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Abstract 
Jetted radial wells are a relatively new form of hydraulic stimulation for oil and gas wells, where 

small diameters holes extend radially from a wellbore. This technique for increasing well 

connectivity could also be applied to geothermal wells. Radials can be freely placed along a 

backbone well, making the design of an economically viable well plan time intensive. Numerical 

optimization has been extensively applied to well design and will be applied for the design of a 

radial well plan. A simple optimization case is used to compare gradient-based and gradient-free 

optimization for jetted radial optimization, the gradient-free CMA-ES algorithm is chosen for the 

workflow. In addition to CMA-ES, mixed integer CMA-ES and uncertainty-handling CMA-ES are 

incorporated in the workflow. Three reservoir cases are evaluated for optimization using these 

algorithms. The workflow is able to determine well plans with higher NPV in each of these cases 

though finding a global optimum remains difficult. 
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Summary 
 

 This thesis describes the development of an optimization workflow for radial jetted drilling 

(RJD), a recompletion technique in which small diameter lateral wells protrude radially from a 

wellbore. This technique has seen some use in hydrocarbon reservoirs but has not yet been widely 

used in geothermal reservoirs, which is the focus of this thesis. 

 Radials can be located anywhere along a wellbore in addition to it being possible for 

multiple radials to be jetted on the same depth. This makes the possible well designs incorporating 

radials large. To make the process of determining an economically viable plan quicker and easier, 

numerical optimization will be used. Numerical optimization adapts the inputs of some function 

with the aim of optimizing the result of that function over multiple iterations. There are many 

forms of numerical optimization. A distinction can be made between gradient-based optimization 

and gradient-free optimization. These methods differ in how function outputs are used to 

determine new input parameters. Several algorithms of these types are examined. As radials are 

not very common, the Well Index calculation method which represents wells in reservoir 

simulation is validated for simulating radials. It is found that the suggested Well Index calculation 

is satisfactory for the simulation of radials. 

 The radial well design will be optimized using a simplified form of net present value (NPV) 

as the objective function. The volume of water produced, as determined by a reservoir simulation, 

is used to calculate revenue from the geothermal reservoir. This is weighed against the cost of 

jetting radials to determine NPV. This requires a parametrization of radials so values can be input 

into the optimization algorithm which can then be translated to a well plan for the reservoir 

simulation. The effects of radials being in close proximity to one another are then examined. 

Numerical errors of roughly 2% of total production were observed. The decision about which 

algorithm to use for the optimization was made by comparing two types of optimization in a 

simple reservoir test case. The covariance matrix adaption – evolution strategy (CMA-ES) 

performed better than ensemble optimization (EnOpt) in this test case, this algorithm will be used 

for the workflow. In addition to CMA-ES, mixed integer CMA-ES (MI-CMA-ES) and uncertainty 

handling CMA-ES (UH-CMA-ES) will be used in the workflow. 

 These algorithms are run in three reservoirs and their results compared. The reservoirs are 

(1) a horizontally homogenous reservoir with thin layers based on the Klaipeda geothermal 

demonstration site (2) a doublet with horizontally extensive features along flow direction and (3) a 

dual porosity reservoir with a faulted block based on the Californië geothermal site. In each case, 

all algorithms are able to determine a well plan which increases NPV beyond that of the initially 

input well plan. Kick-off depth and number of radials have the most pronounced effect on NPV, 

the effect of radial direction is found to be limited. 
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1 Introduction 
The use of high pressure fluids for well stimulation is not uncommon. Hydraulic fracturing is an 

established method of increasing reservoir connection by creating fractures near the wellbore. 

However, hydraulic fracturing is a controversial technique and prohibited in some EU countries. 

Radial jet drilling (RJD) is another method of utilizing a high-pressure fluid to increase well 

contact with a reservoir. A well completed with a RJD job has one or more small diameter holes 

extending radially from the wellbore (“radials”). These holes are made using a self-propelled 

jetting nozzle connected to a flexible hose. The result is similar to conventional reservoir 

perforation, though jetted radials can be longer and have a greater diameter than conventional 

perforations. 

The RJD job can be performed in existing wells using a workover rig, or the well can be completed 

with radials after drilling. Jetting a radial also requires less fluids and chemicals compared to 

hydraulic fracturing. This would make RJD an interesting alternative to hydraulic fracturing if the 

radials consistently show an increase in reservoir connection. 

 

RJD was first introduced in 1985 (2), however it has yet to be widely adopted as a technique to 

increase reservoir connection. Case studies of applying RJD in a field setting were mostly 

conducted after 2010. In these studies  multiple wells in a (mature) field were jetted which led to 

an increased field production, even though some radials could not successfully be jetted. 

A factor to consider when jetting radials is the uncertainty in radial trajectory. There is little 

information about the location of the jetting nozzle, besides the length of the hose used. As the 

hose is flexible and the nozzle has little steering capability, the path the jet ultimately takes while 

jetting is not known (3). 

  

While RJD has been applied in oil fields, the use of jetted radials in geothermal wells is still 

limited. Increasing reservoir contact of one or both wells in a geothermal doublet would allow 

more water to circulate in the doublet and in turn, produce more water. 

The placement of radials along the main wellbore has a significant effect on the injectivity. Ideally 

radials are jetted in layers that connect the injector and producer, and have high permeability. In 

addition, the jetting of a radial will incur some costs. The goal is to find a well plan in which the 

increased production is weighed against cost jetting. Manually making this well design is 

challenging and time consuming due to the large number of options when deciding where to jet 

radials. Automating the well design would make the selection of a suitable candidate well for an 

RJD job an easier process. 

 

The goal of this thesis is stated as: 
 

“Develop an optimization workflow for RJD well design in a geothermal well which optimizes 
economic potential while accounting for uncertainty in radial trajectory.” 
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  First the background of jetted radial drilling and its application are examined. Numerical 

methods which could be applied to the optimization of radials are reviewed and the method of 

well connection to a reservoir in reservoir simulation are examined. The specifics for the 

optimization of jetted radials are then determined. An objective function is defined and a 

parametrization of radials is made so the optimization algorithm can create a well design 

incorporating radials. The effect of interference of nearby radials in production are then examined. 

Next, two optimization algorithms are compared in a simple radial jetted drilling test case to make 

a choice which algorithm to use in the workflow. Having made this choice, the workflow is run in 

three reservoir cases. The results of these optimizations are discussed before conclusions are 

drawn and future work is suggested.  
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2 Literature review 
 

This chapter examines the background of radial jetted drilling as well as reviewing case 

studies of radial jetting jobs in hydrocarbon reservoirs. In addition to this RJD review, several 

numerical optimization methods are examined. A distinction is made between gradient-based and 

gradient-free optimization methods. Algorithms of both types which could be applied for the 

optimization of a radial well are reviewed. Finally, well connectivity to a reservoir in reservoir 

simulation is reviewed. 

 

2.1  Radial Jet Drilling  
 

 Radial drilling was first proposed in 1985 to create additional drainage or injection holes in 

shallow heavy oil reservoirs (2). This work describes the general procedure of creating multiple 

radials protruding from a backbone well. A key feature of radial drilling is the option to drill 

multiple radials at the same level. The radial drilling system that Dickinson, et al (2) propose has a 

4” diameter and includes the use of a 1¼” tubing to be used in the radial wells. Contemporary 

jetted radials are 1”-2” in diameter and do not use tubing, instead the radial is attached to a 

flexible high-pressure hose.  

 

 While the jetting nozzle used differs by service provider, they all function using the same 

mechanics. A RJD nozzle has a forward jet to erode rocks and backward jets which allow the 

nozzle to propel itself through a reservoir. The nozzle will keep jetting through the reservoir, until 

the frictional drag force of the high-pressure hose being pulled along the jetted radial is equal of 

Figure 1 3D representation of jetting procedure. Left: Casing is milled through deflector shoe using 

milling bit. Middle: After retracting milling bit, jetting nozzle is lowered and jetting job commences. 

Bottom right: Photo of jetting nozzle and jetted hole (courtesy SURE Reinsch 2018) 
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greater to the force of the backward jets (4). In addition, the backward jets centre the nozzle in the 

jetted hole and keep tension on the high-pressure hose (4) (5). The tension on the hose is the only 

mechanism ensuring the jetted radial is straight.  

Determining the trajectory of a radial during or after jetting is impractical, so checks 

whether a radial has deviated from a straight trajectory is rarely examined. In a quarry test, several 

radials were jetted and their trajectory after jetting was measured (3). It was observed that radials 

deviated heavily from the planned straight trajectory. 

 

 Case Studies 
Due to the low cost and possibility to recomplete old wells with RJD, it has seen use in 

mature fields to improve production (6) (7) (8). The RJD completion jobs were usually done in 

wells that were not or barely producing, except in the Donelson field where 2 new wells were 

drilled and completed with RJD (6). While most of the radials were jetted successfully, a successful 

RJD job did not guarantee increased production. A few wells in the Assam cases were jetted but 

did not produce more (7) (8). Other wells in the same field showed a significant production 

increase. The results of the jetting jobs are shown in Table 1, the studied cases did not provide 

production data over longer periods. 

