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1. Introduction

In external beam radiation therapy (EBRT), the goal is to kill the tumor cells using ionizing radiation, while 
sparing the normal (healthy) tissues as much as possible. In spatial optimization, the radiation beam directions 
and intensities are optimized such that the dose to the healthy tissues is minimal, while still delivering the 
prescribed dose to the tumor. On the other hand, temporal optimization aims to select the optimal number of 
fractions of the treatment. The concept of fractionation is based on the observation that healthy cells have the 
capability to tolerate a larger dose if it is delivered in smaller fractions over multiple days, since they can repair 
radiation damage between treatments (Withers 1985, Fowler 1989).

Regarding the spatial component, different beam types (modalities) have different healthy tissue sparing 
properties. The relevant modalities for this work are photon beams (x-rays) and proton beams. Photon therapy is 
a conventional method that is by far the most frequently used. Proton therapy is a more advanced method, which 
theoretically has superior healthy tissue sparing properties, but is more expensive. While protons can offer higher 
dose conformity due to the pronounced Bragg peak, in the current planning approach often larger margins are 
used for protons than for photons due to range uncertainties (Perkó et al 2018). This is not a fundamental char-
acteristic of proton therapy, but rather a consequence of limited image guidance and range control abilities in 
current proton therapy practice. Therefore, in present clinical setting using protons is not necessarily better for 
organs very close to the target (Perkó et al 2018), and investigating combined proton–photon treatments can be 
of interest.
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Abstract
This paper investigates the potential of combined proton–photon therapy schemes in radiation 
oncology, with a special emphasis on fractionation. Several combined modality models, with 
and without fractionation, are discussed, and conditions under which combined modality 
treatments are of added value are demonstrated analytically and numerically. The combined 
modality optimal fractionation problem with multiple normal tissues is formulated based on the 
biologically effective dose (BED) model and tested on real patient data. Results indicate that for 
several patients a combined modality treatment gives better results in terms of biological dose 
(up to 14.8% improvement) than single modality proton treatments. For several other patients, a 
combined modality treatment is found that offers an alternative to the optimal single modality 
proton treatment, being only marginally worse but using significantly fewer proton fractions, putting 
less pressure on the limited availability of proton slots. Overall, these results indicate that combined 
modality treatments can be a viable option, which is expected to become more important as proton 
therapy centers are spreading but the proton therapy price tag remains high.
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In the fractionation optimization literature we can distinguish between single and multiple normal tissues, 
and between single and combined modality models. The biological effective dose (BED) model (Fowler 1989, 
2010) has been the basis of most work on the topic. For the case with a single normal tissue and a single treatment 
modality, many numerical and analytical results have been derived. Mizuta et al (2012) mathematically prove 
that in this case the decision between hypofractionation and hyperfractionation depends on the ratio between 
the normal tissue α/β-ratio and the tumor α/β-ratio, where the α/β-ratio is a tissue-specific parameter rep-
resenting the sensitivity of the tissue to fractionation. In the work of Unkelbach et al (2013a) this is generalized 
to the case where a spatially heterogeneous dose distribution is allowed via the introduction of dose sparing fac-
tors. Bortfeld et al (2015) further extend this model by including a tumor repopulation term. Many other studies 
examine specific aspects of the problem, or applications to specific tumor sites (Wein et al 2000, Yang and Xing 
2005, Bertuzzi et al 2013).

Recently there has been significant progress on the optimal fractionation problem with a single treatment 
modality and multiple normal tissues. Saberian et al (2015) and Badri et al (2016) independently formulate and 
solve the optimization problem via a reformulation to a two variable linear programming problem. Saberian 
et al (2016) derive several results for the general optimization problem with maximum point dose, mean dose 
and dose-volume histogram (DVH) constraints. Amongst others they derive sufficient conditions for optimality 
of equal-dosage (more than one fraction) or single-dosage solutions. Kim et al (2015) apply the single modality 
optimal fractionation model with multiple normal tissues to phantom lung cases and find that, especially for 
cases with favorable geometry, nonconventional fractionation schemes may improve local tumor control while 
yielding shorter treatment courses. Perkó et al (2016) apply the same method to liver patients cases, and it is dem-
onstrated that an intermediate fractionation scheme is optimal in the case of competing normal tissues.

In Unkelbach et al (2013b) and Unkelbach and Papp (2015) the spatiotemporal optimization problem is 
considered, where they simultaneously optimized the spatial dose distribution and the fractionation, in order 
to minimize a weighted sum of normal tissue doses and deviations from a prescribed tumor BED. Saberian et al 
(2017) consider the spatiotemporal optimal fractionation problem where they maximize tumor BED subject to 
BED constraints on multiple normal tissues. O’Connor et al (2018) solve the physical dose-based beam orienta-
tion optimization problem, allowing for different (non-coplanar) beam angles in different fractions.

Nill (2001, chapter 4) concludes that combined proton-photon treatments do not improve over proton treat-
ments. However, they do not take into account fractionation. An application of the BED model to combined 
modality treatments is discussed in Bodey et al (2004), but this study combines photon therapy with targeted 
radionuclide therapy (a form of internal radiation therapy), instead of another EBRT modality.

This paper investigates combined modality fractionated treatments where each fraction employs either pho-
ton or proton therapy. Our three main contributions are as follows:

 •  Analytical and numerical demonstration of optimal combined modality treatments: We formulate and 
solve simplified combined modality optimization problems, that prove they can outperform single modality 
proton treatments for two reasons. First, in situations with multiple constraints, one constraint may be 
more restrictive for one treatment modality, while the other more restrictive for the other modality, making 
combined treatments optimal. Second, in situations where proton plans are superior in terms of dose, using 
photon fractions can yield plans that are better in terms of BED, due to the fractionation effect.

 •  Demonstration of improved patient treatment plans: We formulate the multiple normal tissue combined 
proton-photon fractionation optimization problem and solve it using real data from 17 patients, showing 
that for five combined modality treatments are an improvement over single modality proton treatments.

 •  Demonstration of better resource allocation: For three patients we show that a combined modality 
treatment plan can be found that is only marginally worse than the optimal proton treatment, while it uses 
fewer proton fractions.

The literature on (fractionation) optimization for combined proton-photon treatments is limited. The recent 
paper Unkelbach et al (2018) studies a similar combined modality problem, using spatiotemporal optim ization. 
In their paper, first a 30-fraction plan is optimized for photons only and protons only. They use these to generate 
a reference plan, which is a proportional combination of these single modality plans such that the total number 
of photon and proton fractions is 30. Finally they optimize the combined modality plan, restricted to 30 fractions 
and enforcing that several performance measures do not deteriorate with respect to the reference plan. Unlike 
their approach, our method does not fix the total number of fractions and within a single modality we allow for 
nonuniform fractionation. Furthermore, while the method of Unkelbach et al (2018) is demonstrated only for 
a single patient, our larger data set indicates that several types of patients can be distinguished with regard to the 
benefit of combined modality. Lastly, we provide theoretical results that demonstrate the conditions under which 
combined modality can outperform single modality treatments.

