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a b s t r a c t 

Data-driven disease progression models have provided important insight into the timeline of brain changes in 

AD phenotypes. However, their utility in predicting the progression of pre-symptomatic AD in a population- 

based setting has not yet been investigated. In this study, we investigated if the disease timelines constructed 

in a case-controlled setting, with subjects stratified according to APOE status, are generalizable to a population- 

based cohort, and if progression along these disease timelines is predictive of AD. Seven volumetric biomarkers 

derived from structural MRI were considered. We estimated APOE -specific disease timelines of changes in these 

biomarkers using a recently proposed method called co-initialized discriminative event-based modeling (co-init 

DEBM). This method can also estimate a disease stage for new subjects by calculating their position along the 

disease timelines. The model was trained and cross-validated on the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) dataset, and tested on the population-based Rotterdam Study (RS) cohort. We compared the diagnostic 

and prognostic value of the disease stage in the two cohorts. Furthermore, we investigated if the rate of change of 

disease stage in RS participants with longitudinal MRI data was predictive of AD. In ADNI, the estimated disease 

timeslines for 𝜖4 non-carriers and carriers were found to be significantly different from one another ( 𝑝 < 0 . 001) . 
The estimate disease stage along the respective timelines distinguished AD subjects from controls with an AUC 

of 0.83 in both APOE 𝜖4 non-carriers and carriers. In the RS cohort, we obtained an AUC of 0.83 and 0.85 in 𝜖4 

non-carriers and carriers, respectively. Progression along the disease timelines as estimated by the rate of change 

of disease stage showed a significant difference ( 𝑝 < 0 . 005 ) for subjects with pre-symptomatic AD as compared to 

the general aging population in RS. It distinguished pre-symptomatic AD subjects with an AUC of 0.81 in APOE 

𝜖4 non-carriers and 0.88 in carriers, which was better than any individual volumetric biomarker, or its rate of 

change, could achieve. Our results suggest that co-init DEBM trained on case-controlled data is generalizable to a 

population-based cohort setting and that progression along the disease timelines is predictive of the development 

of AD in the general population. We expect that this approach can help to identify at-risk individuals from the 

general population for targeted clinical trials as well as to provide biomarker based objective assessment in such 

trials. 

1

 

a  

i

r

o  

f  

2  

c  

h

R

A

1

(

. Introduction 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that

ffects roughly 3% of the world’s elderly population (above 60 years
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ld) ( World Health Organization, 2017 ). A major genetic risk factor

or AD is the presence of 𝜖4 allele of APOE ( Van Cauwenberghe et al.,

016 ). Furthermore, APOE 𝜖4 has also been shown to affect the clini-

al ( Holmes, 2002; Weintraub et al., 2019 ) and biological phenotypes
ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 

NI and/or provided data but did not participate in analysis or writing of this 
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3 ADNI was launched in 2003 as a public-private partnership, led by Princi- 

pal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been 

to test whether serial magnetic resonance imaging (MRI), positron emission to- 

mography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive im- 

pairment (MCI) and early Alzheimers disease (AD). For up-to-date information, 

see www.adni-info.org . 
f AD ( Ferreira et al., 2020 ), making it a key factor in understanding

he pathophysiology of AD. 

Neuroimaging biomarkers play an important role in disentangling

hese phenotypes ( Ryan et al., 2018; Young et al., 2018 ). They could also

lay an important role in finding disease modifying treatments ( Devi and

cheltens, 2018 ). There has been evidence that selection of the study

opulation at its pre-symptomatic stage is also crucial for the success

f potential modifying treatments for AD ( Sevigny et al., 2016; Sperling

t al., 2013 ). Hence there is a crucial need for a way to objectively assess

he progression of pre-symptomatic AD (or lack thereof). 

Biomarkers extracted from neuroimaging data in combination with

achine learning approaches have been shown to objectively assess

he progression of AD in research cohorts ( Marinescu et al., 2020 ) as

ell as in clinical cohorts ( Kloeppel et al., 2015 ). However, machine

earning approaches are not explainable by default and the lack of

ransparency in such approaches could hinder clinical decision mak-

ng ( Wachter et al., 2018 ). 

Disease progression models are data-driven approaches that are

nterpretable by design and can thus aid not only in predicting AD

ut also in explaining the decision and facilitating transparency and

rust ( Holzinger et al., 2017 ). In recent years, many disease progres-

ion models have emerged to provide insight into neurodegenerative

iseases such as AD ( Donohue et al., 2014; Fonteijn et al., 2012 ). Such

nsights have also been shown to aid in objective assessment of AD pro-

ression ( Koval et al., 2018 ). An example of such a model is the dis-

riminative event-based model (DEBM) ( Venkatraghavan et al., 2019 ),

hich estimates a timeline of AD related biomarker abnormality events

n a data-driven way. This model was recently extended further to iden-

ify APOE genotype-specific differences in AD biomarker progression,

here the biomarkers, including volumetric measures obtained from

RI, were found to progress along different timelines depending on

POE status ( Venkatraghavan et al., 2021 ). However, the generalizabil-

ty of such models to population-based cohorts and their utility in pre-

icting the progression of pre-symptomatic AD in a population-based

etting have not yet been investigated. 

In this work, we investigate if i) APOE -specific disease timelines con-

tructed in a case-controlled setting are generalizable to a population-

ased cohort, and ii) if progression along these disease timelines is

redictive of AD. For constucting the APOE -specific disease timelines,

e use a recently developed approach called co-initialized (co-init)

EBM ( Venkatraghavan et al., 2021 ) meant for obtaining disease time-

ines in stratified cross-sectional datasets. We demonstrate the potential

f the method’s fine-grained disease stage estimation in predicting the

ubjects with pre-symptomatic AD in the general population. 

