment close to Rudong, is 0.27 m.

After its introduction to China, S. alterniflora rapidly expanded along the Jiangsu coast,
landward up to the local native marsh communities and seaward across the bare tidal flat. By
2007 the S. alterniflora salt marsh occupied an area of 187.1 km? (Zuo et al., 2012). Tt showed
excellent ecological engineering qualities with respect to sediment capture, shoreline protection
and biological treatment of wastewater (Ding et al., 2008; Li et al., 2009; Zhang et al., 2012;
Zuo et al., 2012). Because of its expansion in the course of land claims, the S. alterniflora
marshes in Dafeng and Rudong can be regarded as representing single species marshes. Their
landward edges are determined by dikes, whereas their seaward edges are lined by bare tidal

flats.

2.2, Field surveys

Field surveys were carried out in Dafeng from11-19 November 2016 and in Rudong from
24 September to 8 October 2015 and 24-25 October 2016. The two research sites represent
typical S. alterniflora salt marshes along the Jiangsu coast. In Dafeng the marsh is lined by
retreating rise in an upper mesotidal environment, whereas in Rudong the marsh thrives in a
lower macrotidal environment. The cross-shore profiles and vegetation patterns, however,
differ between Dafeng and Rudong. As a consequence, elevation measurements and vegetation

sampling were adapted to the local bed elevation profiles.

2.2.1. Bed elevation measurements
A Magellan Z-MAX GPS RTK (a differential, real-time kinematic GPS system) was used

to measure bed elevations and positions. The instrument has a vertical accuracy of 20 mm. In
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cach case, the GPS was allowed to stabilize for 3 seconds in order to optimize the elevation
accuracy. The two bed leveling profiles at Dafeng were measured in November 2016 (Fig. 1b,
transects DF-n and DF-s). The interval between two successive sampling points was in general
25 m. Vertical elevation changes were in all cases smaller than 5 cm. Only at rise and along
tidal crecks were the sampling intervals reduced. A short profile was measured across the
seaward edge of the marsh at Rudong in September 2015 (Fig.1c, transect Rd2015). Because
of the steeper slope beyond the seaward edge of the marsh, the interval between successive
elevation measurements was decreased to 5 m, corresponding elevation changes being smaller
than 3 cm. A second, supplementary profile with larger sampling intervals (50 m) was surveyed
in October 2016 (Fig.1c, transect Rd2016), the vertical elevation changes between points being

smaller than 5 cm.

2.2.2. Vegetation sampling

According to Gao et al. (2016), the peak season of biomass is October in Jiangsu Coast.
The biomass obtained at this peak season is able to represent the annual biomass. At Rudong
the above-ground vegetation samples were collected in October 2015 and at Dafeng in
November 2016. Both transects were sampled at Dafeng (Fig. 1b). In each case 12 quadrats
(50*50 cm) spaced 100 m apart were collected. All above-ground plants in a quadrat were
harvested. In addition, 3 quadrats at 0, 50, 100 m distance were collected along 8 transects
perpendicular to a tidal creek at Rudong (Fig. 1c). The elevation and position of each quadrat
was measured by the RTK-GPS. The stem heights of all plants were measured in the lab before

they were dried and weighed.

2.3. Laboratory analysis and data processing

The inundation ratio (/R) was calculated on the basis of the water level time series and the
elevations. The water surface was assumed to be horizontal over the whole salt marsh
(Friedrichs and Aubrey, 1996). The time series were obtained from the tidal gauges at Yangkou
Harbor, 15 km from the Rudong site, and at Dafeng Harbor, 12 km from the Dafeng site.
Inundation was defined as the case where the water surface elevation at a particular point was

higher than the ground elevation. For all those cases the inundation ratio was calculated by eq.
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3).

