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Abstract: For advanced imaging systems, e.g., projection systems for optical lithography, 
spatially varying aberration calibration is of utmost importance to achieve uniform imaging 
performance over the entire field-of-view (FOV). Here we present an efficient, accurate, and 
robust spatially varying aberration calibration method using a pair of 2-dimensional periodic 
pinhole array masks: the first mask in the object plane and the second mask in the image plane. 
Our method divides the entire FOV of the imaging system into partially overlapping subregions 
by using a measurement system consisting of an additional imaging system and a camera sensor. 
Each subregion, which covers several mask periods, is imaged onto a distinct camera pixel by 
the measurement system. Our method measures “Airy disc”-like patterns simultaneously in all 
subregions by scanning the second mask relative to the first mask over one mask p eriod. The 
number of subregions is equal to the number of camera pixels, and the sampling number of the 
measured patterns is equal to the scanning step number. The aberrations can be retrieved from 
the patterns measured in through-focus planes using an iterative optimization algorithm. In this 
paper, we performed experimental validation on a realistic lithography machine and demonstrate 
that our method is capable of retrieving the coefficients of 37 aberration terms, expressed as 
Zernike polynomials, with a sensitivity at nanometer scale.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The function of an imaging system is to generate a perfect image (an Airy disc) of every point 
source in its field-of-view (FOV). However, the wavefront error in the pupil of the imaging system 
produces the aberrations of various types that blur the images. For large FOV imaging system 
such as the one we studied in this paper, the wavefront error depends on the location of the point 
source and hence varies spatially over the entire FOV of the imaging system. Spatially varying 
aberration calibration is therefore particularly important for essential industrial applications, e.g. 
projection systems for optical lithography, to achieve uniform imaging performance over the 
entire FOV.

Traditional methods, such as interferometry [1, 2] and wavefront sensing [3, 4], require a point 
source in the object plane for providing an ideal reference wavefront (either planar or spherical), 
and an extra imaging system to image the wavefront in the pupil onto a detector. The extra 
imaging system has its own aberrations that will be mixed with the aberrations of the imaging 
system that is to be calibrated. To measure the spatial variation of the aberrations, traditional 
methods require to position the point source at a large number of locations in the FOV and to 
perform measurement for one location at a time. Therefore, the whole measurement process 
is time-consuming. Furthermore, the movements can introduce positioning errors that will 
influence the calibration of the aberrations.

Alternative methods are based on the blurred images. For imaging systems such as microscopes
and telescopes, one can use the blurred images measured by the camera sensor to retrieve the
aberrations directly [5–9]. For lithography systems, since the features of the patterns printed
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on the wafer are usually very small, one needs to retrieve the blurred features of the printed
patterns indirectly using wafer metrology techniques like scatterometry [10] or using aerial image
sensors [11, 12]. However, to avoid the overlap between the printed patterns, the characterization
of the aberrations can only be performed at very few FOV locations in parallel. It is also reported
that scanning electron microscopy can be used [13, 14] to acquire high-resolution images of the
blurred printed patterns in a photoresist, but the acquisition of these images in the entire FOV is
extremely time-consuming. The influence of the photo-resist on imaging must also be modeled.
In industrial applications, an efficient, accurate and robust spatially varying aberration

calibration method is desired because spatially varying aberrations may be caused by e.g. heating,
vibration or contamination of the optical elements during operation. Imaging systems need to be
calibrated and corrected occasionally to maintain a good imaging performance. In this paper,
we therefore propose a spatially varying aberration calibration method, which uses a pair of
2-dimensional periodic pinhole array masks, with the following features:

• The entire FOV is divided into partially overlapping subregions by the measurement system.
Each subregion covers several mask periods, and in each subregion, the spatially varying
aberrations can be considered to be shift-invariant.

• The intensities (in analogy to the point-spread function (PSF) intensities) of the transmitted
images are measured simultaneously in all subregions via a scanning process, and the
scanning process is repeated in several through-focus planes. At least two of these planes
are needed to be able to retrieve the phase (the aberrations) in the pupil.

• The shift-invariant aberrations in each subregion are retrieved from the measured through-
focus intensities, and are combined to determine the spatially varying aberrations in all
subregions.