. Methods 

We first describe the inclusion criteria for participants and the

ethod for obtaining the volumetric biomarkers in the case-controlled

lzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and the

opulation-based Rotterdam study (RS) dataset. This is followed by the

escription of co-init DEBM used to construct APOE -specific disease

imelines of volumetric biomarkes from baseline scans of the partici-

ants in the ADNI. We validated the disease timelines constructed on

DNI by assessing their generalizability to the population-based RS co-

ort, and by predicting the participants at-risk of becoming symptomatic

n the RS cohort. 

.1. Participants 

.1.1. ADNI 

We considered the baseline measurements of 335 cognitively normal

CN), 565 non-AD, 167 incident-AD and 223 AD participants (prevalent-

D) who had imaging data available in ADNI1, ADNIGO and ADNI2
2 
tudies 3 The non-AD cases were defined as ADNI participants who were

ither mild cognitively impaired (MCI) or had subjective memory com-

laints at the time of the baseline MRI scan, and did not develop AD

ithin 3 years of follow-up. The incident-AD cases presented with MCI

t baseline but developed AD within 3 years. The prevalent-AD and

ncident-AD subjects were defined by their clinical diagnosis of AD ac-

ording to NINCDS-ADRDA’s criteria for AD ( Dubois et al., 2007; Pe-

ersen et al., 2010 ). Characteristics of the subjects and their volumet-

ic measures in the ADNI dataset included in our study are shown in

able 1 (a). 

.1.2. Rotterdam study 

We considered participants from the population-based RS cohort,

 prospective longitudinal study among community-dwelling subjects

ged 45 years and over ( Ikram et al., 2020 ). Participants were screened

or dementia at baseline and at follow-up examinations with the Mini-

ental State Examination and the Geriatric Mental Schedule organic

evel. Those with a Mini-Mental State Examination score < 26 or Geri-

tric Mental Schedule score > 0 underwent further investigation and

nformant interview, including the Cambridge Examination for Mental

isorders of the Elderly. In addition, the entire cohort was continuously

nder surveillance for dementia through electronic linkage of the study

atabase with medical records from general practitioners and the re-

ional institute for outpatient mental health care. Available information

n cognitive testing and clinical neuroimaging was used when required

or diagnosis of dementia subtype. A consensus panel led by a consultant

eurologist established the final diagnosis of AD according to NINCDS-

DRDA criteria for AD. 

In this work, we included participants from the RS who had at least

ne MRI scan, who completed cognitive testing, and were interviewed

or the presence of subjective cognitive complaints at the time of the

RI. The included participants were categorized into 4 groups: par-

icipants that were cognitively normal at the time of the scan (CN),

articipants that had subjective memory complaints and/or objective

ognitive impairment ( de Bruijn et al., 2014 ), but who did not develop

D at follow-up (non-AD), participants with AD at the time of the scan

prevalent-AD) and participants who developed AD after the MRI scan

incident-AD). Unlike in ADNI, we did not set a threshold of conversion

ithin 3 years to be included as an incident-AD participant, since we

anted to assess the utility of our method in monitoring the progres-

ion of both pre-clinical and prodromal AD subjects. Participants with

linical stroke were excluded. 

In our experiments, we used two subsets of the RS cohort: the general-

zibility set and the prediction set . The generalizibility set consisted of the

ast MRI scan available for each partipant in the RS cohort. This subset

onsisted of 998 CN, 2710 non-AD, 97 incident-AD, and 25 prevalent-

D cases and were used for experiments validating the generalizability

f the APOE -specific disease timelines constructed using co-init DEBM.

he characteristics of the subjects in this subset are shown in Table 1 (b).

he prediction set consisted of the last two MRI scans available for each

articipant, which were used to assess the progression (or lack thereof)

f pre-symptomatic AD in the participants. This subset consisted of 183

N, 852 non-AD and 31 incident-AD cases. For the incident-AD cases,

oth the included scans were performed before the AD diagnosis. Partic-

pants with prevalent-AD were excluded in this subset. The characteris-

ics of the subjects in this subset are shown in Table 1 (c). A scatter plot

llustrating the longitudinal sampling in this prediction set is shown in

igure 1 . 

http://www.adni-info.org
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Table 1 

Characteristics of the ADNI dataset (a), the generalizability set of the RS dataset (b), and the prediction set of the 

RS dataset (c). ∗ indicates values at last scan. 

ADNI dataset CN non-AD incident-AD prevalent-AD 

Number of subjects 335 565 167 223 

Number of women, % 174, 51.9 268, 47.4 68, 40.7 104, 46.6 

Age (years) 74.3 ± 5.6 71.82 ± 7.2 73.1 ± 7.1 74.0 ± 7.9 

Number of APOE 𝜖4 carriers, % 92, 27.5 238, 42.1 121, 72.5 151, 67.7 

Intracranial volume (ml) 1504.0 ± 155.8 1520.9 ± 152.8 1546.2 ± 180.2 1524.2 ± 183.9 

Total brain volume (ml) 1030.7 ± 98.7 1043.3 ± 100.0 1017.7 ± 111.7 991.8 ± 114.1 

Ventricle volume (ml) 38.4 ± 18.1 41.0 ± 21.3 49.1 ± 23.9 51.4 ± 21.9 

Hippocampus volume (ml) 7.3 ± 0.9 7.1 ± 1.0 6.3 ± 1.0 6.0 ± 1.0 

Precuneus volume (ml) 16.7 ± 2.2 17.4 ± 2.4 16.2 ± 2.6 15.4 ± 2.5 

Middle temporal gyrus volume (ml) 20.4 ± 2.7 20.4 ± 2.7 18.5 ± 2.9 17.6 ± 3.0 

Fusiform gyrus volume (ml) 17.5 ± 2.1 17.6 ± 2.2 16.3 ± 2.4 15.5 ± 2.4 

Entorhinal cortex volume (ml) 4.0 ± 0.7 3.9 ± 0.8 3.4 ± 0.8 3.2 ± 0.8 

Time before AD diagnosis (years) ∗ 1.4 ± 0.7 

(a) 