3. Results
3.1. Elevation

The actual accuracy of the elevation measurements was on average 43 mm. According to
these, a low rise occurs between the marsh and the bare tidal flat at Dafeng. The height of the
rise was 10 cm along transect DF-n and 65 cm along transect DF-s (Fig. 2a, b) and thus increases
from north to south (Fig. 1b). Ground elevations across the marsh were almost at the same level
at Dafeng (Fig. 2a, b), the marsh platform being slightly higher than MHW (1.50 m above MSL).
According to our observations, the seaward edge of the salt marsh was eroding and hence
retreating landward at Dafeng.

A rise was not observed at Rudong during the two field campaigns in 2015 and 2016. Here,
the salt marsh was located below the MHW level (2.23 m above MSL). The slope of the seaward
part of the marsh was 0.6%, that of the landward part and the bare tidal flat about 0.1% (Fig.
2¢). The variations in ground elevation obviously imply different inundation ratios along the
marsh profile. Furthermore, the elevations of vegetation quadrats near the tidal creek were

found to be lower than those within the marsh (Fig. 2c¢).

3.2. Vegetation
3.2.1. Stem density and height

The marshes of Dafeng and Rudong are single species marshes. Only S. alterniflora was
observed on the marsh during the field surveys. Stem density at Dafeng has two peaks, one at
the seaward edge, the other 1000 m from the seaward edge of the marsh (Fig. 3b). Vegetation
is dense (420 plants/m?) at the seaward edge of marsh, which corresponds to a high inundation
ratio. The second peak (550 plants/m?) results from the gentle slope and concave-up shape of
cross-shore elevation profile, which causes the middle part of marsh to be poorly drained and
the upper marsh to be inundated for a longer period of time (Fig. 2a & 2b). At Rudong the stem
density shows different pattern to Dafeng. The maximal stem density at the seaward edge of
the marsh at Rudong is 540 plants/m?, from where it decreases with increasing elevation toward

the shore (Fig. 3a, b).
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Stem height shows a parabolic relationship to elevation and cross-shore distance at both
Rudong and Dafeng. The regression equation of stem height (4, m) versus elevation relative to
MSL (4, m) is (Fig. 3¢):
hy =-41.411% + 87.79h + 69.77 =-41.41%(h —1.06)*> + 116.3 4)
with a correlation coefficient of R = 0.47, whereas the regression equations of stem height (4,
m) versus cross-shore landward distance from the seaward edge of the marsh (L, m) is (Fig.
3d):
hy=-1*10*L>+ 0.11L + 86.45 = -1*10-* *(L — 550)> + 116.7 (5)
with a correlations coefficient of R=0.48. The hump-shaped curve reaches its highest elevation
(1.1 m above MSL) at a distance of 550 m from the seaward edge (Fig. 3¢, d). The maximal
stem height is 159 cm. S. alterniflora is short at the seaward edge because short plants survive
more easily under strong wave action and higher flow velocities. The plants on the landward
side, in turn, are short due to the limiting effects of high salinity and drought. The most
significant difference between the marshes at Dafeng and Rudong is their vertical growth range.
While the marsh at Dafeng occupies a narrow elevation range from 1.24 m to 1.85 m above

MSL, the marsh at Rudong ranges from mean sea level up to 2.2 m above MSL (Fig. 3a, c).

3.2.2. Biomass and Inundation ratio

The minimum and maximum biomasses at Dafeng were 1160 g/m? and 2650 g/m?
respectively (Fig. 4a). The narrow vertical growth range of the S. alterniflora marsh at Dafeng
(1.24-1.85 m above MSL) corresponds to /Rs ranging from 0.32-0.091. The maximum biomass
occurred at 1.5 m above MSL and had an /R of 0.18 (Figs. 4a, 5a). The minimum and maximum
biomasses at Rudong, by contrast, were 350 g/m? and 2850 g/m? respectively (Fig. 4b). The
wider vertical growth range of the marsh at Rudong (2.1-0.3 m above MSL) corresponds to /Rs
ranging from 0.08—0.4. The maximum biomass occurred at 1.0 m above MSL and had an /R of
0.25 (Figs. 4b, 5b).