Spatially varying aberrations are represented by a 4-dimensional function of both the FOV
coordinates rc and the pupil coordinates ρ. In order to determine this function, in each subregion
corresponding to a FOV location indicated by rc , we acquire a set of 2-dimensional intensity
distributions (each intensity distribution is a function of the scanning positions rs) in several
through-focus image planes at various locations along the z coordinate. We remark that the
samplings of ρ and rs should obey the Shannon-Nyquist sampling theorem. So, we actually need
to deal with a 5-dimensional dataset of (rc, rs, z).
Our method provides an attractive scheme for parallel data collection and processing. We

utilize in particular the fact that the required sampling number of the intensity distributions in
each subregion (which equals to the scanning step number) is much less than the number of
subregions (which equals to the number of camera pixels). Therefore, it is more efficient to use a
scanning process to measure the intensities at one point in every subregions simultaneously, than
to measure the entire intensity distribution in every subregions one by one.

Ourmethod has been presented previously in [15] for calibrating only the geometrical aberration
terms such as distortion, field curvature and telecentricity (tip-tilt). Herewe calibrate thewavefront
aberrations in terms of the coefficients of the Zernike polynomials. Namely, we determine a set of
coefficients, each of which is a function of FOV location, of the spatially varying aberrations. Our
method requires the imaging system to be telecentric (the magnification/demagnification should
be constant in through-focus planes). By adapting the design of the masks and the scanning
process, our method can be applied to arbitrary wavelengths.
This paper is organized as follow. We describe the concept and the experimental setup of

our method in Section 2. We then discuss the computation of the point-spread function (PSF)
in Section 3, and the optimization algorithm in Section 4. Finally we validate our method by
simulations in Section 5 and by experiments in Section 6.
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2. The concept and the mathematical description
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Fig. 1. Experimental setup and concept of themethod. (a): Schematic plot of the experimental
setup. A lithographic system consists of a illumination system (Kohler illumination) and
a telecentric imaging system. The first mask and the second mask are in the object plane
and in the image plane, respectively. The measurement system consists of an additional
imaging system and a camera sensor, of which the second mask is in the object plane. (b):
Demonstration of the imaging and measurement process in a subregion, which is defined as
a region the first mask that is imaged by the combined lithographic system and measurement
system onto a single pixel of the camera. The second mask is superposed with the image
of the first mask. Because their pitches are identical, a point of the "PSF-like" pattern in
each period of the transmitted image is measured (see the insertions) by the pinhole in each
period of the second mask. To measure the entire "PSF-like" pattern, the second mask needs
to be scanned over a one period, along the directions depicted by the arrows, relative to the
image of the first mask.

A schematic plot of the experimental setup is shown in Fig.1(a). We consider a lithographic
system which consists of a Köhler illumination system and a telecentric imaging system. We
place the first mask in the object plane and the second mask in the image plane . Both masks are
transmissive 2-dimensional periodic pinhole array masks. The measurement system consists of
an additional imaging system and a camera sensor. The object plane of the measurement system
coincides with the second mask. In this way, the entire FOV of the imaging system is divided
into partially overlapping subregions by the measurement system. A subregion is defined as a
region in the first mask that is imaged by the combined lithographic system and the measurement
system onto a distinct pixel of the camera sensor. We need to guarantee that on one hand each
subregion covers several mask periods, and on the other hand the spatially varying aberrations in
each subregion can be considered to be shift-invariant.
The imaging and measurement process of one subregion is illustrated in Fig. 1(b). The

second mask is superposed with the image of the first mask. Because their pitches are identical,
measuring the total intensity of the transmitted image in one subregion is equivalent to sampling
the image of a pinhole in the first mask by another pinhole in the second mask as shown by the
insertions in Fig. 1(b). We remark that the sampled intensity in our method is enhanced by
several folds compared to the case when one subregion covers only one mask period. The folds
of enhancement is equal to the number of mask period covered by one subregion.

