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Abstract

We consider three topics motivated by the Network Exploration Toolkit (NEExT) for
building unsupervised graph embeddings. NEExT vectorizes the graphs in a graph
collection using the Wasserstein (optimal transport) distance between the distributions
of node features of each graph. We inspect the effect of sampling only a proportion
of the nodes of each graph, and show that even if the sampling fraction tends to zero
(sufficiently slowly), so does the Wasserstein distance. NEExT relies on the assumption
that local node features are informative to global characteristics of graphs. With this
in mind, we consider triangle count: triangles are a local feature that correlate with the
strength of a graph’s community structure. We give asymptotic results for the number
of triangles in a 2-community stochastic block model setting and the ABCD random
graph model in both a scale-free and finite variance degree regime. Lastly, we show by
experiment that augmenting the node features of graphs with triangle count improves a
Graph Neural Network (GNN) in its ability to pick up on community structure and local
clustering. For this, we use a random graph dataset with varying community structure,
a random graph dataset with varying clustering coefficient, and a real-life dataset. We
position random graph models as an effective tool for benchmarking the expressiveness
of GNNs.
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Notation

Throughout this thesis, we adopt the following notation, unless specified otherwise.

For a set A we denote its volume by A =
∑

a∈A a, and
∑

x,y∈A denotes the ordered
summation over all distinct elements x, y ∈ A, i.e.

∑
x,y∈A ≡

∑
x∈A

∑
y∈A,y ̸=x. We use

[n] as the shorthand notation for the set of indices {1, . . . , n}.

For a random variable X, a fixed sample from the random variable is denoted by the
lower case x. When two random variables are i.i.d. we mean them to be independent
and identically distributed. A vector of i.i.d. samples is denoted by x. Furthermore, we

denote by
d
= equality in distribution.

The results in this thesis are asymptotic in nature, i.e. when the number of nodes

n → ∞. We let
P→ denote convergence in probability, i.e. Xn

P→ X means that for all
ε > 0, limn→∞ P

(
|Xn −X| > ε

)
= 0. For an event that happens asymptotically almost

surely (a.a.s), it holds that as n → ∞, the probability of the event tends to 1. We
say that a function f(n) = O(g(n)) if there exists a constant c such that for all n it
holds that |f(n)| ≤ c|g(n)|. Similarly f(n) = Ω(g(n)) denotes g(n) = O(f(n)) and
f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)). We write f(n) = o(g(n))
if limn→∞ f(n)/g(n) = 0.
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1 Introduction

When describing the world, modelling interactions between entities are unavoidable. A
webpage exists in the world wide web, an atom in a molecule, a city in a highway network.
In the field of graph theory, a network of interactions is described by a graph: a collection
of elements, called the vertices or nodes, and connections between them, called the edges.
The vertices and edges can represent a wide range of things: papers and citations,
countries and alliances, proteins and protein-binding, bank accounts and transactions.
The graph structure can reveal properties of the systems they describe. For example,
a network of fraudulent transactions may have a different structure from a network of
legitimate activity. This brings us to the task of graph classification, which has the aim
of predicting the whole-graph label of a given graph. Applications include molecular
property prediction [87, 7], recommender systems [19] and online article classification
[51].

A graph is at its core a high-dimensional object, as a graph with n vertices has on the
order of n2 possible edges. Because of this, a common approach in graph data mining is
to consider graph embeddings. A graph embedding encodes a graph in a low-dimensional
vector, with the aim of preserving or extracting characteristics of the graph. These
embeddings can then be used for a downstream task such as visualization, clustering
or graph classification. An embedding is necessarily lossy, meaning that they lose in-
formation, and what embedding methodology to use depends on the application and
dataset. The NEtwork Exploration Toolkit (NEExT [18] is a framework for generating
unsupervised graph embeddings of collections of graphs, based on a powerful technique
recently introduced in the literature [46, 66]. In NEExT, manually chosen node features
(such as degree centrality, local clustering coefficient, or given node attributes) are used
to generate the embeddings. This allows the user to manually select which node features
to use, based on domain expertise or experimentation.

In this thesis, we are motivated by applications of NEExT. For large graphs, comput-
ing all node features can be computationally infeasible. NEExT offers the functionality
to create graph embeddings using only a subset of the vertices. We investigate how
this sampling impacts the accuracy of the framework. With NEExT in mind, we are
interested in how the macrostructure of the graph influences the local (node) features,
as NEExT uses the node feature distribution to generate the graph embedding. To this
end, we investigate for two random graph models how the the number of triangles in a
graph corresponds to the community structure. Lastly, we show with an exploratory ex-
periment how augmenting nodes with their triangle count improves the power of Graph
Neural Networks, a popular deep learning technique for graph classification. We will use
the remainder of the introduction to place the topics of this thesis in the context of re-
cent research about graph embeddings, sampling convergence, triangle count in random
graph models and graph neural networks. We close this section by giving an overview
of the structure of the thesis.
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1.1 Graph Embeddings

Graph embeddings, also called graph representations [39], aim to encode high-dimensional
graph-structured data in low-dimensional vectors. The term graph embedding is used
in the literature to refer both to the vectorization of entire graphs as well as the indi-
vidual vectorization of each node in a graph (see [43]). In this thesis, we call the latter
node embeddings. We can broadly categorize graph embedding methods into statistical
methods, graph kernels, and graph neural network based methods.

A straight-forward embedding method is to describe a graph by a vector of calculated
metrics, such as the assortativity coefficient, the Pearson’s correlation coefficient between
degrees of two vertices, or statistics on the distribution of vertex features [3, 10, 58,
67]. If labels are available, graph boosting, an iterative procedure for counting relevant
subgraphs [71, 60], can be used. These methods are highly interpretable, but have
trouble distinguishing graphs from the same domain that are very similar.

In a Graph Neural Network (GNN), first introduced by in [31], nodes pass along their
features with their neighbors in convolution-like layers to find learned node embeddings,
as we will see later in the introduction in Section 1.4. For graph-level tasks, such as graph
classification, the node embeddings are aggregated with a pooling operation to obtain
a graph embedding. These methods have been applied extensively [82], for example
with great in success in molecular property prediction [81]. In GNNs, graph embeddings
are obtained as an intermediate step in a machine learning task, and are thus task-
specific. Transfer learning, using the graph embeddings from one task on a different
task, remains nascent in the graph data domain [75]. In the case of unlabelled graphs,
recently self-supervised representation learning methods, such as graph contrastative
learning [86], have gained popularity [50, 74, 77, 84]. Although effective in supervised
tasks, these algorithms are “black box” and their learned graph embeddings are thus
hard to interpret. On top of that, they require a labelled dataset, which makes them
not suited for unsupervised tasks or data exploration.

Intimately related to graph embeddings are graph kernel methods, a popular approach
for graph-level tasks. As the name suggests, the methodology relies on the formulation of
a graph kernel function that measures the similarity of two graphs, used in a kernel ma-
chine such as a support vector machine. Many choices for this kernel function have been
suggested in the literature [47], all with strengths and weaknesses, suitable for different
tasks. In most cases, graph kernel methods do not generate explicit graph embeddings,
although those can be obtained from the similarity matrix. Although NEExT shares
characteristics with the graph kernel methods—as we will see, the Wasserstein distance
between the graph’s node feature distributions is a measure of graph similarity—it is
unsupervised and agnostic to the downstream task. Quick iteration over different node
features makes the framework suitable for data exploration, and interpretable results.
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1.2 Sampling Node Features

For calculating graph embeddings, the NEExT framework relies on the Wasserstein
distance between the distributions of node features on the different graphs in a collection,
see Section 2. These distributions are discrete, with at most n point masses in Rd,
for a graph with n node and d node features. Calculating the node features for all
nodes in large graphs may be computationally expensive. Therefore, we would like to
consider only a sample of s nodes. We call this proportion sampling. We are then
interested in how the Wasserstein distance W2(µ

(n), ν(m)) between the full distributions
µ(n) and ν(m), corresponds to graphs of size n and m, differs from the Wasserstein

distance W2(µ
(n)
s , ν

(m)
s ) of the sampled distributions µ

(n)
s and ν

(m)
s .

The version of this problem where the sample of s nodes is taken without replacement
is directly considered by Fatras et al. [28] in the discussion of the Wasserstein convergence
of minibatch sampling from two large empirical distributions. This can be seen as a
generalization of proportion sampling by taking k not necessarily disjoint subsets of the
point masses. They show asymptotic consistency, but use the trivial transport plan and
no rate of convergence.

In sampling with replacement the point masses in µ(n) might be sampled more than
once. If we view µ(n) as the empirical distribution of some underlying “true’ feature

distribution, then µ
(n)
s is the bootstrap (i.e. resampled) approximation (see [72]). The

naive bootstrap of resampling s = n is not consistent in the Wasserstein sense, see [23]
and more recently [27]. However, when s < n, the bootstrap is consistent. Sommerfeld

et al. [64] show that when s/n → 0, then Wp(µ
(n)
s , ν

(m)
s ) is a consistent estimator for

the true Wasserstein distance Wp(µ
(n), ν(m)). Furthermore, proportion sampling, either

with or without replacement, is a specific case of the exchangeable bootstrap, for which
it can be shown that a large deviation principle holds [69].

More generally, one can consider the Wasserstein convergence of the empirical mea-
sure µs to a general µ, not necessarily finitely supported. If µ is absolutely continuous,
then E[W2(µ, µs)] ≤ s−1/d [22]. This fact is called the curse of dimensionality : as the
dimension increases, the rate of convergence decreases. When µ is not absolutely con-
tinuous, the Wasserstein convergence can be sharply bound by using the notion of the
inherent dimension d∗(µ) of the measure µ (see [80]), such that E[Wp(µ, µs)] < s−1/d∗(µ).
In fact, if µ is supported on finitely many points, as is the case in for the probability
measure over the node features, then the convergence is independent of the ambient
dimension d. In our setting however, we care to find the rate of convergence as s/n → 0.
In other words, it is not trivial to see how d∗(µ(n)) increases as n grows, i.e. when
considering a sequence of measures (µ(n))n≥1. With this in mind, we show that for

s := nσ, σ ∈ (0, 1) then Wp(µ
(n), µ

(n)
s ) can be bounded from above by O(n−σ/(d+3p)+ε),

for arbitrarily small ε > 0.
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1.3 Quantifying Community Structure with Triangle Count

In Section 4, we give asymptotic results for the number of triangles (also called three-
cycles or K3 cliques) in two random graph models with community structure: the
stochastic block model [35] and the ABCD model [41]. The stochastic block model
is a simple model for random graphs with different communities (blocks). The ABCD
model is more involved, but crucially has the capacity to generate scale-free graphs with
a community structure. In a scale-free network, the degree distribution of the graph
follows a power law, such that the proportion of vertices with k or more degrees pk
follows pk ∼ k−γ , for some 2 < γ < 3. It is a common feature of real-life networks
and much studied [4]. Both models have parameters that influence the strength of the
community structure. A popular way in the literature of quantifying the strength of the
community structure is through modularity [54], where high modularity means that a
high proportion of edges fall within communities. Strictly, consider a partition of the
vertices, and calculate the fraction of edges within parts minus the expected number of
edges in a part, if the edges were distributed at random. Modularity is then defined as
the maximum of this quantity over all partitions. Considering all partitions is computa-
tionally expensive, so the heuristic approach is to use a community detection algorithm,
such as the Louvain or Leiden algorithm [68], to find a lower bound on the modularity of
a graph. The parameters of the models that influence the modularity can be viewed as
global features of a given random graph: they influence the macro structure. Calculating
the modularity also requires a global approach that considers the whole graph, and even
for the heuristic approach this leads to computational challenges for large graphs.

Motivated by the NEExT methodology, we care about local (vertex) features and their
relation to global characteristics. Using local features to create whole-graph embeddings
relies on the assumption that local features are meaningful to global characteristics. To
support this, we analyze triangles. Triangles in graphs are a simple motif that occur
when two vertices in a vertex’s neighborhood connect. Triangles are a building block
for many network statistics that aim to quantify the local clustering in a network, such
as the local clustering coefficient, given by the ratio of realized to unrealized triangles
in a vertex’s neighborhood [36]. Moreover, triangle-count can be used for community
detection [56]. In a graph with a strong community structure, we expect to find more
triangles. Triangles are a small subgraph. The study of the distribution of subgraphs in
random graphs has a rich history, starting in the Erdős–Rényi random graph [26], and
has since evolved into a large field [30, 65, 11, 73]. We contribute to the literature by
providing results for the recently introduced ABCD model [41].

1.4 Triangle Augmentation for Graph Neural Networks

After analyzing the triangle count as a quantification for the strength of the commu-
nity structure, we consider how the triangle count can improve Graph Neural Networks
expressiveness. Graph Neural Networks (GNNs) [82] have achieved state of the art
performance in many graph data mining tasks. However, it can be shown that their
expressiveness is at most that of the 1-Dimensional Weisfeiler-Lehman test for graph
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isomorphism [53]. As a consequence, GNNs cannot detect clustering coefficients [85],
count any subgraph of three or more nodes [12], or recover community structure [70].
We confirm this with an experiment on two synthetic graph datasets, one with vary-
ing strenght of community structure and one with varying clustering coefficient. Re-
cently, the literature has suggested augmenting graphs with subgraph counts improves
the GNNs expressiveness [33, 8, 15]. We show that the triangle count is sufficient for
our datasets, and improves performance on a real-life dataset.

1.5 Structure of thesis

In Section 2, the NEExT framework for creating unsupervised graph embeddings is
explained, including the motivation and details of the choice of the distance distribu-
tion: the approximate Wasserstein distance. To show the expressiveness of the NEExT
embeddings, we do a simulation experiment with graphs generated using graphons.

In Section 3, we inspect the effect of considering only a proportion of nodes on the
Wasserstein distance between the node feature distributions. We show that even if the
sampling fraction tends to zero (sufficiently slowly), so does the Wasserstein distance.

In Section 4, we focus on counting triangles in two random graph models. We are
motivated by NEExT’s underlying assumption that node features are meaningful for
analyzing graph-level features. Triangles are a local feature that correlate with the
strength of a graph’s community structure. We introduce and give asymptotic results
for the number of triangles in a 2-community stochastic block model setting and the
ABCD model in both a scale-free and finite variance degree regime.