Phys. Med. Biol. 64 (2019) 065011 (21pp)
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Nourollahi et al (2018) also study BED-based combined modality fractionation optimization problems. 
However, they do not allow for a heterogeneous dose distribution via voxel-specific dose sparing factors, and 
consequently do not take DVH constraints into account either. Their approach and numerical results mainly 
focus on hypothetical cases with a single healthy tissue, whereas we find that one of the reasons for optimality of 
combined modality treatments is the interplay of multiple healthy tissues.

The outline of this paper is as follows. Section 2.1 discusses two reasons why combined proton–photon 
treatments may outperform single modality treatments. Section 2.2 presents the full combined proton-photon 
fractionation optimization problem. In section 3 this model is tested on a data set of liver patients treated at 
Massachusetts General Hospital (MGH) and the results are presented. Section 4 discusses the results and their 
relevance to clinical practice. Last, section 5 presents our conclusions.

2. Methods and materials

Our approach is based on the standard biological effective dose (BED) model. Tumor repopulation is not taken 
into account. The standard BED model states that the biological effect of a dose D given to a tissue in N fractions 
is given by

BED = D(1 +
1

α/β

D

N
), (1)

where α/β  is a parameter indicating the fractionation sensitivity of the tissue, and BED is measured in Gyα/β 
instead of Gy. We generalize BED equation (1) to the situation with unequal dose per fraction and two treatment 
modalities. Due to additivity, the BED to an irradiated tissue equals the BED from a photon dose plus the BED 

from a proton dose. Let DT
i =

∑Ni

ti=1 di,ti be the total dose to the tumor of modality i, where di,ti is the dose of 
modality i to the tumor in fraction ti, and Ni is the number of fractions of modality i. Subscripts i = γ  and i  =  p  
stand for photons and protons, respectively. Let si,j  denote the dose sparing factor of any voxel j  in the tumor or in 
an OAR for treatment modality i. The BED to voxel j  is given by

BEDj =

Nγ∑
tγ=1

sγ,jdγ,tγ + ρ

Nγ∑
tγ=1

s2
γ,jd

2
γ,tγ +

Np∑
tp=1

sp,jdp,tp + ρ

Np∑
tp=1

s2
p,jd

2
p,tp

, (2)

where ρ  denotes the inverse α/β  ratio of the tissue containing voxel j .
In section 2.1 we describe two reasons why combined proton–photon treatments may outperform single 

modality treatments. Section 2.2 presents the BED-based full combined proton-photon fractionation optim-
ization problem.

2.1. Two reasons why combined proton-photon treatments can outperform single modality treatments
We consider a situation with two organs-at-risk (OARs). OAR 1 includes the tumor and OAR 2 is another organ 
close to the tumor, see figure 1. The outer circle indicates OAR 1, the tumor is the black circle in the middle, and 
the blue circle indicates OAR 2. No other OARs play a significant role. Figure 1 is naturally a 2D representation of 
a 3D situation, with OAR 2 interpreted as an organ close to the tumor.

For the photon dose distribution (figure 1(a)) we assume that the gantry completes a full rotation around 
the patient shooting beams from all angles. These angles intersect in the area within the red circle, where the dose 
is high. Outside this area, we assume that photon beams do not intersect, so the dose is equally low everywhere 
(green area). Thus, the tumor and a small part of OAR 1 receive a uniform high dose, and the rest of OAR 1 and 
the entire volume of OAR 2 (blue area) receive a uniform low dose.

For the proton dose distribution (figure 1(b)) there is a single beam. There is a high dose area (spread out 
Bragg Peak in red) and a low dose area (the beam entrance in green). Thus, the tumor, part of OAR 1 (around the 
tumor) and part of OAR 2 (intersection of red and blue area) receive a uniform high dose, part of OAR 1 receives 
a uniform low dose, and the remaining parts of OAR 1 and OAR 2 receive no dose.

We need to determine how much dose should be given with each modality, i.e. how much the dose distribu-
tions described above should be scaled. The corresponding optimization problem can be formulated in terms of 
dose, or in terms of BED. In the latter case, it must also be determined how many fractions are needed for each 
modality. The objective is to maximize the dose or BED to the tumor, such that the dose or BED to the OARs 
remains below some tolerance level. If the optimal solution makes use of both photon and proton dose (and 
fractions), this implies that combined modality yields a better solution than single modality, and analyzing the 
underlying mathematical model can reveal the conditions under which this occurs. In sections 2.1.1 and 2.1.2 we 
identify two such reasons. Combined modality treatments can also be shown to be optimal (see appendix A.3) if 
one minimizes the dose or BED to one of the OARs, while one constrains the tumor dose or BED to a prescribed 
level and the dose or BED to the other OAR below a tolerance.

Phys. Med. Biol. 64 (2019) 065011 (21pp)
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2.1.1. Optimality due to competing constraints, with protons and photons being better for different ones
The first reason why combined modality treatments may outperform single modality proton treatments is due to 
the different shape of the high dose regions of the photon and proton dose distributions, when there are multiple 
OARs in proximity to the tumor. As seen in figure 1, part of OAR 2 falls in the proton high dose region, but not in 
the photon high dose region, meaning that a DVH or maximum point dose constraint may be more restrictive 
for protons than for photons. For example, consider a DVH constraint on OAR 2 where the restricted volume 
(the maximum volume for which the dose may exceed a given tolerance level) is smaller than the high dose region 
of OAR 2 for the proton dose distribution. This constraint is much more restrictive for protons than for photons. 
Hence, if we only set this constraint, the photon dose distribution is favorable. On the other hand, a mean dose 
constraint on OAR 1 is more restrictive for the photon dose distribution than for the proton dose distribution, 
due to the much larger photon low dose region. Hence, a mean dose constraint favors protons.

In essence, we have two competing constraints, both favoring a different treatment modality. A combined 
modality treatment that uses part photons and part protons is able to balance these two interests best. As math-
ematically derived in appendix A.1, a combined modality treatment can deliver a higher dose to the tumor than 
either modality alone, while it also satisfies the DVH and mean dose constraints on OAR 2 and OAR 1 respec-
tively.