The relationship between biomass (g/m?) and elevation (/%) as well as inundation ratio (/R)
follows a parabolic trend at both Dafeng and Rudong (Figs. 4, 5). However, the corresponding
equations differ with respect to the values of the variables (Fig.5). Thus, the equation of biomass

vs. elevation for Dafeng is (Fig. 4a):
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B=-8392.8 A +2.58*%10*h — 1.79%10% =-8392.8 * (h— 1.54)> + 2002.0 (6)
and for Rudong is (Fig. 4b):
B=-9474hr+17432h—-1048.3 =-947.4 * (h—0.92)> + 1850.2 (7
According to these equations, the optimal elevation at Dafeng (1.54 m) is much higher than at
Rudong (0.92 m). This reflects the wider growth range of the marsh at Rudong as compared to
Dafeng.

In contrast to the biomass vs. elevation relationships, those of biomass vs. IR are quite
similar at the two sites. Thus, the equation for Dafeng is (Fig. 5a):
B =-57796 IR* +2.38*10* IR — 437.3 =-57796 * (IR — 0.206)* + 2015.3 (8)
and that for Rudong is (Fig. 5b):
B =-43264 IR*> +2.25%10* IR — 1044.5 = -43264 * (IR — 0.26)> + 1880.1 )
According to these equations, the optimal inundation ratio at Rudong (0.26) is slightly larger
than that at Dafeng (0.206). Furthermore, the seaward /R limit at Dafeng (0.32) is smaller than

that at Rudong (0.4).

4. Discussion

4.1. Tidal effect on vegetation growth

S. alterniflora is capable of tolerating stronger environmental stress than some other
halophytes such as Scirpus robustus, Scirpus mariqueter, and Spartina anglica (Naidoo ef al.,
1992; Lewis et al., 2002; Chen et al., 2004; Wijte and Gallagher, 2013). This enables S.
alterniflora to occupy elevation levels even below mean sea level (Wiggins and Binney, 1987;
Landin, 1991; Bulthuis and Scott, 1993), although the precise seaward limits differ in different
geographic regions (McKee and Patrick, 1988).

Parabolic relationships between biomass and elevation were reported from North Inlet
(South Carolina, USA) and the Virginia Coast Reserve (Virginia, USA) (Morris et al., 2002;
Kirwan ef al., 2012). In order to compare the data between different study areas, all the data
extracted from the literature need to be unified under a common standard. Firstly, all reported
clevations were related to mean sea level: h = Zyuw - D, where £ is the elevation relative to

MSL, Zymw is the height between mean sea level and mean high water (mean tidal amplitude)
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and D is the depth of occurrence below mean high water. Second, time series of water level
oscillations were obtained from regional tide—gauge records stored in the data base of NOAA

(https://tidesandcurrents.noaa.gov/datums.html?units=1&epoch=0&i1d=8632200&name=Kipt

opeke&state=VA). Thereafter, the inundation ratios can be calculated from the known water

levels and elevations. The regression parameters from four area are listed in Table 1. The results
from North Inlet and the Virginia Coast Reserve are displayed in Figs. 4d and 5d, and Table 2.

As can be seen, the growth ranges and optimal positions are very different between the
marshes of Dafeng, Rudong, North Inlet and the Virginia Coast Reserve (Figs. 4d, 5d, Table
1). Whereas the biomass of S. alterniflora is similar in North Inlet and along the Jiangsu coast
(maximal 2000 g/m?), it is much smaller in the Virginia Coast Reserve (maximal 800 g/m?).

Thus, the respective equations of biomass vs. elevation for North Inlet and the Virginia Coast

Reserve are
B=-18486 * (h—0.28)> + 1861.6 (10)
B =-32000 * (h—0.10)> + 876.1 (11)

and of biomass vs. inundation ratio:
B=-69161 * (IR-0.324)> + 1861.7 (12)
B=-74676 * (IR — 0.401)> + 875.5 (13)