Lastly, in Section 5 we show that augmenting graphs with local triangle counts im-
proves the popular class of Graph Neural Network algorithms in their ability to pick up
on community structure and local clustering. We show this for two random graph mod-
els, one with varying community structure and one with varying clustering coefficient,
and a real-life dataset.
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2 Unsupervised Graph Embeddings with NEExT

In this section we describe the NEExT framework for building unsupervised graph
embeddings based on node features [18]. The implementation1 makes the steps for
generating graph embeddings quick and easy. The steps are as follows.

1. Consider a collection of graphs G1, G2, . . . , Gm, with Gi having ni vertices, for
i ∈ [m]. Let G denote the space of all possible graphs.

2. Choose some node embedding function h : G 7→ Rni×k with node embedding
dimension k. The choice of h is flexible, see Section 2.1.

3. Let µi be the empirical probability measure on the node embedding space induced
by the rows of h(Gi).

4. Consider a notion of distribution distance between (µi, µj) for i, j ∈ [m], relying on
a projection ϕ(µi) of µi to a reference distribution µ0, such that ∥ϕ(µi) − ϕ(µj)∥2
approximates the Wasserstein distance between µi and µj , see Section 2.2.

5. Then, let the similarity matrix S ∈ Rm×m be given Si,j = ∥ϕ(µi) − ϕ(µj)∥2.

6. Finally, obtain a d-dimensional (d ≤ m) embedding by applying reduced-rank
singular value decomposition (SVD) to the similarity matrix S.

2.1 Node embeddings

One of the strengths of NEExT is that it is flexible with respect to the choice of the node
embedding function h. How h vectorizes the nodes can be adapted for the application,
based on domain expertise or experimentation. If a graph is augmented with inherent
node attributes, these are an obvious choice for the vectorization. If the attribute is
categorical, the feature can be one-hot encoded. NEExT also offers a range of structural
features, such as PageRank [9], community-aware features [42], or simply the degree.
For further granularity, every node feature can be expanded over the egonet of the node.
Consider some node feature xi for i ∈ V , and denote by x̄(N) the average value of x
over some set of vertices N , i.e x̄(N) = 1

|N |
∑

i∈N xi. Then the r-th expansion Ex
r (v) of

feature x on vertex v is then

Ex
r (v) =

(
xv, x̄(N1), . . . , x̄(Nr)

)
. (1)

where Nk denote the sets of vertices that are exactly k steps away from v.

One important requirement for the node embedding is that the embedding space is
comparable between different graphs. This excludes learned representation methods such
as the popular node2vec [32] or struct2vec [57].

1https://pypi.org/project/NEExT/
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2.2 Approximate Wasserstein distance

As mentioned above, the NEExT framework relies on the notion of a distance between
distributions. In this section we explain and motivate the approximate Wasserstein
distance. Various other distribution distances exist, such as the total variation distance
[34, eq. 2.2.4]. For probability measures µ and ν on (Ω,A), the total variation distance
is given by

TV (µ, ν) = sup
A∈A

∣∣µ(A) − ν(A)
∣∣ .

Although powerful for many theoretical applications, it has practical limitations. It only
considers the maximum disagreement between the measures, and does not take into
account the underlying metric space of the measures. Take, for example, the probability
measures µ, ν, ω on R given by µ = δ(1), ν = δ(2) and ω = δ(1000). Here δ denotes the
Dirac measure. Although µ and ν place the mass close together, whereas ω places it far
away, the total variation distance TV (µ, ν) is equal to TV (µ, ω).

Another notion of distribution distance is Kullback-Leibler divergence, or relative
entropy [48]. For µ absolutely continuous with respect to ν, the KL-divergence is given
by

KL(µ, ν) =

∫
log

dµ

dν
dµ.

However, KL-divergence is not symmetric and does not satisfy the triangle inequality.
Although it encapsulates a notion of “distance”, it is not a metric. In addition, like total
variation, it does not take the underlying metric space of the measures into account.
Instead, NEExT uses an approximation of the Wasserstein distance. Also called the
Monge-Kantorovich-Rubinstein distance, Kantorovich distance, Mallows distance, earth-
mover’s distance, or optimal transport (OT) distance [64], the Wasserstein distance relies
on the concept of the Optimal Transport plan between two probability measures.

Definition 2.1 (Transport plan). Let µ be a probability measure on a measurable space
Z and ν be a probability measure on Z ′. The probability measure γ on Z × Z is a
transport plan when its marginals are µ and ν, i.e. for every A ⊂ Z, γ(A×Z ′) = µ(A)
and for every B ⊂ Z ′, γ(Z ×B) = ν(B).

The Wasserstein distance between two probability measures is then defined as the
“cost” of the optimal transport plan, i.e. the transport plan with the least cost over all
possible transport plans. An intuitive explanation is that of the earth mover’s distance
[59]: given two piles of the same amount of dirt (the probability measures) the Wasser-
stein distance is the minimal amount of dirt you have to move on one of the piles to make
the piles identical. For example, in Figure 1, the mass on (4, 4) in (a) needs to be moved
to (3, 4) in (b), i.e. a distance of 1. Between (a) and (c), the distribution distance is
larger, as mass has to be moved from (4, 4) to (1, 1), a distance of

√
18. In full generality,

this can be formalized for any metric space. Here, we consider the Wasserstein distance
for probability measures on Rd, equipped with the Euclidean distance.
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0
1 2 3 4

01234

Probability

(a)

0
1 2 3 4

01234

(b)

0
1 2 3 4

01234

(c)

Figure 1 – The Wasserstein distance between (a) and (b) is less than the Wasserstein
distance between (a) and (c).

Definition 2.2 (p-Wasserstein distance). Let µ be a probability measure on Z and ν
be a probability measure on Z ′, with Z,Z ′ ⊂ Rd. Let Γ(µ, ν) be the set of all transport
plans between µ and ν. For p ∈ [1,∞] the p-Wasserstein distance is given by

Wp (µ, ν) = inf
γ∈Γ(µ,ν)

(∫
Z×Z′

∥z − z′∥pdγ(z, z′)

)1/p

.

The p-Wasserstein distance is symmetric and can be shown to satisfy the triangle
inequality [14]. In the NEExT framework, the 2-Wasserstein distance is used. Finding
to optimal transport plan to calculate the Wasserstein distance between two discrete
distributions can be formulated as a linear program, and solved in polynomial time by
the Simplex algorithm [17]. Still, as the graphs and the number of graphs the graph
collection grow large, calculating the pairwise distance becomes computationally pro-
hibitive. With that in mind, we consider the approximate Wasserstein distance between
the distributions, by using a reference distribution. This reduces the number of optimal
transport calculations from m(m−1) to m (recall that m is the number of graphs in the
collections). A reference probability measure µ0, defined on Z ⊂ Rd, can be obtained by
taking k-means clustering on

⋃m
i=1 h(Gi) with N = ⌊ 1

m

∑m
i=1 ni⌋ centroids [46], or the

Wasserstein barycenter (see [16]). We then define

ϕ(µi) := (fi − id)
√
p0, (2)

where id(z) = z is the identity, p0(z) is the probability density function of µ0 such that
dµ0(z) = p0(z)dz and p0(z) > 0, ∀z ∈ Z, and fi(z) is the optimal transport plan between
µi and µ0 (also called Monge map when µi and µ0 are discrete), i.e.

fi = argmin
f∈Γ(µ0,µi)

∫
Z
∥z − f(z)∥2dµ0(z). (3)

This provides an approximately isometric embedding for {µi}mi=1, meaning that ϕ is
approximately distance-preserving: ∥ϕ(µi) − ϕ(µj)∥2 ≈ W2(µi, µj). See Figure 2 for an
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Figure 2 – Illustration of approximate Wasserstein, adapted from [46].

illustration of this concept. Since the optimal transport fi of µ0 to µ0 is the identity, we
have ϕ(µ0) = (z − z)

√
p0(z) = 0. Also, we can see that

∥ϕ(µi)∥2 = ∥(fi − z)
√
p0∥2

=

(∫
Z
∥(fi(z) − z)

√
p0(z)∥2dz

) 1
2

=

(∫
Z
∥(fi(z) − z)∥2p0(z)dz

) 1
2

=

(∫
Z
∥(fi(z) − z)∥2dµ0(z)

) 1
2

= W2(µi, µ0).

By an appropriate choice of the reference distribution, it indeed follows that

∥ϕ(µi) − ϕ(µj)∥2 =

(∫
Z
∥(fi(z) − z)

√
p0 − (fj(z) − z)

√
p0∥2dz

) 1
2

=

(∫
Z
∥fi(z) − fj(z)∥2dµ0(z)

) 1
2

≈ W2(µi, µj).

NEExT uses the implementation of the approximate Wasserstein from the python vec-
torizers package2.

2https://pypi.org/project/vectorizers/
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2.3 Graphon Simulation Experiment

To demonstrate the NEExT framework, we do a simulation experiment with graphons.
Graphons are the natural limit object of a sequence of exchangeable random graph
models [21]. A random graph model is exchangeable if its probability distribution is
invariant under permutations of the vertices. A graphon is defined as the symmetric
function W : [0, 1]2 7→ [0, 1]. The graphon defines exchangable random graph models
by assigning each vertex i an i.i.d value ui ∼ Unif [0 , 1 ], and including each edge (i, j)
independently with probability W (ui, uj). For graph sequences, W can be seen as the
probabilistic limit of the adjacency matrix. A graphon offers a natural way of simulat-
ing graph sequences G1, . . . , Gn. To generate Gn with n vertices, simply sample i.i.d
u1, . . . un, such that ui ∼ Unif [0 , 1 ], and include the edge with probability W (ui, uj).
The graph sequence G1, . . . , Gn then consists of independent graphs that for large n
represent the graphon limit.

pin

pin

pinpout

pout

WSBM : [0, 1]2 �→ [0, 1]
(0, 0)

(1, 1)

i

j

ui

uj

P

Figure 3 – Schematic illustration of how the Stochastic Block Model graphon WSBM gives
edge probabilities.

In this experiment, we aim to evaluate NEExT’s graph embeddings with graphon
generated graph sequences. As the underlying graph sequences converge to the graphon,
we expect informative graph embeddings to converge too. We consider two different
graphons, corresponding to the Erdős–Rényi random graph and the stochastic block
model. In the Erdős–Rényi random graph, each edge exists independently with proba-
bility p. The corresponding graphon is the constant function WER(x, y) = p. Here we
use p = 0.2. The stochastic block model is a generalization of the Erdős–Rényi random
graph, with edge probabilities depending on a node community partition. For more
details see Section 4.1. Here, we consider the stochastic block model with a partition of
three blocks, with pin = 0.2 and pout = 0.05. The corresponding graphon, visualized in
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Figure 3, is given by

WSBM (x, y) =


x ∈ [0, 0.3) ∧ y ∈ [0, 0.3),

0.2, x ∈ [0.3, 0.6) ∧ y ∈ [0.3, 0.6),

x ∈ [0.6, 1] ∧ y ∈ [0.6, 1],

0.05, otherwise.

(4)

For both WER and WSBM we generate a graph sequence with graphs of increasing sizes
5, 10, . . . , 245, 250. We find graph embeddings for the graphs in these sequences using
NEExT and the node feature eigenvector centrality, a measure of a node’s connectedness
within the network. For a graph G of size n with adjacency matrix A, let λ denote
the largest eigenvalue of A. The eigenvalue centrality x = (x1, . . . xn)T is defined by
Ax = λx. In other words, the eigenvalue centrality is the eigenvector corresponding
to the largest eigenvalue of the adjacency matrix. We take the 2-expansion, following
(1), and using the approximate Wasserstein distance, calculate graph embeddings in R2

with NEExT as described at the start of this section. As visualized in Figure 4, we see
indeed that the graph embeddings do converge as expected. We also note that there
is no interpretation to the embeddings dimension. For more extensive random graph
experiments with NEExT, we refer to [18].

1 0 1 2 3
Embedding dimension 1

1

0

1

2

3

Em
be

dd
in

g 
di

m
en

sio
n 

2

NEExT graph embeddings for WER

1 0 1 2 3
Embedding dimension 1

0

1

2

3

4

NEExT graph embeddings for WSBM

50

100

150

200

250

Gr
ap

h 
siz

e

Figure 4 – NEExT embeddings from graphon-generated graph sequences, using eigenvalue
centrality with 2-expansion as node feature, standardized to have expectation 0 and stan-
dard deviation 1. Both plots show the embeddings for a collection of 50 graphs of sizes
5, 10, . . . , 245, 250. The color indicates the graph size. In the plot on the left, the graphs
have been generated from the graphon WER(x, y) = 0.2. On the right, the graphs have been
generated from the graph WSBM as given in (4). We also note that there is no interpretation
to the embeddings dimension.
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3 Sampling Node Features

As the graphs in a graph collection grow large, it becomes computationally expensive
to calculate structural node features for all nodes in a graph. This can be addressed by
only calculating the features for a sample of the nodes in a graph, at the risk of losing
accuracy. In this section, we are interested in quantifying the effect of what we call
proportion sampling : sampling only s(n) < n of the n points in the population. In our
result, if the sampling fraction s(n)/n → 0 sufficiently slowly, so does the Wasserstein
distance.

3.1 Preliminaries

A standard probabilistic tool we use is the Chernoff bound, for which we state an adapted
form for binomial random variables. The Chernoff bound on X can be seen as application
of Markov’s inequality on etX .

Theorem 3.1 (Markov’s inequality). For an integrable non-negative random variable
X it holds that

P (X ≥ a) ≤ E[X]

a
.

Proof. Let f(x) denote the density of X. Then

aP (X ≥ a) = aE
[
IX≥a

]
≤ E

[
XIX≥a

]
≤ E[X].

We now state the Chernoff bound for binomial random variables.

Theorem 3.2 (Chernoff bound for binomials). Let X ∼ Bin (n, p) be a binomial random
variable, and write µ = E[X] = np. Then

P(X ≥ µ + t) ≤ exp
(
− t2

2(µ+t/3)

)
, t ≥ 0,

P(X ≤ µ− t) ≤ exp
(
− t2

2µ

)
, t ≥ 0.

Proof. We give a short proof, for more details, see Hofstad [34, Theorem 2.21] for a
slightly more general case of independent but not identically distributed Bernoulli’s.
Note first that P (X ≥ µ + t) = 0 for t > n − µ, and P (X ≤ µ− t) = 0 for t > µ. For
0 ≤ t ≤ n− µ, and any a > 0, we see by applying the Markov inequality (Theorem 3.1),
and the moment generating function of a binomial random variable, that

P (X ≥ µ + t) = P
(
eaX ≥ ea(µ+t)

)
≤ e−a(µ+t)E

[
eaX

]
= e−a(µ+t)(1 + (ea − 1)p)n.