 Recompleting with RJD has the potential to extract more oil from minimally performing 

wells, although there is no indication how much of an increase can be expected or whether a well 

will not produce more. Completing a new well with RJD has yet to see widespread adoption, 

though in the Donelson field the newly drilled wells with RJD did contribute to the production 

increase.  

 The studied cases were considered successful by the field owners so there seems to be 

promise in this technology. So, there is an incentive to examine whether RJD would also be 

beneficial in geothermal applications. 

 
Table 1 - Evaluation of Radial Jetting case studies 

Case/field 
Length 
jetted/planned 
[m/m] 

# wells 
 

Prod. per well 
before 
[m3/day] 

Prod. per 
well after 
[m3/day] 

Increase 
[%] 

Donelson 7200/7200 10 0.06 0.105 175% 

Upper Assam 949/1300 3 1 19.3 1930% 

Assam Arakan 1590/1700 4 0.25 9.5 292% 

  

2.2 Numerical Optimization 
 

Mathematical optimization aims to find the input variable x, for which the function 𝑓(𝒙) 

returns an optimal value (9). The optimal value is a global maximum or minimum, depending on 

the type of optimization. In Figure 2 a basic function f(x,y) is shown where the global maximum is 

found at 𝑥 = 𝑦 = 0. Here x and y are the design variables. While the global optimum of the 

function in Figure 2 can also be found analytically, the goal in optimization is to find the global 

optimum value for functions where this is no longer possible. 
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2.2.1  Gradient-based optimization 

In a gradient-based optimization method, new design variables are suggested based on 

making a step in the search direction computed using the gradient (eq. [1]).  

 

 𝒙𝑘+1 = 𝒙𝑘 + 𝜎𝑘𝒑𝑘 [1] 

 

A new vector of design variables for the next iteration xk+1 is suggested by taking the 

control vector at the current iteration xk and making a step with size αk in the search direction of pk. 

This is the main loop that will perform the optimization of the objective function. To determine the 

step size 𝜎𝑘
, another loop is required. In this loop a line search is used to find a step size such that 

𝑓(𝒙𝑘 + 𝜎𝑘𝒑𝑘) > 𝑓(𝒙𝑘). 

How the search direction pk is computed, depends on the optimization method but the 

principle remains the same. These methods gain local information, the gradient,  of the objective 

function using function evaluations.  Utilization of the gradient to find a search direction can lead 

to fast localization of optimal values, as the gradient gives information on where to find the 

greatest change in objective function value. The gradient does not differentiate between local and 

global optima. This type of optimization does not perform well on non-smooth objective functions 

where computing the gradient is difficult or impossible.  

 

2.2.1.1 Ensemble Optimization 

A gradient-based optimization method used in reservoir control is ensemble optimization 

(EnOpt) proposed by Chen et al. (10). The control vector update step in this optimization method 

(eq. [2]), is a slightly modified form of eq. [1].  

 

 𝒙𝑘+1 = 𝒙𝑘 + 𝜎𝑘𝐶𝑥𝐺𝑇,𝑘 [2] 

 

Figure 2 - f(x,y)=-(x2+y2)+4, the global optimum is 

located at x=0 and y=0 
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With the control vector xk having Nx controls. Where GT,k, a 1 × 𝑁𝑥 matrix is the search 

direction, Cx a preconditioning matrix and 𝜎𝑘 is a parameter tuning the step size. The function 

evaluations of the perturbed control vectors are used to compute the gradient of the objective 

function. A correlated gaussian distribution with zero mean and distribution Cu is used to sample 

Ne perturbed controls vectors ui (eq. [3]), such that the mean of all perturbed controls vectors is 

approximately equal to the initial control vector as in eq. [4]. 

 

 𝒖𝑖~𝒙𝑘 + 𝒩(0, 𝐶𝒖) 𝑖 = 1, … , 𝑁𝑒 [3] 

 𝒙𝑘 ≈ 〈𝒖𝑖〉 =
1

𝑁𝑒
∑ 𝒖𝑖

𝑁𝑒
𝑖=1   [4] 

 〈𝐽(𝒖𝑖)〉 =
1

𝑁𝑒
∑ 𝐽(𝒖𝑖)

𝑁𝑒
𝑖=1   [5] 

A cross-covariance matrix 𝐶𝑥,𝐽(𝑥) between the objective function J(x) and control vectors is 

approximated using eq. [6].  

 

 𝐶𝑥,𝐽(𝑥) =
1

𝑁𝑒−1
∑ (𝒖𝑖 − 𝒙𝑘)𝑁𝑒

𝑖=1 (𝐽(𝒖𝑖) − 〈𝐽(𝒖𝑖)〉) [6] 

 

This cross-covariance matrix approximates the search direction terms 𝐶𝑥𝐺𝑇,𝑘 in eq. [2]. The 

cross-covariance matrix from eq. [6] can then be substituted in eq. [2] using 𝐶𝑥 as a smoothing 

matrix (eq. [7]). Creating a new smoothing matrix 𝑅𝑥 = 𝐶𝑥𝐶𝑥, eq. [7] can be rewritten into eq. [8]. 

 

 𝒙𝑘+1 = 𝒙𝑘 + 𝜎𝑘𝐶𝑥𝐶𝑥,𝐽(𝑥)  [7] 

 𝒙𝑘+1 = 𝒙𝑘 + 𝜎𝑘𝑅𝑥𝐺𝑇,𝑘  [8] 

 

Do & Reynolds (11) showed that the cross-covariance matrix calculated in eq. [6], is a first-

order approximation of the preconditioned covariance matrix times the true gradient. They also 

determined this is the case for the simplex gradient and preconditioned simplex gradient. Fonseca 

et al. (12) used this to make an alteration to the EnOpt algorithm for robust optimization using the 

stochastic simplex gradient (eq. [9]). The steps of this algorithm is shown in a simplified form in 

Algorithm 1. 

 

 𝐶𝑈∇𝐽𝐸(𝒙𝑘) =
1

𝑁𝑒
∑ [

1

𝑁𝑝
∑ (𝐸𝒙[(𝒖𝑖 − 𝒙𝑘)(𝒖𝑖 − 𝒙𝑘)𝑇])

𝑁𝑝

𝑖=1
∇𝒙𝐽(𝒎𝑗 , 𝒙𝑘)]

𝑁𝑒
𝑗=1   [9] 

 

  

i. Initial radial settings 𝒙𝑘 are input 

ii. Ensemble of controls 𝑈𝑘 generated from initial settings 𝒙𝑘 

iii. Perform Function Evaluation for all ensemble members 

iv. Compute (approximate) gradient from FE results (eq. [6]) 

v. Calculate step-size parameter 𝜎𝑘 to satisfy 𝐽(𝒙𝑘 + 𝜎𝑘𝒑𝑘) > 𝐽(𝒙𝑘) 

vi. Get radial settings 𝒙𝑘+1 for next generation (eq. [2]) 

Algorithm 1 – Ensemble Optimization 
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Parent #1 

Parent #2 

Offspring #1 

Offspring #2 

Offspring #1 

Offspring #2 

Crossover 

Mutation 

Figure 4 - Genetic Algorithm update steps 

Figure 3 shows a sample of an objective function in three dimensions where the x and y axis 

are controls and z the objective function value. An initial control vector is xk is shown in red, with 

several perturbed control vectors 𝒖𝑖 in black. Using the function evaluation results of each 

perturbed control vector, the slope of the objective function is determined so a step can be made in 

the, in this case, descent direction shown by the arrow.  

 

 Gradient-free optimization 
Gradient-free optimization methods find new design variables without the assistance of a 

search-direction. As with ensemble optimization, most gradient-free methods maintain a 

population of control vectors. The optimization of the control vector is controlled by either 

evolution or swarm intelligence. The distinction between evolutionary and swarm methods is the 

mechanism with which members of the population are adapted. In evolutionary schemes, 

members of the population are combined (crossover) or perturbed (mutation) to find control 

vectors with favourable objective function values, the update step of two parent vectors is shown 

in Figure 4.  

  

0

1

0

2

3

4

0.5

z

5

6

7

1

8

x

2.51.5

2

1.5

y

2
1

0.5
2.5

0

Figure 3 - Sample 3D objective function with initial control vector (red) and 

perturbed ensemble members (black). The arrow shows the direction of 

the update step. 
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Swarm intelligence, on the other hand, uses the position and velocity of population 

members in the search space to determine a search direction (13). Shown in Figure 5 is the update 

step of the particle swarm optimization (PSO) algorithm. The control vector for particle i, 𝑿𝑖
𝑘has a 

position in the search space and a velocity 𝑽𝑖
𝑘. The new control vector 𝑿𝑖

𝑘+1 is attained using the 

location of the previously attained best result of the particle 𝑃𝑏𝑒𝑠𝑡𝑖 and the best result of the entire 

swarm in the neighbourhood of particle i 𝐺𝑏𝑒𝑠𝑡𝑖. The distances to 𝑃𝑏𝑒𝑠𝑡𝑖 and 𝐺𝑏𝑒𝑠𝑡𝑖 are the 

velocities 𝑽𝑖
𝑃𝑏𝑒𝑠𝑡 and 𝑽𝑖

𝐺𝑏𝑒𝑠𝑡. These velocities are used to together with 𝑽𝑖
𝑘 to make a step of 

𝑽𝑖
𝑘+1 (eq. [10]) the new particle location 𝑿𝑖

𝑘+1 in eq. [11].  