The seaward edges of the marsh in North Inlet and the Virginia Coast Reserve
approximates mean sea level and the inundation ratio is about 0.5. Along the Jiangsu coast the
seaward limit of the marsh is located slightly lower than in North Inlet and the Virginia Coast
Reserve, but the submergence duration is smaller, being reversed due to the larger tidal ranges
(Figs. 4d, 5d). The landward edge of the marsh along the Jiangsu coast, on the other hand, is
significantly higher than in North Inlet and the Virginia Coast Reserve (Figs. 4d, 5d), while the
IR value of the landward and seaward limits decrease with tidal range (Table 2). The optimal
IR values at Dafeng, Rudong, North Inlet and the Virginia Coast Reserve are 0.206, 0.26, 0.35
and 0.41, respectively (Fig. 5d, Table 2). This demonstrates that the optimal /R value also tends
to decrease with tidal range.

The elevation of the seaward limit along the Jiangsu coast is the lowest, and that in the
Virginia Coast Reserve (Kirwan at al., 2012) the highest (Table 2). Introduced and hybrid plants

may change the tolerance of S. alterniflora (Strong and Ayres, 2013), but differences in tidal
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range provide another explanation to this phenomenon. The growth range increase with
increasing tidal range, whereas the landward and seaward limits decrease with increasing tidal
range (McKee and Patrick, 1988). Biomass of S. alterniflora can be influenced by latitude (Liu
et al., 2016; Crosby et al., 2017), but no significant difference was observed between 32 and
38 degrees North (Liu et al., 2016). We assume that the submergence period and salinity
tolerance is similar in these areas, which eliminates the effect of hybrids and latitude. While the
inundation ratio in different geographic regions can be identical, the submergence depth will
differ if the tidal range is different. Deeper submergence due to larger tidal ranges leads to
stronger soil anoxia, which is unfavorable for the vegetation of the lower marsh. On the
landward side, however, deeper submergence enhances inundation which is otherwise lacking
in the higher marsh. Thus, submergence depth explains why both landward and seaward limits
decrease with increasing tidal range (Fig. 5d, Table 2). Likewise, the inundation depth can
explain the optimal /R value of vegetation growth. Submergence depth in microtidal
environments will be shallower, and vegetation growth thus needs longer inundation durations
to achieve higher inundation ratios.

Another remarkable phenomenon is that, with increasing tidal range, the landward limit
decreases much more rapidly than the seaward limit (Fig. 5d, Table 2). Because the seaward
edge of a marsh is regularly submerged, soil anoxia is mainly controlled by inundation duration
not submergence depth. That explains why the seaward edge of a marsh varies much less
between different areas than the landward edge, where the high marsh is irregularly submerged
and evapotranspiration and hyper-salinity become severe. The effect of inundation duration, by
contrast, is small because of its short duration and submergence depth now becomes important.
In effect, the response of the landward limit is much greater than that of the seaward limit if the
tidal range changes. The same phenomenon, namely that the optimal /R decreases with tidal

range, is also valid for the optimal /IR of S. alterniflora growth.

4.2 Geomorphological effect on vegetation growth
Considering the observations at Dafeng and Rudong, the situation is more complicated
than outlined above. The relationship of biomass and inundation frequency is similar at the two

locations. The seaward IR limits are both smaller than 0.5, which concerns the elevation of the
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seaward edges of the marsh above mean sea level. It is determined by salinity and submergence
tolerance of S. alternifiora. Although the tidal range at Dafeng is smaller than at Rudong, the
seaward limit and the optimal /R value is smaller at Dafeng than at Rudong (Figs. 6, 7).
Hydrodynamics and geomorphology play important roles in this case. Firstly, at Dafeng the
marsh edge retreats landward due to rise erosion. Secondly, due to the presence of the cliff,
wave and current action are more intense (Tonelli ef al., 2010; Francalanci et al., 2013; Zhao
et al., 2017), which is a disadvantage for the vegetation. In response, the optimal /R position
retreats to a higher elevation and therefore has a lower value.