This term takes a minimum over a for ea = ((µ + t)(1 − p)/(n− µ− t)p), which gives

P (X ≥ µ + t) ≤
(

µ

µ + t

)µ+t( n− µ

n− µ− t

)n−µ−t

≤ exp

(
−µϕ

(
t

µ

))
,
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for ϕ(x) = (1 + x) log(1 + x) + x. It is not hard to show that if x ≥ 0 then ϕ(x) ≥
x2/(2(1 + x/3)). This shows

P (X ≤ µ + t) ≤ exp

−µ
t2

2µ2(1 + t
3µ)

 = exp

(
− t2

2(µ + t/3)

)
.

We can find the lower bound by replacing X with X − n, and using that for x ∈ [−1, 0]
it holds that ϕ(x) ≥ x2/2. So we have

P (X ≤ µ− t) ≤ exp

(
−µϕ

(
− t

µ

))
≤ exp

(
− t2

2µ

)
,

which completes the proof.

Another common tool is the union bound, also known as Boole’s inequality, which is
a direct consequence of the subadditivity of a probability measure.

Lemma 3.3 (Union Bound). In the probability space (Ω,Σ,P), let A1, . . . , An be events
in Σ. Then it holds that

P

 n⋃
i=1

Ai

 ≤
n∑

i=1

P (Ai) .

3.2 Proportion Sampling

Consider a graph Gn of size n, and some node vectorization function, as described
in Section 2.1. We say that each node i ∈ [n] is mapped to a d-dimensional vector
xi ∈ Rd. We can assume that the collection of node embeddings X(n) = {x1, . . . , xn} is
normalized3, so that for each dimension the minimum is 0 and the maximum is 1. In
other words, X(n) ⊂ [0, 1]d. The set of points X(n) induces a probability measure µ(n)

taking support [0, 1]d.

Definition 3.1 (Induced Probability Measure). For a finite set Y ⊂ [0, 1]d with car-
dinality |Y | = n, the probability measure ν : B([0, 1]d) 7→ [0, 1] induced by Y is given
by

ν =
∑
y∈Y

1

n
δy, (5)

where δy is the Dirac measure, and B([0, 1]d) denotes the Borel σ-algebra of [0, 1]d.

We are interested in seeing how the probability measure µ(n) differs in terms of the
Wasserstein distance when we consider only a random subset of X(n). Specifically, we

3It should be noted that in the NEExT framework, features are standardized to have mean 0 and stan-
dard deviation 1, a standard preprocessing step that is improves algorithmic stability and performance
with multiple features.
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care what happens when n → ∞. For this, we want to consider a sequence of sets with
increasing cardinality.

Definition 3.2. Let Ξn be the set of all finite subsets of the hypercube [0, 1]d of size n,
i.e for n ∈ N+,

Ξn =
{
Y ⊂ [0, 1]d | |Y | = n

}
.

With this, we can state the following theorem.

Theorem 3.4 (Proportion sampling W-Convergence ). Let (X(n))n∈N+ be any sequence

of sets such that for all n, X(n) ∈ Ξn. Let X
(n)
s be a collection of s := s(n) randomly

sampled (with or without replacement) points from X(n). Let µ(n) be the probability

measure induced by X(n), and let µ
(n)
s be the probability measure induced by X

(n)
s . Let

s(n) = ⌊nσ⌋ for some σ ∈ (0, 1) and fix ε > 0. Then, for p ≥ 1,

Wp(µ
(n), µ(n)

s ) = O
(

1

nq

)
,

where
q =

σ

d + 3p
− ε.

This inverse relation between d and the rate of convergence is also called the curse of
dimensionality. Moreover, the results says that as n → ∞ even as the sampling fraction
s/n tends to zero sufficiently slowly, so does the Wasserstein distance.

Proof of Theorem 3.4. Our goal is to give a transport plan, not necessarily optimal,

between µ
(n)
s and µ(n). The cost of this transport plan will then provide an upper bound

on Wp(µ
(n), µ

(n)
s ). To give a transport plan and calculate its cost, our approach is to

partition the hypercube up in a number of boxes, and consider the boxes “heavy” when

they contain many points. Then we show 1) that µ
(n)
s places enough mass in these boxes

to match with the points from µ(n) in that box, and 2) that almost all of the points
of µ(n) are in these heavy boxes. The transport plan then consists of moving the mass
within these heavy boxes (at most the box-diameter) and moving the mass to the few
points that are not in heavy boxes.

We partition the hypercube into k := k(n) rectangular boxes B1, . . . , Bk. Then each
box has sides of length k−1/d and diameter

√
d · k−1/d. For i ∈ [k], we call ni be the

number of points from X(n) that fall in box Bi, and call si the number of points X
(n)
s in

box Bi.

The probability measure µ
(n)
s places a mass of 1/s on s points in X

(n)
s , which have been

randomly sampled either with or without replacement from X(n). So, si ∼ Bin
(
s, ni/n

)
if we sample with replacement, or si ∼ Hypergeometric (n, ni, s) if sampled without
replacement.
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Now, we call a box heavy if µ(n) places “a lot” of mass on it. The precise requirement
is that nis/n ≥ g for some g := g(n), which we specify later. We let H := {i : nis/n ≥
g, i ∈ [k]} denote the set of heavy boxes. To ensure that there is at least one heavy box,
we employ the Pigeon Hole principle: we know that there exists at least one box with
ni ≥ ⌈nk ⌉, so if we ensure that

g(n) ≤ s(n)/k(n), (6)

it is guaranteed that there is at least one heavy box. Our aim is now to show that under

asymptotically almost all realisations of µ
(n)
s , the heavy boxes receive the same mass as

under µ(n), except for a decreasing fraction. To find the optimal fraction, we introduce
h(n) that we will specify later, such that

g(n) ≫ h(n), h(n) ≫ log k(n). (7)

We now show that asymptotically almost surely all heavy boxes have enough mass, i.e
that

P

⋃
i∈F

si ≤
nis

n

1 −

√
h

g


→ 0. (8)

To see this, apply first the Union bound (Lemma 3.3).

P

⋃
i∈H

si ≤
nis

n

1 −

√
h

g


 ≤

∑
i∈H

P

si ≤
nis

n

1 −

√
h

g


 (9)

≤
∑
i∈H

P
(
si ≤

nis

n
(1 − ϵi)

)
. (10)

Here ϵi =
√
h/nis

n , and the inequality in (10) holds, as in heavy boxes nis
n ≥ g ≫ h.

Furthermore ϵi < 1, so we can apply the Chernoff bound (Theorem 3.2) for binomials.
To see that this also holds when sampling without replacement, note that the hyper-
geometric distribution is more concentrated around its expectation than the binomial
distribution, and a strictly sharper bound as in Theorem 3.2 holds. For more details,
see [62].

∑
i∈H

P
(
si ≤

nis

n
(1 − ϵi)

)
≤
∑
i∈H

exp

(
−ϵ2inis

2n

)
(11)

=
∑
i∈H

exp

(
−h

2

)
≤ k exp

(
−h

2

)
→ 0. (12)

The last step follows from h ≫ log k, as assumed in (7). So this shows that a.a.s.

si ≥
nis

n

1 −

√
h

g

 , ∀i ∈ H.
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As every point in µ
(n)
s has 1/s of mass, this means that a heavy box has a.a.s enough

mass to match µ(n), minus a fraction
√
h/g.

We call a box light if it is not heavy. Then nis
n < g, so we can upperbound the

number of points in light boxes by∑
i∈[k]\H

ni <
∑

i∈[k]\H

ng

s
< k · ng

s
=

kg

s
· n, (13)

so at most a fraction of kg/s of the n points are in light boxes.

We now present a transport plan from µ
(n)
s to µ(n). In Section 2.2 we gave the measure

theoretic definition of the transport plan and the “earth mover” interpretation. We use

the latter here. Consider that µ
(n)
s distributes 1 unit of mass across [0, 1]d. We want

to move this mass to obtain µ(n). Our approach is the following: first we move mass
between boxes Bi, so that each box has µ(n)(Bi) mass. Then we move the mass within
each box to concentrate on the points of X.

Transport plan. It is useful to introduce some notion of what mass we have moved and
what is yet left untouched. To this end, we introduce the auxiliary boxes (B′

1, . . . , B
′
k)

of (B1, . . . Bk), which have the same size and position in the hypercube. After the
transport, the mass in boxes (B1, . . . , Bk) are empty, and the all auxiliary boxes B′

i have
exactly µ(n)(B′

i) mass.

Step 1. For every i ∈ H, we know that a.a.s µ
(n)
s (Bi) ≥ (ni/n)(1 −

√
h/g), so we can

assign this mass to B′
i. After this assignment, the mass left in the Bi’s is

⋃
i∈[k]

Bi = 1 −
∑
i∈H

ni

n

1 −

√
h

g

 .

Step 2. For each i ∈ H, we now assign (ni/n)
√

h/g mass from anywhere in (B1, . . . Bk)
to B′

i, so that all heavy boxes B′
i, i ∈ H have a total of ni/n = µ(n)(B′

i) mass.
Now the mass left in the Bi’s is

⋃
i∈[k]

Bi = 1 −
∑
i∈H

ni

n

1 −

√
h

g

−
∑
i∈H

ni

n

√
h

g
= 1 −

∑
i∈H

ni

n
=

∑
i∈[k]\H

ni

n
.

Step 3. This is exactly the mass required for the light boxes B′
i, i ∈ [k] \H, and this is

also assigned in some arbitrary way.

Step 4. Now, every box B′
i has the required mass ni/n as under µ(n). Each box B′

i

contains ni of the n total points in X. Each of these points requires 1/n mass, so
the mass within each box can be moved accordingly.
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Cost of transport plan. With this transport plan, we now find an upper bound for
the cost of each step. In the p-Wasserstein distance, the cost c(z) of moving one unit of
mass a distance z is c(z) = zp. Note that the auxiliary boxes B′

1, . . . , B
′
k are in the same

position in the hypercube as B1, . . . , Bk.

i For Step 1, we assign mass from boxes Bi to their auxiliary B′
i. The distance moved

is 0, as the auxiliary boxes are in the same position as the original, and thus there
is no cost associated.

ii For Step 2, we move
∑

i∈H(ni/n)
√

h/g mass from anywhere to the heavy boxes.

That means each unit of mass is moved at most the diameter of the hypercube, d1/2.
So the cost associated with this step is at most

∑
i∈H(ni/n)

√
h/g · dp/2.

iii For Step 3,
∑

i/∈H ni/n units of mass is moved from anywhere to the light boxes, so

the cost associated is again at most
∑

i/∈H(ni/n) · dp/2.

iv Lastly, in Step 4 all mass is moved within a box to concentrate on the points X, so
1 unit of mass is moved at most the diameter of a box, which is d1/2 · k−1/d. So the
associated cost is at most dp/2k−p/d.

With these upper bounds on the cost of the transport plan, we can give an upper bound
for the Wasserstein distance,

Wp

(
µ(n), µ(n)

s

)p
≤ d

p
2

∑
i∈H

ni

n

√
h

g
+ d

p
2

∑
i/∈H

ni

n
+ d

p
2 k−

p
d (14)

= d
p
2

√h

g

∑
i∈H

ni

n
+
∑
i/∈H

ni

n
+ k−

p
d

 . (15)

Using (13) to upper bound the number of points in light boxes,

Wp

(
µ(n), µ(n)

s

)p
≤ d

p
2

√h

g
+

kg

s
+ k−

p
d


= O

√h

g

+ O
(
kg

s

)
+ O

(
k−

p
d

)
.

From the statement of the theorem, we have that s(n) = ⌊nσ⌋ for some σ ∈ (0, 1). We
now need to pick k, g, h, all functions of n, and all with the constraint to be smaller than
n. Furthermore, collecting the assumptions in (6) and (7), we need to have g ≤ s/k,
g > h, and h ≫ log k, The goal is to maximize the rate of convergence of the upper
bound. We take k, g, h of the form k = nλ, g = nγ , h = nρ, with λ, σ, γ, ρ ∈ (0, 1). Then
for some q∗, we have

Wp

(
µ(n), µ(n)

s

)p
= O

(
n− pλ

d

)
+ O

(
n

1
2
(ρ−γ)

)
+ O

(
nγ+λ−σ

)
= O

(
n−q∗

)
.
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Finding q∗ is then equivalent to the following optimization problem.

q∗ = max
λ,γ,ρ∈(0,1)

min

(
pλ

d
,
γ − ρ

2
, σ − γ − λ

)
,

subject to γ > ρ,

γ < σ − λ.

Because of the max min objective, this optimization problem has no simple closed form
expression of q∗ in terms of σ, d and p. We can simplify the parameter space by fixing
λ := c1σ and γ := c2σ. Also note that we can pick any ρ > 0 arbitrarily small. With
this in place, we get for arbitrary small ε > 0,

q∗ = max
c1,c2∈(0,1)

min

(
pc1σ

d
,
c2σ

2
− ε, σ − c1σ − c2σ

)
,

c2σ < σ − c1σ.

Or equivalently

q∗/σ = max
c1,c2∈(0,1)

min

(
pc1
d

,
c2
2

− ε, 1 − c1 − c2

)
,

c2 < 1 − c1.

These planes intersect for c2 = 2p/(d + 3p) for c1 = d/(d + 3p). Note also that

c2 =
2

(d/p) + 3
= 1 − (d/p) − 1

(d/p) + 3
< 1 − d/p

(d/p) + 3
= 1 − c1,

so the constraint is satisfied. Then we have that γ = 3pσ/(d+ 3p) and λ = dσ/(d+ 3p),

which gives q∗ = pσ/(d+3p)−ε. So then, since Wp

(
µ(n), µ

(n)
s

)p
= O(n−pσ/(d+3p)), then

Wp

(
µ(n), µ

(n)
s

)
= O(n−σ/(d+3p)).