In order to measure the entire "PSF-like" pattern, we need to scan the location of the sampling
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Fig. 2. Demonstration of the scanning measurement process in various through-focal planes
using experiment data. (a): The sequence of camera measurements at 125 scanning positions
in the focal plane (z = 0 um) and two defocused planes (z = ±25 um). The FOV of the
lithographic system with size 32 mm × 55 mm is projected onto the camera sensor. This
area is sampled by 16 × 25 pixels as we downsample the original camera measurements by a
factor of 20. (b): The PSF-like" patterns measured by the corresponding pixels depicted
by the orange squared boxes in (a). Each pattern with size 4.5 µm × 4.5 µm is sampled by
25 × 25 scanning positions. The patterns measured by different pixels show significantly
more difference in the defocused planes than in the focal plane.

point over one period of the mask period. This is achieved by scanning the second mask relative 
to the first mask. Since the image of the first mask stays at the same position with respect to the 
camera sensor while scanning the second mask, each subregion is always imaged onto the same 
camera pixel. Measuring "PSF-like" patterns by scanning is advantageous because we avoid 
mixing of the aberrations of the measurement system with the aberration of the lithographic 
system. Furthermore, the requirement on the measurement system in our experimental setup is 
much less critical compared to the imaging system that is used to magnify the "PSF-like" pattern 
since the "PSF-like" patterns is typically very small.

By repeating the scanning process in several through-focus planes, we thus measure 
through-focus "PSF-like" patterns in each subregion (see Fig. 2 and Visualization 1). As 
mentioned in the Introduction, at least two of these planes are needed to be able to 
retrieve the phase (the aberrations) in the pupil. Retrieving the aberrations in each 
subregion only requires the "PSF-like" pattern to be sampled by hundreds of points. Therefore, 
by taking hundreds of camera measurements in one scanning process, we can simultaneously 
measures "PSF-like" pattern in millions of subregions, which means that we sample the entire 
FOV of the imaging system by millions of points. Therefore, by combining the shift-
invariant aberrations retrieved from the through-focus measurements in all subregions, the 
spatially varying aberrations can be calibrated with high-resolution in both FOV coordinates and 
pupil coordinates.

2.1. Mathematical description

In this paper, we model spatially partially coherent imaging and the scanning measurement 
process using the mutual coherent function (MCF), which represents the correlation between 
monochromatic fields at a pair of locations. Let the MCF in the object plane and the image plane
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be denoted by Wo(ro1, ro2) and Wi,z(ri1, ri2) respectively, where ro and ri denote the coordinates
of the relative planes, and z denotes the location of the image plane (z = 0 denotes the location
of the focal plane). The relation between Wo(ro1, ro2) and Wi,z(ri1, ri2) is given by the Hopkin’s
formula for spatially partially coherent imaging [16] as follows:

Wi,z(ri1, ri2) =
∬

Wo(ro1, ro2)To(ro1)To(ro2)∗Hz(ri1, ro1)Hz(ri2, ro2)∗d2ro1d2ro2, (1)

where To(ro) is the complex-valued transmission function of the first mask in the object plane
and Hz(ri, ro) is the PSF of the lithographic system in the plane at location z, which represents
the field evaluated at ri generated by a point source at ro.

Let the coordinates of the camera plane be denoted by rc . The intensity distribution measured
by the camera is given by

Iz(rc) =
∬

Wi,z(ri1, ri2)Ti(ri1)Ti(ri2)∗H ′(rc, ri1)H ′(rc, ri2)∗d2ri1d2ri2, (2)

where Ti(ri) is the complex-valued transmission function of the second mask in the image plane,
and H ′(rc, ri) is the PSF of the measurement system that represents the contribution of the field
at ri to a pixel at rc . By substituting Eq. (1) into Eq. (2), we obtain

Iz(rc) =
∬

Wo(ro1, ro2)To(ro1)To(ro2)∗Gz(ro1, rc)Gz(ro2, rc)∗d2ro1d2ro2, (3)

where
Gz(ro, rc) =

∫
Hz(ri, ro)Ti(ri)H ′(rc, ri)d2ri . (4)

In our method, we assume the measurement system to be shift-invariant in the entire FOV
and the lithographic system to be shift-invariant only in each subregion. We can therefore write
the PSF of the measurement system H ′(rc, ri), which determines the size of the image of each
subregion in the image plane of the lithographic system, as H ′(ri), and write the PSF of the
lithographic system Hz(ri, ro) as Hz(ri − ro; rc), which differs in subregions that are imaged
onto pixels at different location rc . Consequently, we can rewrite Eq. (4) as

Gz(ro; rc) =
∫

Hz(ri − ro; rc)Ti(ri)H ′(ri)d2ri . (5)

We can compute Eq. (5) as a correlation using efficient numerical methods like the fast Fourier
transform (FFT) algorithm. Gz(ro; rc) can be considered as the effective PSF of the combined
lithographic system and the measurement system, which is shift-invariant in each subregion, but
depends on the location rc of the pixel that each subregion is imaged onto.

