
Time series Synthesis using GANs - A take on DoppelGANger

Auke Schaap, Lydia Y. Chen, Zilong Zhao, Aditya Kunar
Delft University of Technology

June 27, 2021

Abstract

With a growing need for data comes a growing
need for synthetic data. In this work we reproduce
the results of DoppelGANger [16] in synthesising
time series data with metadata. We identify a
key issue in the comparison made in [16] of Dop-
pelGANger to TimeGAN, RNNs, AR and HMM
models, which creates a new avenue of time series
synthesis using GANs. We show that not all re-
sults of [16] can be reproduced. We furthermore
find that DoppelGANger does not adequately cap-
ture measurement-metadata correlations of our
dataset. Sample size reduction is shown to be an
effective tool to reduce training time while still at-
taining accurate results, and the key parameter S
is tuned further. Finally we show that execution
on CPU has similar training times as execution
on GPU by [16], suggesting that the original code
can be improved, and we release our version of the
models ourselves, to enable easy reproduction. In
closing points we shine light on possible future im-
provements that we were unable to test ourselves,
and conclude that DoppelGANger is a promising
model that opens the door to new unseen appli-
cations of GANs for time series synthesis.

1 Introduction

In the current society data is becoming more and more
important everyday. With this growing need for data
comes a need for privacy and data analysis, and hence
data-driven research. A specific part of this research is
the generation of synthetic data that closely resembles
real data. An advantage of this type of data is for in-
stance that there might be less privacy concerns and it
is hence easier to publish. We specifically look at time
series data of network traffic. From this data we can e.g.
better predict when and where dynamic system resources
are necessary.

Starting from this we might ask ourselves how to gen-
erate high fidelity synthetic time series data of network
traffic? Recent research uses generative adversarial net-
works (GANs) to successfully generate high fidelity syn-
thetic data. [23] builds a neural network that maps time
series to vector embeddings, and after training outputs se-
quences of embeddings rather than samples. This model
is however not designed for time series with additional

metadata. [16] designs a model that does take metadata
as input and which produces highly similar synthetic data
with metadata. It performs better at this task than [23],
hence based on this research we have the following re-
search question:

Can the performance of DoppelGANger in
sythesising time series data with metadata,
and the comparison to other alternative meth-
ods, including autoregressive models, Hidden
Markov models and RNNs, be reproduced?

This question consists of the following subquestions which
will be answered in this paper:

1. Can we achieve the same results as [16] on existing
data?

2. Does the model capture all correlations in the data?

3. In what way can we expand on current research?

This paper therefore aims to reproduce the fidelity re-
sults of [16] on the existing and on new datasets, to verify
its claims.
Contributions: Our primary contribution consist of the
reproduction of the results of [16]. Firstly, we reproduce
the results of [16] on the WWT dataset and we find that
we achieve similar results; DoppelGANger captures all
correlations. We do however achieve less accurate results
on the GCUT dataset than [16]. We show that Doppel-
GANger nevertheless outperforms the AR and RNN mod-
els, as is also shown by [16].

Our second contribution is a mix of improvements that
are not present in [16]. We start by explaining an inherent
difference in the workings of DoppelGANger and the mod-
els the authors of [16] compare it to, and conclude that
a better comparison is necessary. We show that Dop-
pelGANger does not adequately capture measurement-
metadata correlations on the GCUT dataset, similar to
the other models. We furthermore quantify the Pearson
Correlation on the GCUT dataset and find that decreas-
ing the sample size does not always achieve worse results.
We find that decreasing the sample size is an effective tool
to reduce training time, for the WWT dataset. We pro-
vide implementations for the models that run on CPU and
show that this is not slower than training the model on
GPU, therefore making a present dependency redundant
and opening the way to further improvements. Lastly

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



we tune the batch size parameter S and find that S = 5
achieves the best results.

The rest of the paper mentions related work, explains
some background of the research, it formulates the work-
ing of DoppelGANger, explains the results and improve-
ments and concludes the research.

2 Related work

This section discusses other research related to our work.
Time series synthesis has been done by machine-learned
models and non-machine-learned models. We will address
each separately.