3.3 Implications for NEExT

With the result from Theorem 3.4, we can say the following in the context of the NEExT
framework. Given two graphs of size n, with associated node embedding distributions

µ(n), ν(n) on [0, 1]d, and we sample s = ⌊nσ⌋ points from each, giving µ
(n)
s , ν

(n)
s . Then,

by the triangle inequality, we find that the loss in accuracy in the 2-Wasserstein distance
between them is

W2(µ
(n), ν(n)) ≤ W2(µ

(n), µ(n)
s ) + W2(µ

(n)
s , ν(n))

≤ W2(µ
(n), µ(n)

s ) + W2(µ
(n)
s , ν(n)s ) + W2(ν

(n), ν(n)s )

= W2(µ
(n)
s , ν(n)s ) + O

(
n−σ/(d+6)+ε

)
.
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If we have m graphs, all of size n, with node embedding distributions µ(n),1, . . . , µ(n),m,
and consider the similarity matrix S ∈ Rm×m. Recall the matrix is defined by Si,j =
W2(µ

(n),i, µ(n),j). We now have a bound on the perturbations from sampling on the
similarity matrix, Ŝ = S + E, where element-wise E = O(n−σ/(d+6)+ε). Although out
of the scope of this thesis, this can be used to bound the difference in eigenvalues and
eigenvectors of respectively S and Ŝ, and consequently their singular values. See for
example [25]. With this, one could analyze the effect of the inaccuracy introduced by
sampling on the generated graph embeddings.
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4 Triangle Count in Community Structure Graphs

In this section, we give asymptotic results for the number of triangles (three cycles) in
two random graph models with community structure: the stochastic block model and
the ABCD model, both defined later in this section. The formal definition of a triangle
is straight-forward.

Definition 4.1 (Triangle). In the graph G = (V,E), a triangle is an unordered set of
three vertices {u, v, w} ⊂ V such that (u, v), (v, w), (w, u) ∈ E.

To avoid ambiguity, we define the total number of triangles in a graph.

Definition 4.2. T (G) denotes the number of triangles in graph G = (V,E), i.e.

T (G) =
∣∣{{u, v, w} | u, v, w ∈ V, {u, v, w} is a triangle}

∣∣ .
Note that the triangle is unordered, meaning that we count a triangle consisting of

three particular vertices once, instead of counting it three times as seen from each vertex.

4.1 Triangles in the Stochastic Block Model

The Stochastic Block Model, first formulated by Holland et al. [35], is an extension of
the Erdős–Rényi random graph to include a community structure. The model takes
n vertices, partitioned into k communities C1, . . . , Ck, and an edge probability matrix
P ∈ Rk×k. The edge between u ∈ Ci and v ∈ Cj is then sampled to be present with
probability Pi,j . In this section, we show a concentration on the number of triangles in
the 2-community setting, and how a local count of triangles can be used to estimate the
global parameters. We then show by an experiment that graph embeddings based on
triangle count, built by NEExT, distinguish different parameter choices. We finish by
highlighting the complexity of more general cases.

Theorem 4.1. Let the graph Gn be the SBM with two communities of m vertices, for
a total of n = 2m vertices. The edge probabilities are given by

P =

[
p q
q p

]
,

so that the intra-community edge probability is p and the inter-community edge probability
is q. Then, as n → ∞,

E
[
T (Gn)

]
→ n3

24

(
p3 + 3pq2

)
− n2

4

(
p3 + pq2

)
+

n

3
p3,

and
T (Gn)

n3

P→ 1

24

(
p3 + 3pq2

)
.
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Proof. For a vertex v, we call the number of triangles it is part of

Tv(Gn) =
∣∣{{v, u, w} | u,w ∈ V, {v, u, w} is a triangle}

∣∣ .
A given triangle within a community occurs with probability p3, and a given triangle
with one vertex in the other community occurs with probability pq2. Then, by case
distinction, we find

E
[
Tv(Gn)

]
=

(
m− 1

2

)
p3 Neighbors in same community as v

+ m (m− 1) pq2 One neighbor in same community as v

+

(
m

2

)
pq2 Both neighbors in the other community

=
m2

2

(
p3 + 3pq2

)
− 3m

2

(
p3 + pq2

)
+ p3.

We obtain the expected total number of triangles by summing over the expected triangles
per vertex. Although these events are not independent, this is allowed by the linearity
of the expectation. Since this way every triangle is counted three times, we divide the
total by three, to obtain that

E
[
T (Gn)

]
=

1

3

∑
v∈[n]

E
[
Tv(Gn)

]
=

m3

3

(
p3 + 3pq2

)
−m2

(
p3 + pq2

)
+

2m

3
p3

=
n3

24

(
p3 + 3pq2

)
− n2

4

(
p3 + pq2

)
+

n

3
p3. (16)

To show that T (Gn) converges in probability to its expectation, we first show that
Var

[
T (Gn)

]
= O(n4). To do this, we sum over all triples of vertices and consider whether

they form a triangle. Let ∆ =
{
{v1, v2, v3} | {v1, v2, v3} ⊂ V, {v1, v2, v3} is a triangle

}
denote the set of triples that form a triangle. Let

∑
∆1∈[n] denote

∑
{v1,v2,v3}∈[n], the

summation over all possible triples. Then we can write T (Gn) as a sum of indicators, so
that

T (Gn) =
∑

v1,v2,v3∈[n]

I{v1,v2,v3}∈∆.

We can then express the variance as a sum of covariances

Var
[
T (Gn)

]
=
∑

∆1∈[n]

∑
∆2∈[n]

Cov
(
I∆1∈∆, I∆2∈∆

)
.

If two triples share none or only one vertex, the event that the triples are triangles are
independent, and their covariance is zero. The covariance is not zero when 1) the triples
are the same or 2) the triples share two vertices (i.e. one edge).

Var
[
T (Gn)

]
=∑

u,v,w∈[n]

Cov
(
I{u,v,w}∈∆, I{u,v,w}∈∆

)
+

∑
u1,u2,v,w∈[n]

Cov
(
I{u1,u2,v}∈∆, I{u1,u2,w}∈∆

)
.



4 TRIANGLE COUNT IN COMMUNITY STRUCTURE GRAPHS 26

We use the following inequality on the covariance for events A and B.

Cov(IA, IB) = E[IAIB] − E[IA]E[IB] = P (A,B) − P (A)P (B) ≤ P (A,B) .

So we obtain

Var
[
T (Gn)

]
≤∑

u,v,w∈[n]

P
(
{u, v, w} ∈ ∆

)
+

∑
u1,u2,v,w∈[n]

P
(
{u1, u2, v}, {u1, u2, w} ∈ ∆

)
.

Observe that the first term is exactly the expected number of triangles, which we found
in (16) to be O(n3). We look at the triples that share two vertices, which form motifs
of four vertices in total. Say the shared vertices are u1 and u2, and v and w are the
not-shared vertices. Consider then the 5-case distinction as visualized in Figure 5. This
gives us ∑

u1,u2,v,w∈[n]

P
(
{u1, u2, v}, {u1, u2, w} ∈ ∆

)
=

2

(
m

2

)(
m− 2

2

)
p5 1

+ 2

(
m

2

)
m (m− 2) q2p3 2

+ 2

(
m

2

)2

pq4 3

+ 2m2

(
m− 1

2

)
p2q3 4

+ m2 (m− 1)2 q3p2 5

=

(
p5

25
+

q2p3

24
+

pq4

25
+

q3p2

23

)
n4 + O

(
n3
)
.
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Figure 5 – Overlapping triangles

This shows that Var [X] = O(n4), so by the second moment method we have that

P
(
|T (Gn) − E[T (Gn)]| ≥ εE[T (Gn)]

)
≤

Var
[
T (Gn)

]
ε2E[T (Gn)]2

= O
(

1

n2

)
→ 0.

From this it follows that, as n → ∞, the number of triangles converges in probability to
its expectation.

We return to the question about estimating global parameters from local features. In
this setting, we care about estimating the global parameters p and q from the number of
triangles. For the ER graph G(n, p), it is common to consider the sparse parametrization
where p := λ/n for λ > 0, and it is well-known that in this setting the asymptotic number
of triangles is Poisson distributed with expectation λ3/6 [6]. In this 2-community SBM
setting, the analogous parametrization is to set p := λ/m and q := κ/m. Asymptotically
then T (Gn) = (1/24)(λ3 + κλ2). Combine this with the convergence of the average
degree d̄(Gn) → λ + κ, and we can solve these two equations for λ and κ. Both the
degree and number of triangles are local features, and this gives an intuition how NEExT
embeddings capture graph-level features using the distribution of local features. Figure 6
displays the NEExT graph embeddings using the 2-expansion of the triangle count as
node embedding. The graph collection is generated for two parameter choices of λ and
κ.
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Figure 6 – On 10 graphs with n = 1000 vertices, generated by the 2-community SBM
model, for two choices of p = λ/m and q = κ/m. The NEExT graph embeddings using the
2-expansion triangle count separate the two settings well.

For large graphs, calculating all triangles becomes computationally prohibitive. In the
spirit of Section 3, only a sample of the nodes could be considered. For the 2-community
setting, this has little practical use. In the sparse parametrization, there is an expected
constant number of triangles in the infinite graph. Then for any finite subset of nodes,
the expected number of triangles including these nodes is zero. The finite number of
triangles is a consequence of the fact that the size of both communities goes to infinity.
Even within a community, connecting to a common neighbor becomes increasingly rare.
The natural next step is then to consider a setting in which the community size is finite
and the number of communities grows. Take, for example, the general setting where we
have k communities C1, . . . , Ck, with Ci having si vertices, so that n :=

∑k
j=1 sj , and

again having intra-community edge probability p and inter-community edge probability
q. Then let the number of triangles of which vertex v in community l is a part of be
T l
v(Gn). Then the expected number of triangles can be expressed as sums over the
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different communities.

E[T l
v(Gn)] =

1

2
(sl − 1)

(
sj − 2

)
p3 Neighbors in Cl

+

k∑
j=1,
j ̸=l

1

2
sj (sl − 1) pq2 One neighbor in Cl, other in other community

+
k∑

j=1,
j ̸=l

1

2
sj
(
sj − 1

)
pq2 Both neighbors in Cj , j ̸= l

+

k∑
j=1,
j ̸=l

1

2
sj
(
n− sl − sj

)
q3. All vertices in different communities

Without making additional assumptions on the distribution of the community sizes si, we
cannot say much more. In the next sections, we will introduce the ABCD model, which
although not directly analogous to the stochastic block model, does have a community
structure, and does make assumptions over the distribution over the community sizes.
In this setting, we will see that we can say more about the expected number of triangles.
We first introduce the configuration model, on top of which the ABCD model builds
forth.

4.2 Configuration model

For the algorithm of the ABCD model, which will be introduced in the Section 4.3, the
configuration model is an important building block, and it is a key tool for its analysis.
In this section, we introduce the model and explain its usefulness in analysis.

For a degree sequence d = (d1, . . . , dn), we call its sum ℓn =
∑

i∈[n] di. We assume
that ℓn is even, as otherwise no graph exists with degree sequence d. We now introduce
the notion of the half-edge: the “stump” of an edge at a vertex. Connecting two half-
edges creates one edge, so vertex i has di half-edges. Now, we consider the set of all
half-edges, which has ℓn elements, and we sort them in an arbitrary order. To create
an edge, we match the first half-edge with equal probability to any one of the ℓn − 1
remaining half-edges, and remove both from the set. We continue this process until the
set of unmatched half-edges is empty.

This adapted process of randomly pairing half-edges generates a uniformly random
choice among the (ℓn−1)!! possible pairings. Here !! denotes the semi-factorial given for
even k by k!! = k(k − 2) . . . · 4 · 2 and for odd k by k!! = k(k − 2) . . . · ·3 · 1. To see that
there exist (ℓn − 1)!! pairings, consider that all pairings can be seen as a permutation of
a list of ℓn, where adjacent half-edges are paired. There are ℓn! permutations, but many
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will lead to the same pairing. So then we get that the total number of pairings is

ℓn!!

2ℓn/2(ℓn/2)!
=

ℓn(ℓn − 1) · . . . · 2 · 1

2ℓn/2ℓn/2(ℓn/2 − 1) · . . . · 2 · 1
=

ℓn(ℓn − 1) · . . . · 2 · 1

ℓn(ℓn − 2) · . . . · 4 · 2
= (ℓn − 1)!!.

The process generates a multigraph, meaning that self-loops and multi-edges may exist.
However, it can be shown that, conditional on simplicity, the configuration model selects
a graph uniformly from the set of graphs with that particular degree sequence. The
configuration model algorithm also offers a way of analyzing graphs. By the random
matching of half-edges we can use combinatorics to calculate the probability of an edge
existing. For example, the expected number of edges Xu,v between that vertex u and v
is

E
[
Xu,v

]
= dv ·

du
ℓn − 1

,

as each of the dv half-edges has probability of du/(ℓn − 1) of being paired with one of
the half-edges at u. Note that the existence of two different edges are not independent,
but we can still say things about global properties of the graph through the linearity of
expectation, a trick we often use in this thesis. Take for example the expected number
of self-loops S(G) in multigraph G = (V,E) generated by the configuration model on
degree sequence d.

E
[
S(G)

]
= E

∑
v∈V

I(v,v)∈V

 =
∑
v∈V

E
[
I(v,v)∈V

]
=
∑
v∈V

P
(
(v, v) ∈ V

)
=
∑
v∈V

dv(dv − 1)

ℓn − 1
.

For more details on the configuration model, see a textbook such as Hofstad [34].

4.3 ABCD Model

The Artificial Benchmark for Community Detection (ABCD)[41] is a random graph
model that generates graphs with a community structure. It improves the LFR graph
model [49] in its computational efficiency, suitability for theoretical analysis and the
interpretability of community mixing parameter. The ABCD model is a much more
general model than the Stochasic Block Model, and can model the characteristics of
real-life networks, such as scale-free behavior. Furthermore, for simulation purposes,
there exist efficient implementations for generating graphs with the ABCD model.4

4.3.1 Parameters

A general parametrization of the ABCD model consists of the size of the graph n, the
degree distribution Dn, the community size distribution Sn, and a noise parameter ξ.
The noise determines the proportion of edges that cross different communities. The
default choices for the Dn and Sn, as given by [41], rely on the truncated power-law
distribution.

4https://github.com/bkamins/ABCDGraphGenerator.jl
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Definition 4.3 (Truncated Discrete Power law). Let γ ∈ (2, 3). Let a, b ∈ N with a < b.
Then X is a truncated power-law random variable with exponent γ between [a, b] if for
k ∈ {a, . . . b},

P (X = k) =

∫ k+1
k x−γdx∫ b+1
a x−γdx

, (17)

and 0 otherwise, and we denote X ∼ P(γ, a, b).

With this, the parameters of the ABCD model are summarized in Table 1.