By the same token, the cross-shore profile of a salt marsh may also alter the inundation
characteristics. First of all, the marsh platform at Dafeng is located around MHW, which is
much higher than the marsh at Rudong (Fig. 2). As mentioned above, the gentle slope and
concave-up shape of the marsh at Dafeng (Fig. 2a & 2b) leads to poor drainage of the higher
marsh. Because of the longer inundation duration, the soil salinity is lower, which favors
vegetation growth of the higher marsh plants.

Tidal creeks are another landform influencing the vegetation pattern. Biomass and stem
height of S. alterniflora located near the tidal creek (Figs. 3¢, 4b, 5b) are clearly higher than on
the inner marsh. The lower elevation near tidal creeks leads to higher inundation durations.
While tidal creeks play an important role as drainage tunnels in salt marshes (Allen, 2000), the

longer water residence times in their vicinity favor vegetation growth.

4.3 Salt marsh evolution and model application

As outlined above, the biomass model is clearly an important module in the
geomorphological evolution model (Mudd ez al., 2004, 2010; D’ Alpaos et al., 2005, 2007;
Morris, 2006; Kirwan and Murray, 2007; Mariotti and Fagherazzi, 2010). In the case of some
S. alterniflora (Mudd et al., 2004, 2010; D’ Alpaos et al., 2005, 2007) and multi-species
marshes (Belliard et al., 2017) a linear equation can be used in the biomass model. The marshes
at Dafeng and Rudong represent two kinds of typical marsh, being characterized by erosion
along the cliff and a gentle slope with little or no surface deposition in the former case, but by
seaward progression and a steep slope of the seaward edge in the latter case. As such, the

marshes of Dafeng and Rudong can be regarded as representing two different evolutionary
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states.

Submergence has a positive effect on vegetation growth above the optimal /R elevation.
The linear equation covers this part of the marsh up to the landward limit and provides an
efficient predictor of biomass which, in this region, increases with decreasing elevation (Mudd
etal.,2004,2010; D’ Alpaos et al., 2005, 2007). With seaward spreading of the vegetation, the
frequency of submergence begins to inhibit the growth of S. alterniflora. The biomass decreases
with decreasing elevation from the optimal elevation to the seaward limit. Here, the vegetation
pattern follows a parabolic relationship between biomass and elevation. Because of decreased
hydrodynamics and the sediment trapping effect of the salt marsh vegetation, the elevation of
the entire marsh increases, whereas the slope of the inner marsh decreases and that of the
seaward edge increases. As time goes on, the slope of the seaward edge becomes progressively
steeper until a cliff is formed. The period of cliff formation is significantly affected by sediment
supply, biomass and overall evolution time (Mariotti and Fagherazzi, 2010; Zhao et al., 2017).
The marshes of both the Dafeng and Rudong coasts are associated with high sediment
concentrations (SSCs) and large biomass (Figs. 5, 6, 7). The different variables in the biomass
versus /R relationship (e.g., optimal /R, landward and seaward /R limits, maximum biomass)
can thus substantially influence morphodynamic processes, and are hence extremely important
for morphological modeling and the development of management strategies for coastal marsh

protection.

4.4. Salt marsh evolution under sea-level rise

According to the IPCC prediction of sea-level rise (SLR), the eustatic contribution will be
0.3 to 0.8 m over the next century (Church, 2013). In general terms, coastal land loss will occur
if the local rate of SLR exceeds the local accretion rate (Reed, 1995). However, marsh survival
may be different because of biogeomorphic feedbacks resulting in increased rates of both
organic and inorganic accumulation (Morris et al., 2002; Kirwan and Guntenspergen, 2012).
Thus, the spatial vegetation pattern is crucial in determining accumulation in the marsh, a dense
plant canopy and associated high biomass greatly reducing the vulnerability of a marsh (Kirwan
et al., 2016). A maximal biomass and optimal marsh elevation would have the best protection

effect. For example, at Dafeng and Rudong, and in North Inlet and the Virginia Coast Reserve,
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the respective maximal biomasses are 2002, 1850, 1861 and 875 g/m2. The corresponding
optimal elevations are 1.54, 0.92, 0.28, and 0.10 m above MSL, and the optimal /Rs are 0.206,
0.260, 0.324 and 0.401.