RS dataset - generalizability set CN non-AD incident-AD prevalent-AD 

Number of subjects 998 2710 97 25 

Number of women, % 500, 50.1 1200, 44.3 39, 40.2 10, 40.0 

Age (years) 67.4 ± 8.3 70.9 ± 9.3 79.6 ± 5.7 80.2 ± 6.3 

Number of APOE 𝜖4 carriers, % 255, 25.6 745, 27.5 45, 46.4 11, 44.0 

Intracranial volume (ml) 1512.3 ± 157.6 1475.8 ± 155.3 1437.5 ± 156.6 1403.0 ± 163.9 

Total brain volume (ml) 1050.3 ± 107.5 1012.6 ± 105.6 936.6 ± 94.9 884.5 ± 105.0 

Ventricle volume (ml) 33.7 ± 17.3 36.5 ± 19.3 49.1 ± 21.1 59.9 ± 28.3 

Hippocampus volume (ml) 7.9 ± 0.8 7.6 ± 0.8 6.7 ± 0.9 6.0 ± 1.0 

Precuneus volume (ml) 18.2 ± 2.1 17.6 ± 2.0 16.8 ± 1.9 15.4 ± 2.2 

Middle temporal gyrus volume (ml) 20.6 ± 2.7 19.9 ± 2.7 17.6 ± 2.5 16.2 ± 2.7 

Fusiform gyrus volume (ml) 17.7 ± 2.2 17.2 ± 2.1 15.8 ± 2.0 14.5 ± 2.7 

Entorhinal cortex volume (ml) 3.7 ± 0.6 3.6 ± 0.7 3.1 ± 0.8 2.6 ± 0.7 

Time before AD diagnosis (years) ∗ 2.8 ± 2.3 

(b) 

RS dataset - prediction set CN non-AD incident-AD 

Number of subjects 183 852 31 

Number of women, % 95, 51.9 412, 48.4 10, 32.3 

Age (years) ∗ 73.3 ± 5.5 75.5 ± 6.4 78.4 ± 6.8 

Follow-up time (years) 3.5 ± 1.3 3.5 ± 1.4 2.9 ± 0.9 

Number of APOE 𝜖4 carriers, % 39, 21.3 225, 26.4 13, 41.9 

Intracranial volume (ml) ∗ 1522.8 ± 156.6 1478.9 ± 156 1419.4 ± 126.9 

Total brain volume (ml) ∗ 1038.7 ± 100.7 998.4 ± 98.3 926.6 ± 91.4 

Ventricle volume (ml) ∗ 39.7 ± 20.2 41.1 ± 21.6 44.9 ± 17 

Hippocampus volume (ml) ∗ 7.8 ± 0.8 7.4 ± 0.8 6.7 ± 0.9 

Precuneus volume (ml) ∗ 18.0 ± 2.0 17.5 ± 1.9 16.5 ± 1.8 

Middle temporal gyrus volume (ml) ∗ 20.3 ± 2.6 19.5 ± 2.4 17.5 ± 2.4 

Fusiform gyrus volume (ml) ∗ 17.5 ± 2.1 17.0 ± 2.1 15.6 ± 2.1 

Entorhinal cortex volume (ml) ∗ 3.7 ± 0.7 3.6 ± 0.7 3.0 ± 0.6 

Time before AD diagnosis (years) ∗ 2.4 ± 1.8 

(c) 
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.2. MRI Acquisition and imaging biomarker extraction 

The imaging biomarkers used in this study were estimated from

1-weighted (T1w) MRI scans. ADNI participants were scanned on

 1.5T ( 𝑁 = 497 ) or a 3T ( 𝑁 = 793 ) MRI system from GE, Philips,

r Siemens, using magnetization prepared - rapid gradient echo (MP-

AGE) sequence (voxel size: 1 . 0 × 1 . 0 × 1 . 0 𝑚𝑚 

3 ). RS participants were

canned on a single 1.5T MRI system from GE, using gradient re-

alled echo (GRE) sequence (voxel size: 0 . 49 × 0 . 49 × 1 . 6 𝑚𝑚 

3 ). De-

ails of the MRI acquisition protocol can be found in Jack et al.

2015, 2008) (ADNI) and Ikram et al., 2015 (RS). The MRI scans

ere analyzed with FreeSurfer software v6.0 cross-sectional stream

 http://surfer.nmr.mgh.harvard.edu ). Outputs were visually checked

or the ADNI dataset. In the RS dataset, an automated quality metric

as used to exclude scans with insufficient quality, which was visu-

lly verified in a randomly selected subset of both selected and rejected

cans ( Lamballais et al., 2020 ). 

The selected imaging markers were the same markers as that

f Archetti et al., 2019 , namely volumetric measures of: total brain,

entricles, hippocampus, precuneus, middle temporal gyrus, fusiform
 p  

3 
yrus and entorhinal cortex. The volumes were defined as the summed

olumes of the structure in the left and right hemisphere. To take into

ccount the confounding effects of age, sex, and intracranial volume,

inear regressions were performed before constructing the disease time-

ines. The volumetric measures of CN subjects in ADNI were used to

egress against age, sex and intracranial volume to estimate their con-

ounding effects parameterized by their respective slopes and intercepts.

hese estimates were used for confounding factor correction in the re-

aining subjects in ADNI as well as in the RS cohort. The resultant

olumetric measures will be referred to as biomarkers in the remainder

f the manuscript. 