 

 𝑽𝑖
𝑘+1 = 𝑽𝑖

𝑘 + 𝑐1𝜌1𝑽𝑖
𝑃𝑏𝑒𝑠𝑡 + 𝑐2𝜌2𝑽𝑖

𝐺𝑏𝑒𝑠𝑡 [10] 

 𝑿𝑖
𝑘+1 = 𝑿𝑖

𝑘 + 𝑽𝑖
𝑘+1 [11] 

Gradient-free algorithms can be implemented in varying ways, however they adhere to the 

basic principles of their respective methods when suggesting new control vectors. No information 

about the objective function is used other than the objective function result of a control vector. This 

makes gradient-free methods an alternative to gradient-based optimization if computing the 

gradient is computationally expensive or impossible. If the calculation of the gradient is possible, 

gradient-based optimization is preferred as the extra information about the objective function will 

most likely find an optimal value faster. Yang (14) gives an overview of nature inspired 

optimization methods such as evolutionary and swarm optimization. 

2.2.2.1 Covariance Matrix Adaption – Evolution Strategy 

Covariance Matrix Adaption – Evolution Strategy (CMA-ES) is a gradient-free optimization 

method with an evolutionary update scheme (15). This algorithm differs from other gradient-free 

methods in the sampling strategy, where the sample space is changed dependent on the results of 

the optimization. Each iteration, a population of  members are sampled from a multivariate 

normal distribution around a mean vector 𝒙𝑘. 

 

 𝒖𝑖~𝒙𝑘 + 𝜎𝑘 × 𝒩(0, 𝐶𝑘) [12] 
 

Figure 5 - Particle Swarm Optimization update step (33)  
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Here, xi is a population member of that iteration, k the step size and 𝐶𝑘 the covariance 

matrix of the multivariate distribution. Each iteration, the values in the covariance matrix are 

adapted to influence where new values are sampled. This is shown in Figure 6, where the dots are 

population members and the orange line represents where new population members can be 

sampled. As more iterations elapse, the covariance matrix will progressively sample points closer 

to an optimal control setting. 

 The mean vector is comparable to the initial control vector in ensemble optimization and is 

updated at the end of each iteration. To update the mean, the objective function values of the 

population members are evaluated and ranked. The best 𝜇 solutions are taken from the ranked 

population members and used to generate a new mean vector. 

 

 𝒙𝑘+1 = 𝒙𝑘 + ∑ 𝑤𝑖(𝒖𝑖:𝜆 − 𝒙𝑘)𝜇
𝑖=1  [13] 

 

 

Where the weights w1w2…w sum to one. The CMA-ES has some memory of previous 

solutions which are retained in the evolution path pc. This evolution path is used to update the 

covariance matrix for the next iteration. Having generated a new mean vector for the next 

iteration, the covariance matrix and evolution path of the algorithm are updated to reflect the new 

solution. 

 

 𝒑𝑐
𝑘+1 = (1 − 𝑐𝑐) ∙ 𝒑𝑐

𝑘 + √𝑐𝑐 − (2 − 𝑐𝑐) ∙
𝑐𝑤

𝜎𝑘
(〈𝒙〉𝑤

𝑘+1 − 〈𝒙〉𝑤
𝑘 ) [14] 

 𝐶𝑘+1 = (1 − 𝑐𝑐𝑜𝑣) ∙ 𝐶𝑘 + 𝑐𝑐𝑜𝑣 ∙ 𝒑𝑐
𝑘+1(𝒑𝑐

𝑘+1)𝑇 [15] 

 

The constants cc and ccov determine how much information from the previous solutions is 

retained in the next step, 〈𝒙〉𝑤 is the weighted mean, 𝑐𝑤 is 
∑ 𝑤𝑖

𝜇
𝑖=1

∑ 𝑤𝑖
2𝜇

𝑖=1

 and 𝜎𝑘 the step size. The step size 

governs the rate of change in covariance matrix and scales the solutions samples.  

Figure 6 - CMA-ES algorithm search method. Dots are population members, the 

orange circles show the range given by the covariance matrix for sampling new 

population members. (From Wikipedia CMA-ES) 
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This changes depending on how close sampled solutions are to an optimum value. Step size 

is increased if few favourable objective function results are found in the current population.  

As the optimization proceeds and gets closer to an optimum, step size is decreased to not 

“over-shoot” this optimum. Step size is determined using cumulative step size adaption eq. [16] & 

[17]. This ensures steps become smaller when there as small changes between the mean vectors of 

the current and next iteration. Conversely, large changes between the mean vectors leads to a 

larger step size. Algorithm 2 shows a simplified form of the CMA-ES algorithm. 

 

 𝒑𝜎
𝑘+1 = (1 − 𝑐𝜎)𝒑𝜎

𝑘 + √𝑐𝜎(2 − 𝑐𝜎)𝜇𝑒𝑓𝑓𝐶𝑘
−

1
2 𝒙𝑘+1−𝒙𝑘

𝜎𝑘  [16] 

 𝜎𝑘+1 = 𝜎𝑘𝑒𝑥𝑝 (
𝑐𝜎

𝑑𝜎
(

‖𝒑𝜎
𝑘+1‖

𝐸‖𝒩(0,𝑰)‖
)) [17] 

 

2.2.2.2 Mixed-Integer CMA-ES 
In the optimization of radial well plans, the number of radials used has a significant effect 

on the objective function. This makes the optimization of radial well design a mixed-integer 

problem where at least one of the controls to be optimized is bound to an integer value. A 

modification for CMA-ES is proposed (16) to handle mixed-integer control vectors. Problems arise 

with integer values if the standard deviation used to sample new controls vectors is small. If both 

variance and step size are small, new integers might no longer be sampled. To prevent this, an 

integer mutation is applied to variables where variance is small. This is done with a slight change 

in the CMA-ES algorithm. 

 

 𝒖𝑖~𝒙𝑘 + 𝜎𝑘 × 𝒩(0, 𝐶𝑘) + 𝑆𝑖𝑛𝑡𝑅𝑖
𝑖𝑛𝑡 [18] 

 

 A new term is introduced when sampling vectors for the population. The matrix Sint has the 

control vector on the  main diagonal with continuous values of the control vector set to zero.  

The integer mutation 𝑅𝑖
𝑖𝑛𝑡 [19] is performed on variables according to a diagonal masking 

matrix 𝐼𝑅,𝑘. The elements of the masking matrix are one where 2𝜎𝑘𝐶
1

2
𝑘 < 𝑆𝑖𝑛𝑡, this is the condition 

suggested in (16), and zero otherwise. Simply, values in the masking matrix are one for integer 

controls where new integers are unlikely to be sampled. 

 

 𝑅𝑖
𝑖𝑛𝑡 = 𝐼𝑖

±1(𝑅𝑖
′ + 𝑅𝑖

′′) [19] 

 

i. Initial radial settings 𝒙𝑘 are input 

ii. Sample control settings using covariance matrix (eq. [12]) 

iii. Perform reservoir simulation for control setting population 

iv. Rank solutions according to simulation result 

v. Adapt covariance matrix and stepsize (eqs. [14] – [17])  

vi. Determine new radial settings from best solutions for the next 

generation (eq. [13]) 

Algorithm 2 – Covariance Matrix Adaption – Evolution Strategy 
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The integer mutation consists of a sign-switching matrix 𝐼𝑖
±1 with diagonal values of 1 and -

1 with equal probability. Matrix 𝑅𝑖
′ has one of the values unmasked by 𝐼𝑅,𝑘 set to one, ensuring at 

most one integer value is mutated. The 𝑅𝑖
′′ matrix gives variables unmasked by 𝐼𝑅,𝑘 a value from a 

geometric distribution according to p=0.7|𝐼𝑘
𝑅|

−1

. The bold lines in Algorithm 3 show where the MI-

CMA-ES algorithm differs from normal CMA-ES. 

 

2.2.2.3 Uncertainty Handling CMA-ES 
The radial jetting process has no capability to direct the trajectory of the radial. In (3) 

observed radials deviated from the planned trajectory. Accounting for the uncertainty in radial 

trajectory ensures the optimization returns a robust optimum. The uncertainty in trajectory can be 

described by perturbations in the control vector. 