The remarkable differences between different marshes will result in different responses to
SLR. Because the IR of seaward edges are close to 0.5 in different regions, the associated lower
optimal /R means that the marshes at higher elevations and with wider elevation ranges have a
better chance to survive. The above-mentioned advantage of a marsh results in a stronger buffer
to the impact of future SLR. Therefore, a maximal biomass and optimal /R are useful proxies
in evaluating the ability of marsh adaptation to SLR. It is noteworthy, however, that the spatial
pattern of a marsh is not the only determining factor, sediment supply being also a significant

variable in the accretion of a marsh.

5. Conclusions

The biomass pattern of S. alterniflora in coastal marshes can be predicted by the inundation
ratio. According to our filed surveys, the relationships between above-ground biomass and
inundation ratios can be described by quadratic regression equations. The optimal inundation
ratio for S. alterniflora along the Jiangsu coast ranges from 0.21~0.26, but are much lower for
the marsh in North Inlet (0.35) and the Virginia Coast Reserve (0.41). Similar differences apply
to the landward and seaward limits of S. alterniflora. Tidal range plays a significant role in that
larger tidal ranges lead to smaller optimal /Rs and higher ground elevations at the landward and
seaward limits of the marsh.

In addition, the landform of a salt marsh can also influence the growth pattern of S.
alterniflora, while geomorphological factors such the elevation profile, as well as the presence
of cliffs and tidal creeks, should also be taken into account. Thus, the erosion of cliffs at Dafeng
results in a higher seaward limit of the marsh. The gentle slope and concave-up shape of the
Dafeng marsh, in turn, results in poor drainage, which makes the higher marsh more suitable

for S. alterniflora than the better drained lower ground.
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Table 1 Regression parameters of B =a * (IR — b)? + ¢, B (g/m?) is the biomass per unit area,

IR is dimensionless inundation ratio, a, b and c are repression parameters.

Location a b c R  Significance
Dafeng -57796 -0.206 20153 0.54  p<0.001
Rudong -43264 -0.260 1880.1 0.68  P<0.001
North Inlet! -69161 -0.324 1861.7 0.67  P<0.001

Virginia Coast Reserve? -74676 -0.401 875.5 0.65 P<0.001

'Data extracted from Morris ef al. (2002); 2Data extracted from Kirwan et al. (2012).
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Table 2 Inundation ratios of different geographic regions

Rudong Dafeng North Inlet' Virginia Coast Reserve?

Predicted seaward limit 0.47 0.39 0.49 0.54
Measured seaward limit 0.4 0.32 0.43 0.51
Predicted landward limit 0.04 0.02 0.16 0.28
Measured landward limit 0.08 0.1 0.19 0.34
Optimal /IR of equation 0.26 0.206 0.324 0.401
Predicted growth range 0.43 0.37 0.33 0.23
Measured growth range 0.32 0.22 0.24 0.17
Tidal range (m) 4.5 3.0 1.4 0.8

Salt marsh slope 0.1% ~0% / 3%

Latitude 325 333 333 37.5

Predicted values refer to those calculated by means of the corresponding equations relating

biomass and /R to each other (eq. 8, 9, 12, 13). 'Data extracted from Morris et al. (2002); 2Data

extracted from Kirwan ef al. (2012).
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Figure caption:

Fig. 1. (a): Map of the Dafeng and Rudong study areas, Jiangsu Province, China; B1 and B2
are buoy stations monitoring the wave climate. (b): The Dafeng salt marsh; DF-n and DF-s
mark the two cross-shore profiles. (c): The Rudong salt marsh; Rd2015 and Rd2016 are the two
transects along which elevation measurements were carried out in 2015 and 2016 respectively.

DFA and RDA mark the locations of hydrodynamic measuring stations.