Parameter Description Default

n ∈ N+ Size of network

Dn Degree distribution

Dn ∼ P(γ, δ, nζ)
Exponent γ ∈ (2, 3)
Minimum degree δ ∈ N+

Maximum degree nζ ζ ∈ (0, 1
γ−1)

Sn Community Size distribution

Sn ∼ P(β, s, nτ )
Exponent β ∈ (1, 2)
Minimum size s ∈ N+

Maximum size nτ τ ∈ (ζ, 1)

ξ ∈ (0, 1) Level of noise

Table 1 – Parameters of ABCD model

The range for ζ ∈ (0, 1/(γ − 1)) is motivated by the fact that for any ω(n), with
ω(n) → ∞ as n → ∞, w.h.p the maximum degree will be n1/(γ−1)ω(n), see [40, Lemma
5.1]. So for two choices ζ1, ζ2 ∈ (1/(γ − 1), 1), the ABCD model may be coupled such
that w.h.p it will generate the same graph. Then the range for τ ∈ (ζ, 1) is chosen
such that the maximum sampled community size is higher than the maximum sampled
degree. When we refer to a graph generated by the ABCD model, unless otherwise
mentioned, we implicitly fix these parameters. In this thesis, we focus on the default
case for the community size distribution Sn = P(β, s, nτ ), with β ∈ (1, 2). In the limit,
the community size follows a pure power law truncated only from below, i.e.

lim
n→∞

Sn
d
= P(β, s,∞) = P(β, s).

For the choice Dn, we analyze two scenarios.

1. In Section 4.4, we consider an arbitrary choice of Dn, with the assumption that
E[D2

n] < ∞ for all n.

2. In Section 4.5, we fix the degree distribution as its default Dn = P(γ, δ, nζ) with
γ ∈ (2, 3). In this scenario limn→∞ E[D2

n] = ∞.
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4.3.2 Algorithm

The algorithm for generating a graph from the ABCD model consists of four steps,
explained in this section. In short, we first generate a degree sequence from Dn and a
community size sequence from Sn. Then, the degree sequence is split to inner-community
and outer-community edges according to the noise parameter ξ. In the third step, the
vertices are uniformly assigned to communities based on the inner-community degree
sequence. Lastly, the communities and the outer-community edges are matched inde-
pendently following the configuration model, and then merged.

Step 1. Generating the community size sequence and degree sequence. The
first step of generating an ABCD graph consists of generating an admissible community
size sequence s = (s1, . . . , sk) from Sn so that

∑k
l=1 sl = n, and an admissible degree

sequence d = (d1, . . . , dn) from Dn so that
∑n

i=1 di is even. To do this, sample values

s1, . . . i.i.d. from Sn, until after some k values for the first time
∑k

i=1 si ≥ n. Then

decrease sk by n −
∑k

i=1 si. For d, sample n values d1, . . . , dn i.i.d. from Dn. Then if∑n
i=1 di is not even, decrease the maximum of d by 1. Not all combinations of degree

and community sequences will be admissible for generating an ABCD graph. However,
if Sn and Dn are chosen nicely, such as in the default specification, the probability of
admissible sequences is sufficiently large.

Step 2. Splitting degrees. We split the degree sequence into within-community
degrees b and between-community degrees r.

b = (1 − ξ)d,

r = ξd.

To do this exactly, we use the following random splitting.

Definition 4.4. For x ∈ Z and y ∈ [0, 1) define the random variable ⌊x + y⌉ as

⌊x + y⌉ =

x, with probability 1 − y,

x + 1, with probability y.
(18)

With this definition, E[⌊x+y⌉] = x+y. Now define bi :=
⌊
(1 − ξ)di

⌉
and ri := di−bi.

So then E[bi] = (1 − ξ)di and E[ri] = ξdi.

Step 3. Forming communities. In this step, the goal is to find a uniformly random
chosen assignment from the set of [n] vertices to C1, . . . , Ck communities of sizes s, in
such a way that b and r are graphic degree sequences. This means that each vertex
with intra-community degree bi is in a community of at least size bi. To do this, we first
define an upper bound on bi,

bi ≤ xi := ⌈(1 − ξϕ)di⌉, ϕ = 1 −
∑
l∈[k]

(
sl
n

)2

.
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Vertex i will only be allowed in community Cl if xi ≤ sl−1. Assume now that the vertices
i ∈ [n] are sorted in descending order by xi, so that x1 ≥ x2 ≥ . . . ≥ xn. We then sort
communities l ∈ [k] by descending size sl, so that s1 ≥ s2 ≥ . . . ≥ sn. Let s≤l for l ∈ [k]

denote the cumulative size of s, i.e. s≤l :=
∑k

l=1 sl. Consider the mapping f : [n] 7→ [k]
with f(i) = l if and only if s≤l−1 ≤ i ≤ s≤l. This mapping assigns the first s1 vertices,
with highest xi, to the largest community C1, and the following s2 vertices to the second
largest community C2, and so on. This admissible assignment is not uniformly random,
so we want to consider the set all permutations of the [n] vertices, such that f still maps
each vertex to a large enough communities. This set is given by

A :=
{
σ : [n] → [n] : xi ≤ sf(σ(i)) − 1 for all i ∈ [n]

}
.

Our goal is to sample uniformly from this set. One way would be to sample permutations
of [n] randomly until one is in A. Depending on the size of A, the rejection of a random
permutation might be too high. Fortunately, the following straight-forward algorithm
generates permutations from A uniformly random. Let ql for l ∈ [k] denote the number
of free spots in community Cl. So, at initialization of the algorithm, ql = sl for all
l ∈ [k]. Now, for i ∈ [n], in order of x1 ≥ x2 ≥ . . . ≥ xn, assign i to community Cl

chosen uniformly from the set {Cl : l ∈ [k], xi ≤ sl − 1, ql > 0}, communities that are
large enough and have a free spot. Then, decrease ql, so that ql := ql − 1. Following
this algorithm, we get a partition {C1, . . . Ck} of the n vertices. This algorithm always
terminates, as long as A ≠ ∅.

Step 4. Creating subgraphs Gj and merging. The final step for generating the
ABCD graph relies on the configuration model as described in Section 4.2. An alterna-
tive formulation of the ABCD model relies on the Chung-Lu model instead [13], which
generates graphs such that vertices follow the given degree sequence in expectation.

First, the background graph G0 is created following the configuration model with de-
gree sequence r. The edges in the background graph contain edges between communities,
although also possibly edges within communities. Then, independently from each other,
the community graphs Gl for l ∈ [k] are created with degree sequence {bi : i ∈ Cl, i ∈ [n]},
while keeping track of vertex labels as in G0. As a last step, the edge sets of G0 and
G1, . . . , Gk are combined to obtain the final graph G.

This formulation does not guarantee a simple graph. Self-loops may appear in the
background graph G0 or the community graphs G1, . . . , Gk. Multi-edges may appear
both in the G0, . . . , Gk, and in their union G. If the a simple graph is required, the
ABCD algorithm relies on a switching procedure that rewires self-loops and multi-edges.
(for more details, see [41]). In the theoretical analysis of the model, we do not consider
this step and focus on the multigraph instead.
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4.3.3 Known result for ABCD model

From Kaminski et al. [40, Corollary 5.5] we have the following result for the asymptotic
number of communities.

Theorem 4.2. Let β ∈ (1, 2), the minimum communtiy size s ∈ N, and τ ∈ (ζ, 1).
Then the number of communities k is equal to

k = k(n) =

(
1 + O

(
(log n)−1

))
ĉn1−τ(2−β) = Θ(n1−τ(2−β)),

where

ĉ =
2 − β

(β − 1)sβ−1
.

4.4 Triangles in ABCD Model: Finite Variance Degree Distribution

We first consider a setting where the degree distribution has finite variance. We show
the following result.

Theorem 4.3. Consider a graph sequence (Gn)n∈N+, where Gn is a graph of n vertices
generated by the ABCD model with Sn ∼ P(β, s, nτ ) and some Dn with E[D2

n] < ∞
for all n, and corresponding admissible sequences s(n),b(n), r(n). Then, conditional on
admissible degree and community sequences, and the condition that for all n it holds that

P(b
(n)
i ≥ 2) = P

(
Dn ≥ 2/(1 − ξ)

)
> 0, (19)

there exists some constant c such that, as n → ∞,

E
[
T (Gn)

]
n(1−τ(2−β))

→ c. (20)

Put differently, the number of triangles growth linearly with the number of communi-
ties, which grows with rate n1−τ(2−β) as by Theorem 4.2. The constant c depends on the
parameters of the ABCD model, importantly on the noise parameter ξ. The condition
(19) ensures that there is a non-zero probability of vertices having intra-community de-
gree of 2 or more, a necessary condition so that triangles within communities can occur.
Note that for convenience we will often drop the subscript from s(n),b(n), r(n) and simply
write s,b, r instead when the index is unambiguous.

Proof of Theorem 4.3. For simplicity of the theoretical analysis, we consider here graphs
that might have multi-edges and/or have self-loops. The ABCD algorithm has a rewiring
step that ensures a simple graph that is known to be very close to uniformly random. [37]
It should be noted that self-loops and multi-edges can occur in two places: when wiring
the communities and background graph as CM, and when merging the background graph
and communities.
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Two blue edges, one red edge Two red edges, one blue edge

Figure 7 – The four types of triangles in the ABCD model

We adopt the following terminology: we say an edge is red if it is formed in the
background graph, and thus likely will be between communities. An edge is blue if it is
within a community. As introduced before, the red degree of vertex v we denote by rv,
and we note that by rv and bv are distributed as by Definition 4.4. Then we have the
following types of triangles, as visualized in Figure 7.

1. Three blue edges, denoted by T 3b(Gn).

2. Three red edges: T 3r(Gn).

3. Two red edges, one blue edge: T 2r,1b(Gn).

4. Two blue edges, one red edge: T 2b,1r(Gn).

To show the result, we show that E[T 3b(Gn)] gives a Θ(k) contribution, and that the
contributions of E[T 3r(Gn)],E[T 2r,1b(Gn)] and E[T 2b,1r(Gn)] are negligible. We start by
looking at E[T 3b(Gn)].

All blue edge triangles. We first work conditional on the red and blue degree se-
quences and the allocation to communities, denoted by E[· | s,b, r]. Recall that Cl

denotes the set of vertices in the l-th community, and we call the volume of that com-
munity Cl :=

∑
v∈Cl

bv, and that k denotes the (random) number of communities. Note
that because we are ordering over labelled triples in each community, we have to count
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each triangle three times, so we have to divide by 3.

E
[
T 3b(Gn)

∣∣∣ s,b, r] =

E

1

3

∑
l∈[k]

∑
u,v,w∈Cl

∑
hb
1,h

b
2∼u

∑
hb
3,h

b
4∼v

∑
hb
5,h

b
6∼w

Ihb
1↔hb

3,h
b
4↔hb

5,h
b
6↔hb

2

∣∣∣∣∣∣ s,b, r
,

where
∑

hb
1,h

b
2∼v denote the summation of two distinct blue half-edges at vertex v. Be-

cause of the linearity of expectation and using that E[IA] = P(A), we can use the
configuration model’s pairing algorithm to see that

E
[
T 3b(Gn)

∣∣∣ s,b, r] =
1

3

∑
l∈[k]

∑
u,v,w∈Cl

bubv(bv − 1)bw(bw − 1)(bu − 1)

(Cl − 1)(Cl − 3)(Cl − 5)
. (21)

For the next step, we introduce the following quantity, for j ∈ N, j ≥ s,

E
[
Zj

]
:= E

0 ∨
∑

u,v,w∈Cl

bubv(bv − 1)bw(bw − 1)(bu − 1)

(Cl − 1)(Cl − 3)(Cl − 5)

∣∣∣∣∣∣ |Cl| = j

. (22)

The quantity E[Zj ] denotes the expected number of triangles in a community of size j.
It is not easy to see how E[Zj ] behaves for different j. Communities with more vertices
have more possible triangles, but the probability of two neighbors connection becomes
smaller. We can say, however, that E[Zj ] converges: as bu ≤ du, and du ∼ Dn has finite
variance, the Law of Large Numbers imples that E[Zj ] → E[Z] for some Z, as visualized
by a simulation in Figure 8.
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MC estimate of E[Zj] from 100 samples

Figure 8 – A Monte Carlo simulation of E[Zj ] for D ∼ P(3.5)

Let the empirical density of the community size be p
(k)
j =

∑
l∈[k] I|Cl|=j/k. We now

write the expectation over the degree sequence and community allocations as the sum
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over the different community sizes. Although the number of triangles between commu-
nities is not independent, the expectation is linear, so this not a problem.

E
[
E
[
T 3b(Gn)

∣∣∣ s,b, r]] =
k

3

nτ∑
j=s

p
(k)
j E

[
Zj

]
. (23)

Then note that by the convergence of the empirical CDF, we have p
(k)
j → pj := P (S = j),

where S is the limiting distribution of the community size, given by S := limn→∞ Sn
d
=

P(β, s,∞). By Theorem 4.2 that

E
[
T 3b(Gn)

]
= Θ

(
n1−τ(2−β)

) ∞∑
j=s

pjE
[
Zj

]
= Θ(n1−τ(2−β)).

Note that the sum converges as pj → 0,
∑

j pj = 1 and E[Zj ] → E[Z], and the sum is
strictly larger as pj > 0 and for finite j we have definitely that E[Zj ] > 0. To see this,
note that by the condition (19), there is for every j a non-zero probability that both the
denominator and numerator in Zj are positive, and by the fact that Zj ≥ 0, it follows
that E[Zj ] > 0.

All red edge triangles We now move on to the triangles formed in the background
graph.

E
[
T 3r(Gn)

∣∣∣ s,b, r] =

E

1

3

∑
u,v,w∈[n]

∑
hr
1,h

r
2∼u

∑
hr
3,h

r
4∼v

∑
hr
5,h

r
6∼w

Ihr
1↔hr

3,h
r
4↔hr

5,h
r
6↔hr

2

∣∣∣∣∣∣∣ s,b, r
.

Let ℓn =
∑

v∈[n] rv. Using the same trick of linearity of expectation we see that

=
1

3

∑
u,v,w∈[n]

rurv(rv − 1)rw(rw − 1)(ru − 1)

(ℓn − 1)(ℓn − 3)(ℓn − 5)

=
1

3

1

(ℓn − 1)(ℓn − 3)(ℓn − 5)

∑
u∈[n]

ru(ru − 1)
∑
v∈[n]

rv(rv − 1)
∑
w∈[n]

rw(rw − 1)) + o(1),

where the o(1) term that accounts for double counting of vertices. So we find then

E
[
T 3r(Gn)

∣∣∣ s,b, r] =
1

3

1

(ℓn − 1)(ℓn − 3)(ℓn − 5)

∑
u∈[n]

ru(ru − 1)


3

+ o(1).