2.1 Non-machine-learned models

Non-machine-learned models consist of simulation-based
approaches and mathematical models. Simulation mod-
els [5, 13, 17, 18, 20] work by building a realistic copy of
the real world problem and simulating the results. This
poses the disadvantage that is is incredibly hard to build
a realistic model of the real world that produces simi-
lar results after simulation. On top of that they are not
at all general; they have to be customised to every real
world scenario. This makes much less useful than a gen-
eral solution. Mathematical models [2, 3, 14, 4, 22] are
models that stem from statistical or stochastic research.
These have been shown to model certain problems accu-
rately. The authors of [16] mention for instance that the
Hierarchical Bundling Model models inter-arrival times of
datacenter jobs better than the widely-used Poisson pro-
cess [14]. Similarly to simulation models these models are
not general. Different mathematical models need to be
used to model different real world scenarios.

2.2 Machine-learned models

Machine-learned models generally are models that learn
parameters from data by training. Examples of this are:
Multilayer perceptrons, autoregressive (AR) models, Hid-
den Markov models, recurrent neural networks (RNNs) [1,
12] and GANs [10]. As mentioned in section 3.3.2 there
is an inherent difference in the problem these models ad-
dress. Notably, none model metadata and time series to-
gether.

Notable GANs that model single time series separately
are RCGAN [8], which uses RNNs to generate time se-
ries and can use metadata as input, and TimeGAN [23],
which, as the authors of [16] describe it, trains an ad-
ditional neural network that maps time series to vector
embeddings and outputs sequences of embeddings rather
than samples [23].

We chose to reproduce DoppelGANger for a number
of reasons. First and foremost we chose this to learn
more about GANs and their application on time series.
Furthermore, it offers a comparison to a wide number of
models, which motivated us to learn more. It also has a

widespread application; starting from network traffic, but
possibly reaching far more.

3 Background of the research

This section explains how GANs work, explains some dif-
ficulties to it’s workings and explains how DoppelGANger
deals with these difficulties.

3.1 GANs

General adversarial networks are a type of neural network
that can be used to generate data. A state-of-the-art and
well known example - even outside of research literature -
is named StyleGAN [15, 21]. This GAN generates realistic
images of people that do not exist. They are so realistic
that one can hardly tell the difference between real and
fake people. A GAN can also be used to generate different
data than images [16], but image data is a nice metaphor
to explain the inner workings of the GAN.

A GAN works by having two neural networks work to-
gether [10]. One part is called the generator and the other
is called the discriminator. Each learning cycle the gen-
erator generates data as best as it can. The discriminator
tests the generated data alongside real data and learns to
spot the ’counterfeit’ data; the data the generator created.
This feedback is then fed back into both parts. This way
the generator learns to improve his counterfeiting skills
while the discriminator learns to spot his mistakes even
better. The end result is (supposed to be) data that can
not be distinguished from real data.

3.2 Using GANs for time series synthesis

Our interest lies in using GANs for time series synthe-
sis. A time series is simply a series of data points over
a period of time. This could for example be the price
of a stock during a day, the temperature each day of a
month, or the amount of cars that pass a traffic camera
every minute for an hour. This research will be explor-
ing the use of GANs on time series data with metadata.
Metadata is additional data corresponding to a measure-
ment. An example dataset that is used is the number of
daily views of Wikipedia articles [11]. The measurements
are the views per day; the metadata is the corresponding
domain name.

When using GANs to synthesise time series some diffi-
culties arise. We will address each difficulty shortly. The
first well known difficulty is mode collapse [10, 16]. Mode
collapse occurs when the data is diverse but the GAN
only outputs one certain ’mode’ of the data, instead of
the multiple underlying modes. A second difficulty is the
capturing of long-term effects [23, 16]. This is the case
because the MLP architecture fails to capture long-term
effects properly, as is observed by [16, 23, 8, 9]. Fur-
thermore a difficulty is the capturing of complex relations
between the time series and the metadata that goes along

2



with it. Most new research focuses on generating measure-
ments without metadata and can not easily be adapted to
generate both metadata and measurements jointly. It is
paramount to realise that generating independent time
series for each measurement-dimension will break their
correlations [16].

3.3 DoppelGANger

In this section we will explain how DoppelGANger han-
dles time series synthesis.

3.3.1 The model

We have chosen refer to the original paper [16] for the ex-
planation of the model. For an in depth explanation see
Section 4 of [16].

Figure 1: A schematic indicating the type of time series.