 This requires a robust optimization method which can handle uncertainty in the input 

vector. The Uncertainty-Handling CMA-ES (17) is an alteration of the CMA-ES algorithm which 

can find robust optima with uncertain parameters in the control vector. The UH-CMA-ES uses the 

rank-based approach of CMA-ES to determine the level of uncertainty in a population of control 

vectors. After the ranking step of regular CMA-ES, 𝜆𝑟𝑒𝑒𝑣 population members are selected for 

reevaluation.  

 

 𝜆𝑟𝑒𝑒𝑣 = 𝑓𝑝𝑟(𝑟𝜆 ∙ 𝜆) [20] 

 

 𝑓𝑝𝑟(𝑥) = {
⌊𝑥⌋ + 1

⌊𝑥⌋
    

𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝑥−⌊𝑥⌋
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [21] 

 

 The factor 𝑟𝜆 determines the amount of population members to reevaluate. The first 𝜆𝑟𝑒𝑒𝑣 

control vectors from the population are then perturbed according the measure of uncertainty on 

the respective controls and function evaluations are performed using these members. Each 

solution is then ranked again, where non-reevaluated members retain their previous rank. A new 

ranking is obtained by summing the old and new ranks (eq. [21]). Ties in the new ranking are 

resolved using the absolute rank change |∆𝑖|, for reevaluated members rank change is computed 

using eq. [22] and eq. [23] otherwise. Smaller rank changes are preferred as these solutions are 

more robust. The combined ranking is used to determine the new mean control vector and to 

update the covariance matrix. The differences between UH-CMA-ES and CMA-ES are shown in 

Algorithm 4 

i. Initial radial settings are input 

ii. Determine if perturbation is too small to sample new integers 

iii. Sample control settings using covariance matrix  

iv. Perform integer mutation on controls determined in ii. (eq. [19]) 

v. Perform reservoir simulation for control setting population 

vi. Rank solutions according to simulation result 

vii. Adapt covariance matrix from best solutions 

viii. Determine new radial settings from best solutions for the next 

generation 

Algorithm 3 – Mixed Integer CMA-ES 
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 𝑟𝑎𝑛𝑘(𝐽𝑖
𝑐𝑜𝑚𝑏) = 𝑟𝑎𝑛𝑘(𝐽𝑖

𝑛𝑒𝑤) + 𝑟𝑎𝑛𝑘(𝐽𝑖
𝑜𝑙𝑑) [21] 

 ∆𝑖= 𝑟𝑎𝑛𝑘(𝐽𝑖
𝑛𝑒𝑤) − 𝑟𝑎𝑛𝑘(𝐽𝑖

𝑜𝑙𝑑) [22] 

  −𝑠𝑖𝑔𝑛 (𝑟𝑎𝑛𝑘(𝐽𝑖
𝑛𝑒𝑤) − 𝑟𝑎𝑛𝑘(𝐽𝑖

𝑜𝑙𝑑)) 

 ∆𝑖=
1

𝜆𝑟𝑒𝑒𝑣
∑ |∆𝑗|

𝜆𝑟𝑒𝑒𝑣
𝑗=1  [23] 

 

2.2.2.4 Mixed Integer Uncertainty Handling CMA-ES 

The CMA-ES algorithm modifications are affect different parts of the base CMA-ES. MI-

CMA-ES integer mutation is performed during the sampling of a control vector population. The 

adaptions required for UH-CMA-ES are added later in the algorithm, at the ranking of FE results. 

This makes it possible to combine the MI-CMA-ES and UH-CMA-ES algorithms for an uncertainty 

handling CMA-ES with mixed integer mutation. In this MI-UH-CMA-ES, integer mutation is only 

applied during the sampling of the control vector population and not when reevaluating control 

vectors during the uncertainty handling step. In Algorithm 5 the orange text shows the mixed 

integer part of the algorithm, blue is the uncertainty handling operation. 

 

i. Initial radial settings are input 

ii. Sample control settings using covariance matrix  

iii. Perform reservoir simulation for control setting population 

iv. Rank solutions according to simulation result 

v. Select control vectors to reevaluate (eqs. [20] & [21]) 

vi. Perturb these control vectors and perform new function evaluations 

vii. Create new ranking, combining original and reevaluated rankings 

(eqs. [21] – [23]) 

viii. Adapt covariance matrix from best solutions 

ix. Determine new radial settings from best solutions for the next 

generation 

Algorithm 4 – Uncertainty Handling CMA-ES 

i. Initial radial settings are input 

ii. Determine if perturbation is too small to sample new integers 

iii. Sample control settings using covariance matrix 

iv. Perform integer mutation on controls determined in ii.   

v. Perform reservoir simulation for control setting population 

vi. Rank solutions according to simulation result 

vii. Select control vectors to reevaluate  

viii. Perturb these control vectors and perform new function evaluations 

ix. Create new ranking, combining original and reevaluated rankings  

x. Adapt covariance matrix from best solutions 

xi. Determine new radial settings from best solutions for the next 

generation 

Algorithm 5 – Mixed Integer Uncertainty Handling CMA-ES 
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 Optimization in Well Design & Placement 
Well placement has a large impact on the production potential of a well. A skilled engineer 

can plan a well that will produce satisfactorily, though doing this manually is time consuming and 

options which may perform better could be missed. Numerical optimization is an approach to 

more exhaustively evaluate possible well designs during this process. Performing an optimization 

has shown to result in favorable well placement strategies in both gradient-based (18) and 

gradient-free (19) methods. In addition to location, the gradient free method in (19) also 

determined an optimum well type when the algorithm had the freedom to place a vertical or 

nonconventional (multilateral) well.  

 Designing a trajectory for multilateral wells is more complex than only determining well 

placement. Finding the optimum location for one or more laterals protruding from somewhere 

along the main wellbore manually, is extremely challenging when the costs of drilling should be 

considered. In these cases, applying a numerical optimization scheme is necessary to determine 

favorable multilateral well designs. Bukhamsin et al. (20) used an unmodified Genetic Algorithm 

to compare a binary Genetic Algorithm (bGA), where all design parameters are converted to 

binary values, with a continuous Genetic Algorithm (cGA). Over the course of an optimization 

run, a stochastic optimization algorithm performs many function evaluations. Yeten et al. (21) 

used several helper functions such as a neural-network and near-well upscaling to decrease the 

amount of required function evaluations, while Bouzarkouna et al. (22) applied the CMA-ES 

algorithm in combination with a local meta-model.   

 

 Robust Optimization 
The reservoir simulations used in numerical optimization are based on an interpretation of 

the subsurface. Such an interpretation is made using data from well logs and seismic surveys, 

though these methods cannot fully describe the reservoir geology. Well logs have limited reach 

into the reservoir and seismic is limited by resolution in the survey. The resulting reservoir model 

is therefore subject to geologic uncertainty. 

This uncertainty can be accounted for and mitigated using numerical optimization. The 

optimization algorithms perform numerous reservoir simulations over the course of a run. Using 

multiple reservoir models for these simulations allows the optimization algorithm to find solutions 

that take into account multiple geologic scenarios. Optimizing under uncertainty is commonly 

referred to as robust optimization. These schemes are widely applicable in the oil and gas industry 

as geological uncertainty is a constant factor when dealing with the subsurface. 

Well placement is a field development activity where taking geologic uncertainty into 

account can significantly influence the prediction of production potential of a reservoir, making 

this an interesting case for robust optimization. Ramirez et al. (23) compared deterministic and 

robust optimization results for NPV on several reservoir realizations. The robust optimization 

resulted in an increased NPV compared to deterministic optimization. As robust optimization is 

based on the expected outcomes of several realizations, the probability of an outcome can also be 

weighed in the scheme. Güyagüler and Horne (24) propose a robust optimization method using 

utility theory to assign an expected utility to a well location based on NPV and the probability of 

that outcome. 
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In addition to well placement, other steps in the field development process such as 

designing a well trajectory, benefit from robust optimization. Schulze-Riegert et al. (25) developed 

a stochastic optimization method to optimize a straight well path under geologic uncertainty, 

using the probability of an outcome as weight similar to (24). Well trajectory optimization under 

uncertainty was also conducted using a gradient-based optimization scheme where the trajectory 

was not constrained to a straight line (26). 

 

2.3 Well connectivity 
 

In many field applications of numerical reservoir simulation, the grid block dimensions of 

the model are much larger than the radius of a well and therefore the numerically calculated 

pressure in a grid block is different than the well bottom hole pressure (BHP). To account for this 

difference the concept of a Well Index (WI) was introduced. The well index relates the difference of 

well pressure 𝑝𝑤,𝑖 and grid block pressure 𝑝𝑏,𝑖 to the flow rate 𝑞𝑖 of well segment 𝑖 (eq. [24]). 

 

 𝑊𝐼𝑖 =
𝑞𝑖

𝑤𝜇

(𝑝𝑖−𝑝𝑖
𝑤)

 [24] 

Assuming single-phase flow, this equation gives the WI in grid block i with grid block 

pressure pi, well pressure and flowrate are piw and qiw respectively. The WI has a significant effect 

on the accuracy of the subsequent simulation. Several methods have been suggested to calculate 

the WI. The method of WI calculation used in most reservoir simulators, was introduced by 

Peaceman (27) and later modified to work with anisotropy (28) and horizontal wells (29). 