Fig. 2. Cross-shore elevation profiles at Dafeng and Rudong. MHW, MHWS, MHWN are mean
high water, mean high water springs and mean high water neaps respectively. Elevation is
relative to MSL. (a) & (b) The cross-shore elevation profiles at Dafeng. MHWS, MHW,
MHWN are 1.91 m, 1.50 m and 1.31 m above MSL respectively. (c) The cross-shore elevation
profile at Rudong. MHWS, MHW, MHWN are 2.84 m, 2.23 m and 1.75 m above MSL
respectively. Red solid circles mark the vegetation sampling quadrats located within the marsh,

the blue solid circles the quadrats near the tidal creek.

Fig. 3. Stem density and height versus elevation and cross-shore distance at Dafeng and Rudong.
The cross-shore distance is landward from the seaward edge of the marsh. (a) & (b) Stem
density versus Elevation and Cross-shore distance. Note the lack of correlation. (c) Stem height
vs. Elevation, and. (d) Stem height vs. Cross-shore distance. For the corresponding equations
and correlation coefficients of the latter two see text (eq. 4, 5). Df-n (blue solid triangles) and
DF-s (red solid circles) mark samples from Dafeng; RD-c (purple open diamonds) mark
samples near the tidal creek at Rudong; RD-i (green open squares) mark samples from the inner

marsh at Rudong.

Fig. 4. Biomass versus elevation. Note the parabolic relationships for Dafeng (a), Rudong (b)
and both together (c). For equations see text (eq. 6, 7). (d) The parabolic regressions of biomass
vs. elevation at Dafeng and Rudong compared with those of North Inlet (South Carolina, USA)
and the Virginia Coast Reserve (Virginia, USA). The latter data are from Morris ef al. (2002)

and Kirwan et al. (2012). For the equations of the latter two see text (eq. 10, 11).
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Fig. 5. Biomass versus inundation ratio. Note the parabolic relationships for Dafeng (a), Rudong
(b) and both together (c). For equations see text (eq. 8, 9). (d) The parabolic regressions of
biomass vs. inundation ratio at Dafeng and Rudong compared with those of North Inlet (South
Carolina, USA) and the Virginia Coast Reserve (Virginia, USA). The latter data are from
Morris et al. (2002) and Kirwan et al. (2012). For the equations of the latter two see text (eq.

12, 13).
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Fig. 2. Cross-shore elevation profiles at Dafeng and Rudong. MHW, MHWS, MHWN are mean
high water, mean high water springs and mean high water neaps respectively. Elevation is
relative to MSL. (a) & (b) The cross-shore clevation profiles at Dafeng. MHWS, MHW,
MHWN are 1.91 m, 1.50 m and 1.31 m above MSL respectively. (c) The cross-shore elevation
profile at Rudong. MHWS, MHW, MHWN are 2.84 m, 2.23 m and 1.75 m above MSL
respectively. Red solid circles mark the vegetation sampling quadrats located within the marsh,

the blue solid circles the quadrats near the tidal creek.
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Fig. 3. Stem density and height versus elevation and cross-shore distance at Dafeng and Rudong.
The cross-shore distance is landward from the seaward edge of the marsh.. (a) & (b) Stem
density versus Elevation and Cross-shore distance. Note the lack of correlation. (c) Stem height
vs. Elevation, and. (d) Stem height vs. Cross-shore distance. For the corresponding equations
and correlation coefficients of the latter two see text (eq. 4, 5). Df-n (blue solid triangles) and
DF-s (red solid circles) mark samples from Dafeng; RD-c (purple open diamonds) mark
samples near the tidal creek at Rudong; RD-i (green open squares) mark samples from the inner

marsh at Rudong.
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Fig. 5. Biomass versus inundation ratio. Note the parabolic relationships for Dafeng (a), Rudong
(b) and both together (c). For equations see text (eq. 8, 9). (d) The parabolic regressions of
biomass vs. inundation ratio at Dafeng and Rudong compared with those of North Inlet (South
Carolina, USA) and the Virginia Coast Reserve (Virginia, USA). The latter data are from

Morris et al. (2002) and Kirwan et al. (2012). For the equations of the latter two see text (eq.

12, 13).
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