3.3.2 Spatial and temporal correlation

Before addressing these difficulties, we need to clarify the
type of time series that [16] deals with. DoppelGANger
builds a model that takes in n samples D = {s1, s2, ..., sn}
and produces m samples D′ = {r1, r2, ..., rm}. The process
is illustrated in Figure 2. For any two samples si, sj ∈ D,
the number of features and the length of data are all the
same. If we zoom into each si ∈ D, itself is a time series
tabular data, as can be seen in Figure 3. Each row in si is
a time point, and the time is increasing with the increas-
ing of the row numbers. For a corresponding row in any
two samples si, sj ∈ D, it records two events in parallel
in the same time . All above characters of D are also ap-
plied for the generation D′. This is our goal, as we have
networking data about e.g. multiple tasks per event type
(GCUT) or multiple pages per domain name (WWT). 1

Figure 2: A schematic indicating the type of time series
DoppelGANger deals with.

A different kind of time series is the type TimeGAN
[23] and (generally) AR models and RNNs deal with.
TimeGAN (and RNNs and AR models) produce a model
that takes in 1 sample D = s and produces m samples
D′ = {r1, r2, ..., rm}. The difference between these two
types is shown in Figure ??. This problem generalizes
to different scenario’s, poses different problems and might
have not have the same relevance to certain metrics.

Figure 3: A schematic indicating the type of time series
TimeGAN deals with.

Most importantly these problems are correlated dif-
ferently. In the first scenario we will find temporal corre-
lations, i.e. correlation within one sample, and multiple
spatial correlations, i.e. correlation between different sam-
ples and correlations between different features. However,
in the second scenario we will find temporal correlations,
i.e. correlation within one sample, but only single spa-
tial correlations, correlations between different features.
There can not be correlation between different samples,
as there is only one sample.

All the models DoppelGANger is compared to in [16]
fall into this second category. Due to this it should not
come as a surprise that all (modified) models that Dop-
pelGANger is compared to, perform worse at the cur-
rent task. They are designed for a different task and
hence their comparison to DoppelGANger seems inaccu-
rate. This undermines the claims made in [16] and leaves
room for further experiments with DoppelGANger and
further research on GANs for this purpose. This does not
at all mean that the models proposed in [16] are poor; the
opposite is true! This might be an entirely new applica-
tion for GANs in time series synthesis that is not explored
yet.

4 Reproducing

This section will cover the results achieved by our repro-
duction of [16].

4.1 Aims

Our main aims were to reproduce the fidelity perfor-
mance of [16]. In that sense we want to show that Dop-
pelGANger produces high-quality samples while learning
temporal correlations, cross-measurement correlation, the
metadata distributions and measurement-metadata corre-
lations. We show this on the WWT and GCUT datasets;
our new financial dataset is evaluated in Section 5. As

1To illustrate this difference we have omitted the metadata from this formulation. Including metadata for completeness, each sample si
is actually a tuple si = (mi, di) of metadata mi and measurements di = {f1

i , f
2
i , ..., f

ti
i } of length ti. This obfuscation only adds additional

correlation between metadata and correlation between metadata and time series, which is already addressed by [16].

3



mentioned in section 3.3.2 we find the comparison to other
models imprecise, and encourage further research on this
topic. For completeness, to further support our point and
for lack of a better option we have chosen to still compare
the model to an autoregressive model, Markov model and
an RNN.

4.2 Implementation

To reproduce DoppelGANger we chose to use the imple-
mentation provided at [6]. This implementation does not
(yet) provide other models, but we contacted the author
and received the source code for them. All models are
implemented in Python using tensorflow 1.14. We were
unable to get the model of the HMM working. For reasons
mentioned in Section 3.3.2 as well as being restricted in
time we chose to omit this model from our comparisons.
Modification beyond DoppleGAnger. The original
code uses a dependency called GPUTaskScheduler. This
dependency schedules execution on GPU; without it Dop-
pelGANger can only be trained and not be used to gen-
erate data. We could not get this dependency to work,
hence we have rewritten the code to accommodate for
execution without this dependency. The code now only
runs on CPU, but can now easily be ran by someone who
seeks to reproduce the results of [16] further. Empirically
we find that our average training times are similar to the
times of [16] with the dependency, as can be seen in Table
1. [16] mentions an average training time of 17 hrs on
the WWT dataset for their code using 50000 samples and
400 epochs. We have achieved an average of 8 hrs on the
WWT dataset using 50000 samples and 200 epochs, while
training models with different parameters in parallel. Be-
cause of this parallel training this number can only serve
as an upper bound. As a result of this we do not see the
need of this dependency and believe that a further speed
up can be achieved by the author.