.3. Construction of APOE -specific disease timelines using co-init DEBM 

The co-init DEBM model introduced in ( Venkatraghavan et al., 2021 )

onstructs genotype-specific AD related disease timelines of biomarker

hanges, based on cross-sectional datasets. Such an estimation from cross-

ectional data is feasible because, in a cohort consisting of subjects en-

ompassing a wide spectrum of severity, early biomarkers have a higher

revalence of abnormal biomarker values as compared to biomarkers

http://surfer.nmr.mgh.harvard.edu
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Fig. 1. Longitudinal sampling in the prediction set of the RS dataset. The x-axis represents the age of the participant at baseline and the y-axis represents time 

difference between the baseline and follow-up scan. The plot on the top of the figure shows the kernel density estimates of the age of the participants for the different 

diagnostic classes and the one on the right shows the kernel density estimates of the follow-up time. 
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t  
hat become abnormal later in the disease timeline. The co-init DEBM

odel estimates this timeline without strictly considering the diagnos-

ic labels of the subjects. The model uses a coupled mixture model to

ointly fit normal and abnormal distributions in the dataset stratified by

 APOE ) genotypes. The model assumes that the normal and abnormal

iomarker distributions in the different genotypes can be approximately

epresented by Gaussians. It also assumes that the different genotypes’

bnormal (and normal) biomarker distributions are close to each other.

After the estimation of the normal and abnormal biomarker distri-

utions, the model computes the probability of abnormality of each

iomarker for each subject in the training dataset. Based on the assump-

ion that a biomarker that becomes abnormal earlier in the disease time-

ine would be more abnormal than the biomarker that becomes abnor-

al later, it estimates a subject-specific ordering of biomarker changes

n each subject of the dataset. A generalized Mallows model is used

o average the subject-specific biomarker ordering over the subjects

ithin each genotypic group of the training set, to construct average

isease timeline for APOE 𝜖4 non-carriers and carriers. Along with the

equence of the biomarker abnormality events, the model also estimates

he relative positioning of such events with respect to each other (event-

enters). Absolute magnitudes for these event-centers are irrelevant as

hey only convey relative (temporal) distances and in this study, they

ere normalized such that the first event and the last event coincided

t a value of 0.1 and 0.9 respectively. 

To construct the disease timelines, the co-init DEBM was trained on

N, incident-AD, and prevalent-AD subjects from ADNI. The non-AD

ubjects in ADNI were excluded for training the model, to reduce the

hances of disorders unrelated to AD affecting the estimated timelines.

he variance in the estimated disease timeline was computed using 100

ndependent bootstrap samples. In order to evaluate if the estimated

rderings in APOE 𝜖4 non-carriers and carriers were significantly differ-

nt from one another, we used permutation testing and estimated the

istribution of the Kendall’s Tau distance under the null hypothesis. To

ompute this distribution, we generated 1,000 random permutations of
4 
he two groups. We then computed the one-sided 𝑝 -values for the actual

endall’s Tau distances between the orderings of the two groups, cal-

ulated as the proportion of sampled permutations where the distance

as greater than or equal to the actual distance. 

.4. Estimating APOE -specific disease stages 

After training the co-init DEBM model, the constructed APOE -specific

isease timelines were used to estimate the disease stage at multiple

imepoints for subjects of the RS cohort. For estimating the disease

tages of ADNI subjects, we used a 10-fold cross validation. The training

et was used for constructing the disease timelines and the disease stages

ere estimated in the test set, including the non-AD subjects excluded

n the training phase. Disease stage quantifies the severity of the disease

n a subject by positioning them along the pre-constructed disease time-

ines and is normalized between 0 and 1. The estimated disease stages

ere used in two sets of experiments. 

Experiment 1: Assessing the generalizability of co-init DEBM from

DNI to RS 

In this experiment, we tested the generalizability of the co-init DEBM

odel trained on ADNI by evaluating the diagnostic and prognostic

alue of its predicted disease stages in the RS cohort. First we performed

 visual assessment by constructing normalized histograms of the esti-

ated APOE -specific disease stages for the different diagnostic classes

n ADNI and the generalizability set of the RS cohort. 

Complementing this visual analysis, for assessing the diagnostic

alue we used the estimated disease stages to distinguish prevalent-AD

rom two different reference groups in ADNI and in the generalizability

et of the RS cohort. First, only the CN subjects were included in the

eference group. To emulate a reference group of participants more rep-

esentative of the general aging population than the CN group, we used a

ombined set of CN and non-AD subjects as the second reference group.

e computed the area under the receiver operating curve (AUC) for dis-

inguishing the diagnostic classes, and compared the AUCs obtained in
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Table 2 

Generalizability assessment: The AUCs for distinguishing the different diagnostic classes using the estimated disease stages and their corre- 

sponding 95% confidence intervals. The confidence intervals of the AUCs were determined using bootstrap resampling while stratifying the 

diagnostic classes to maintain their relative proportions. Co-init DEBM AUC represents the AUCs obtained when separate disease timelines 

were estimated for APOE 𝜖4 non-carriers and carriers, whereas DEBM AUC represents the AUCs obtained when a combined disease timeline 

was estimated. 𝑁 𝑅 and 𝑁 𝐶 represent the number of subjects in the reference group and number of cases respectively. 