2.2. Köhler illumination

Now suppose we scan the first mask relative to the second mask. We denote the intensity
distribution measured by the pixel at rc as function of the scanning positions rs by Iz(rs; rc).
According to the Van Cittert-Zernike theorem [17], the MCF in the object plane generated by
Kohler illumination is given by Wo(ro1, ro2) = Ŝ(ro1 − ro2), where Ŝ(ro) is the Fourier transform
of a uniform planar monochromatic spatially incoherent source with intensity distribution S(k),
where k is the source plane coordinates. It is shown in Fig. 1(a) that k and ro, ri , rs are Fourier
transform coordinates. The measured intensity distribution Iz(rs; rc) can be written as

Iz(rs; rc) =
∬

Ŝ(ro1 − ro2)To(ro1 − rs)To(ro2 − rs)∗Gz(ro1, rc)Gz(ro2, rc)∗d2ro1d2ro2. (6)

                                                                Vol. 27, No. 2 | 21 Jan 2019 | OPTICS EXPRESS 733 



Computing the intensity distribution Iz(rs, rc) using Eq. (6) is usually extremely time-
consuming (a brief introduction of the computation of Eq. (6) can be found in [18,19]). However,
the computation can be significantly simplified in two special cases:

• Completely spatially coherent illumination when the source is so small that Ŝ(ro1 − ro2) =
1:

Iz(rs, rc) =
����∫ To(ro − rs)Gz(ro, rc)d2ro

����2 , (7)

• Completely spatially incoherent illumination when the source is so large that Ŝ(ro1−ro2) =
δ(ro1 − ro2):

Iz(rs, rc) =
∫
|To(ro − rs)|2 |Gz(ro, rc)|2d2ro . (8)

3. Computation of the point-spread function in the focal region

We the PSF of the lithographic system, which is associated with the intensity distribution
measured by each camera pixel via the scanning process in the image plane with axial coordinate
z, to be a complex-valued function of both the scanning positions rs and FOV coordinates rc ,
which can be computed using the Debye diffraction integral [17] as follows:

Hz(rs, rc) = F
{
exp[i2πΦ(ρ, rc)] exp(−iz |ρ |2)

}
(rs), (9)

where F denotes the Fourier transform, ρ is the pupil coordinates normalized by pupil radius, and
Φ(ρ, rc) is the wavefront error that produces the shift-invariant aberrations in each subregion.

We can decompose the 4-dimensional wavefront error by the Zernike polynomials as follows:

Φ(ρ, rc) =
∑
m,n

αm
n (rc)Zm

n (ρ), (10)

where αm
n (rc) denotes the aberration coefficient as function of the FOV coordinates rc , and

Zm
n (ρ) denotes the Zernike polynomial [17, 20] as function of the normalized pupil coordinates

ρ. We aim to combine the aberration coefficients retrieved in each subregion to determine the
spatial variation of each aberration term expressed as the Zernike polynomial. The relation
between the Zernike polynomials and the primary Seidel aberrations is beneficial for diagnosing
and correcting the lithographic system.

In Eq. (9), ρ and rs are a pair Fourier transform conjugated coordinates. Their samplings must
satisfy the Shannon-Nyquist sampling theorem. Note that Eq. (9) is valid only for imaging system
with sufficiently low NA, i.e. NA ≤ 0.6. For imaging system with high NA, i.e. NA > 0.6,
polarization effect needs to be taken into account.