Table 1: (Average) training times of our models on the
WWT and GCUT data. Some models were trained in
parallel, so these can only serve as upper bounds. All
models were trained for 200 epochs.

Notably we find that the AR model trains faster on
the GCUT dataset than on the WWT dataset. This is not
expected, as the GCUT dataset is not only much larger,
but other models also train slower on it than on the WWT
dataset. Where the WWT data consist of 50000 samples
of 1 feature of length 506, the GCUT dataset consists of
50000 samples of 9 features of length 2500. This discrep-

ancy raises eyebrows on the implementation of the AR
model and further supports our claims in Section 3.3.2.

Our source code is available at [7]; this code includes
the model for DoppelGANger, and AR, RNN and HMM
models, as well as all scripts that were used to produce
the results in this paper. There is a dataset included as
well as scripts to provide your own data.

4.3 Datasets, testbed and parameters

4.3.1 Datasets

As [16] mentions these datasets are chosen to exhibit dif-
ferent combinations of challenges: (1) correlations within
time series and metadata, (2), multi-dimensional measure-
ments, and (3) variable measurement lengths. On top of
that we have introduced a new dataset of financial data,
to test the performance of DoppelGANger on time series
synthesis outside of the scope of network traffic.
Wikipedia Web Traffic (WWT): The WWT dataset
consists of 50000 samples of length 550 that track the
amount of daily views of a Wikipedia page, from July 1st,
2015 to December 31st, 2016 [11]. The metadata consists
of three parts: the corresponding domain name, the type
of access (e.g. mobile/desktop), and the type of agent
(e.g. spider) [16]. Each sample consists of a single fea-
ture, the amount daily views of a page. The shape of the
data is therefore (50000, 550, 1).
Google Cluster Usage Traces (GCUT): The GCUT
dataset consists of 50000 samples of variable length that
track resource usage of tasks of a Google Cluster of 12.5
thousand machines, over the period of 29 days in May
2011 [19]. The metadata consist of the exit code of each
task. Each sample consists of nine features of for example
CPU rate, memory usage and disk space usage. These
samples were logged per second, with mean and maxi-
mum logged every 5 minutes. When a task ends it is
padded with zeroes, and the shape of the data is there-
fore (50000, 2500, 9).

4.3.2 Testbed

All models were trained on a Google Cloud Virutal Ma-
chine with 8 vCPUs and 64 GB of RAM. As mentioned
in section 4.2 our implementation only uses a CPU; this
makes reproduction more accessible while training times
(listed in Table 1) are similar.

103 104

Number of training samples

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

M
ea

n 
sq

ua
re

 e
rro

r

4



Figure 4: Plot of the MSE vs the samples of the WWT
dataset.

4.3.3 Parameters

As a starting point for our experiments, we used param-
eters similar to [16]. Notably, however, we chose S = 10.
Furthermore, because our resources were limited, mod-
els were trained on a subset of the data, with only 200
epochs. This number was chosen as a trade-off between
time and accuracy; [16] mentions that convergence was
achieved after 400 epochs. To verify this approach we
have run several experiments that had more feasible run-
ning time. Similar to [16], Figure 4 shows the mean square
error (MSE) of the average autocorrelation of the WWT
dataset plotted against the sample size. We have run each
sample set size three times and their MSE is plotted. In
Table 2 this is show quantitatively. We find that similar
to [16] the MSE deceases as the sample size increases.

Table 2: Table of the MSE of web dataset

Empirically we find that our model achieves a lower
MSE than [16] for both AR and RNN models as well as
for DoppelGANger with 50000 samples. For the RNN this
is a factor 2 (0.063 to 0.122), for the AR model this is a
factor 33 (0.0084 to 0.2777), and for DoppelGANger this
is a factor 11 (0.00008 to 0.0009). This is not expected,
as we use fewer epochs and hence our results should be
less accurate. Possible reasons for this could be:

(i) The model of [16] overfits on the data.