A similar conclusion can be reached if a DVH constraint is set such that the proton entrance dose is con-
strained, or if more DVH constraints are added, and the example can naturally be generalized to allow more 
proton beams. While we supposed a larger high dose region for protons than for photons, this is not a neces-
sary condition for our statements to hold, simple shape differences can also lead to similar conclusions (protons 
depositing high dose in OAR 2 while photons not). Moreover, proton plans in practice can indeed show larger 
high dose regions compared to photon plans due to larger planning margins (due to more uncertainty in range, 
e.g. for organs with significant internal motion) and worse lateral penumbra (Perkó et al 2018). As shown in sec-
tion 3, this is truly the case for our patient data.

2.1.2. Optimality due to having more fractions, even if photons are somewhat worse
The second reason why combined modality may outperform single modality proton treatments is related to the 
fractionation effect. If the α/β-ratio of the OAR is smaller than that of the tumor, the benefit of fractionation 
is larger for the OAR than for the tumor. For simplicity, suppose the α/β-ratio of the tumor is sufficiently large 
so that we can neglect the fractionation effect and optimize for maximum tumor physical dose. Next, consider a 
mean dose constraint on OAR 1. For a fixed dose to (part of) OAR 1, the BED to (that part of) OAR 1 will be lower 
if this dose is administered over multiple fractions. As the number of fractions does not influence the damage to 
the tumor, once we are delivering a non-zero dose with a modality (photons or protons), it will always be optimal 
to use the maximum number of allowed fractions for this modality.

For the same tumor dose, the proton dose distribution has a lower mean dose in OAR 1 than the photon dose 
distribution. Therefore, when using equal dose per fraction to minimize BED, protons also deliver lower mean 
BED in OAR 1 than photons for a given number of fractions, and it is always optimal to set a non-zero dose per 
fraction to the proton fractions. In case we use only protons, the proton dose per fraction is increased until we 

(a) (b)

Figure 1. Schematic view of the simplified (2D) scenario with an OAR containing a tumor, and a second nearby OAR. The outer 
circle represents OAR 1 with the tumor in the middle (black), and the blue circle represents OAR 2. (a) The photon dose distribution 
causes ‘high’ damage inside the intersection of the beams (red) and ‘low’ damage everywhere else (green). (b) The proton beam 
causes ‘high’ damage in the spread out Bragg Peak (red), ‘low’ damage at the entrance (green) and no damage anywhere else.

Phys. Med. Biol. 64 (2019) 065011 (21pp)
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reach the mean BED tolerance on OAR 1. Delivering part of the dose via photon fractions allows for a lower dose 
per fraction in the proton fractions. Adding these photon fractions naturally leads to slightly worse OAR sparing 
in terms of physical dose, however due to the higher total number of fractions, the BED in OAR 1 does not neces-
sarily increase. Whether or not using the photon fractions is optimal depends on the trade-off between the worse 
OAR sparing in terms of physical dose and the benefit of fractionation. In appendix A.2 we demonstrate that 
this trade-off indeed occurs, and that combined proton–photon treatments outperform single modality proton 
treatments in terms of achievable tumor dose, if the BED tolerance level exceeds a threshold. That is, unless the 
BED tolerance of OAR 1 is very restrictive, the benefit of having more fractions outweighs the disadvantage of 
some of these fractions (the photon fractions) having worse physical OAR sparing.

2.2. General combined modality fractionation model with multiple OARs
In this section the general optimization problem for the combined proton-photon optimal fractionation 
problem with multiple normal tissues is formulated. The model can take into account maximum point dose, 
mean dose and dose-volume constraints, accepts arbitrary proton and photon dose distributions as given inputs, 
and determines the optimal dose for each modality (i.e. how much the dose distributions need to be scaled) and 
the number of fractions these doses should be delivered. Note that the general model described in this section is 
completely separate from the simplified geometry of section 2.1 and makes no assumptions regarding the dose 
distributions.

Similar to the approach of Saberian et al (2015) for the single modality fractionation problem, we formulate 
our model not in terms of dose vectors dγ  and dp  (for photons and protons respectively), but instead in terms of 
four new variables. For photons, let xγ and yγ denote the total dose and the sum of squared doses. For protons, 
denote these quantities by xp  and y p , respectively. Thus, we use the following substitutions:

xγ =

Nγ∑
tγ=1

dγ,tγ , yγ =

Nγ∑
tγ=1

d2
γ,tγ , xp =

Np∑
tp=1

dp,tp , yp =

Np∑
tp=1

d2
p,tp

. (3)

First we consider the objective function. Let nT be the number of voxels in the tumor, and ρT the inverse 

α/β-ratio of the tumor. Let sT
i,j be the dose sparing factor of tumor voxel j  for treatment modality i. The objective 

is to maximize the mean target BED, which can be formulated as

max
xγ ,yγ ,xp,yp

1

nT

nT∑
j=1

(
sT
γ,jxγ + ρT(sT

γ,j)
2yγ + sT

p,jxp + ρT(sT
p,j)

2yp

)
. (4)

Next, we consider the constraint types. Let M1, M2 and M3 denote the set of maximum point dose, DVH 
and mean dose constraints, respectively. For the OAR corresponding to constraint m, let nm denote the number of 
voxels in the OAR, ρm denote the inverse α/β  ratio for the OAR, and sm

i,j be the dose sparing factor of voxel j  in the 
OAR for treatment modality i.

2.2.1. Maximum point dose constraints
A maximum point dose constraint on OAR m states that no voxel in the OAR may receive a dose higher than dose 
Dm

max  if delivered in Nm fractions. This tolerance dose corresponds with a BED of

BEDm
max = Dm

max

(
1 + ρm Dm

max

Nm

)
. (5)

Thus, the constraint reads

sm
γ,jxγ + ρm(sm

γ,j)
2yγ + sm

p,jxp + ρm(sm
p,j)

2yp � BEDm
max, ∀j = 1, . . . , nm, m ∈ M1. (6)

2.2.2. DVH constraints
For a DVH constraint on OAR m, no more than a fraction Fm of the OAR volume Vm may receive a dose higher 
than Dm

dvh if given in Nm fractions. This tolerance is equivalent to a BED of

BEDm
dvh = Dm

dvh

(
1 + ρm Dm

dvh

Nm

)
. (7)

The constraint now reads

sm
γ,jxγ + ρm(sm

γ,j)
2yγ + sm

p,jxp + ρm(sm
p,j)

2yp � BEDm
dvh + M(1 − um

j ),

∀j = 1, . . . , nm, m ∈ M2,
 (8)

where M ∈ R is a sufficiently large positive number, and um
j  are binary decision variables for ∀j = 1, . . . , nm. 