We can see that

(ℓn − 1)(ℓn − 3)(ℓn − 5) = ℓ3n + O(ℓ2n) = O
(
n3
)
,
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so we can follow the intuition that the cube over a sum over n, divided by the cube of
n, converges to a constant. In fact, we can find this constant exactly. We write

E[T 3r(Gn) | s,b, r] =
1

3

(
n

ℓn + o(1)

)3(∑
u∈[n] ru(ru − 1)

n

)3

+ o(1).

Recall that E[ru] = ξdu, so that

E
[
ru(ru − 1)

]
= E[r2u] − E[ru] = ξ(1 − ξ)du + ξ2d2u − ξdu = ξ2d2u − ξ2du = ξ2du(du − 1).

Let limn→∞Dn
d
= D. Then by applying the LLN for both terms, using ℓn/n → ξE[D],

we see

E
[
T 3r(Gn)

]
→ 1

3

1

ξ3E[D]3

(
ξ2E

[
D(D − 1)

])3
=

ξ3

3

(
E
[
D(D − 1)

]
E[D]

)3

= O(1).

Two red edges, one blue edge triangles. We proceed in similar vein for the tri-
angles formed by two red edges and one blue edge. These triangles can occur for each
vertex u combined with all pairs v, w, where v and w are in the same community. Note
that the red edges may also form within a community. We then see that

E
[
T 2r,1b(Gn)

∣∣∣ s,b, r]
= E

1

2

∑
u∈[n]

∑
l∈[k]

∑
v,w∈Cl

∑
hr
1,h

r
2∼u

∑
hr
3,h

b
4∼v

∑
hr
5,h

b
6∼w

Ihr
1↔hr

3,h
b
4↔hb

6,h
r
5↔hr

2

∣∣∣∣∣∣∣ s,b, r
.

From which we get that

E
[
T 2r,1b(Gn)

∣∣∣ s,b, r] =
1

2

∑
u∈[n]

∑
l∈[k]

∑
v,w∈Cl

ru(ru − 1)rvrwbvbw
(ℓn − 1)(ℓn − 3)(Cl − 1)

(24)

=
1

2

∑
u∈[n] ru(ru − 1)

(ℓn − 1)(ℓn − 3)

∑
l∈[k]

∑
v∈Cl

∑
w∈Cl

rvrwbvbw

Cl − 1
+ o(1), (25)

where o(1) accounts the double counting of vertices. We continue to see that

E
[
T 2r,1b(Gn)

∣∣∣ s,b, r] ≤ 1

(ℓn − 1)(ℓn − 3)

∑
u∈[n]

r2u
∑
l∈[k]

1

Cl − 1

∑
v∈Cl

rvbv
∑
w∈Cl

rwbw

≤ 1

(ℓn − 1)(ℓn − 3)

∑
u∈[n]

r2u
∑
l∈[k]

(Cl − 1)

(∑
v∈Cl

rvbv

Cl − 1

)2

.
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Define E[Z∗
j ] similarly to (22), for j ∈ N, j ≥ s,

E
[
Z∗
j

]
:= E

0 ∨

(∑
v∈Cl

rvbv

Cl − 1

)2
∣∣∣∣∣∣ |Cl| = j

, lim
j→∞

E
[
Z∗
j

]
= E

[
Z∗]. (26)

We write, as in (23), the conditional sum over community size.

E
[
T 2r,1b(Gn)

∣∣∣ s,b, r] ≤ ∑
u∈[n] r

2
u

ℓn − 1
k

1

ℓn − 3

nτ∑
j=1

(j − 1)p
(k)
j E

[
Z∗
j

]

≤
∑

u∈[n] r
2
u

ℓn − 1
k

nτ

ℓn − 3

nτ∑
j=1

p
(k)
j E

[
Z∗
j

]
.

For the last inequality, observe that j − 1 ≤ nτ , as j − 1 sums from 1 . . . nτ . The
first fraction converges by the Law of Large Numbers. The sum converges as n → ∞,
following the reasoning in the all blue edge case. Then, as ℓn−3 = Θ(n) we end up with
a rate Θ(knτ−1). Since τ < 1, we have as required that

E
[
T 2r,1b(Gn)

]
= o(k).

Two blue edges, one red edge triangles. Lastly, we count all triangles consisting
of two blue and one red edge. These occur when a triple of vertices, all in the same
community, form one red edge in the background graph, and two blue edges in the
community graph. We see that

E
[
T 2b,1r(Gn)

∣∣∣ s,b, r] =

1

2
E

∑
l∈[k]

∑
u,v,w∈Cl

∑
hr
1,h

b
2∼u

∑
hr
3,h

b
4∼v

∑
hb
5,h

b
6∼w

Ihr
1↔hr

3,h
b
4↔hb

6,h
b
5↔hb

2

∣∣∣∣∣∣∣ s,b, r
.

We then find, again by the configuration model’s matching that

E
[
T 2b,1r(Gn)

∣∣∣ s,b, r] =
1

2

∑
l∈[k]

∑
u,v,w∈Cl

rurv
ℓn − 1

bvbw(bw − 1)bu
(Cl − 1)(Cl − 3)

(27)

≤ k
1

ℓn − 1

∑
l∈[k]

(Cl − 1)

(∑
u∈Cl

rubu

Cl − 1

)2 ∑
v∈Cl

bv(bv − 1)

Cl − 3
.

Define E[Z∗∗
j ] equivalently to (22), for j ∈ N, j ≥ s,

E
[
Z∗
j

]
:= E

0 ∨

(∑
u∈Cl

rubu

Cl − 1

)2 ∑
v∈Cl

bv(bv − 1)

Cl − 3

∣∣∣∣∣∣ |Cl| = j

, lim
j→∞

E
[
Z∗
j

]
= E

[
Z∗].
(28)
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We write, as in (23), the conditional sum over community size,

E
[
T 2b,1r(Gn)

∣∣∣ s,b, r] = k
1

ℓn − 1

nτ∑
j=1

(j − 1)p
(k)
j E

[
Z∗∗
j

]

≤ k
nτ

ℓn − 1

nτ∑
j=1

p
(k)
j E

[
Z∗∗
j

]
,

Then again we see that this term is Θ(knτ−1) = o(k).

Conclusion of proof. To see the result simply sum the different types of triangles to
get the required result

lim
n→∞

E
[
T (Gn)

]
= lim

n→∞

(
E
[
T 3r(Gn)

]
+ E

[
T 3b(Gn)

]
+ E

[
T 2r,1b(Gn)

]
+ E

[
T 2b,1r(Gn)

])
= Θ(k) + O(1) + o(k) + o(k)

= Θ(k).

Then by Theorem 4.2, which states the rate of growth of the number of communities,
we conclude that Θ(k) = Θ(n1−τ(2−β)).

So the number of blue triangles is asymptotically proportional to the number of com-
munities. This seemingly trivial fact is not clear when one considers that most vertices
fall in large communities. So far, we have considered the setting where limn→∞ E[D2

n] <
∞. In the next section, Dn follows a power law with exponent γ ∈ (2, 3). Then
limn→∞ E[D2

n] = ∞, and Theorem 4.3 does not apply. In this setting, the number
of triangles in the large communities does not converge, i.e. limj→∞ E[Zj ] = ∞ with
E[Zj ] defined as in (22). This is the subject of the next section. We set out this section
with the goal of quantifying the strength of the community structure by triangle count.
For the ABCD model, this is still an open questions, as we have not shown how the
constant c changes for different values of ξ. At the end of this section we do a simu-
lation experiment, see Figure 10, which confirms the intuition that a higher ξ (weaker
communtiy structure) decreases the number of triangles.

4.5 Triangles in ABCD Model: Power-Law Degree Distribution

So far, we have assumed that E[D2
n] < ∞ for all n. This simplifies some things, namely

that the number of triangles within a community and the background graph are asymp-
totically constant. Now we want to consider a setting where limn → ∞E[D2

n] = ∞.
To this end, we consider the default formulation of the ABCD model as in Kaminski
et al. [40]. In this model, Dn follows a truncated power-law distribution with exponent
γ ∈ (2, 3), as in Definition 4.3. Our main result is that we find sufficient conditions
on the parameters of the model such that the number of triangles is dominated by blue
(i.e. within-community) triangles. However, unlike in the bounded variance setting in
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the previous setting, the number of triangles in a given community now grows with its
size, instead of converging to a constant number. This means that the number of trian-
gles grows faster than the number of communities. Before we state the main result, we
introduce the notion of a power-law tail.

Condition 4.5 (Power-law tail degree sequence). Let Fn(j) be the empirical degree
distribution of degree sequence x = (x1, . . . , xn)

Fn(j) =
1

n

∑
i∈[n]

Ixi≤j .

Then we say that x has a power-law tail with exponent γ ∈ (2, 3), if

(i) There exists a constant K > 0 such that for every 0 ≤ j ≤ max(x),

1 − Fn(j) ≤ Kj1−γ . (29)

(ii) There exists a constant C > 0 such that, for all j = O(
√
n),

1 − Fn(j) = Cj1−γ(1 + o(1)). (30)

We now state the following lemma.

Lemma 4.4. Consider degree sequences b and r obtained by random splitting as in
Definition 4.4, i.e. for each u ∈ [n] take

bu := ⌊(1 − ξ) du⌉, ru := du − bu,

with d = (d1, . . . dn) and di
i.i.d.∼ P(γ, δ, nζ) with γ ∈ (2, 3). Then b and r have a

power-law tail, i.e. satisfy Condition 4.5 with exponent γ.

Proof of Lemma 4.4. Let F b
n(j) be the empirical degree distribution of b. To see that

Condition 4.5(i) holds, simply note that, since bi ≤ di for all i ∈ [n], then F b
n(j) ≥ F r

n(j)
for all j. Then a.a.s

1 − F b
n(j) ≤ 1 − F d

n(j) ≤ Kj1−γ ,

because d is directly sampled from a power law. The same reasoning applies to r. For
Condition 4.5(ii), consider some j = O(

√
n), then

F d
n(⌊(1 − ξ)j⌋) ≤ F b

n(j) ≤ F d
n(⌊(1 − ξ)j⌋ + 1).

Since d satisfies the condition and the fact that ⌊(1− ξ)j⌋ = O(
√
n), we have that there

exists some C > 0 such that

F d
n(⌊(1 − ξ)j⌋) = 1 − C(⌊(1 − ξ)j⌋)1−γ(1 + o(1)) = 1 − C(1 − ξ)1−γj1−γ(1 + o(1)),

and similarly F d
n(⌊(1 − ξ)j⌋ + 1) = 1 − C(1 − ξ)1−γj1−γ(1 + o(1)). So then a.a.s. for

constant C ′ := C(1 − ξ)1−γ it holds that 1 − F b
n(j) = C ′j1−γ(1 + o(1)).
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Figure 9 – Visualization of Lemma 4.4

An important ingredient for our result is the following theorem from Gao et al. [30],
which states that the number of triangles in a uniform random graph with a power-law
tail degree sequence satisfying Condition 4.5 is Θ(n

3
2
(3−γ)).

Theorem 4.5 (Theorem 1 from [30]). Let γ ∈ (2, 3) and dn be a degree sequence on
n vertices that satisfies Condition 4.5 with exponent γ and constant C. Let Gn be a
uniform random graph with degree sequence dn. Let µ be the mean of dn. Then T (Gn),
denoting the number of triangles in Gn, it holds that

T (Gn)
P−→ − 1

12

πC(γ − 1)µ−(γ−1)/2

cos
(
πγ
2

)


3

n
3
2
(3−γ).

Proof of Theorem 4.5. The proof consists of showing that most of the triangles are be-
tween vertices with degree of order

√
n, and any triangles with lower degree vertices are

negligible.

With this, we are ready to state sufficient conditions on the parameters to find the
rate of growth on the number of triangles.

Theorem 4.6. Consider a sequence of graphs (Gn)n∈N+, each Gn generated by the
ABCD model, with Sn ∼ P(β, s, nτ ) and Dn ∼ P(γ, δ, nζ), and γ ∈ (2, 3). If it holds
that

2τ(1 − β)

3(3 − γ)
> −1,
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and the maximum degree nζ is chosen such that

ζ ≤ 1

2
τ +

1 − τ

3(3 − γ)
,

then for some constant c, as n → ∞, it holds that

E
[
T (Gn)

]
n(1−τ+ 3

2
τ(3−γ))

→ c.

We see that the number of triangles in this setting grows with rate n1−τ+(3τ(3−γ)/2).
One interpretation is that the number of triangles is decreasing in the degree distribu-
tion’s power-law exponent γ. This is as expected, as an increased power-law exponent
leads to lighter tails in the distribution, so fewer highly connected degrees. The effect
of the maximum community size nτ is more involved. On the one hand, the number of
triangles increases as community size is more restricted, as is reflected by the 1 − τ in
the exponent. In larger communities, a vertex’s neighbors are less likely to find each
other. But by the exponent term 3τ(3 − γ)/2, we see that a smaller τ also tampers the
number of triangles. Notably, the power-law exponent of the community size β does not
directly affect the asymptotic rate. The explanation, as we will see in the proof, is that
the rate is the product of n1−τ(2−β), the number of communities, and nτ(1−β)+(3τ(3−γ)/2),
the typical number of triangles in the largest communities. The constants c depends on
the value of ξ, as visualized in Figure 10(b), in that c is negatively correlated to the
value of ξ.

Proof of Theorem 4.6. The proof follows the same approach to the proof of Theorem 4.3,
where we considered the four types of triangles. We start with blue (fully within-
community) triangles.

Three blue edges triangles. Consider E[Zj ] as defined in (22). We follow all steps
analogous to the proof of Theorem 4.3 up to (23). Here, we can write the expected
number of triangles as the conditional sum over the community sizes,

E
[
T 3b(Gn)

]
= k

nτ∑
j=s

pjE
[
Zj

]
.