Peaceman’s method uses an equivalent radius (eq. [26]). This is the radius at which the analytical 

solution for radial flow is equal to the gridblock pressure. In an orthogonal grid with anisotropic 

permeability, Peaceman showed that WI can be calculated as: 

 𝑊𝐼 = (
2𝜋√𝑘𝑥𝑘𝑦∆𝑧

𝑙𝑛(
𝑟𝑜
𝑟𝑤

)+𝑆
) [25] 

 𝑟𝑜 = 0.28

√√
𝑘𝑦

𝑘𝑥
∆𝑥2+√

𝑘𝑥
𝑘𝑦

∆𝑦2

√
𝑘𝑦

𝑘𝑥

4
+ √

𝑘𝑥
𝑘𝑦

4
 [26] 

This method of WI calculation is used extensively in commercial reservoir simulators and is  

accurate for wells that are aligned to the numerical grid. The projection method for WI 

computation is an adaption of the Peaceman equations to account for unaligned well sections. A 

WI is calculated for each orthogonal axis [27] depending on the projected length of the well (Figure 

7). The total WI for a gridblock is the norm of these WIs [29]. 
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 𝑊𝐼𝑥 = (
2𝜋√𝑘𝑦𝑘𝑧𝐿𝑥

𝑙𝑛(
𝑟𝑜,𝑥
𝑟𝑤

)+𝑆
) [27] 

 𝑟𝑜,𝑥 = 0.28

√√
𝑘𝑦

𝑘𝑧
∆𝑧2+√

𝑘𝑧
𝑘𝑦

∆𝑦2

√
𝑘𝑦

𝑘𝑧

4
+ √

𝑘𝑧
𝑘𝑦

4
 [28] 

 𝑊𝐼𝑡 = √𝑊𝐼𝑥
2 + 𝑊𝐼𝑦

2 + 𝑊𝐼𝑧
2 [29] 

  

 

If a grid block contains multiple well sections, the length of the projection in each direction 

is summed. These summed values are then used as Lx, Ly and Lz to calculate the WI for that block.  

For his MSc. thesis Jones Shu did a comparison of these methods for well index calculation for 

both straight and deviated wells (30). The projection method came close to the reference solution 

in most cases he studied. When a well section was close to the model boundary the WI calculation 

began to deviate significantly. The projection method also has difficulty correctly calculating 

pressure and inflow when multiple wells are in the same grid block. 

A concern with the Well Index calculation is that errors could propagate when a well has a 

short grid block intersection.  When an intersection is short compared to intersections in 

neighboring grid blocks, this should be reflected in the Well Index (weighting). This can be 

mitigated by using an analytical model to calculate the Well Indices (31). Using a local analytical 

model is time consuming so the projection method will first be evaluated. 
  

Figure 7 - Projection of well onto orthogonal axis, the WI projection method 

assigns WI to a gridblock according to the length of the well on each 

projection Lx, Ly and Lz (30) 
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 Validation 

 

The optimization is expected to generate laterals that are not aligned to the grid. Therefore, 

the projection method will be validated to check whether it can accurately compute inflow and 

bottom hole pressure when a well or radial is not aligned to the grid, as in Figure 8. 

 

To test this, first a vertical well with four radials aligned to the grid was placed in a 

1000x1000x250m homogenous box reservoir with 10x10x5m gridblocks and 200 mD permeability. 

For the base case, four radials aligned to the grid are added to the well.  A reservoir simulation is 

run with a single vertical well with constant BHP boundary condition for the base case and for 

radials rotated up to 60 degrees. The results should be the same because the permeability is 

homogenous. The simulation is run over a time period of  one year. Injection rate and cumulative 

injection for the base case with radials aligned to the grid is shown in Figure 9. Each simulation 

with a set of rotated radials is compared to this base case to check for any deviations. 

The difference between a rotated set of radials and the base case is shown in Figure 10. For large 

rotations there is initially a significant difference in injection rates (~25% in the first days), this 

quickly decreases to less than 2% after around 15 days. For cumulative injection this difference 

does not exceed 2.5% 

Figure 8 – Representation of numerical grid with 4 aligned radials 

(orange) and Unaligned Radials (light blue) 

Figure 9 - Injection of Aligned Radials over 160 days (simulation was run for one year ). Left 

axis (blue) shows injection rate, right axis (orange) shows cumulative injection 
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Note that this comparison between aligned and unaligned radials is only done in a 

homogenous reservoir, while the simulations will also be performed on heterogeneous reservoirs. 

Due to the difficulty of verifying a numerical approximation in a heterogeneous grid, a 

heterogeneous case is not considered. The small errors in the rotated radials indicate that the Well 

Index weighs the influence of each well section correctly and this is assumed to hold for 

heterogeneous grids. Radial sensitivity to inclination was examined in (32) and it was determined 

that radials with a slight upward inclination from horizontal, have a higher injectivity. 

 

  

  

Figure 10 –  Top figure:  Injection rate differences for rotated radials compared to 

aligned radials. Bottom Figure:  Percentage difference in cumulative injection 

unaligned radials compared to aligned radials. 
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3 Methodology 
 

This chapter describes the methods used for the radial optimization workflow and explores 

issues which may be encountered when simulating radial jetted wells. To perform an 

optimization, an objective function which the algorithm will attempt to increase is determined. 

Radials are parametrized so the optimization algorithm has a method to place radials in the 

reservoir. The effect of interference of radials in close proximity to each other is evaluated and 

finally a decision is made as to which optimization algorithm will be used for the workflow. 

 

3.1 Objective Function 
 

 An integral component of any optimization method is the objective function. This function 

describes the property which the algorithm will maximize or minimize. A commonly used metric 

for optimization in oil and gas is net present value (NPV) (eq. [30]). The NPV is 𝑃𝑡 the result of 

generated revenue minus the cost incurred in year 𝑡. In geothermal projects the levelized cost of 

energy (LCOE) is also used measure the economic value of a project. LCOE gives a relation 

between energy generated versus the cost of generation and is commonly used to compare the 

economic efficiency of power generation, the definition is given in eq. [31].  

 

 𝑁𝑃𝑉 = ∑
𝑃𝑡

(1+𝑟)𝑡
𝑛
𝑡=0  [30] 

 𝐿𝐶𝑂𝐸 =
𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑

𝑒𝑛𝑒𝑟𝑔𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
=

∑
𝐼𝑡+𝑀𝑡+𝐹𝑡

(1+𝑟)𝑡
𝑛
𝑡=1

∑
𝐸𝑡

(1+𝑟)𝑡
𝑛
𝑡=1

 [31] 

 

With It the capital costs, Mt the maintenance costs and Ft fuel costs incurred in year t. Et the 

energy generated in year t and r the discount rate. As the optimization is done for a geothermal 

project, the source of revenue is heat generated by the geothermal well. The reservoir simulation 

will output a volume of water produced, from which the amount of energy produced can be 

calculated using [32]. 

 

 𝑄 = 𝑚 ∙ 𝐶𝑝 ∙ ∆𝑇 [32] 

 

Where Q is energy generated, m the mass of water, Cp the heat capacity of water and ΔT is 

the change in temperature. It is assumed that produced water is at reservoir temperature and the 

temperature inside the reservoir stays constant, water breakthrough is not considered. To 

determine ΔT the temperature to which the water is cooled is taken to be 20°C.  

The cost of a radial is based on the time it takes to jet a radial. The total time required to jet 

all the radials in the plan proposed by the optimization is multiplied by a day rate. It is assumed 

that 2.2 radials can be jetted in one day (24 hours). Radials are assumed to be jetted to their 

maximum length, jetting costs for length are not considered. A day rate of €20000 is used to 

determine the capital expense (capex) (roughly 9.1 × 103 € per radial). The cost to drill the 

backbone is not considered. The reservoir simulations are performed with BHP control, meaning 
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the fuel cost is constant for all well plans. Simplified versions of [30] and [31] will be compared to 

determine which objective function to use in the optimization and whether this will be a 

maximization (NPV) or minimization (LCOE) problem. Qww is the energy generated with warm 

water from the reservoir in both cases and 𝑔𝑐𝑜𝑠𝑡 is the gas cost per kWh which is used to calculate 

revenue. 

 𝐽𝑁𝑃𝑉(𝒙) = 𝑐𝑎𝑝𝑒𝑥 − (𝑄𝑤𝑤 ∙ 𝑔𝑐𝑜𝑠𝑡) [33] 

 𝐽𝑙𝑐𝑜𝑒(𝒙) =
𝐶𝑎𝑝𝑒𝑥

𝑄𝑤𝑤
 [34] 

 

3.2 Radial Controls & Constraints 
 

A radial has several input parameters that control its position in the reservoir. Note that this 

is also dependent on the well from which the radials protrude, referred to as the backbone The 

inputs are shown in Figure 11. While a radial can be any length between 1-100m, in practice a 

radial is generally jetted to its full length of 100m if possible. Therefore radial length will not be 

considered as a variable to optimize.  