Let u denote the stacked vector of all binary variables for ∀m ∈ M2. A value um
j = 1 implies that voxel j  in the 

Phys. Med. Biol. 64 (2019) 065011 (21pp)
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OAR corresponding to constraint m receives a BED lower than or equal to BEDm
dvh  and um

j = 0 implies that voxel 
j  receives a BED higher than BEDm

dvh . Because volume Vm is discretized into nm voxels, we add extra constraints 
that at least nm − �Fmnm� voxels must receive a BED lower than BEDm

dvh :

nm∑
j=1

um
j � nm − �Fmnm�, ∀m ∈ M2, (9)

um
j ∈ {0, 1}, ∀j ∈ Nm, ∀m ∈ M2. (10)

2.2.3. Mean dose constraints
A mean dose constraint on OAR m states that a mean dose of Dm

mean over all voxels is tolerated if given in Nm 
fractions. This constraint can be formulated as

1

nm

nm∑
j=1

(
sm
γ,jxγ + ρm(sm

γ,j)
2yγ + sm

p,jxp + ρm(sm
p,j)

2yp

)
� BEDm

mean. (11)

For the mean dose tolerance, we note that there is a difference between the BED of the mean dose and the mean 
BED, due to the influence of the spatial distribution of the dose. In Perkó et al (2018) this effect is captured for 
a single modality by a parameter named the dose shape factor. The dose shape factor ϕm for the photon dose 
distribution in the OAR corresponding to constraint m is given by

ϕm =
nm

∑nm

j=1 s2
γ,j(∑nm

j=1 sγ,j

)2 , (12)

and similar for the proton dose distribution. For more details, see Perkó et al (2018).

2.2.4. Final optimization problem
All put together, the optimization problem reads:

max
xγ ,yγ ,xp,yp,u

1

nT

nT∑
j=1

(
sT
γ,jxγ + ρT(sT

γ,j)
2y + sT

p,jxp + ρT(sT
p,j)

2yp

)
, (13a)

s.t. sm
γ,jxγ + ρm(sm

γ,j)
2yγ + sm

p,jxp + ρm(sm
p,j)

2yp � BEDm
max,

∀j = 1, . . . , nm, ∀m ∈ M1,
 

(13b)

sm
γ,jxγ + ρm(sm

γ,j)
2yγ + sm

p,jxp + ρm(sm
p,j)

2yp � BEDm
dvh + M(1 − um

j ),

∀j = 1, . . . , nm, ∀m ∈ M2,
 

(13c)

nm∑
j=1

um
j � nm − �Fmnm�, ∀m ∈ M2, (13d)

um
j ∈ {0, 1}, ∀j = 1, . . . , nm, ∀m ∈ M2, (13e)

1

nm

nm∑
j=1

(
sm
γ,jxγ + ρm(sm

γ,j)
2yγ + sm

p,jxp + ρm(sm
p,j)

2yp

)
� BEDm

mean,

∀m ∈ M3,

 

(13f )

√
yγ � xγ �

√
Nγyγ , (13g)

√
yp � xp �

√
Npyp, (13h)

xγ � 0, yγ � 0, xp � 0, yp � 0. (13i)

Constraints (13g) and (13h) model the relations between decision variables xγ and yγ, and xp  and y p , respectively. 
In the supplementary material (section D, suppl. (stacks.iop.org/PMB/64/065011/mmedia)) it is shown that (13) 

is equivalent to (D.9), i.e. the optimization problem in terms of the original dose-per-fraction vectors dγ ∈ RNγ

+  

and dp ∈ RNp

+ . Compared to the single modality model in Saberian et al (2015) (also detailed in appendix B), the 

main difficulty is found in the DVH constraints, as there is no a-priori ordering of the voxels in terms of BED. To 
overcome this we developed the algorithm described in section 2.2.5.
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2.2.5. Optimization algorithm
To solve problem (13) we make use of the following variable transformation:

θ =
xγ

xγ + xp
, vγ =

x2
γ

yγ
, vp =

x2
p

yp
. (14)

Variable θ can be interpreted as the fraction of photon dose to total dose. Variables vγ and vp are, when 
rounded up, equal to the number of used photon and proton fractions, respectively. The new set of variables is 
{xγ , u, θ, vγ , vp}. Let f  and F  denote the objective function and feasible set of (13) in terms of the new variable set.

We split the new variables set into two sets: {xγ , u} and {θ, vγ , vp}. In the supplementary material (section 
E.1, suppl.) it is described how for fixed variables {θ, vγ , vp} we can (exactly) compute the optimal values of 
{xγ , u}. The described procedure eliminates the (large number of) binary variables u and requires only a sorting 
algorithm to compute the optimal value for xγ. Hence, this procedure is very fast. Denote these optimal values by 
x∗γ(θ, vγ , vp) and u∗(θ, vγ , vp). Then we can concisely represent problem (13) as

max
θ,vγ ,vp

f (x∗γ(θ, vγ , vp), u∗(θ, vγ , vp), θ, vγ , vp) (15a)

s.t.
{

x∗γ(θ, vγ , vp), u∗(θ, vγ , vp), θ, vγ , vp

}
∈ F , (15b)

which is a problem of only three variables, as (θ, vγ , vp) are all scalar variables. We solve (15) via a generalized 
pattern search (GPS) algorithm (Audet and Dennis 2003). GPS is an optimization algorithm that does not 
require a gradient, nor does it require the objective function to be continuous. To improve performance, we take a 
multi-start approach, details of which are provided in the supplementary material (section E.2, suppl.).

This separation into two variable sets also enables setting an additional constraint on the dose per fraction 
values. Specifically, it allows us to set a minimum dose per fraction value dmin and a maximum dose per fraction 
value dmax . This may be clinically interesting, as it avoids treatments that could be considered unrealistic in cur-
rent practice, with too high or negligibly small dose per fraction values.

2.2.6. Implementation
All computations were performed on a 2.6 GHz Intel-Core i5 PC with 8 GB RAM, using the software package 
MATLAB R2017b (Mathworks, Natick, MA, US). The MATLAB toolbox CERR (Computation Environment 
for Radiotherapy Research, Deasy et al (2003)) is used to visualize and analyze patient data, and to transfer 
the data to the MATLAB environment. For all patients we solve problem (13) using the MATLAB function 
patternsearch for all combinations of Nγ and Np  such that Nγ + Np = 15, so the total number of allowed 
fractions is 15. The single modality proton optimal fractionation problem (see appendix B) is also solved. During 

the optimization procedure, we set a minimum and a maximum dose per fraction of dmin = 1 Gy fx−1 and 
dmax = 10 Gy fx−1, respectively.

2.2.7. Patient data
The data set is a subset of the data set used in Perkó et al (2018), consisting of actual patient data (in DICOM 
format) from 17 patients who were treated at Massachusetts General Hospital, and was provided by physicians 
collaborating with the physics research group. All patients in the data set are liver patients and were treated with 
passively scattered protons in practice, in 5 or 15 fractions. All proton plans incorporated compensator smearing 
and are adjusted for relative biological effectiveness (RBE) by setting RBEproton = 1.1. Next to the clinically used 
proton plans, the treatment planners also derived photon plans for these patients, taking into account all proper 
clinical measures to deal with uncertainties. For more details on patient selection and how uncertainties were 
handled we refer to Perkó et al (2018).