Reference 

group 

Cases No. of Subjects Co-init DEBM AUC DEBM AUC 

ADNI ( 𝑁 𝑅 , 𝑁 𝐶 ) RS ( 𝑁 𝑅 , 𝑁 𝐶 ) ADNI RS ADNI RS 

APOE 𝜖4 non-carriers 

CN prevalent-AD 243, 72 743, 14 0.86 (0.81-0.91) 0.85 (0.71-0.98) 0.85 (0.80-0.90) 0.79 (0.64-0.94) 

CN + non-AD prevalent-AD 570, 72 2708, 14 0.83 (0.78-0.88) 0.83 (0.70-0.97) 0.81 (0.76-0.86) 0.79 (0.64-0.94) 

CN incident-AD 243, 46 743, 52 0.83 (0.77-0.90) 0.70 (0.62-0.78) 0.83 (0.77-0.89) 0.63 (0.55-0.72) 

CN + non-AD incident-AD 570, 46 2708, 52 0.81 (0.74-0.88) 0.68 (0.60-0.75) 0.80 (0.73-0.86) 0.64 (0.55-0.72) 

APOE 𝜖4 carriers 

CN prevalent-AD 92, 151 255, 11 0.89 (0.85-0.94) 0.85 (0.74-0.96) 0.92 (0.87-0.96) 0.84 (0.71-0.97) 

CN + non-AD prevalent-AD 330, 151 1000, 11 0.83 (0.79-0.86) 0.85 (0.74-0.95) 0.83 (0.80-0.87) 0.85 (0.72-0.98) 

CN incident-AD 92, 121 255, 45 0.87 (0.82-0.92) 0.63 (0.54-0.72) 0.88 (0.83-0.93) 0.62 (0.52-0.72) 

CN + non-AD incident-AD 330, 121 1000, 45 0.79 (0.74-0.83) 0.62 (0.54-0.71) 0.79 (0.74-0.83) 0.62 (0.52-0.72) 
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DNI and RS. The confidence intervals of these AUCs were measured

sing bootstrap resampling while stratifying the diagnostic classes to

aintain their relative proportions. For assessing the prognostic value,

e used the estimated disease stages to distinguish incident-AD from

he aforementioned two reference groups in ADNI and in the general-

zability set of RS cohort. We computed the AUCs and their confidence

ntervals for distinguishing these diagnostic classes and compared val-

es obtained in ADNI and RS. 

To compare the generalizability of a model that stratifies based on

POE carriership, with that of a model that does not, we repeated the

xperiment described above using disease timeline estimated in ADNI

ubjects, without stratifying for APOE . Furthermore, we computed the

orrelation of the estimated disease stages with time to dementia di-

gnosis for incident-AD subjects in ADNI as well as in RS. Lastly, we

omputed the Spearman correlation of the estimated disease stages with

MSE for subjects in ADNI as well as in RS. 

Experiment 2: Predicting AD based on longitudinal data in the RS co-

ort 

In this experiment, we assess if the evolution of the disease stages

erived from longitudinal neuroimaging data is predictive of AD in the

rediction set of the RS cohort. This experiment is further divided into

hree parts. In the first part, we build longitudinal trajectories of the

isease stages and observe the differences in CN, non-AD and incident-

D subjects. In the second part, we assess the prognostic value of the

ate of change of disease stages. Lastly, we assess the marginal utility of

he follow-up scans in AD prognostication. 

Exp. 2.1: We used the disease stages obtained in the prediction set

f the RS cohort for building the trajectories of disease stages in the

wo APOE 𝜖4 based groups. The trajectories were estimated using linear

ixed models with random intercepts and slopes. The time variable in

hese linear mixed models was follow-up time in years since the first MRI

f the subject. To allow different slopes for different diagnostic classes,

n interaction between follow-up time and the diagnosis was integrated

n the model. Covariates that were accounted for in the model were sex,

ge at the time of the first MRI, and the interaction of age and follow-up

ime to allow slope differences for different ages. 

Exp. 2.2: We used the rate of change of disease stages (delta disease

tage) in the prediction set of the RS cohort to distinguish incident-AD

rom two different reference groups. As in Experiment 1, the two ref-

rence groups selected were CN, and a combined set of CN and non-

D subjects. We computed the AUCs and their confidence intervals for

istinguishing these diagnostic classes. For comparison, the AUCs while

sing the rate of change of the volumetric measures (normalized to their

espective intracranial volumes) for distinguishing the same two classes

ere computed. 

Exp. 2.3: Lastly, to evaluate the marginal utility of the follow-up

cans for identifying incident-AD subjects, we used the estimated dis-
 g  

5 
ase stage at the last MRI scan of the subjects in the prediction set of

he RS cohort to distinguish incident-AD from the aforementioned two

ifferent reference groups. We computed the AUCs and their confidence

ntervals for distinguishing these diagnostic classes. As a comparison,

he AUCs based on participants’ age as well as of each individual volu-

etric imaging biomarker were also computed. 

. Results 

Figure 2 shows the APOE -specific disease timelines constructed for

he 𝜖4 non-carriers and carriers in the ADNI dataset. It shows the cen-

ers of the biomarker abnormality events along the timeline representing

heir relative positioning with respect to each other. It can be seen that

he disease timelines of APOE 𝜖4 non-carriers and carriers were quite

ifferent. The permutation testing further confirmed that the disease

imelines of 𝜖4 non-carriers and carriers were indeed significantly dif-

erent ( 𝑝 < 0 . 001 ). Most noticeably, ventricular volume and total brain

olume were estimated as early biomarkers for APOE 𝜖4 non-carriers,

hereas hippocampal volume and volume of the entorhinal cortex were

stimated as early biomarkers for APOE 𝜖4 carriers. It can also be seen

n Fig. 2 that the uncertainty estimates in APOE 𝜖4 non-carriers were

reater than in APOE 𝜖4 carriers. 