 Radial Parametrization 
When jetting a well, it is common to jet multiple radials at the same kick-off depth. For this 

reason, radial controls are parametrized with jetting multiple radials per kick-off in mind. These 

controls are 1. kick-off depth, 2. number of radials, 3. azimuth, 4. inclination, 5. radial length and 6. 

the window, as in eq. [35] & Figure 11. The window parameter determines how multiple radials 

are distributed when around the well bore (Figure 12). The window parameter 𝑤 defaults to a full 

circle in the parametrization if the condition in eq. [37] is met. The control vectors for each kick-off 

𝒔𝑟 combine to the complete control vector for a given well plan. 

 

 𝒔𝑟 = [𝐾𝑂𝐷𝑟  𝑛𝑟 𝑎𝑧𝑟 𝑖𝑛𝑟 𝑙𝑒𝑛𝑟 𝑤𝑟]  𝑟 = 1, … , 𝑘𝑖𝑐𝑘𝑠 [35] 

 𝒖 = [𝒔1 𝒔2 … 𝒔𝑘𝑖𝑐𝑘𝑠]  [36] 

 𝑤𝑟(𝑤) = {
𝑤, 𝑤 < 2𝜋(1 −

1

𝑛𝑟
)

2𝜋, 𝑤 > 2𝜋(1 −
1

𝑛𝑟
)
 [37] 

 

  

Figure 11 - Radial controls for kick-off. 
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 Radial proximity 

The parametrization of radials allows for large numbers of radials to be jetted at a kick-off 

depth, as well as in close vertical proximity. Having multiple jetted radials close to one another is 

expected to decrease the individual contribution of each radial. As the cost of the radial well plan 

is dependent on the number of jetted radials, the optimization should identify when an additional 

radial is not worth the investment. 

To evaluate the effect of adding radials to a kick-off, a vertical well in the center of a 

homogenous reservoir with a single kick-off in the middle of the reservoir is considered. Radials 

are added to the kick-off which are horizontally evenly distributed. The result is shown in Figure 

14. As expected the inflow per radial decreases as the number of radials in the kick-off increases, 

though the decrease is not constant. The number of radials which can profitably be jetted depends 

on the flow characteristics of the reservoir rock, though jetting a large number of radials will result 

in diminishing returns. A second order polynomial was fitted to this data, which clearly shows the 

relative decrease in production when adding radials. From this polynomial it was found that an 

additional radial has about 3% less production than the previous radial. 

The increase in production per radial shows irregularities. Repeating the simulation in the 

same homogenous reservoir with a higher grid resolution reduces these irregularities (Figure 13). 

Note that the production increase from zero to one radial was not considered in the high 

resolution case. 

In addition to horizontal proximity of radials in the same kick-off, vertical distance between 

radials is also expected to influence the production of the well. This is examined by evaluating a 

homogenous reservoir with a vertical well which has two kick-offs. One of these kick-offs has a 

fixed kick-off depth while the other is incrementally moved away, increasing the vertical distance 

between the two. Both kick-offs have 4 jetted radials. In addition to the change in vertical distance, 

the fixed set of radials also has a varying azimuth. 

This creates an offset between the two sets of radials and should decrease the influence of the 

nearby kick-off as distance between radials increases. Figure 15 shows that jetting radials with 

offset has a significant positive effect on production even with small difference in azimuth. The 

results for 15 and 30 offset both had higher production than the 0 and 45 cases. This difference 

was ~3.2e5 m3 at each data point, the simulation data and data corrected for this factor are plotted. 

The corrected data matches well with the other simulation results. This error is attributed to 

numerical errors in the simulations 

 

Figure 12 - Radial Window Parameter, four radials with 

window 2π (left) and π (right) both with azimuth pointing 

east 
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Figure 14 – Production increase with increasing number of radials. The left axis 

corresponds to the bar chart showing increase in production for each added 

radial. Left axis shows the produced volume of the well including radials with a 

second order fitted polynomial (dashed line) through simulation date (points). 

Figure 13 - Top figure: Produced volume comparison for an increasing number of 

radials in a low (blue) and high (orange) resolution grid. Bottom figure: Production 

increase per radial starting from 1 to 2 radials in a low and high resolution grid.  
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3.3 Optimization Test Case 
A choice has to be made whether the workflow will use a gradient-based or gradient-free 

method. The evaluated gradient-based optimization is EnOpt and gradient-free optimization is 

CMA-ES. Both these methods are compared in a simple reservoir with one vertical well and two 

high permeability layers while the rest of the reservoir is restrictive to flow (Figure 16). The 

expected result is that radials will be placed in the high permeability layers. In this test case 

azimuth and inclination are not considered since the high permeability layers extend over the 

entire reservoir. The only controls are kick-off depth, number of radials and radial length. All 

laterals are aligned to the grid, making the maximum number of radials per kick-off 4. Azimuth 

and inclination are not considered. When lateral is added to a star this is done in the same pattern 

for each case. The first lateral always points North, the second South, then East and finally West is 

added if the kick-off point has four laterals. This was done so that if the same lateral controls were 

simulated twice, the same objective function value is returned. Adding laterals randomly was 

considered but this caused two sets of the same lateral controls to produce different volumes. In 

this case, one lateral might be pointed North and another at a different depth South, in which case 

these wells are not interfering with each which could cause a higher produced volume. Neither 

kick-off starts in a high permeability layer, and both have the same distance to one of the high 

permeability layers. 

 

  

 

Figure 15 – Production of radial with increasing distance between kick-offs. Solid lines 

show production for varying radial offset. Production for 15𝑜 and 30𝑜 offset is 

corrected by a constant to align with other data, the dashed lines show this data 

without correction.  
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 Results 

Both methods were run for 50 iterations with an ensemble size of 11 members for 10 

controls. At each iteration, the function evaluations for all ensemble and population members are 

saved to create a map of the objective function. The results of the optimization are compared in 

Figure 17. CMA-ES optimization results in a higher objective function value in this test case. 

Examining the cumulative lateral length it is clear that EnOpt sets the number of radials in one of 

the kick-offs to zero, trapping the optimization in a local optimum. Figure 18 shows the number of 

radials in each ensemble member for EnOpt and every population member in CMA-ES. At 4 

radials EnOpt finds the highest NPV, when the number of radials increases NPV only decreases 

indicating a negative gradient. The CMA-ES algorithm has no problems finding controls vectors 

where more than 4 radials are used and result in a higher NPV. The CMA-ES algorithm is chosen 

to perform the optimization in the workflow. 

  

Reservoir properties 

 1000m x 1000m x 100m 

 2x 20m high perm. layer 

 Khigh = 1000 mD 

 Klow = 10 mD 

 Kv = 50 mD 

 high = 0.21 

 low = 0.07 

Figure 16 – Representation of test case reservoir, high permeability layers are shown in green. 

The initial kick-off locations with 2 radials are shown in orange. 

Figure 17 – Top figure: NPV comparison of test case optimization for CMA-ES 

(blue) and EnOpt (orange). Bottom figure: Comparison of total jetted radial 

length for test case optimization for CMA-ES and EnOpt. 



       

24 

 

  

Figure 18 – Comparison of NPV for number of radials of all population data from test case 

optimization using CMA-ES (blue) and EnOpt (orange). 
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4 Optimization workflow 
 

The optimization algorithm aims to find the lateral settings which results in highest 

objective function value. These settings control the attributes of laterals such as kick-off depth and 

radial length and will influence the production of a well. Having determined an optimization 

method, the algorithm is incorporated into a workflow which utilizes the algorithm to optimize a 

radial well plan in realistic field cases. The base CMA-ES algorithm will be compared to MI-CMA-

ES and UH-CMA-ES in these cases. The constants used in the different CMA-ES algorithms are the 

suggested values found in (15) and (17), which are also listed in Table 2. 

 
Table 2 – Constants used in CMA-ES optimization. The 𝑟𝜆 term is used to determine number of 

reevaluated control vectors for UH-CMA-ES. 

Constant Value 

𝜆 ⌊4 + 3 ∙ ln (𝑁𝑥)⌉ 

𝜇 ⌊
𝜆

2
⌋ 

𝜇𝑒𝑓𝑓 ∑ 𝑤𝑖
2

𝜇

𝑖=1
 

𝑐𝜎 
𝜇𝑒𝑓𝑓 + 2

𝑁𝑥 + 𝜇𝑒𝑓𝑓 + 3
 

𝑐𝑐 
4

𝑁𝑥 + 4
 

𝑐𝑐𝑜𝑣 
2

(𝑁𝑥 + √2)
2 

𝑑𝜎 1 + 2 ∙ max [0, √
𝜇𝑒𝑓𝑓 − 1

𝑁𝑥 + 1
− 1] + 𝑐𝜎 

𝑟𝜆 0.3 

 

4.1 Workflow Cases 
 

To gauge whether the optimization can output well plans with optimally jetted radials, the 

optimization algorithms are tested on three field cases. The cases increase in reservoir complexity 

so the effectiveness of the algorithms can be compared in various reservoir settings. This also 

allows some optimization parameters to be ignored in some cases. Table 3 gives a quick overview 

of the cases and their properties. The reservoir simulation for each reservoir is performed for a 

time of one year. All backbone wells have a 5” radius, radials are 2” radius.  
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Table 3 - Petrophysical Properties of Workflow Cases 

Reservoir 
Kh 

[mD] 

Kv 

[mD] 
Φ [%] 

Reservoir temp. 