(ii) There is a high variance in our results and three runs
are not conclusive.

(iii) There is an error in our calculation of the MSE.

These numbers do, however, show that DoppelGANger
is already able to produce quite similar data when using
only a subset of the 50000 samples. As a compromise be-
tween accuracy and execution speed we therefore chose to
run all experiments on the WWT dataset on a uniform
subset of 5000 samples.

Additionally we have also performed this experiment
on the GCUT dataset. Figure 5 shows the MSE of the
CDF of the Pearson correlation between CPU rate and as-
signed memory usage at different sample sizes. We have
run each sample set size three times and their MSE is
plotted. In Table 3 this is shown quantitatively.

103 104

Number of training samples

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

M
ea

n 
sq

ua
re

 e
rro

r

Figure 5: Plot of the MSE vs the samples of the GCUT
dataset.

Table 3: Table of the MSE vs the samples of the GCUT
dataset.

The result of this experiment is not what we expected.
We expected a trend of a decrease in in MSE as the sam-
ple size increases, similar to 4 on the WWT dataset. As
visible in Figure 5, this downward trend is not present.
One possible explanation for this is that it could be over-
fitting, or because the model has not converged yet. We
can, however, not compare this with [16] as this quanti-
tative analysis is new. It would be interesting to research
this more.

These numbers do show that DoppelGANger is able
to produce similar data for the the GCUT dataset when
using a subset of the 50000 samples. Prior to the results
of this experiment we chose to run all subsequent experi-
ments on the GCUT dataset on a uniform subset of 5000
samples. After this result it seems we could have even
chosen a subset of 1000 samples, as it achieves a better
result. This decision poses, however, not a problem, as all
achieved results of DoppelGANger have a smaller MSE

5



than the other models.
Experiments: For all our experiments we thus have, so
far, the following parameters: 200 epochs, sample size of
5000, Batch size (S) of 10.

4.4 Results

This section shows that we have successfully reproduced
the results of [16], as well as additional results.

4.4.1 Summary

As a summary, this papers shows, in line with [16], that:
(1) The DoppelGANger model trains as expected on the
WWT, albeit with some annotations. (2) DoppelGANger
captures all relevant correlations on both datasets better
than all other models.

Beyond the original paper we show that:

(i) We analyse the measurement-metadata correlation.

(ii) We find a different result for the GCUT dataset by
quantifying the correlation by the MSE.

(iii) Comparison to AR, RNN and HMM models, as well
as TimeGAN [23] and RCGAN [8] is deemed to be
imprecise (Section 3.3.2).

(iv) Decreasing the sample size is an effective tool to re-
duce training time, for the WWT dataset.

(v) Training times on CPU and GPU are shown to be
similar, so improvements can be made to the imple-
mentation of the model.

(vi) The parameter S is tuned (Section 5.3).

(vii) We provide a new dataset that unfortunately we
were not yet able to produce results on.

4.4.2 Temporal correlations

The WWT dataset contains time series of length 550 and
therefore contains temporal correlations over a long time
span. This dataset inhibits correlation over a period of a
year, and hence a plot of the average autocorrelation of
each time series should show activity around day 365. As
seen in figure 6 this is the case. This correlation should be
captured by DoppelGANger and this is also shown in Fig-
ure 6. When we compare this to the results achieved by
[16] we find that the DoppelGANger models capture the
autocorrelation quite similarly, while the AR and RNN
models behave differently in our results. Such discrepan-
cies can be explained in the following ways:

(i) Our explanations in Section 3.3.2 that these models
are not built for this and hence behave strangely.

(ii) The behaviour of these models, unlike the behaviour
of DoppelGANger, is impacted severely by the sam-
ple size.

(iii) The behaviour of these models, unlike the behaviour
of DoppelGANger, is impacted severely by the num-
ber of epochs and overfitting.

Empirically we find that DoppelGANger captures the
weekly and annual patterns much better than the other
models, similar to the result presented in [16].

Figure 6: Average autocorrelation of the WWT dataset.
This shows that DoppelGANger successfully captures the
temporal correlations (annual and weekly) present in the
WWT dataset.

4.4.3 Cross-measurement correlation

The GCUT dataset contains time series of varying
lengths, with 9 different features of e.g. the CPU rate and
the assigned memory usage. These features are heavily
correlated, and hence high fidelity synthetic data should
also inhibit this correlation. To show this we have com-
puted the Pearson correlation between the measurements
of the GCUT dataset, similar to [16], in Figure 7.