4. The optimization algorithm for retrieving the aberration coefficients

In each subregion of the FOV, we retrieve the shift-invariant aberration from the through-focus
intensity measurements by solving an non-linear optimization problem. We formulate this
non-linear optimization problem by defining a cost function, which is the sum of the squared
difference between the measurements Iz(rs) and the predictions I ′z(rs;αm

n ) modeled using the
guessed aberration coefficients αm

n . We find the solution to this non-linear optimization by
updating the guessed aberration coefficients αm

n iteratively until the cost function reaches a
minimum. The cost function is expressed by

L(αm
n ) =

∑
z

∫ [
Iz(rs) − I ′z(rs;αm

n )
]2 d2rs . (11)

                                                                Vol. 27, No. 2 | 21 Jan 2019 | OPTICS EXPRESS 734 



Note that it is not sufficient to retrieve the aberration coefficients from only one measurement in
the focal image plane (z = 0). Because we measure only the intensity of the Fourier transform of
the pupil function, whose phase represents the wavefront error, measurements in the defocused
planes (z , 0) are also required for uniquely determine the aberrations coefficients. Fig. 2
shows that the measurements at different FOV locations have significantly more difference in the
defocused planes than in the focal plane. According to studies in [21, 22], the defocused planes
are preferred to be located symmetrically on both sides of the focal plane. The z coordinate of
the defocused planes should be sufficiently large that the correlation between the measurements
are sufficient small as mentioned in [23, 24]. However, the z coordinate cannot be larger than
5πλ/(πNA2) since otherwise the Debye diffraction Eq. (9) will be invalid.
To minimize the cost function, we need to derive an analytical expression for the gradient of

the cost function with respect to the aberration coefficients. By applying the chain rule to the
derivation, we obtain:

∂L(αm
n )

∂αm
n
= −

∑
z

∫
2
[
Iz(rs) − I ′z

(
rs;αm

n

) ] ∂I ′z(rs;αm
n )

∂αm
n

d2rs . (12)

In this formula, since we illuminate the lithographic system by spatial incoherent light, the
prediction of the measurement can be modeled by using Eq. (8), which is expressed as

I ′z(rs;αm
n ) = |To(rs)|2 ∗ |Gz(rs)|2 , (13)

where ∗ denotes the convolution and

Gz(rs) = Hz(rs, αm
n )? [Ti(rs)H ′(rs)], (14)

where ? denotes the correlation.
The gradient of the prediction with respect to the aberration coefficients is given by

∂I ′z(rs;αm
n )

∂αm
n

= |To(rs)|2 ∗ 2<
{
Gz(rs)∗

{
∂Hz(rs;αm

n )
∂αm

n
? [Ti(rs)H ′(rs)]

}}
, (15)

where < denotes the real part, ∗ denotes the complex-conjugate, and the gradient of the PSF
with respect to the aberration coefficients is given by

∂Hz(rs;αm
n )

∂αm
n

= F
{
i2πZm

n (ρ) exp[i2πΦ(ρ)] exp(−iz |ρ |2)
}
(rs). (16)

The computation of the gradient of the cost function is the most time-consuming step of the
optimization. The computation load is proportional to the number of aberration coefficients.
We use an array of zeros as the initial guess of the aberration coefficients, and we find the
aberration coefficients that minimize the cost function using the gradient-based optimization
routine "fminunc" implemented in Matlab.

5. Simulation results

In this section, we perform a qualitative study on the determination of the number and the
locations of the image planes required for retrieving aberration coefficients from through-focus
measurements and on the optimization of the design of the mask for optimal sensitivity. Our
study is based on simulations, in which we assume the first and the second masks consist of
identical periodic squared pinhole array with width w and pitch p. In the simulation, we use 37
aberration coefficients pre-calibrated at seven FOV locations on a realistic lithography machine
to simulate the measured intensity distributions. Each simulated measurements is normalized to
unity and then convert to 16-bit precision data type to mimic the use of a CCD/CMOS camera
sensor in the measurement process.
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5.1. Determining the number and the locations of the measurement planes
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Fig. 3. Variation of the residual wavefront error versus the locations of the measurement
planes. The gray graph is the mean and the standard deviation of the original wavefront
error used for simulating the measurements. The blue and the red graphs are the mean
and the standard deviation of the residual wavefront errors corresponding to the aberration
coefficients retrieved from 7 sets of simulated measurements in three planes (z = 0,±z′) and
in five planes (z = 0,±0.8π,±z′) respectively. The vertical axis is in the unit of wavelength
λ and the horizontal axis is the normalized z coordinate in the unit of λ/(πNA2).