Experiment 1: Assessing the generalizability of co-init DEBM from

DNI to RS 

The normalized histograms of the estimated APOE -specific disease

tages for the different diagnostic classes in ADNI and the generalizabil-

ty set of RS are shown in Fig. 3 . It can be seen that the distributions

f the disease stages of the four diagnostic classes in ADNI were largely

imilar to those in the generalizability set of RS. The CN and non-AD sub-

ects were positioned towards the left side of the spectrum, whereas the

revalent-AD were positioned predominantly towards the right. It can

lso be seen that for a proportion of prevalent-AD subjects in the APOE

4 non-carrier group, the model had estimated a low disease stage in

oth ADNI and RS cohorts. A noticeable difference between ADNI and

S was that a substantial proportion of incident-AD subjects in RS was

ositioned towards the left side of the histograms in both APOE 𝜖4 non-

arriers and carriers. 

The AUCs for distinguishing the different diagnostic classes using the

stimated disease stages are shown in Table 2 , along with their confi-

ence intervals. It can be observed that the performance of the disease

tages obtained using co-init DEBM in distinguishing prevalent-AD from

he set of CN and non-AD subjects in ADNI (AUC = 0.83 for both APOE

4 non-carriers and carriers) was comparable to that in RS (AUC = 0.83

or APOE 𝜖4 non-carriers and AUC = 0.85 for 𝜖4 carriers). It should how-

ver be noted that the confidence intervals were larger in the RS cohort.

t can also be observed that incident-AD subjects were harder to distin-

uish than prevalent-AD in the RS cohort (Co-init DEBM: AUC = 0.68



V. Venkatraghavan, E.J. Vinke, E.E. Bron et al. NeuroImage 238 (2021) 118233 

Fig. 2. Disease timelines of APOE 𝜖4 non-carriers 

(a) and carriers (b) estimated using co-init DEBM in 

ADNI. The plot on top of each subfigure shows the 

event-centers of the different regions and their re- 

spective standard deviation estimated from a batch of 

100 independent bootstrap samples. The 3D visualiza- 

tion ( Marinescu et al., 2019 ) at the bottom of each 

subfigure highlights the region that becomes abnor- 

mal at the corresponding disease stage. Total brain vol- 

ume becoming abnormal is depicted by a black-box sur- 

rounding the brain at the corresponding disease stage. 

The vertical positioning of the biomarkers in the event- 

center part of each subfigure shows the estimated dis- 

ease timeline in the APOE genotype, which is different 

for non-carriers and carriers. 
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or 𝜖4 non-carriers and AUC = 0.62 for 𝜖4 carriers), but not in ADNI

Co-init DEBM: AUC = 0.81 for 𝜖4 non-carriers and AUC = 0.79 for 𝜖4

arriers). It can also be seen in Table 2 that, while AUCs in ADNI are

omparable for both DEBM and Co-init DEBM and in APOE 𝜖4 carriers

n RS, the AUCs for distinguishing the different groups in RS APOE 𝜖4
on-carriers is higher for co-init DEBM. 

Furthermore, the estimated disease stages showed a significant Pear-

on correlation with time to diagnosis for APOE 𝜖4 carrier incident-

D subjects in both ADNI ( 𝑅 = 0 . 31 , 𝑝 = 0 . 0006 ) and RS cohorts ( 𝑅 =
 . 29 , 𝑝 = 0 . 04 ). However, the correlation was found to be insignificant

or APOE 𝜖4 non-carrier incident-AD subjects in both ADNI ( 𝑅 = 0 . 04 ,
 = 0 . 8 ) and RS cohorts ( 𝑅 = 0 . 1 , 𝑝 = 0 . 4 ). Lastly, the obtained disease
6 
tages had a significant Spearman correlation with MMSE in both ADNI

on-carriers ( 𝑅 = −0 . 41 , 𝑝 < 0 . 001 ) and carriers ( 𝑅 = −0 . 48 , 𝑝 < 0 . 001 ) as

ell as in RS non-carriers ( 𝑅 = −0 . 08 , 𝑝 < 0 . 001 ) and carriers ( 𝑅 = −0 . 06 ,
 = 0 . 05 ). 

Experiment 2: Predicting AD based on longitudinal data in the RS co-

ort 

Exp. 2.1: In Fig. 4 , the trajectories of disease stage over time as

stimated by linear mixed models are shown for the CN, non-AD and

ncident-AD groups of the prediction set of RS. The interaction between

he incident-AD diagnosis and follow-up time was statistically signifi-

ant in both APOE 𝜖4 non-carriers and carriers (CN vs. incident-AD 𝑝 =
 . 0032 and 𝑝 = 0 . 0041 respectively; non-AD vs. incident-AD 𝑝 = 0 . 0039
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Fig. 3. Normalized histograms of the estimated APOE -specific disease stages for the different diagnostic classes in ADNI and the generalizability set of RS. The 

normalized histograms of disease stages are shown for (a) APOE 𝜖4 non-carriers in ADNI, (b) APOE 𝜖4 carriers in ADNI (c) APOE 𝜖4 non-carriers of the generalizability 

set in RS, and (d) APOE 𝜖4 carriers of the generalizability set in RS. The x-axis represents the disease stage based on the APOE -specific disease timeline by the co-init 

DEBM model, and the y-axis represents the relative percentage of subjects in each diagnostic class, meaning that the relative percentages of all disease stages of one 

diagnostic category add up to one. Estimated disease stage is a continuous variable and was discretized (binned) for visualization purposes only. 
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nd 𝑝 = 0 . 0032 respectively), meaning that incident-AD subjects showed

 significant increase in disease stage compared to CN and non-AD sub-

ects. 

Exp. 2.2: In the left column of Fig. 5 , the AUCs and the correspond-

ng 95% confidence intervals for distinguishing incident-AD using two

RI scans based on longitudinal follow-up of participants are shown

or APOE 𝜖4 non-carriers and carriers. It can be observed that for dis-

inguishing incident-AD from the reference group, delta disease stage

onsistently performed the best for both the genotypes. It outperformed

he rates of changes of volumetric measures, with respect to the obtained

UC. It can also be observed that distinguishing incident-AD from CN

nd non-AD subjects in the reference group was harder than distinguish-

ng incident-AD from CN alone, as reflected by the lower AUCs for al-

ost all the measures used. 