Figure 7: The cumulative distribution function of the
Pearson Correlation between the CPU rate and the as-
signed memory usage of the GCUT dataset

This better shows what is mentioned in Section 4.3.3
and stems from 3. Initially it shows that DoppelGANger
does capture some of the cross-measurement correlations
present in the GCUT dataset. When we compare our
results to the results achieved by [16] we find that [16]
achieves better results than our model. As mentioned in
Section 4.3.3 this could be due to having run less epoch,
but not because of our smaller sample size. When looking
at the tails of the plot we can conclude that there are some
specific time series that inhibit either complete negative

6



or positive correlation 2. As the GCUT dataset contains
a lot of time series of extremely short length, as visible in
Figure 8, we can explain this the following way. These ex-
tremely short time series consist of so few measurements
that the correlation can only be completely positive or
negative. DoppelGANger captures this best of all models
because it captures the distribution of the metadata and
measurements better than the other models. Neverthe-
less the discrepancies mentioned in Section 4.3.3, we still
find that DoppelGANger captures the cross-measurement
correlations better than the other models, similar to [16].
This does however benefit from further research.

Figure 8: The distribution of the task duration of the
GCUT dataset. DoppelGANger captures the distribution,
but the AR and RNN models do not.

4.4.4 Metadata distribution

When a synthetic data is generated that has metadata, we
expect the distribution of the metadata in the generated
samples to be similar to the distribution of the metadata
in the real samples. Figure 8 shows the distribution of the
metadata of the real samples and the generated samples.
We find that DoppelGANger captures the metadata dis-
tributions of the GCUT datasets. The RNN does not cap-
ture the distribution sufficiently, and the AR model fails
to capture the second mode at a duration of 10 seconds.
We therefore find that, similar to [16], DoppelGANger
outperforms the AR and RNN models.

4.4.5 Measurement-metadata correlation

The original paper does not analyse measurement-
metadata correlations. The GCUT dataset should have a
lot of these, as different event types (EVICT, FAIL, FINISH,
KILL) have different real world effects related to the mea-
surements. We separated each event type and calculated
the Pearson correlation between the CPU rate and the
assigned memory usage, and have plotted the CDF. We
show 2 different visualisations: Figure 9 is ordered by
event type; it shows how the model captures the type of
correlation in the specific event. Figure 10 is ordered by
model; it shows how the correlation captured varies per
event type.

Figure 9: Measurement-metadata correlation ordered by
event type. This shows the CDF of the Pearson Corre-
lation between the CPU rate and the assigned memory
usage.

Figure 10: Measurement-metadata correlation ordered by
model. This shows the CDF of the Pearson Correlation
between the CPU rate and the assigned memory usage.

We can see in the top left plot of Figure 10 that the
correlation in the GCUT dataset has two distinct modes
3. We find empirically that DoppelGANger captures one
of these modes, as can be viewed in the top two plots of
Figure 9. It does, however, not capture the other mode,
as is shown by the bottom two plots of Figure 9. The
other models do not capture either of the modes properly.
This becomes even more clear when we look at the top
right plot in Figure 10. The plot for DoppelGANger of
the CDF of the correlation shows that there is little vari-
ance in the correlation captured per event type. From this
we can conclude that DoppelGANger does not capture the
metadata-measurement correlations present in the GCUT
dataset.

5 Proposed improvements

This section proposes improvements to the result of [16].
It serves as an overview of the work beyond [16], as well
as offers points for further research. All improvements are
tested and results are shown. In summary we propose a

2This is indicated by the flat part of the line that goes straight up on the left side, as well as the flat end that goes straight up on the right
side.

3Ergo, within the four event types two show the same correlation.

7



better method to compare DoppelGANger, experiments
to tune special parameters of DoppelGANger, execution
on CPU and analysis about execution time, and lastly an
improved code base.