In the simulation, we use periodic squared pinhole array with pinhole size w = 2.5 µm and
p = 7.5 µm. We scan the second mask relative to the image of the first mask by 20 steps with
step size 375 nm in two orthogonal directions perpendicular to the optical axis with the second
mask being placed in several through-focus planes with various z coordinates along the optical
axis. We use the root-mean-square (RMS) of the residual wavefront error ∆Φ(ρ) to evaluate the
performance of the algorithm. ∆Φ(ρ) is defined as the squared difference between the original
wavefront error, which is used for simulating the measurements, and the wavefront error retrieved
from the simulated measurements.

Suppose the measurements are taken in only three planes in the focal region. We set one plane
to be the focal plane at z = 0 and the other two defocused planes to be located symmetrically on
both sides of the focal plane at z = ±z′, where z′ is the z coordinate, normalized by λ/(πNA2),
that varies in the simulation. We plot the mean and the standard deviation of the RMS of ∆Φ(ρ)
for 7 sets of aberration coefficients as function of z′ ranging from 0 to 1.5π in Fig. 3 (blue curve).
We can observe that performance of the optimization algorithm is the optimal when we set the
two defocused planes to be located in the vicinity of z′ = ±0.8π (see the circle in Fig. 3), where
the RMS residual wavefront error is minimal.
We keep the three measurements taken in planes at z = 0 and z = ±0.8π. We simulate two

additional measurements in two defocused planes located still symmetrically on both sides of the
focal plane at z = ±z′. So, the optimization algorithm now uses 5 measurements. The mean
and the standard deviation of the RMS of ∆Φ(ρ) for 7 sets of aberration coefficients as function
of z′ in Fig. 3 (red curve) shows that the RMS of ∆Φ(ρ) is independent of locations of the two
defocused planes. This indicates that using 5 measurements does not further minimize the RMS
residual wavefront error compared to using 3 measurements. Therefore, it is sufficient for us
to retrieve the aberration coefficients from measurements taken in only three optimally chosen
through-focal planes: the focal plane z = 0, and two defocused planes at z = ±0.8π.
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Fig. 5. Comparison of the errors of the retrieved aberration coefficients. The measurements
are simulated using 37 aberration coefficients. The gray curve is the mean and the standard
deviation of the original aberration coefficients. The red and the blue curves are the errors
of the aberration coefficients retrieved from the measurements simulated using periodic
squared pinhole array with pinhole size 1.0 µm and 2.5 µm respectively. In this plot we
use 7 sets of aberration coefficients. The vertical axis is in base-10 logarithmic scale and
the horizontal axis is the Noll’s Zernike index. Left: Results using the first 15 coefficients.
Right: Results using the total 37 coefficients.

5.2. Sensitivity analysis and the optimization of the mask design

In Fig. 4 and 5, we plot the retrieval errors of the aberration coefficients for each order of
the Zernike polynomials. The retrieval error is defined as the squared difference between the
original and the retrieved aberration coefficients. We adopt the Noll’s index to enumerate the
aberration coefficients. The mapping from Zm

n , the Zernike polynomials with radial order n and
azimuthal order m, to Z` , the Zernike polynomials with Noll’s index `, can be found in [25]. In
both figures, we use 37 aberration coefficients to simulated the measurements, and we fit the
simulated measurements by the first 15 aberration coefficients (left) and by the total 37 aberration
coefficients (right) respectively.
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In practical situations, the complete description of the wavefront error requires infinite number
of aberration coefficients, but the optimization algorithm can only use finite number of aberration
coefficients to fit the measurements. So the influence of truncating the aberration coefficients
on the retrieval errors needs to be analyzed. In Fig. 4 and 5, the left panel shows that we can
accurately retrieve only the first 15 aberration coefficients from the measurements simulated
using total 37 aberration coefficients, and the right panel shows that although using the total 37
aberration coefficients to fit the measurements, the retrieval of the low order (first 15) aberration
coefficients is still more than high order (the rest) aberration coefficients

To investigate the robustness of our method against the noise, we introduce Gaussian distributed
random noise with zero mean and 10−3 variance to the simulated measurements. In Fig. 4,
by comparing the aberration coefficients retrieved from the noisy measurements (red) and the
noise free measurements (blue) in the left panel and in the right panel respectively, we find that
the influence of the Gaussian noise on our algorithm is negligible, which may be because the
Gaussian noise does not bias the measurements.