Now, pick some ρ > 0 such that

ρ < min

(
τ,

2τ(1 − β)

3(3 − γ)
+ 1

)
. (31)

We split the the sum into communities smaller than nρ and larger than nρ. We show
that the first term is dominated by the second, i.e. the number of triangles in the smaller
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communities is insignificant compared to the triangles in the larger communities:

E
[
T 3b(Gn)

]
= k

 nρ∑
j=s

pjE
[
Zj

]
+

nτ∑
j=nρ

p
(k)
j E

[
Zj

] . (32)

For the first sum, we know by Theorem 4.5, the number of triangles is largest in the
last term of the sum. Specifically, as the degree sequence bu follows the power-law tail
condition by Lemma 4.4. Then, by Theorem 4.5, we have that E[Znρ ] = Θ(n3ρ(3−γ)/2).
So we write

nρ∑
j=s

pjE
[
Zj

]
≤

nρ∑
j=s

pjE[Znρ ]

= P
(
S ≤ nρ

)
· Θ

(
nρ 3

2(3−γ)
)

= O
(
nρ 3

2(3−γ)
)
.

For the second term, as all terms are larger than nρ, they all follow the asymptotic
behavior, such that

nτ∑
j=nρ

pjE
[
Zj

]
=

nτ∑
j=nρ

pjΘ(j
3
2
(3−γ)).

We can approximate this sum by an integral, i.e.
∫ b
a f(x)dx + f(a) ≤

∑b
i=a f(i) ≤∫ b

a f(x)dx + f(b). Here a = nρ and b = nτ , and from ρ < τ and that f is increasing, we
have f(nρ) = O(f(nτ )). We can then write for some constant c′ and c′′ that

nτ∑
j=nρ

pjΘ(j
3
2
(3−γ)) = c′

∫ nτ

nρ

x−βx
3
2
(3−γ)dx + O

(
nτ(−β+ 3

2
(3−γ))

)

= c′′x1−β+ 3
2
(3−γ)

∣∣∣∣∣
nτ

nρ

+ O
(
nτ(−β+ 3

2
(3−γ))

)
= Θ

(
nτ(1−β)+ 3

2
τ(3−γ)

)
+ O

(
nτ(−β+ 3

2
(3−γ))

)
.

Here, the last term is dominated by the first. Combining both the sums of (32), we then
get

E
[
T 3b(Gn)

]
= k

(
O
(
nρ 3

2(3−γ)
)

+ Θ
(
nτ(1−β)+ 3

2
τ(3−γ)

))
.

We see that the first term is dominated by the second, because of the choice of ρ from
(31). Then again, using the asymptotic behavior of the number of communities k, as
described by Theorem 4.2, we see

E
[
T 3b(Gn)

]
= Θ

(
n1−τ(2−β)

)
Θ
(
nτ(1−β)+ 3

2
τ(3−γ)

)
= Θ

(
n1−τ+ 3

2
τ(3−γ)

)
.
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Three red edges. To count the number of red triangles (triangles formed in the
background graph), we simply note that the background graph has degree sequence ru,
which by Lemma 4.4 follows the power-law tail condition. Then we can directly apply
Theorem 4.5 to see that

E
[
T 3r(Gn)

]
= Θ

(
n

3
2
(3−γ)

)
= o(E[T 3b(Gn)]).

Two red edges, one blue edge. We pick up for this case as in the proof for Theo-
rem 4.3 in (24). We now take an upper bound using bu, du ≤ du for all u ∈ [n].

E
[
T 2r,1b(Gn)

∣∣∣ s,b, r] =

∑
u∈[n] ru(ru − 1)

∑
l∈[k]

(ℓn − 1)(ℓn − 3)

∑
v∈Cl

∑
w∈Cl

rvrwbvbw

Cl − 1
+ o(1)

≤ 1

(ℓn − 1)(ℓn − 3)

∑
u∈[n]

d2u
∑
l∈[k]

1

Cl − 1

∑
v∈Cl

d2v

2

.

Consider that, for some constant c′, we can see, by using an integral upper bound of the
sum, that

∑
u∈[n]

d2u = n

nζ∑
j=δ

P (du = j) j2 = nc′
nζ∑
j=δ

j−γj2 ≤ nc′(nζ)3−γ = c′n1+ζ(3−γ). (33)

Also note that (for sufficiently large n), for x = 1, 2 or 3 and some constant c′, we have
ℓn − x ≥ c′n and Cl − x ≥ c′′j if |Cl| = j. We also rewrite as the conditional sum over
community sizes, similarly to (23). Combining this to see that for some other constant
c′ it holds that

E
[
T 2r,1b(Gn)

]
≤ c′

n1+ζ(3−γ)

n2
k

nτ∑
j=1

pj
j
E
[
Zj

]
,

where now, for j ∈ N, j ≥ s,

E
[
Z∗
j

]
:= E


∑

v∈Cl

d2v

2
∣∣∣∣∣∣∣ |Cl| = j

. (34)

Observe now that the E[Z∗
j ] over j is increasing, and we find an upper bound for for the

largest possible community analogously to (33), to see that for some constant c′ it holds
that.

E
[
Z∗
nτ

]
≤ c′(nτnζ(3−γ))2 = c′n2τ+2ζ(3−γ).



4 TRIANGLE COUNT IN COMMUNITY STRUCTURE GRAPHS 46

Then by using pj = j−β, we write

E
[
T 2r,1b(Gn)

]
≤ c′nζ(3−γ)−1k

nτ∑
j=1

j−1−βn2τ+2ζ(3−γ)

= c′knζ(3−γ)−1+2τ+2ζ(3−γ)
nτ∑
j=1

j−1−β

= O
(
knζ(3−γ)−1+2τ+2ζ(3−γ)−τβ

)
= O

(
kn3ζ(3−γ)+τ(2−β)−1

)
.

To ensure this result is dominated by the number of blue triangles, i.e. o(E[T 3b(Gn)]),
we need to have that

3ζ(3 − γ) + τ(2 − β) − 1 ≤ τ(1 − β) +
3

2
τ(3 − γ)

⇐⇒ 3ζ(3 − γ) ≤ −τ + 1 +
3

2
τ(3 − γ)

⇐⇒ ζ ≤ 1

2
τ +

1 − τ

3(3 − γ)
,

which is true as per the assumption.

Two red edges, one blue edge. We pick up this case from (24), where we now take
an upper bound using the degree di instead of the split degrees ri and bi. This gives

E
[
T 2b,1r(Gn)

∣∣∣ s,b, r] =
1

2

∑
l∈[k]

∑
u,v,w∈Cl

rurv
ℓn − 1

bvbw(bw − 1)bu
(Cl − 1))(Cl − 3)

≤
∑
l∈[k]

∑
u,v,w∈Cl

d2v
n

d2ud
2
w

(Cl − 1))(Cl − 3)

≤ 1

n

∑
l∈[k]

(
∑

v∈Cl
d2v)3

(Cl − 1))(Cl − 3)
.

Then we rewrite as the conditional sum over communtiy sizes

E
[
T 2b,1r(Gn)

]
≤ k

1

n

nτ∑
j=1

j−β−2E
[
Z∗∗
j

]
,

where now, for j ∈ N, j ≥ s,

E
[
Z∗∗
j

]
:= E


∑

v∈Cl

d2v

3
∣∣∣∣∣∣∣ |Cl| = j

, (35)
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and like before E[Z∗∗
nτ ] ≤ n3τn3ζ(3−γ). And then we get, using a bound as in (33),

E
[
T 2b,1r(Gn)

]
≤k

2
n3τ+3ζ(3−γ)−1

nτ∑
j=1

j−β−2

≤O
(
kn3τ+3ζ(3−γ)−1−τ(1+β)

)
= O

(
kn3ζ(3−γ)+τ(2−β)−1

)
.

This is the same upper bound as for E[T 2b,1r(Gn)], which we have shown to be
o(E[T 3b(Gn]).

Conclusion of proof. We have shown that all other types of triangles are dominated
by the blue (within-community) triangles, and that the blue triangles grow by the re-
quired rate, which completes the proof.

Both Theorem 4.3 and Theorem 4.6 give the asymptotic rate of growth of the expected
triangle count E[T (Gn)]. They state two regimes in which the relation E[T (Gn)] = cnr

holds, for some unknown c depending on the parameters, with rate r = (1 − τ(2 − β))
in Theorem 4.3 and r = (1 − τ + 3τ(3 − γ)/2) in Theorem 4.6. The goal of this section
was to show that triangles can quantify the strength of the community structure in the
ABCD model. As we have not shown how c depends on ξ, this is still an open question.
We address this by a short simulation experiments, shown in Figure 10.
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(a) In the regime of Theorem 4.3
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(b) In the regime of Theorem 4.6

Figure 10 – Simulation results for the number of triangles. Each marker in the scatter plot
corresponds to an independently generated ABCD graph, with Dn ∼ P(γ, 3, n0.3), Sn ∼
P(1.5, 10, n0.9) and γ = 3.5 in (a) and γ = 2.5 in (b). The dashed lines are the linear
regression fit of log T (Gn) = ĉ + r̂ log n. Then ĉ, r̂ are estimators for c, r in the relation
E[T (Gn)] = cnr. Following Theorem 4.3 we know that in (a), the slope r is 0.55. The
simulations estimates are 0.47 and 0.53, for intercept c the estimate is 3.63 for ξ = 0.1 and
1.33 for ξ = 0.4. From Theorem 4.6, we know that in (b) the slope is 0.775. The estimates
are 0.85 and 0.75, for intercept c is given by 0.32 for ξ = 0.1 and 0.48 for ξ = 0.4.
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In the loglog plot, we see the linear relation logE[T (Gn)] = c + r log n. Since the
slope of the relation appears the same between the choices of ξ, this supports our results
that r does not depend on ξ. The separation of the point clouds confirms the conclusion
that a lower ξ (a stronger community structure) corresponds to a higher value for c.
This simulation is not without limitations. Our theoretic results are asymptotic, but at
what point the asymptotic rate dominates is not clear. This simulation considers graphs
of between 400, 000 and 1, 000, 000 nodes, as computational restrictions forbid us from
considering larger graphs, or more realizations.5 As a consequence, the results deviate
in some aspects from the theoretical expectations. For example, in Figure 10(b), the
estimates for c with a lower ξ are lower than with a higher ξ, despite the fact that the
point clouds are clearly separated.

5These restrictions are merely a consequence of the scope of this thesis. More performant implemen-
tations or more powerful hardware could fairly easily generate graphs of orders of magnitude larger.
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5 Triangle Augmentation for Graph Neural Networks

In the previous section we have seen that the triangle count can be used to quantify
the community structure of a graph. With this in mind, we turn to a popular class of
models for graph data mining. In recent years, Graph Neural Networks (GNNs) have
been used with great success in supervised tasks on graph-structured data [82]. Consider
G = (V,E,H0), an n-node graph with a corresponding label y, where H0 ∈ Rn×d0

contains the d0-dimensional node features. The goal of a GNN is to learn the graph
function that maps G to y, i.e a GNN predicts y from G. The node feature H0 may
consist of inherent node attributes, but if those are absent, it is customary to simply
let H0 be the degree of each node, or an all-ones vector. In this section we inspect the
benefit of augmenting H0 with the triangle count of each node. As we will see, there is
a good reason to do so, as GNNs have trouble detecting local clustering and community
structure. Before we investigate this, we explain the general workings of a GNN.

On a high level, the GNN architecture for supervised graph-level tasks (such as graph
classification), consists of three steps: convolution, readout and prediction, as visualized
in Figure 11. We explain these steps in detail.

1. Graph convolution layers. In this first step, also called the message passing or
neighborhood aggregation step, learnable convolution-like layers find node embed-
dings by aggregating the features of neighboring nodes. For each layer l in some k
layers, for each vertex v ∈ [n], with N (v) denoting the neighborhood of vertex v,
the graph convolution layer is given in [53] by

H l
v = σ

H l−1
v W l

1 +
∑

w∈N (v)

H l−1
w W l

2

 .

Here σ : Rn×dl 7→ Rn×dl is some dimension-wise differentiable activation function,
and W l

1,W
l
2 ∈ Rdl−1×dl are the parameter (weight) matrices of the layer, where dl

is referred to as the “hidden dimension” of layer l.

Figure 11 – Illustration of GNN architecture (Adapted from [20])



5 TRIANGLE AUGMENTATION FOR GRAPH NEURAL NETWORKS 50

2. Readout function: After k consecutive graph convolution layers, the node em-
beddings are combined by the readout function to obtain one graph embedding.
To ensure that the readout function is well-defined for any graph, this operation
has to be invariant under the permutation of the node embeddings (as a graph
after a permutation of the the nodes defines the same graph) and flexible to the
number of nodes n:

Hg = freadout(H
k),

where Hk is the output of the last convolution layer, freadout : Rn×dk 7→ Rdg any
dimension-wise differentiable function that is invariant and flexible, and Hg ∈ Rdg

is the graph embedding of dimension dg. Common choices for the readout function
are the dimension-wise mean or maximum.

3. Prediction function: Then, the graph embedding Hg is used to do classification
or regression of the graph’s label, through some learnable prediction function,

ŷ = fpred(Hg | Wp),

where Hg is the graph embedding obtained from the readout function, fp a dif-
ferentiable function with weights Wp. Generally, fpred consists of 1 or more fully
connected layers. Then, ŷ is the prediction of the model. In the regression setting,
ŷ is simply a single real number. In classification, ŷ is a vector of the length of the
number of classes. This is called soft classification, and each entry represents the
predicted class probability.

For a GNN with k convolution layers, the network has the learnable weights
(W 1

1 ,W
1
2 ) . . . (W k

1 ,W
k
2 ),Wp. These weights are optimized in an end-to-end fashion using

a stochastic gradient descent variant, on a training set of pairs of graphs and their labels.
The performance of the model is then measured on a validation set of unseen examples.

5.1 The 1-dimensional Weisfeiler-Lehman Test

Although GNNs are the preferred choice for many real world applications, it can be
shown that they are at most as expressive as the 1-dimensional Weisfeiler-Lehman algo-
rithm (1-WL), a heuristic test for isomorphism of graphs [83]. Here, we aim to explain
what the 1-WL test is, and why it shows up in the analysis of GNNs. The graph isomor-
phism problem is to determine if, given two graphs, there exists a permutation of the
nodes such that the graphs are identical. The 1-WL algorithm gives a heuristic test for
this problem. It relies on a version of color refinement, an iterative procedure: start with
an initial labeling (i.e. coloring) of the nodes of both graphs, for example their degree. In
each iteration, two nodes with the same label get different labels if the number of neigh-
bors with a particular label is not equal. This step is similar to the graph convolution
layers: the representation of two nodes at layer l + 1 is different only if the representa-
tions at layer l of the nodes in their neighborhoods are different. The 1-WL algorithm
terminates when refinement does not change the node labels. In this view, a GNN with
k layers can be viewed as k refinement steps of the 1-WL algorithm on each node. By
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running the algorithm in parallel for two graphs, the 1-WL test concludes the graphs are
non-isomorphic if their distributions of the labels are different. The conclusion in the
opposite direction is not true: identical color histograms does not necessarily mean the
graphs are isomorphic. The 1-WL test is generally expressive enough for practical ap-
plications, but it fails in many simple cases. For example, it cannot distinguish different
d-regular graphs, graphs with different triangle counts or, in general, cyclic information
[2]. See, for example, Figure 12. The label distribution for two clearly non-isomorphic
graphs, one with triangles and one without triangles, is identical.