[⁰C] 
Notes 

Klaipeda 250-500 150-250 14-21 80 

Horizontally 

homogenous, thin 

layers 

Doublet 
1000-

1500 
500 15-20 80 

Synthetic model 

with geothermal 

doublet 

Fractured 
0,1-

10.000 

0,1-

10.000 
5-25 80 

Faulted block in 

reservoir with 

fractures near the 

faults 

 

 Klaipeda 

The Klaipeda geothermal site in Lithuania (1) is a relatively small geothermal reservoir with 

thin high permeability sand layers separated by shales. The average gridblock in the reservoir is 

10x10x2.6m, reservoir dimensions are 100x100x59 gridblocks. A subsurface model based on this 

reservoir with horizontally homogenous layers (32), is used as one of the optimization cases and 

shown in Figure 19. The temperature in the Klaipeda reservoir is ~40oC, this is low for a 

geothermal reservoir. For the optimization, warm water temperature is assumed to be 80oC to 

make the case less marginal economically. Low NPV might result in radials not being jetted to 

save costs. 

The reservoir has a single production well along which radials can be jetted. In most cases 

radial wells are used in injection wells, the choice to use a production well in this reservoir was to 

simplify the script. Using a production well, the produced volume can be read directly from the 

simulation result, allowing the workflow to run without adaptions to the code. As injection and 

production are essentially the same process reversed, an increased production will indicate an 

increase in injectivity. As there is only a single production well, the reservoir has a constant 

pressure boundary constraint, applied using a pore volume multiplier at the edges of the reservoir.  

As the layers are horizontally homogenous, azimuth is not considered in this optimization. 

The parameters to optimize in this case are the kick-off depth and the number of radials per kick-

off. For the uncertainty handling algorithm inclination is the uncertain parameter. In addition to 

the three discussed CMA-ES algorithms the MI-UH-CMA-ES algorithm is also tested in this 

reservoir. 

  

Facies Kh  [mD] Kv  [mD] ϕ  [%] 
 

Coarse sand 500 150 21 
 

Fine sand 250 150 14 

 
Clay 50 50 7 

Table 4 – Facies & properties in Klaipeda reservoir case 
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 Doublet 

Geothermal reservoirs are generally exploited using a doublet, where water is heated as it 

flows through the reservoir from an injection to a production well. As these doublets are common, 

the optimization workflow should be able to work in these systems. A synthetic reservoir with 

features oriented along the flow direction (Figure 20) is used to apply the optimization in a 

doublet. The reservoir is comprised of 15x15x2.5m gridblocks in a 100x200x40 reservoir. The 

features were generated such that sections of both wells are connected with high permeability 

rock. Both wells are the same in terms of diameter and have a 45o inclination, with the injector and 

producer having an azimuth of 0o and 180o respectively. The wells are controlled using a BHP 

constraint, making this a balanced system. Jetting radials in a single well is not expected to be 

beneficial to NPV, as the BHP constraint on the injector will ensure the pressure near the producer 

will remain the same. The expected result is that radials are not beneficial in this reservoir when 

jetted in a single well. The optimization algorithm should identify this and not jet radials. The 

azimuth and window are used as optimization parameters in addition to number of radials. The 

uncertain parameter is inclination.  
 

 

  Facies Kh  [mD] Kv  [mD] ϕ  [%] 
 

Coarse sand 1500 500 20 

 
Fine sand 1000 500 15 

 
Clay 50 50 5 

Figure 19 – Vertical slice of Klaipeda reservoir. Colors correspond to those  

in Table 4. 

Table 5 – Facies & properties Doublet reservoir 
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 Fractured 

The final case evaluated by this workflow is a reservoir based on a geothermal site in the 

Netherlands in a fractured reservoir (dual porosity case). The geological setting is based on the 

Californië geothermal site near Venlo in The Netherlands. A fault separates the reservoir into two 

sections. Fractures are present in the reservoir and occur with greater frequency near the faults 

(Figure 21 & Figure 22). The average gridblock is 46x50x21m, the reservoir dimensions are 

111x61x41. The expected result of the optimization is that radials are placed closer to the fractures 

where permeability is higher. In this reservoir only the injection well is considered for radial 

jetting, this well is vertical and gets closer to the fractures as depth increases. The production well 

has been drilled in a section of the reservoir which easily flows, reducing the need for radials in 

this well. The optimization controls are kick-off depth, number of radials, azimuth and window, 

uncertainty is present in inclination. 

 

 

  

Figure 20 – Vertical slice of Doublet reservoir. Colors correspond to Table 5. 

The vertical scale is multiplied 5x, the left line shows the producer, the right 

the injector. 

Side view 

Figure 21 – Vertical slice of Fractured reservoir showing fracture intensity. Injector 

well is shown in orange, producer in black. 
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4.2  Results 
 

This chapter will evaluate the results gathered from the various optimization runs in the 

three reservoirs. Optimization results are shown in three plots for each reservoir. The first plot 

describes kick-off depth as a location along the backbone i.e. a value of .5 means the kick-off is 

jetted halfway along the backbone. Next is the number of radials jetted per kick-off, the bar colors 

correspond with the kick-off colors, the final plot shows objective function value. 

 

 Klaipeda 

All CMA-ES algorithms are able to determine a radial jetting plan that increases the 

objective function. Figure 23 shows the NPV for the control vector 𝒙 at the end of each iteration. 

There is significant difference between the results generated by each CMA-ES, with the UH-CMA-

ES finding the highest NPV in this reservoir. The amount of radials to jet is also the lowest in the 

well plan, 13 compared to 19 and 17 using the CMA-ES and MI-CMA-ES algorithms respectively. 

This would lead to a 5.4 × 104 € cost reduction compared to CMA-ES, which is a small difference 

compared to the resulting NPVs. Indicating the UH-CMA-ES is placing the radials more favorably. 

Examining the kick-off depths at the end of each optimization shows the UH-CMA-ES spreads out 

the kick-offs over the length of the backbone more compared to CMA-ES and MI-CMA-ES. Over 

the course of the optimization the UH-CMA-ES algorithm is also better at avoiding placing radials 

in low permeability layers. 

The common trend in all these algorithms is placing radials toward the bottom of the 

reservoir. This is not unexpected as the reservoir has the largest section of high permeability rock 

in the bottom, allowing for the most drainage. This is especially clear in the MI-CMA-ES and UH-

CMA-ES algorithms.  

Top view 

Figure 22 – Top view of Fractured reservoir showing fracture intensity. This is a 

horizontal slice roughly halfway down the reservoir. The black line represents the 

producer, the orange dot shows injector location. 



       

30 

 

The MI-CMA-ES is essentially combining three kick-offs at the bottom of the reservoir by 

placing them in extreme close proximity and increasing the number of radials this way. This leads 

to a few radials being placed on top of one another, decreasing the effectiveness of individual 

radials. This might be avoided in UH-CMA-ES with uncertainty in the inclination. If kick-offs are 

close vertically, a change in inclination may result in radials being even closer to each other, 

resulting in a lower NPV and thus making that well plan less influential to future iterations. 

While the MI-UH-CMA-ES optimization results in a similar NPV to UH-CMA-ES, a greater 

number of radials jetted in this well plan. Furthermore, two kick-offs are placed at almost the same 

depth. Indicating this NPV is likely a local optimum.  

  

Figure 23 – Klaipeda optimization results, the first entry in each figure shows results for 

the optimization initial control vector. Top figure: Kick-off depth along backbone. 

Middle figure: Number of radials in each kick-off. Bottom figure: NPV for control 

vector returned after optimization. The initial control vector NPV is close to 0 
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 Doublet 

Optimization in the Doublet reservoir returns the same well plan for each algorithm (Figure 

24), in which no radials are present. The difference between algorithms is observed in the number 

of iterations required for the solution converges to zero radials. Due to the highest NPV being 

found without radials, the number of radials has a significant effect on NPV. The MI-CMA-ES 

should therefore perform best in this case. CMA-ES and UH-CMA-ES, not having the mixed 

integer mutation, take longer to set the number of radials to zero. Both these algorithms have the 

same sampling strategy to generate control vectors, though it takes the CMA-ES algorithm longer 

to remove all radials from the well. This is attributed to the optimization being stochastic. 

Examining the population of control vectors in the first 4 iterations shows the CMA-ES algorithm 

starts with more radials compared to UH-CMA-ES, before reducing this number to 0. 