The design parameter of the mask are the pinhole size w and the pitch p. In Fig. 5, we plot the
errors of the aberration coefficients retrieved from the measurements simulated using periodic
squared pinhole array with pinhole size w = 1.0 µm (red) and w = 2.5 µm (blue) . The left
plot shows that using a smaller pinhole cannot reduce the retrieval error when the optimization
algorithm uses only the first 15 aberration coefficients, while the right plot shows that the retrieval
error can be significantly reduced by using a smaller pinhole when the optimization algorithm
uses the total 37 aberration coefficients.

6. Experimental results

In this section, we validate our method by performing an experiment on a realistic lithography
machine. It is a projection lens with 1× magnification, NA 0.128 on both object side and image
side, and operating wavelength 355 nm, which allows imaging with <2 µm critical dimension in
a rectangle FOV with size 52 mm × 33 mm. The first mask and second mask consist of identical
periodic arrays of squared pinholes with pinholes size w = 2.5 µm and pitch p = 4.5 µm. Both
masks are fabricated in chrome on fused silica substrate using e-beam lithography with 25 nm
position accuracy in a rectangle area with size 55 mm × 35mm.
The first mask, which is placed in the object plane of the projection lens, is illuminated with

a Köhler illumination system. As a source, we use a Q-switched laser operating at 355 nm
wavelength, 25 ns pulses and 200 kHz pulse repetition frequency. The beam is expanded to 2
inch diameter and scattered by a 20◦ engineered diffuser. A condenser lens with 200 mm focal
length performs optical Fourier transform between the diffuser and the first mask, which are
located in back and front focal planes of the condenser lens, respectively. The scattering angle is
sufficient to fully illuminate the entire first mask, and the beam diameter is sufficient to overfill
the pupil of the projection lens and make the illumination spatially incoherent.
During the scanning measurement process, the position of the first mask is fixed; the second

mask, which is placed in the image plane of the projection lens, is movable, which is mounted on
a piezo stage with 3 degrees of freedom: two orthogonal directions perpendicular to the optical
axis and one direction along the optical axis. The piezo stage’s closed-loop control provides
absolute accuracy of 25 nm.

We scan the second mask relative to the first mask by 25 steps with step size 180 nm over one
pitch along the two orthogonal directions perpendicular to the optical axis. The second mask
is placed in 10 planes with with step size 5.56 µm, or 0.26π in normalized z coordinate, in the
direction along the optical axis for taking the through-focus measurements.

In the experiment, the resulting MoirÃľ pattern is captured with a half inch size CCD camera
equipped with a camera lens with 25 mm focal length. The FOV is divided into a large number
of subregions. The number of subregions equals to the number of pixels in the area where the
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camera is illuminated. Nevertheless, the optimization algorithm is time-consuming, which takes
about few minutes on a normal desktop computer, so running optimization algorithm at every
FOV locations is not feasible. We downsample camera measurements by a factor of 20 and the
FOV is sampled by 16× 25 pixels. Therefore, the retrieved aberration coefficients are 15 matrices
(15 aberration terms) with size 16 × 25.

25-25 -13.89 13.89-2.78 2.78 

z (um)

(a)

(b)

0

Focal 

Plane

Defocus below

Focal Plane 

Defocus above

Focal Plane 

Fig. 6. Comparison between the experimental measurements (a) and the predictions
calculated using the retrieved aberration coefficients (b). We retrieve the first 15 aberration
coefficients from 4 experimental measurements taken in 4 image planes at z = ±2.78 µm
and z = ±25 µm respectively, and we then model the predictions in these 4 image planes
and another 2 image planes at z = ±13.89 µm (in the black boxes).