Patients with liver tumors are interesting for combined modality treatments, due to the large number of 
neighbouring healthy tissues, and the different constraints on the tissues that are in the paths of the beams. Our 
patient cohort well reflected that proton distributions are not necessarily superior in terms of the high dose area: 
due to larger motion uncertainty they typically used larger margins. Although the used proton plans are passive 
scattering plans, even in IMPT larger margins could be present than in their photon counterparts.

3. Results for patients for combined modality fractionation model with multiple OARs

The objective is to maximize the BED to the gross target volume (GTV). Throughout the results and discussion 
the terms GTV and tumor are used interchangeably. Table 1 presents the most important constraints for all 
patients in terms of dose and BED. In clinical practice, the dose tolerance levels for healthy liver mean dose are not 
hard constraints but are used as ‘goals’, meaning that for a given number of fractions a range of dose tolerances 
is acceptable. Correspondingly, in our optimization dose tolerance values are picked such that the resulting GTV 
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BED is between 50 and 200 Gy. This value is applied consistently in the optimization of the single modality 
photon and proton treatments and the combined modality treatment, to allow for a fair comparison. In clinical 
practice, the range of dose tolerances for the 5 and 15 fraction regimens are [13 Gy, 17 Gy] and [23 Gy, 27 Gy], 
respectively. However, for cases with very small tumors, the mean GTV BED can take very high values before 
these liver mean dose constraints are binding. Hence, we extend these dose tolerance ranges to [8 Gy, 17 Gy] for 

the five fraction regiment and [16 Gy, 27 Gy] for the 15 fraction regimen.
In clinical practice, the healthy liver (liver–clinical target volume (CTV)) constraints are either mean dose 

constraints or DVH constraints, where DVH constraints are used for cases with large tumors and mean dose 
constraints are used for cases with small tumors. In our numerical experiments we use both sets of constraints 
simultaneously, except that the 700cc healthy liver DVH constraint is omitted for those patients where it was vio-
lated clinically, to achieve an adequate tumor dose. Hence, for several cases more constraints are included than 
what was done clinically. We emphasize that for every patient, the same set of constraints is used for the single and 
combined modality optim ization.

To compare the combined modality results to the single modality results, we determine the physical dose that 
is required in the single modality proton fractionation scheme to obtain the combined modality tumor BED. 
This physical dose value is named the BED equivalent dose of the combined modality treatment, and is used as a 
performance measure for a fractionation scheme.

Results indicate that the potential for combined modality solutions is quite substantial. Out of 17 patients, for 
five patients there is a combined modality treatment that offers an improvement over the optimal single modal-
ity proton treatments. This is discussed in section 3.1. For three patients a near-optimal combined modality 
solution exists that can reduce the number of required proton fractions; this is discussed in section 3.2. For the 
remaining nine patients combined modality treatments cannot offer any interesting alternative compared to the 
optimal single modality proton treatment, because the proton dose distribution is better than the photon dose 
distribution for all relevant OARs. This group is discussed in section 3.3.

3.1. Group 1: combined modality treatment offers clear improvement
For five patients, results indicate that a combined modality treatment can give better results than the single 
modality proton treatment. Figure 2 compares the optimal single modality proton treatment to the combined 
modality treatment that is found via solving (13). Above every bar the resulting BED equivalent physical tumor 
dose and the number of used fractions are reported as (photon fx, proton fx).

For these five patients, the BED equivalent dose is between 7.2% and 14.8% higher in the combined modality 
treatment than in the single modality proton treatment. For patients P2 and P3 the combined modality optimum 
uses more proton fractions than the single modality proton optimum, but for the other three patients the num-
ber of used proton fractions is in fact lower. Typically, for these patients the two modalities have different binding 
constraints. That is, there are competing constraints, which prefer different treatment modalities. In a combined 
modality treatment both of these constraints are binding. This will be discussed in more detail in section 4.

As an additional analysis, we have made slight adaptations to the optimization model, and minimized the 
mean liver BED under the restriction that the mean tumor BED should be at least the mean tumor BED of the 
optimal single modality proton treatment. For existence of a combined modality treatment with lower mean 
liver BED than the optimal proton treatment, it is necessary for a patient to be in group 1 (in other groups com-

Table 1. Most important constraints for the patients in the numerical study. DVH constraints are formulated either in the largest volume 
(in cc or %) that may be violated or in the smallest volume that needs to be spared. Our cases did not have any maximum point dose 
constraints.

Constraints

OAR Dose tolerance (Gy) Fractions Constraint type

Liver-CTV 15 5 DVH: sparing > 700cc

10 5 DVH: sparing > 30%

[8, 17] 5 Mean dose (goal range)

[16, 27] 15 Mean dose (goal range)

Stomach {30, 40} {5, 15} DVH: violation < 0.5cc

{25, 36} {5, 15} DVH: violation < 5cc

Duodenum {30, 40} {5, 15} DVH: violation < 0.5cc

{25, 36} {5, 15} DVH: violation < 5cc

Small bowel {30, 40} {5, 15} DVH: violation < 0.5cc

{25, 36} {5, 15} DVH: violation < 5cc

Large bowel {32, 40} {5, 15} DVH: violation < 0.5cc

Cord {25, 37.5} {5, 15} DVH: violation < 0.5cc

Phys. Med. Biol. 64 (2019) 065011 (21pp)
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bined modality cannot attain the required tumor BED), but this is not sufficient. More details on this are pro-
vided in sections 4.2 and 4.5. Out of the five patients in group 1, for two patients (P2 and P3) combined modality 
can reduce mean liver BED (decrease of 8.0% and 10.2% in BED equivalent dose, respectively).

3.2. Group 2: combined modality treatment offers alternative with fewer proton fractions
This group consists of three patients. For these patients the optimum is a single modality proton treatment. 
However, there are near-optimal combined modality solutions that use fewer proton fractions. If we force the use 
of a number of photon fractions in (13), we obtain alternative combined modality treatments. Figure 3 compares 
the optimal single modality proton treatment to an alternative combined modality treatment.

We emphasize that the reported combined modality treatments in figure 3 are an example of a combined 
modality treatment that is optimal if we force the use of a number of photon fractions (13), but this number may 
be varied. For example, for patient P6 we forced the use of eight photon fractions, but a smaller number is also 
possible. This yields a BED equivalent GTV dose between that of the (0,15) and the (8,7) treatment.