5.1 Comparing DoppelGANger

As explained in Section 3.3.2 we believe the compari-
son of DoppelGANger to AR, RNN, and HMM models
is imprecise and we encourage new research in this area.
We propose to flip the tables and to compare Doppel-
GANger to TimeGAN in a different setting. What if we
take three time series with different metadata from the
WWT dataset, trained TimeGAN on these, and generated
a set of new synthetic time series. This should show if the
variance present in our datasets, as well as the metadata
distribution and the measurement-metadata correlations
are sufficiently captured by the models, and if Doppel-
GANger outperforms TimeGAN. Due to time constraints
it was not possible to do this analysis ourselves.

Furthermore we propose an interesting point for fur-
ther research might be to evaluate the result of Doppel-
GANger using the metrics that TimeGAN was evaluated
on [23].

Another approach to evaluate the result of Doppel-
GANger might be to demonstrate the result in practice
and show it improves upon a working model.

5.2 Data

We have included a new dataset that can be trained and
evaluated on. When we tried to analyse our results we
found our generated data to be corrupted. Unfortunately
we can therefore not evaluate DoppelGANger on a new
dataset.

We will introduce the dataset and provide it at [7]
so it can be used in the future. It is a financial dataset
that consists of 2710 samples of length 506 that indicate
price data of certain stocks over the period of Jan. 1st,
2019 to Jan 1st 2021. The metadata consists of the sec-
tor the stock belongs to (e.g. technology, transportation,
finance). Each sample consists of 6 standard features:
Open, High, Low, Close, and Adjusted Close prices as
well as trading volume. Each of these features is recorded
daily, only for trading days (hence 506 6= 731). The shape
of the data is therefore (2710, 506, 6).

5.3 Parameter tuning

As another proposed improvement we chose to further
tune the batch size parameter S. In the original work the
author the author briefly mentions that an S of 5 produces
the best results. We test additional values of S close to
5, as well as larger deviations, to find if this can be im-
proved. Figure 11 shows that similarly to [16] an S of 5
produces an accurate result. We also find, unexpectedly,
that an S of 275 produces similar results. As [16] men-
tions, when S gets larger, the difficulty of synthesizing a
batch of records at a single RNN pass also increase; for

this reason we would expect the result to be worse. A
possible explanation for this is that it is only a minor de-
viation from the expected result, as produced by our not
completely converged model.

100 101 102

S

0.001

0.002

0.003

0.004

M
ea

n 
sq

ua
re

 e
rro

r

Figure 11: A plot of the MSE against the batch size pa-
rameter S.

Based on this explanation we empirically agree with
the batch parameter S of 5.

5.4 GPU vs CPU

To run the code a dependency is necessary called
GPUTaskScheduler. This dependency schedules execu-
tion on GPU; without it only a small part of the code
can be run. We could not get this dependency to work,
hence we could only train a model. Data could therefore
initially not be generated. This could have been the case
due to incorrect setup by us. As mentioned in Section 4.2
we modified the code to also run on CPU. This code is
supplied at [7]. It also includes improved documentation,
scripts to produce the plots in the paper and code for the
other models.

6 Conclusion

While some of the results attained by [16] have been repro-
duced, others have yielded different results. Notably, Dop-
pelGANger is compared to models that are not expected
to perform well at the tasks at hand, and hence we be-
lieve that they do not offer sufficient support to establish
the promise of [16]. This also means that in essence, [16]
offers a new insight to time series synthesis using GANs
that has not been seen yet, which opens the door to new
unseen applications of GANs for time series synthesis.

8



References

[1] Oludare Isaac Abiodun et al. “State-of-the-art in ar-
tificial neural network applications: A survey”. In:
Heliyon 4.11 (2018), e00938. issn: 2405-8440. doi:
https ://doi .org/10 .1016/j .heliyon .2018 .e00938.
url: https : / / www . sciencedirect . com / science /
article/pii/S2405844018332067.

[2] Spiros Antonatos, Kostas Anagnostakis, and Evan-
gelos Markatos. “Generating Realistic Workloads
for Network Intrusion Detection Systems”. In: ACM
SIGSOFT Software Engineering Notes 29 (Apr.
2004). doi: 10.1145/974044.974078.

[3] Brian F. Cooper et al. “Benchmarking Cloud Serv-
ing Systems with YCSB”. In: Proceedings of the
1st ACM Symposium on Cloud Computing. As-
sociation for Computing Machinery, 2010. isbn:
9781450300360. doi: 10 . 1145 / 1807128 . 1807152.
url: https://doi.org/10.1145/1807128.1807152.