Exp. 2.3: The right column of Fig. 5 shows that age was an impor-

ant predictor for incident-AD. Age distinguished incident-AD well from

N subjects (AUC of 0.73 for both 𝜖4 non-carriers and carriers), but

he performance of age as a predictor dropped substantially when dis-

inguishing incident-AD from CN and non-AD subjects (AUC of 0.64

or 𝜖4 non-carriers and 0.65 for 𝜖4 carriers). When only the last MRI

can was used for incident-AD prediction from a reference group of CN

nd non-AD subjects, volumes of hippocampus and entorhinal cortex

ere good indicators in APOE 𝜖4 carriers (AUC of 0.79 and 0.81 re-

pectively) but not for APOE 𝜖4 non-carriers (AUC of 0.64 and 0.63

espectively). Similarly, total brain volume and ventricle volume were

ood indicators of incident-AD in APOE 𝜖4 non-carriers (AUC of 0.73

nd 0.68 respectively), but not for 𝜖4 carriers (AUC of 0.64 and 0.59

espectively). Disease stage estimated using the APOE -specific disease

imeline performed well consistently in both the APOE genotypes (AUC

f 0.74 for 𝜖4 non-carriers and 0.76 carriers). The marginal utility of

n additional MRI scan can be observed by comparing the left column

f Fig. 5 with the right column of Fig. 5 . It can be seen that delta dis-

ase stage was much better for incident-AD prediction from a reference

roup of CN and non-AD subjects (AUC of 0.81 for 𝜖4 non-carriers and

.88 for carriers) than any measure obtained using only the last MRI

can. 
f  

7 
. Discussion 

In this work, we constructed APOE -specific disease timelines in

 case-controlled setting and validated their generalizability to a

opulation-based setting. We assessed that progression along these time-

ines is predictive of AD in the general population. In this section, we

iscuss the insights we obtained from our results. 

.1. Generalizability of the APOE -specific disease timelines 

The disease timelines estimated for APOE 𝜖4 non-carriers and car-

iers were significantly different from one another and highlighted the

POE -genotype-specific differences in the loss of structural integrity as

D progresses. Ventricular volume and total brain volume were early

iomarkers for 𝜖4 non-carriers, and hippocampal volume and volume of

he entorhinal cortex were early biomarkers for 𝜖4 carriers. We observed

n the normalized histograms that for a proportion of prevalent-AD sub-

ects in the 𝜖4 non-carriers group, the model had estimated a low disease

tage. This observation, in combination with the greater uncertainty of

he event-centers in that group suggests that there is intra-genotype het-

rogeneity among the 𝜖4 non-carriers. 

The disease timelines were estimated after correcting for the con-

ounding effect of age, assuming a linear relationship of volumetric

iomarkers with respect to age. Non-linear biomarker relationship with

ge such as the one observed in Vinke et al. (2018) , could have an ad-

erse effect in the generalizability of the model to the RS cohort, particu-

arly due to the observed differences in the mean age of the participants

n the reference group and the groups of incident-AD and prevalent-AD.

n spite of these differences, we observed that the normalized histograms

f disease stages in the different diagnostic classes were visually largely

imilar for ADNI and RS. An important difference between the two co-

orts was that the model estimated a low disease stage for a substantial

roportion of incident-AD subjects in RS, but not in ADNI. Complement-

ng the qualitative analysis, we also observed that the disease stages

btained using co-init DEBM could distinguish prevalent-AD subjects

rom CN and non-AD subjects almost equally well in both ADNI and
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Fig. 4. Average disease stage trajectories of participants within the prediction 

set of RS. The trajectories are shown separately for CN, non-AD and incident- 

AD subjects within the APOE 𝜖4 non-carriers group (a) and the APOE 𝜖4 carriers 

group (b). 95% confidence intervals are shown as shaded regions around the 

trajectories. 
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Fig. 5. Predicting incident-AD subjects in the RS cohort. Figure (a) shows the AUCs

longitudinal follow-up of the participants. Figure (b) shows the AUCs for distinguishi

8 
S cohorts. However, we noticed a lower performance in distinguishing

ncident-AD from CN and non-AD subjects in RS as compared to ADNI.

hree possible explanations for these differences between ADNI and RS

re given below. 

First, the incident-AD group in ADNI only consisted of prodromal

D subjects with the mean time to AD diagnosis of 1.4 years, whereas

he incident-AD group in RS consisted of prodromal and preclinical AD

ubjects with the mean time to AD diagnosis of 2.8 years. We observed

n Experiment 1 that the obtained disease stages of incident-AD subjects

orrelated with time to AD diagnosis for APOE 𝜖4 carriers, making AD

arder to detect in the preclinical phase than in the prodromal phase.

ence the difference in the mean time to diagnosis in the two datasets is

xpected to be a factor contributing to the observed lower performance

n the RS cohort. 

Secondly, the prodromal AD subjects in ADNI were clinically defined

mnestic MCI subjects who have a much higher a priori chance of de-

eloping AD symptoms than in the general population, making the pre-

iction in the latter cohort a more difficult problem. 

Thirdly, a factor contributing to the performance difference could

e that ADNI excluded subjects with severe cardiovascular risk factors

hereas the RS did not. Hence the probability of co-morbidity of vas-

ular pathology was higher in the RS incident-AD subjects than in the

orresponding ADNI set, which could have led to the drop in perfor-

ance. 