In Fig. 6, we compare the experimental measurements and the predictions calculated using
the retrieved aberration coefficients in one subregion (at one FOV location). The optimization
algorithm takes 4 intensity distributions measured in 4 image planes located at z = ±2.78 µm
(±0.13π) and z = ±25 µm (1.15π) to retrieve the coefficients of the shift-invariant aberrations.
We then use the retrieved aberration coefficients to model the predictions of the intensity
distributions in these 4 image planes and another two image planes at z = ±13.89 µm (the
intensity distributions in the black boxes). The comparison in Fig. 6 shows that the predictions
are in good agreement with all 6 experimental measurements. In the optimization algorithm, we
use a square as the PSF of the measurement system H(ri) in Eq. (5). However, the measurement
system is assumed to be shift-invariant and aberration-free, it might be more suitable to use a
Bessel function (the Fourier transform of a circular pupil).
In Fig. 7 we made a comparison between the defocus aberration calibrated using our method

and reference data (published in [15], which is in agreement with interferometry data). Defocus
aberration is relative to the location the focal plane of the imaging system. In the experiment, the
peizo translation stage has an absolute accuracy of 25 nm, so the error of the location of each
image plane can be neglected. However, there might be a systematic error of their locations,
which means that the focal plane may not be exactly at z = 0. This systematic error leads to an
offset of the defocus aberration retrieved from the experimental through-focus measurements
(blue curve). In order to perform a fair comparison, we assume that the defocus aberration
calibrated using our method and the reference data have zero mean. In this way, we can correct
for the offset of the retrieved defocus aberration (red curve), which is in good agreement with the
reference defocus aberration (black curve). Fig. 7 also demonstrates that in order to determine
the best focal plane precisely for lithography system, it is necessary to the defocus aberration at a
large number of FOV locations since its spatial variation may be fast and dramatic.
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Fig. 7. Comparison between the reference defocus aberration data (a) and retrieved from
scanning measurements using our method (b) in the full FOV. (c) and (d): the x and y
cross-section of the calibrated result (black curve) in (a) and the retrieved results (red/blue
curve) in (b). The defocus aberration is relative to the location of the focal plane. The focal
plane’s location error leads to an offset of the defocus aberration, which can be corrected
manually.

7. Conclusion

In this paper, we developed and validated an efficient, accurate and robust method for calibrating
the spatially varying aberrations of an imaging system. Our method does not require complex
equipments, but only a pair of periodic pinhole array masks, a 3-dimensional precision translation
stage, an additional imaging system and a camera sensor. By taking few hundreds of intensity
measurements via a scanning process, we can simultaneously measure patterns that are in analogy
to the PSF patterns at millions of FOV locations. We demonstrated that we can retrieve the
coefficients of 37 aberration terms with a nanometer accuracy.

Because we use only binary masks with transmission/reflection being either 1 or 0, our method
can be applied to almost any wavelength. At the current stage, we consider only a low NA
imaging system. However, our method also has a potential to be extended to calibrating the
spatially varying aberration of a high NA large FOV imaging system.
We recommend to use either complete spatially coherent or complete spatially incoherent

illumination for the calibration. This is mainly due to the consideration of computation efficiency.
In practice, spatially coherent illumination can always be generated by using a sufficiently small
source. However, spatially incoherent illumination cannot be generated when the NA in the
object side of the imaging system is larger than 0.5. In this situation, the condition of spatially
incoherent imaging cannot be fulfilled even using an infinitely large source.
It is in principle to retrieve the information of source as well. However, this requires more

through-focus measurements and consumes significantly more time. From our perspective,
this can be surpassed by implementing parallel computation. In our method, it is possible to
parallelize the computation of the gradient of the cost function with respect to the each aberration
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coefficients and/or to parallelize the optimization at each FOV locations.
Regarding the shape of the pinhole in the periodic masks, a circular pinhole is easier to

fabricate, however, since we use Cartesian coordinates in the computation, a circular pinhole
will cause aliasing issue if the sampling of the measurements is not sufficiently high. In our
method, the sampling number is equal to the scanning position number, and we want to scan as
few positions as possible. So, a squared pinhole array mask is used in our method.
The design parameters of the pinhole array masks are the pinhole size and the pitch. The

patterns measured by the scanning process can be computed by convolving the PSF of the
lithographic system in each subregion with the correlation of two pinholes. Furthermore, because
our method uses a pair of periodic pinhole array mask, the measured pattern suffers from the
cross-talk effect. Therefore, we prefer a smaller pinhole size and a larger pitch.
The optimal design parameters and scanning settings, which depend on the imaging system

that is to be calibrated and the wavelength, can be determined by simulations. We remark that
the determination should base on a sufficiently large data base of all possible combinations of the
values of the aberration coefficients to avoid bias.
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