To determine the influence of radial jetting costs on NPV in this reservoir, the costs of 

radials are compared to the difference in NPV for the three algorithms. The results from iteration 4 

are used for this comparison. For this iteration the CMA-ES algorithm has 3 radials, MI-CMA-ES 

has 0 and UH-CMA-ES has 1 radial. Jetting a single radial costs ~9.1 × 103 € and jetting 3 would 

add ~2.7 × 104 € to capex. The difference in NPV between MI-CMA-ES and UH-CMA-ES is 

~3.8 × 103 €, for MI-CMA-ES and CMA-ES this difference is ~9.8 × 103 €. This shows the radials 

are contributing to inflow into the reservoir, though not enough to make jetting radials 

economically viable.  

Figure 24 - Doublet optimization results, the first entry in each figure shows results for 

the optimization initial control vector. Top figure: Kick-off depth along backbone. 

Middle figure: Number of radials in each kick-off. Bottom figure: NPV for control 

vector returned after optimization. 
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 Fractured 

The fractured reservoir does not feature discrete sections of high or low permeability, as is 

the case in the previous reservoirs. This would mean less discontinuities in the objective function, 

making for an easier optimization case. The obtained results (Figure 25) reflect this, the three 

evaluated methods find similar NPVs after 20 iterations indication a similar performance. There 

are some discrepancies between the well plans, especially in the number of radials per kick-off.  

Though each algorithm places most of the radials near the bottom of the backbone, which is the 

expected behavior as this is where permeability is highest. The differences between the well plans 

indicate these are local optima. 

4.3 Discussion 
 

In two out of the three cases, the optimization algorithms find similar NPV results, the 

exception being the Klaipeda reservoir. In this reservoir, both the algorithms incorporating the 

uncertainty handling scheme performed significantly better than the basic CMA-ES and MI-CMA-

ES. The re-evaluations of the  objective function with uncertainty on input parameters, allow the 

uncertainty handling algorithms to identify in which kick-off more radials should be placed and 

increasing NPV. Even with uncertainty on the inclination, the MI-UH-CMA-ES algorithm places 

two kick-off at effectively the same depth, without significantly impacting the NPV of the well 

plan.  

Figure 25 - Fractured optimization results, the first entry in each figure shows results for 

the optimization initial control vector. Top figure: Kick-off depth along backbone. 

Middle figure: Number of radials in each kick-off. Bottom figure: NPV for control vector 

returned after optimization. 
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Having multiple kick-offs in close proximity is expected to have a negative effect on NPV 

due to interference between radials. In addition, several kick-offs in well plans feature small 

numbers of radials. Whether jetting these radials contribute enough to NPV to offset the jetting 

cost is unknown. These factors may limit the algorithms in finding the global optimum.  

Kick-offs in close proximity and with small numbers of radials are mostly observed in the 

Klaipeda reservoir, so these will be re-evaluated using and engineered well-plan with the 

exception of the CMA-ES result. Kick-offs within 20m of another or combined, using the average 

depth of the combined kick-offs for the new kick-off. Kick-offs with less than two radials are 

removed, UH-CMA-ES has no specific method for integer optimization and the mixed integer 

mutation is only ever performed on one integer value. Kick-offs with small numbers of radials 

could therefore be “artefacts” of the optimization. Removing these will simplify the well plan and 

lead to a lower capex. 

 
Table 6 - Comparison optimization results and engineered solution Klaipeda reservoir 

Algorithm Optimization NPV [€] Engineered NPV [€] 

MI-CMA-ES 1.22 × 108 1.35 × 108 

UH-CMA-ES 1.48 × 108 1.17 × 108 

MI-UH-CMA-ES 1.49 × 108 1.33 × 108 

 

Comparing the results in Table 6 shows that results generated from the uncertainty handling 

scheme are better than the proposed engineered well plan. The increase of NPV with the 

engineered solution compared to the MI-CMA-ES algorithm can be attributed to the combination 

of kick-offs. Combining three kick-offs eliminated a lot of radial overlap which has a significant 

positive effect on NPV. It is still unknown what the global optimum is, while UH-CMA-ES and 

MI-UH-CMA-ES find similar NPVs, the well plans have differences between kick-off depth and 

number of radials.  

The Doublet reservoir has good connection between injector and producer. Jetting radials in 

this reservoir did not lead to increased NPV, which all algorithms were able to identify and 

subsequently removed radials from the well plan. Adding radials to the injector leads to a small 

increase in pressure in the reservoir as the BHP constraint is quickly satisfied. As such the pressure 

near the producer does not change significantly. This leads to small production increases which do 

not offset radial cost, making this reservoir a case in which there is no benefit to jetting radials. 

Which is confirmed by the optimization results. 

Azimuth and window in the fractured reservoir were also expected to have an impact on 

NPV, where radials directed toward the production well and closer to the fractures are expected in 

the optimization result. Azimuth and window did get iteratively changed in CMA-ES and UH-

CMA-ES, whereas the result of MI-CMA-ES is dominated by a kick-off with 8 radials near the 

bottom of the well with a window term of 2π. To judge whether the azimuth and window have an 

effect on NPV with CMA-ES and UH-CMA-ES, the well plans are simulated again with a window 

term of 2π in combination with the azimuth from the well plan, as well as 0 azimuth.  
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Table 7 shows the results of these simulations. Changing the azimuth and window did not 

lead to significant changes in NPV. In fact the differences when comparing the optimization 

results against the engineered solution are generally less than 2%, which was the error margin 

attributed to numerical errors. While the optimization results are higher, the effect azimuth and 

window have on NPV seems limited. 

 
Table 7 - Comparison Optimization results and engineered solution fractured reservoir case 

Algorithm 
Optimizati
on  

w = 2π 
az from opt. 

w = 2π 
az = 0 

 NPV [€] NPV [€] 
% opt. 
result 

NPV [€] 
% opt. 
result 

CMA-ES 3.85 × 105 3.82 × 105 99.2% 3.78 × 105 98.2% 

UH-CMA-ES 3.73 × 105 3.60 × 105 96.5% 3.66 × 105 98.1% 

 

Examining the gridblocks in which the backbone and radial wells are located shows that a 

radial does not protrude far from the backbone in terms of gridblocks. This offers an explanation 

as to the limited effect of azimuth and window on NPV. If a radial extends the, in this case 

horizontal, reach of a well by one or two gridblocks, this does not have a significant effect on 

injectivity beyond increasing the WI in that area. The number of radials has a more pronounced 

effect as this directly influences the WI of the well. This of course depends on gridblock 

dimensions compared to radial length, but this should be taken into account in the optimization. 
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5 Conclusion & Future Work 
 

The stated goal of developing an optimization workflow for jetted radial wells which can 

handle uncertainty on the inputs has been met. The algorithms present in the workflow are all able 

to find control vectors that increase NPV from a starting control vector. The most important factors 

on NPV in a radial well plan were found to be kick-off depth and the number of radials per kick-

off. Azimuth and window did not contribute much to NPV in the examined Fractured case where 

these parameters were part of the optimization.  

 

There several avenues for further development of the workflow. The CMA-ES 

optimizations in this thesis have all used the default constants suggested in literature, so there may 

be room for improvement by adapting these values to be more suited to the case of RJD well 

design. Especially  the 𝑟𝜆 factor determining the amount of reevaluated control vectors for the UH-

CMA-ES. The number of reevaluated control vectors is small compared to the population, 

increasing this may improve the performance of this algorithm with finding robust optima. 

Increasing population size could also be considered. The population size determined from 

literature is dependent on the number of elements in the control vector. In every optimization case 

examined in this thesis, at least one of the radials controls per kick-off (radial length) was not 

considered in the optimization, effectively increasing the population size compared to what is 

suggested in literature. 

In addition, incorporating geologic uncertainty would be a significant improvement on the 

current workflow for real world implementation. Though this comes with the added complexity of 

having both uncertainty on the input parameters and in the objective function, likely requiring a 

large amount of function evaluations. This increase in computational cost could be limited by 

evaluating the effect of radial trajectory uncertainty on the objective function. Given that the 

radials are small compared to the grid blocks in the reservoir simulation, there will likely be 

situations where a radial does not exit a grid block even when considering the uncertainty in 

trajectory.  

The method of determining how the control vector population is sampled is another area 

for further investigation, for example by limiting the covariance update to the main diagonal and 

ignoring the correlation with other parameters as is the case now. 

Finally there are some practical changes that could be made to the code. The current 

workflow has the option to place kick-offs very close to one another. Having a function to combine 

kick-offs when this occurs would allow the algorithm to eliminate parameters in the control 

vector. 

This could either be used to reduce the dimension of the optimization or to add a kick-off location, 

using the parameters eliminated from combining two or more kick-offs. The parametrization used 

by the workflow is only suitable for straight backbones and straight radials. Expanding the 

parametrization to allow for deviated backbones would be a significant step to making the 

workflow useable in more real life reservoir cases. Whether the parametrization of radials should 

also be capable of deviated radials would depend on the effect of the uncertainty on trajectory on 

the simulation output. 
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