For each of these patients several proton fractions can be replaced by photon fractions without a large 
decrease in average GTV BED equivalent dose. For example, for patient P6 going from the (0,15) treatment to the 
(8,7) treatment gives a decrease of 1.4 Gy in BED equivalent dose, which is on average  −0.175 Gy per replaced 
fraction. Such an alternative combined modality treatment is interesting if only a limited number of proton frac-
tions is available, and these must be allocated among a set of patients.

3.3. Group 3: single modality proton therapy is superior
For the remaining nine patients, the proton plan is significantly better than the photon plan for all relevant OARs 
and a combined modality treatment is not very suitable. The optimal single modality proton treatments are 
reported in table 2. For most of these patients, it may only be optimal to combine proton fractions with photon 
fractions if the maximum number of proton fractions that can be allocated is very low. In that case, the added 
photon fractions provide the benefit of the fractionation effect. Typically, the dose distributions for these patients 
are such that there is only one OAR that restricts the dose that can be delivered, and the proton plan spares this 
OAR better than the photon plan. For illustration, columns 4 and 5 of table 2 give the optimal treatment if we 
force the use of at least one photon fraction. For some patients the deterioration in BED equivalent GTV dose 
is not very large. However, in all these cases only one photon fraction with a dose between 1.0 and 1.2 Gy (the 
lower bound is 1.0 Gy) is used. Hence, for these patients enforcing the use of a single photon fraction has a visible 
negative effect even if the photon fraction uses only a low dose.

4. Discussion

This section provides a detailed discussion of the results of sections 3.1 and 3.2, by analysing the results for two 
patients: patient P1 (section 4.1) and P6 (section 4.3). Additionally, section 4.2 discusses the results for OAR 
sparing.

Figure 2. Results for group 1. Black bars indicate proton results, dashed bars indicate combined modality results. Reported doses are 
in BED equivalent physical dose, to correct for different fractionation schemes. Above every bar the resulting BED equivalent dose 
and the number of used fractions is reported as (photon fx, proton fx).
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4.1. Illustration of group 1
Patient P1 was clinically treated with 15 proton fractions. The location of the GTV in the liver is indicated in 
figure 4, which displays two CT slices for both the photon and the proton dose distribution. For the most relevant 
constraints see table 1. The clinical plan violated the 700cc constraint, hence it is omitted here as well.

For this patient the dose tolerances for the healthy liver mean constraints are 17 Gy in 5 fractions and 27 Gy 
in 15 fractions. Table 3 shows the results for the optimal combined modality treatment and the optimal single 
modality treatments. The optimal combined modality treatment delivers an average GTV BED of 72.5 Gy10, and 
uses three photon fractions and 12 proton fraction. The corresponding BED equivalent GTV dose (in 15 frac-
tions) is 53.5 Gy. The optimal single modality proton treatment delivers an average GTV BED of 61.0 Gy10 in 15 
fractions; the corresponding BED equivalent dose is 46.6 Gy. Therefore, the combined modality treatment gives 
an improvement in BED equivalent dose of 14.8% compared to the optimal single modality proton treatment.

In the single modality proton case the 0.5cc duodenum DVH constraint is binding, and in the single modal-
ity photon case the (17 Gy in five fractions) liver-CTV mean dose constraint is binding (technically, the 30% 
liver-CTV DVH constraint is also binding). Note that single modality photon is the only treatment that has non-
constant dose per fraction. The optimal single modality proton treatment has constant dose per fraction, and 
the optimal combined modality treatment has constant dose per fraction within each modality. Restricting the 
single modality photon case to constant dose per fraction as well, the optimal treatment delivers an average GTV 
BED of 60.9 Gy10, using ten fractions of 4.3 Gy fx−1. This is only marginally worse than the optimal non-constant 
dose per fraction single modality photon treatment.

Figure 3. Results for group 2. Black bars indicate the optimal treatments (single modality proton), dashed bars indicate an 
example of a combined modality alternative treatment. Reported doses are in BED equivalent physical dose, to correct for different 
fractionation schemes. Above every bar the resulting BED equivalent dose and the number of used fractions is reported as (photon fx, 
proton fx).

Table 2. Results for group 3. The optimal single modality proton solution is reported, with doses in BED equivalent dose. The reported 
combined modality alternatives are the optimal treatments if we force the use of at least one photon fraction. The used photon fraction in 
the combined modality solutions has a dose between 1.0 and 1.2 Gy for all patients. The number of used fractions is reported as (photon fx, 
proton fx).

Patient

Proton optimum Combined modality alternative

Dose (Gy) Fractions Dose (Gy) Fractions

P9 55.0 (0,15) 54.6 (1,14)

P10 71.0 (0,15) 70.2 (1,14)

P11 72.4 (0,15) 71.9 (1,14)

P12 78.8 (0,15) 78.4 (1,14)

P13 74.4 (0,15) 73.7 (1,14)

P14 87.2 (0,9) 86.5 (1,9)

P15 63.2 (0,15) 62.8 (1,14)

P16 66.9 (0,15) 66.5 (1,14)

P17 92.5 (0,15) 91.8 (1,14)
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If both photon and proton fractions are used, the GTV BED can be increased (compared to the single modal-
ity cases) such that both the liver mean dose constraint and the duodenum constraint are binding, while the 30% 
liver-CTV DVH constraint is also satisfied.

As seen on the CT slices in figure 4(b), a small portion of the duodenum volume extends to the center of the 
high dose region of the proton beam. The photon dose to this area is much lower. The only way for protons to 
protect the duodenum is to keep the dose per fraction relatively low, consequently the dose per fraction in the 
single modality proton plan is only 3.1 Gy fx−1 (see table 3). In comparison, using photons allows mild hypof-
ractionation, until the liver mean dose constraint becomes binding. The combined treatment allows us to deliver 
some of the proton dose using photons, which are less restrictive for the duodenum. Therefore, we can increase 
the GTV BED until the liver mean dose constraint also becomes binding. Essentially, some of the proton fractions 
are omitted to give a hypofractionated photon dose boost.

Figure 5 shows the DVH lines of the combined modality optimal solution and the single modality proton 
optimal solution for the GTV and some relevant OARs, in terms of BED equivalent physical dose in 15 fx. Clearly, 
the GTV dose is significantly larger in the combined modality plan than in the single modality proton plan. This 
does come at the cost of a larger dose to several OARs: in particular, larger volumes of the liver and the stomach 

Figure 4. Spatial dose distribution in photon and proton plans of patient P1 in two slices. The GTV, liver-CTV and duodenum are 
delineated. (a) Photon, CT slice 1. (b) Proton, CT slice 1. (c) Photon, CT slice 2. (d) Proton, CT slice 2.

Table 3. Results for patient P1. The optimal combined modality treatment delivers a higher BED equivalent dose to the GTV than the 
single modality treatments. For this patient the optimal single modality photon and proton plans perform similarly.