(a) Two non-isomorphic graphs (b) 1-WL label distribution

Figure 12 – 1-WL and GNNs cannot distinguish these two graphs. Source [89]

So, the graph convolution step of a GNN is at most as powerful as the 1-WL test, and
can even be formulated to be exactly as powerful [83, 53]. It is clear that from identical
node embeddings (i.e. the label distribution such as in Figure 12(b)), the readout step
will lead to the same graph embedding, so that the two graphs cannot be distinguished
in the prediction step.

Before we move on to our experiment, let us consider why GNNs are designed this
way, and why improving their expressiveness is difficult. Fundamentally, this is because a
GNN has to be permutation invariant : a permutation of the vertices should not change
the output, as the graph does not change under permutations of the vertices either.
GNNs ensure invariance by applying the same weights in the convolution layers to all
nodes. However, this leads to a lack of identifiability between the nodes [24], and as
a consequence GNNs cannot predict clustering coefficients [85], count any subgraph of
three or more nodes [12] or recover community structure [70].

The expressiveness of GNNs is an open question in research, see Morris et al. [52] for
a recent comprehensive summary. To address this issues, many variations have been sug-
gested, such as higher-order architectures [53, 29], unique node identifiers [76], dropout
layers [55], or subgraph augmentation [33, 8, 15]. Here, we consider an experiment based
on the last suggestion. Inspired by the content of the earlier sections of this thesis, we
consider the simplest subgraph with three or more nodes: the triangle. We augment the
node features of the graphs with the number of triangles each node is part of, and show
that this allows a minimal GNN architecture to detect community structure, learn to
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ABCD graph with = 0.1 ABCD graph with = 1

Figure 13 – Two graphs from the two classes in the ABCD dataset.

calculate local clustering and improve graph classification performance on real-life data.

5.2 Experiment

In this experiment, we use GNN with 3 graph convolution layers, a hidden representation
dimension of 10, the mean readout function and a fully connected layer of dimension
10 for the final prediction (single value for regression and a class probability for soft
classification). For more details on the model, training procedure and loss curves, we
refer to Section A in the Appendix. This GNN is small (between 251 and 272 weights, see
Table 3 in the Appendix.) and does not represent the state-of-the-art, but is sufficient
for this experiment. We consider the following three datasets.

1. ABCD - Classification. The dataset consists of 400 graphs of the ABCD model,
introduced in Section 4.3, with parameters n = 25, β = 1.5, s = 7, τ = 0.9, γ = 2.9, δ = 3
and ζ = 0.5. Half of the graphs have ξ = 1 (no community structure) and half have
ξ = 0.1, see a graph from each class in Figure 13. Only varying ξ means that the two
classes have the same expected degree sequence, so that the community structure is the
only distinguishing characteristic between the classes.

2. Watts-Strogatz - Regression. This dataset aims to test the GNN’s ability to
detect local clustering. We quantify this by the Global Clustering Coefficient (GCC) [36],
a graph-level statistic given by the number of closed triplets over the total number of
triplets (both open and closed). The Watts-Strogatz random graph model WS(n,K, p)
on a ring lattice is generated in two steps. First, create a ring lattice with n nodes, and
connect each node to its K closest neighbors in the ring, i.e. K/2 on both sides. Then for
each node, take all edges to its neighbors on the right, and rewire them randomly to any
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Figure 14 – The Watts-Strogatz dataset

other node, avoiding self-loops and multi-edges. For more details, see [79]. We use this
model because the Global Clustering Coefficient decreases as the rewiring probability
p increases. Using this relation, we generate a relatively balanced labelled regression
dataset, as shown in the histogram in Figure 14. We generate 900 graphs, each with
n = 100 and K = 10, varying p between 0 and 1. Note that in this dataset, each graph
has nK/2 = 500 edges.

3. PROTEIN - Classification. The PROTEIN dataset [7] is a popular benchmark
for graph classification. It consists of 1113 graphs representing proteins, labelled as
enzymes (59%) or non-enzymes (41%) . Nodes represent the amino acids and two nodes
are connected by an edge if the amino acids are less than 6 angstrom apart. On this
dataset, the state of the art achieves a classification accuracy of 84.91% [88], which
includes using the node attributes as node features. Here, we consider just the graph
structure, and drop the node attributes. This means our results are not comparable to
the state of the art. We do this, because we want to consider what signal the model can
retrieve from just the graph structure, and how triangle augmentation improves this.

For each of the tree datasets, we train our GNN twice: once using only the degree as
the node feature, and once using both the degree and the triangle count.

5.3 Results

The results are displayed in Table 2. For the loss curves of the training runs, see Figure 15
in the Appendix. We see that without triangle augmentation, the ABCD classification
and Watts-Strogatz regression cannot be solved. The classification accuracy on the
ABCD validation set is 45%, worse than random classification. With triangle augmen-
tation, the classification is 100%. Similarly, we see that the GNN perfectly learns the
graph function for the Global Clustering Coefficient on the Watts-Strogatz dataset. For
the PROTEIN dataset, we see that with triangle augmentation, the accuracy improves
from 59.1% to 64.13%. Note that the dataset is imbalanced, meaning that a constant
“enzym” classification would lead to an accuracy of 59.1%. This means that without
triangle augmentation, the graph structure is not informative to the classification. With
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Without triangle augmentation With triangle augmentation
Loss On validation set Loss On validation set

Cross Entropy Accuracy Cross Entropy Accuracy

ABCD 0.693 45% 0.102 100%

MSE R2 MSE R2

Watts–Strogatz 0.017 0.00 1.02e−6 1.00

Cross Entropy Accuracy Cross Entropy Accuracy

PROTEIN 0.675 59.1% 0.632 64.13%

Table 2 – GNN prediction results on the three datasets, without triangle augmentation
(just using degree as node feature) and with using triangle augmentation (using degree and
triangle count as node features).

triangle augmentation, the signal a GNN can mine from real-life graph structures is
improved.

In this experiment, we illustrate that GNNs perform very poorly in detecting commu-
nity structure and local clustering. Those features are much present in real-life networks,
and this presents a strong drawback to using the GNN architecture. We also show that
the simple fix of triangles augmentation allows the GNN to pick up both community and
local clustering, and that this improves performance on a real-life dataset. This shows,
in another setting, how the triangle subgraph can quantify the community structure
in graphs. We also notice a connection of NEExT as the unsupervised, interpretable
alternative to GNNs, both relying on local features for graph-level tasks.
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6 Conclusion and Discussion

In this thesis, we looked at two theoretical aspects of the NEExT framework for gen-
erating unsupervised graph embeddings, and we made a connection the Graph Neural
Networks expressiveness. We give a result for proportional sampling, and show that even
as the sampling fraction goes to zero, sufficiently slowly, the Wasserstein distance van-
ishes. Then, we inspect how the triangle count, a feature that can be calculated locally,
can quantify the strength of a community structure. For this we looked at two random
graph models. For the Stochastic Block Model, we show that asymptotic number of
triangles in a 2-community setting. For the ABCD model, we find the rate of growth of
the number of triangles when the degree distribution has finite variance. In the scale-free
regime, with power-law degree distribution, we give the rate of growth of the triangle
count for sufficient conditions on the parameters. Lastly, we see how the triangle count
can address the inability of Graph Neural Networks in detecting community structure
and clustering.

For sampling convergence, we show in Theorem 3.4 that the finitely supported mea-

sure µ
(n)
s on [0, 1]d, on a sample of s := nσ out of n points, is, in the p-Wasserstein sense,

asymptotically O(n−σ/(d+3p)+ε) removed from the measure µ(n) supported on all of the
n points. This result is more general than the intended application of sampling node fea-
tures requires, in the sense that we make no assumption on the distribution of the node
features. Structural node features between adjacent nodes are not independent, and de-
pending on the specific feature, the structure of the underlying graph may be exploited
to sample nodes in a more optimal way. For example, many structural node features
are correlated with degree. Consider random-friend sampling of the nodes: instead of
uniformly drawing a node, pick uniformly at random a neighbor from a uniformly drawn
node. This way, highly-connected nodes are more likely to be sampled, and we have
size-biased sampling, which may lead to sharper convergence [61] depending on the de-
gree distribution. If some community paritition of the graph’s vertices is known, or if
it is calculated for a community-aware feature [42], faster convergence may be obtained
by sampling proportionally from each community. This leads to stratified sampling [63].
As structural features have been shown to vary between community [38], this could be
another method of obtaining faster convergence. An approach for obtaining results for
these directions could be to assume a random graph model, find the distribution of a node
feature on that model, and then inspect the consequence of a sampling methodology.
See, for example, how the connection between community and Personalized PageRank
can be made explicit in the Stochastic Block Model [45]. A benefit of this random graph
approach is that simulation experiments are straightforward.

We give asymptotic results on the triangle count in 2-community Stochastic Block
Model (Theorem 4.1), the ABCD model with finite-variance degree distribution (Theo-
rem 4.3) and the ABCD model with power-law degree distribution (4.6). The key insight
for the different cases is that in the finite-variance degree setting, large communities have
asymptotically constant triangles, while when degree distribution follows a power law



6 CONCLUSION AND DISCUSSION 56

with infinite variance, the number of triangles increases. As a consequence, in the first
case the triangle count grows proportionally with the number of communities. In the
second case, we find, under sufficient conditions on the parameters of the model, that
the rate of growth is determined by large communities, corrected for their frequency of
occurrence. The results for the ABCD model give a way of comparing the strength of
their community structure of two graphs, possibly of different sizes, by triangle count.
However, we find no explicit relation between the triangle count and the noise parameter
of interest ξ. An extensive simulation experiment could be done to find the relation em-
pirically. We conjecture that c, as in Theorem 4.3 and 4.6, is proportional to (1− ξ)3, as
this describes the probability of a given triangle within a community. Another direction
is to quantify community structure using other subgraphs than the triangle. We have
seen that the triangle count increases asymptotically, but this is not necessarily true for
larger cycles. We formulate, by experiment, two random graph problems a GNN cannot
solve without triangles, but can perfectly solve with triangle augmmentation. Then, we
see that triangle augmentation also improves the performance of a GNN on a real-life
dataset. Specifically, we see that both community structure and local clustering cannot
be detected in graph-level tasks. The ABCD model appears as powerful model that
can create graphs with community structures that GNNs by default cannot detect. The
method of generating random graphs with a known structure presents itself as a powerful
method for empirically testing the limitations of GNNs. Further research could focus on
more extensive experiments, and augmentations with different subgraphs.

Lastly, we pose another use case for NEExT in connection to GNNs. Consider some
GNN trained on some downstream full-graph task, for example graph classification, or
molecule property prediction. The hidden layers of the GNN are learned representa-
tions/embeddings of the input data. Since a GNN is a deep learning “black box”, we do
not know what properties of the graph these embeddings encode. An idea we would like
to suggest is to use graph embeddings of NEExT to probe the learned representations, to
understand what node features have been learned. Probing is a method that attempts
to explain, analyze and interpret the learned representations in deep neural networks
[5]. Take a deep model f trained for a specific task, let fl(x) be the neuron activation
of the l-th layer for input x. This is the learned representation of x, which is then fed
into a probing classifier g, which is trained to extract some property z(x) from fl(x). If
g performs well, we can conclude that the learned representation fl encodes z. There
exists some work on probing GNNs, in the setting of molecule property prediction [1] and
Graph Self-Supervised Learning [78]. Using the graph embeddings from NEExT would
allow probing of node features. This may lead to new insights about the correlation of
local features on whole-graph properties.
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A Loss curves for Triangle Augmentation

The experiment was ran in Python 3.8 using the Deep Graph Library (DGL)6, version
2.0.0, CUDA 121, which is built on top of PyTorch7, version 2.1.1. The graph neural net-
work consists of three Graph Convolutation layers (implemented in DGL as GraphConv).
The graph convolution layer is given by [44]:

H(l+1)
v = σ

b(l) +
∑

w∈N (v)

1

cvw
H(l)

w W (l)


for the neighborhood N (v) of vertex v, cvw is a normalizing factor taken as the product
of the square root of node degrees, and σ is some (non-linear) activation function.

We use hidden dimension 10 and the Rectified Linear Unit (ReLU, torch.relu) acti-
vation function, the mean pooling operation (implemented in DGL as dgl.mean nodes),
and fully connected layer (torch.nn.Linear in PyTorch) to one output variable (in
the case of regression) or two output variables (in the case of soft classification with two
classes). The loss function used for classification is Cross Entropy (torch.nn.CrossEntropyLoss)
and for regression Mean Squared Error (torch.nn.MSELoss). The model is trained on
a randomized 80 − 20 stratified train-test split of each dataset. The model trains for
100 epochs with batch size 50. The Adam optimizer (torch.optim.adam) is used with
learning rate 0.05. Every 25 epochs, the learning rate is divided by 10.

The number of weights in the model is a function of

1. The number of node features d0. Without triangle augmentation when only the
degree is used gives d0 = 1 and d0 = 2 when both degree and triangle-count are
used.

2. The hidden dimension dh. The hidden representation length of the three convolu-
tion layers and the linear prediction layer. We use dh = 10.

3. The prediction label dp, with dp = 1 in the case of regression, and dp = 2 in the
case of soft classification.

6https://www.dgl.ai/
7https://pytorch.org/
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Layer in-dimension × out-dimension + bias Calculation

GraphConv d0 · dh + dh {1, 2} · 10 + 10
GraphConv dh · dh + dh 10 · 10 + 10
GraphConv dh · dh + dh 10 · 10 + 10

Linear dh · dp + dp 10 · {1, 2} + {1, 2}
Total weights = {251, . . . , 272}

Table 3 – Number of Weights in GNN
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Figure 15 – Loss progression during training. The left y-axis gives the epoch’s loss (Cross
entropy for classification, MSE for regression), the right y-axis the evaluation on the train
and test set (Cross entropy for classification, MSE for regression)
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