[4] Yves Denneulin, Emmanuel Romagnoli, and De-
nis Trystram. “A Synthetic Workload Generator for
Cluster Computing.” In: Jan. 2004. doi: 10.1109/
IPDPS.2004.1303297.

[5] Sheng Di and Franck Cappello. “GloudSim: Google
Trace Based Cloud Simulator with Virtual Ma-
chines”. In: Softw. Pract. Exper. 45.11 (Nov. 2015),
pp. 1571–1590. issn: 0038-0644. doi: 10.1002/spe.
2303. url: https://doi.org/10.1002/spe.2303.

[6] DoppelGANger Github repository. url: https : / /
github.com/fjxmlzn/DoppelGANger.

[7] DoppelGANger reproduced. url: There % 20is %
20no%20link%20yet..

[8] Cristóbal Esteban, Stephanie L. Hyland, and Gun-
nar Rätsch. Real-valued (Medical) Time Series Gen-
eration with Recurrent Conditional GANs. 2017.
arXiv: 1706.02633.

[9] William Fedus, Ian Goodfellow, and Andrew M.
Dai. MaskGAN: Better Text Generation via Filling
in the . 2018. arXiv: 1801.07736.

[10] Ian Goodfellow. NIPS 2016 Tutorial: Generative
Adversarial Networks. 2017. arXiv: 1701 . 00160
[cs.LG].

[11] Google. Web Traffic Time Series Forecasting. 2018.
url: https://www.kaggle.com/c/web-traffic-time-
series-forecasting.

[12] S. Hochreiter and J. Schmidhuber. “Long Short-
Term Memory”. In: Neural Computation 9 (1997),
pp. 1735–1780.

[13] Teerawat Issariyakul and Ekram Hossain. “Intro-
duction to Network Simulator 2 (NS2)”. In: Apr.
2012, pp. 21–40. isbn: 978-1-4614-1405-6. doi: 10.
1007/978-1-4614-1406-3 2.

[14] Da-Cheng Juan et al. “Beyond Poisson: Modeling
Inter-Arrival Time of Requests in a Datacenter”. In:
2014. isbn: 978-3-319-06604-2. doi: 10.1007/978-3-
319-06605-9 17.

[15] Tero Karras et al. Analyzing and Improving the Im-
age Quality of StyleGAN. 2020. arXiv: 1912.04958
[cs.CV].

[16] Zinan Lin et al. “Using GANs for Sharing Net-
worked Time Series Data”. In: Proceedings of
the ACM Internet Measurement Conference (Oct.
2020). doi: 10.1145/3419394.3423643. url: http:
//dx.doi.org/10.1145/3419394.3423643.

[17] Mario Lucic et al. Are GANs Created Equal?
A Large-Scale Study. 2018. arXiv: 1711 . 10337
[stat.ML].

[18] Ismael Solis Moreno et al. “Analysis, Modeling and
Simulation of Workload Patterns in a Large-Scale
Utility Cloud”. In: IEEE Transactions on Cloud
Computing 2.2 (2014), pp. 208–221. doi: 10.1109/
TCC.2014.2314661.

[19] Charles Reiss, John Wilkes, and Joseph L Heller-
stein. “Google cluster-usage traces”. In: Google Inc
(2011).

[20] Leszek Sliwko and Vladimir Getov. “AGOCS —
Accurate Google Cloud Simulator Framework”.
In: 2016 Intl IEEE Conferences on Ubiquitous
Intelligence Computing, Advanced and Trusted
Computing, Scalable Computing and Commu-
nications, Cloud and Big Data Computing,
Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld).
2016, pp. 550–558. doi: 10 . 1109 / UIC - ATC -
ScalCom-CBDCom-IoP-SmartWorld.2016.0095.

[21] StyleGAN example. url: https : / /
thispersondoesnotexist.com/.

[22] Jianwei Yin et al. “BURSE: A Bursty and Self-
Similar Workload Generator for Cloud Computing”.
In: IEEE Transactions on Parallel and Distributed
Systems (2015). doi: 10.1109/TPDS.2014.2315204.

[23] Jinsung Yoon, Daniel Jarrett, and Mihaela
van der Schaar. “Time-series Generative Ad-
versarial Networks”. In: 2019. url: https :
/ / proceedings . neurips . cc / paper / 2019 / file /
c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.

9