Single modality photon Single modality proton Combined modality

GTV BED 61.0 Gy10 61.0 Gy10 72.5 Gy10

BED equivalent dose 46.5 Gy 46.6 Gy 53.5 Gy

Photon fractions 10 fx (4.2 Gy fx−1) — 3 fx (4.7 Gy fx−1)

1 fx (1.0 Gy fx−1)

Proton fractions — 15 fx (3.1 Gy fx−1) 12 fx (3.2 Gy fx−1)
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receive a low to medium dose instead of no dose, due to the photon dose distribution. However, all OAR con-
straints are naturally still satisfied.

4.2. Demonstration of OAR sparing
From figure 5 it may seem that simply allowing higher OAR doses for a single modality proton plan could yield 
similarly large tumor BED values as the combined modality plan. This is in general not the case. To show this we 
performed additional analysis for patient P1 by minimizing healthy liver BED for both single modality proton 
and combined proton–photon treatments, subject to the constraint that the tumor BED should be at least 72.5 
Gy10 (the mean GTV BED value in the optimal combined plan when GTV BED was maximized). All other OAR 
constraints are omitted. The resulting DVH is displayed in figure 6, where also the optimal combined modality 
plan is displayed. The resulting proton plan uses 15 fractions of 3.6 Gy. The resulting liver dose distributions 
are comparable, however by not using proton fractions alone combined modality is better able to spare the 
duodenum. As given in table 1, at 15 fractions the duodenum volume that receives more than 40 Gy should be 
at most 0.5cc, but as indicated in figure 6 this volume in the proton plan is in fact 1.3cc. This result indicates that, 
even in cases where combined modality is not able to reduce mean liver BED compared to single modality proton 
treatments (see section 3.1), combined modality plans may still yield benefits in terms of OAR sparing for other 
OARs than healthy liver.

Moreover, as mentioned in section 3.1, for two patients (P2 and P3) combined modality treatment was found 
to be able to lower healthy liver mean dose. In case of mean tumor BED maximization, for patient P2 the bind-
ing constraint in the single modality proton and photon treatments are the 0.5cc small bowel DVH constraint 
and the mean liver dose constraint, respectively. For P3, the situation is similar, the only difference being that the 
binding constraint for single modality proton is the 0.5cc stomach DVH constraint. For the mean healthy liver 
BED minimization, the lower bound on the GTV mean BED is set at the GTV BED of the optimal single modality 
proton treatment. For these two patients (P2 and P3) the single modality proton treatment attains the maximum 
GTV BED using fewer than the maximum of 15 fractions. Consequently, for the combined modality treatment 
it is easier to get to this GTV BED, because it can better spare the second OAR (small bowel or stomach) than the 
single modality proton treatment. Hence, combined treatments can exploit the fractionation effect to a larger 
extent for sparing OARs. Furthermore, although the photon dose distribution has a higher mean healthy liver 
dose than the proton dose distribution, the locations of their healthy liver high dose areas need not be the same. 
Hence, a combined treatment may deliver the healthy liver dose more homogeneously, leading to a lower dose 
shape factor (Perkó et al 2018) and consequently a lower healthy liver BED as well.

4.3. Illustration of group 2
Patient P6 was also clinically treated with 15 proton fractions. Two CT slices are displayed in figure 7, visualizing 
the dose distributions for both photons and protons. The relevant organs are the liver, the stomach, and the 
cord (see figures 7(c) and (d) showing the lower CT slice). The dose tolerances for the healthy liver mean dose 
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while satisfying all constraints, but at the cost of increased dose to several OARs, most notably the healthy liver.
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constraint are 17 Gy in 5 fractions and 27 Gy in 15 fractions, for the other constraints see table 1. The clinical plan 
violated the 700cc constraint, hence it is omitted here as well.

The optimal GTV BED is 92.6 Gy10 and is obtained at 15 proton fractions, see column 3 of table 4. The corre-
sponding physical dose to the GTV is 64.7 Gy. There are no combined modality treatments that yield a higher 
average GTV BED, the reason for this is shown in figure 7. As seen in the CT slices of figures 7(a) and (b), both the 
proton and the photon high dose region fall almost entirely inside the liver, so the healthy part of the liver gets a 
large average dose in both modalities. However, the tumor is very close to a small extension of the stomach, and 
proto ns spare this part slightly better than photons, making single modality proton treatments optimal.

In the single modality proton plan the binding constraint is the (17 Gy in five fractions) mean dose constraint 
on the liver, while the 0.5cc stomach DVH constraint is almost binding. In the single modality photon plan this 
is reversed; the stomach constraint is binding, while the liver mean dose constraint is almost binding. Similar 
to patient P1, we check the influence of restricting the single modality photon case to constant dose per frac-
tion: the optimal treatment delivers an average GTV BED of 82.7 Gy10, using six fractions of 7.8 Gy fx−1, again a  
negligible difference (compared to column 1 in table 4).

Using the results reported in table 4, let us compare the optimal single modality proton solution to the com-
bined modality alternative that uses seven proton fractions and eight photon fractions. The average GTV BED 
of this combined modality solution is 90.1 Gy10, and the corresponding BED equivalent physical GTV dose is  
63.3 Gy. This is a decrease of 1.4 Gy in BED equivalent GTV dose for a substitution of eight fractions.

When substituting some proton fractions in the single modality proton treatment with photon fractions, the 
remaining space in the 0.5cc stomach DVH constraint is used as well. This is because protons damage the part of 
the stomach that is close to the tumor slightly more than photons. Consequently, both the 0.5cc stomach DVH 
constraint and the liver mean dose constraint become binding. However, as protons spare the liver a bit better, the 
attainable average GTV BED decreases. The BED to the cord also increases significantly compared to the single 
modality proton plan, where it received almost no dose. Nevertheless, the tolerance level of the 0.5cc cord DVH 
constraint is not violated.

Figure 8 shows the DVH graph for the GTV, healthy liver, stomach, cord and duodenum, in terms of BED 
equivalent dose. The dashed lines are the optimal single modality proton plan which uses 15 proton fractions, 
and the solid lines are the alternative combined modality plan which uses seven proton fractions and eight pho-
ton fractions. We see that indeed the BED equivalent average GTV dose is slightly higher for the single modality 
proton plan than for the combined modality plan. Furthermore, the low dose volumes for the liver, stomach and 
cord increase. At the same time, the high dose volume for the liver decreases.