In spite of these factors, biologically, one could expect a Normal dis-

ribution of AD severity among incident-AD subjects in a population,

hereas the observed distribution in Fig. 3 is not. A possible explanation

or this apparent anomaly is that, although the biological progression of

D is heterogeneous with differences between subjects even within each

enotype, the staging is performed on the basis of a mean disease time-

ine per genotype. Progression of subjects that is not along the estimated

ean disease timeline is not accounted for in our approach, and the cor-

esponding stages are usually an under-estimation of the true biological

taging. 

We observed that the correlation of MMSE with the obtained disease

tages in RS was substantially lower than that in ADNI. One of the rea-

ons for this lower correlation in RS could be that MMSE is a measure of

eneral cognition, not specific to AD and there could be numerous other
 for distinguishing incident-AD while using data from two MRI scans based on 

ng incident-AD using only the last MRI scan available for each participant. 
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actors affecting its value in a population-based cohort. Furthermore, in

D the MMSE range is expected to be much broader than in the general

opulation. This in combination with less prevalent-AD cases within RS

ompared to that of ADNI, could explain the lower correlation as well.

oreover, the correlation of MMSE with the obtained disease stage was

imilar for non-carriers and carriers as measured along their respective

isease timelines. 

Given the high AUCs for all other classification tasks, the comparable

isease stage histograms in ADNI and RS, and the possible explanations

iven above for the specific differences related to incident-AD predic-

ion, we conclude that the APOE -specific disease timelines obtained by

o-init DEBM are generalizable from a case-controlled to a population-

ased setting. Moreover, in our experiment, we observed that co-init

EBM was more generalizable to RS cohort than DEBM for APOE 𝜖4
on-carriers, and equally generalizable for 𝜖4 carriers. This could be be-

ause ADNI cohort is more enriched for 𝜖4 carriers than the population-

ased RS cohort and not stratifying based on APOE skewed the estimated

imeline more towards 𝜖4 carriers. 

However, for precise classification of subjects into either diagnostic

ategory, a cut-off point for disease stage needs to be defined. We ex-

ect the cut-off point to be different in a case-controlled setting versus

 population-based setting. Estimating this cut-off point in a population

hould ideally be estimated using an independent validation set taking

everal factors into consideration such as the a-priori prevalence of AD

n the cohort, and the risks associated with false positives and negatives

f this classification. 

.2. Predicting pre-symptomatic AD in the RS cohort 

We observed that a participant’s age distinguished incident-AD well

rom CN. This is in line with earlier studies that identified age as an

mportant predictor ( Park et al., 2019; Stephan et al., 2015 ). However,

e also observed that the predictive performance of age deteriorated

hen the reference group was less healthy, i.e. , when distinguishing

ncident-AD from a combined reference group also consisting of subjects

ith subjective or objective cognitive decline unrelated to AD. This is

n line with the expectation that age is poor in distinguishing cognitive

ecline due to AD and cognitive decline due to other causes. 

The predictive performance of the volumetric biomarkers from a sin-

le MRI scan depended on the APOE 𝜖4 carriership. We observed that

ippocampus and entorhinal cortex were good predictors in APOE 𝜖4

arriers. Interestingly, those biomarkers were estimated to be early in

he corresponding disease timeline. Similarly, total brain volume and

entricle volume were good predictors in APOE 𝜖4 non-carriers which

ere also the early biomarkers in its disease timeline. These results sug-

est that for predicting pre-symptomatic AD, early biomarkers play an

mportant role and that it is important to understand the genotype-

pecific differences. However, it must be noted that in this study, the

linical diagnosis of AD was not confirmed further with the participant’s

myloid- 𝛽 status. Hence part of the differences observed in the disease

imelines of APOE 𝜖4 non-carriers and carriers could be attributed to

he presence of greater heterogeneity in the non-carriers with respect to

articipant’s pathologic diagnosis. 

Lastly, we assessed the marginal utility of longitudinal MRI scans

n identifying individuals at-risk of developing AD symptoms. We ob-

erved that participants with incident-AD showed a significant increase

 𝑝 < 0 . 005 ) in disease stage over time as compared to CN and non-AD

articipants, in both APOE 𝜖4 non-carriers and carriers. The rate of

hange of disease stage distinguished incident-AD subjects better than

he disease stage at only the last scan, clearly highlighting the added

alue of longitudinal MRI scans, particularly in pre-symptomatic sub-

ects. The rate of change of disease stage was also a better predictor

f incident-AD than any other volumetric biomarker used in this study.

his showed that the progression along the APOE -specific disease time-

ine can be used to identify subjects in a population at-risk of developing

D. 
9 
In this study, we only used imaging biomarkers because cere-

rospinal fluid biomarkers in a pre-clinical setting are usually not avail-

ble. Recent breakthroughs in blood-based biomarkers ( Palmqvist et al.,

020 ) could help in obtaining fluid biomarkers in the pre-clinical phase

f the disease. Previous work on DEBM ( Venkatraghavan et al., 2019 )

nd co-init DEBM ( Venkatraghavan et al., 2021 ) had shown that the

odel is capable of incorporating biomarkers from multiple modali-

ies for constructing the disease timelines. We expect that our current

pproach of predicting pre-symptomatic AD in the general population

ould be applicable also in the presence of fluid biomarkers, should

hey become available in the future. 

. Conclusion and future work 

We conclude that data-driven disease timelines estimated by co-init

EBM are generalizable to population-based cohorts and that progres-

ion of individuals along such timelines is predictive of incident AD.

lthough the current study only considered volumetric biomarkers as

nputs, it can be extended to fluid-based biomarkers, if these would be-

ome available in a population based study. Due to its robustness and

xplainability, we expect that our model can help identify at-risk indi-

iduals from the general population for targeted clinical trials as well as

rovide biomarker based objective assessment in such trials. 
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