4.4. Connection to clinically used NTCP models
In the Netherlands a model based approach is used to determine proton therapy eligibility (Blanchard et al 2016, 
Widder et al 2016, Bijman et al 2017). Patients are eligible for protons if normal tissue complication probability 
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(NTCP) models show that protons offer a significant improvement over photons. As NTCP models are often 
BED distribution based models (Perkó et al 2018), our work fits this procedure nicely. Our approach can show 
that when using a combined modality approach we can get a higher tumor BED for the same BED constraint, 
or alternatively for a given tumor dose we can decrease OAR BED. This takes the current Dutch approach to the 
next level, not only making binary decisions between photons or protons, but instead looking into the correct 
combination of proton and photon fractions for complication minimization.

4.5. Clinical aspects and limitations
We do not have a precise measure of the robustness of the combined proton–photon plans that are obtained via 
the approach of section 2.2. However, any combined proton–photon plan that is obtained via our approach is 
essentially a weighted average of the input clinical proton and photon plans. As discussed in section 2.2.7 and 
Perkó et al (2018), for all used plans proper clinical measures were taken to handle uncertainties. Therefore, as 
in any fraction either (a scaled version of) the proton or photon plan is delivered, the combined proton–photon 
treatment is also robust against the same uncertainties.

Figure 7. Spatial dose distribution in photon and proton plans of patient P6 in two slices. The GTV, liver-CTV, stomach and cord are 
delineated. CT slice 1 is the higher of the two slices. (a) Photon, CT slice 1. (b) Proton, CT slice 1. (c) Photon, CT slice 2. (d) Proton, 
CT slice 2.

Table 4. Results for patient P6. The reported combined modality treatment is an alternative to the single modality proton treatment. It 
delivers a slightly lower BED equivalent dose to the GTV, but uses fewer proton fractions.

Single modality photon Single modality proton Combined modality

GTV BED 82.8 Gy10 92.6 Gy10 90.1 Gy10

BED equivalent dose 59.3 Gy 64.7 Gy 63.3 Gy

Photon fractions 5 fx (8.7 Gy fx−1) — 8 fx (3.7 Gy fx−1)

1 fx (1.0 Gy fx−1)

Proton fractions — 15 fx (4.3 Gy fx−1) 7 fx (4.8 Gy fx−1)
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As the approach of section 2.2 takes the proton and photon dose distribution as an input, whether or not 
combined modality is optimal for a patient depends on these initial proton and photon plans. As such, differ-
ent plans may yield different results. The proton and photon plans used in the numerical study in section 3 were 
however either clinically used plans, or plans that were derived under clinical circumstances, as if they were to be 
delivered. This implies that under the same clinical circumstances, our results are representative of the realistic 
clinical benefit of combined modality treatments.

Our approach excludes spatiotemporal optimization, and simply scales the given proton and photon dose 
distributions. Since in spatiotemporal optimization of a combined proton–photon treatment the individual 
dose spatial distributions are also optimized, this may improve on our methodology. However, the results from 
spatiotemporal optimization can only yield a larger benefit for combined modality treatments compared to what 
is presented in section 3. That is, the presented results for individual patients should be seen as a ‘lower bound’ 
on the benefit of a combined modality treatment for the patient, reinforcing our main conclusions. Further-
more, although spatiotemporal optimization may yield better results, the presented approach has some practical 
advantages. Planning, reviewing and quality assurance (QA) procedures are well established for single modality 
treatment plans and these could be seamlessly used for our combined modality approach, as either modality can 
be separately dealt with. In fact, this is exactly how currently combined treatments are used in the clinic (e.g. in 
case of a proton machine breakdown when patients are redirected to photon treatments for the remainder of 
their treatment).

We have only tested our approach on liver patients, thus we cannot make any statements about the potential 
of combined proton–photon treatment schemes in other tumor sites. Nevertheless, the mathematical approach 
of section 2.2 does not make any assumptions on the specific tumor site, and is applicable to any case where both a 
proton and photon dose distribution are available. The reasons why combined modality may be optimal, as dem-
onstrated in section 2.1, can also occur in other tumor sites, particularly those where there are multiple OARs in 
proximity to the tumor.

In our numerical experiments the objective is to maximize the mean BED to the GTV (a general recom-
mendation for liver patients is to not expand the GTV to a larger CTV (Dawson et al 2012)). However, we also 
performed experiments with maximizing mean CTV BED, indicating that the difference in results from maxi-
mizing mean GTV BED is very little. The protocol (Dawson et al 2012) also recommends the mean liver dose to 
be calculated on the liver-GTV, whereas we considered liver-CTV (volume that is healthy with high likelihood). 
This difference is not expected to influence results either (as the CTV-GTV volume receives very similar doses 
from both protons and photons).

While our main focus was on tumor BED maximization, we also show that minimizing OAR BED can lead 
to optimal combined modality treatments for the same reasons. First, appendix A.3 discusses the simplistic ana-
lytical model to reveal why also for OAR dose sparing combined modality may be of use. Second, the numer-
ical experiments show that for the patients in group 1 (section 3.1), the combined modality treatment may also 
achieve lower healthy liver BED. Section 4.2 details these numerical results and additionally shows an example of 
lower duodenum dose due to difference in spatial dose distribution.
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Figure 8. DVH for proton and combined modality plans for patient P6. The dashed lines are the optimal single modality proton 
solution, the solid lines are the alternative combined modality solution. The combined modality solution yields a slightly lower 
average GTV BED, while using eight fewer proton fractions.
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5. Conclusion

Proton therapy has several advantages over conventional photon therapy. However, in current clinical practice 
protons are not better for all organs in all cases, especially not when larger margins are needed for large motion 
uncertainty. Consequently, this work analyzed the benefit of combined modality treatments. It is demonstrated 
both via theoretical results and real patient case studies that combined modality treatments can result in superior 
dosimetric treatment plan quality. One reason for this is that in case of multiple constraints, one constraint may 
be more restrictive for one treatment modality, while the other is more restrictive for the other. A second reason 
is that even in situations where the proton plan is superior in terms of physical dose, using photon fractions can 
result in treatment plans that are better, due to the fractionation effect.

Results from the case study on real data from patients treated at Massachusetts General Hospital show that 
for 5 out of 17 patients indeed combined modality treatments outperform the single modality proton treatment, 
with improvements of up to 14.8% in BED equivalent physical dose. For these patients in our cohort the single 
modality photon and proton treatments have different binding constraints, while their combination is binding 
in the optimal combined modality solution, corresponding well with theoretical results.

For several other patients combined modality treatments are near-optimal while using fewer proton frac-
tions. Especially because of the price tag and the limited availability of proton fractions, such alternatives that 
put less pressure on the proton machine of a certain treatment facility may be very interesting. In conclusion, the 
potential for combined modality treatments is considerable.
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Appendix A. Mathematical derivation of optimality of combined modality treatments

This section discusses the simplified geometry of figure 1 in section 2.1, and formulates several mathematical 
models that demonstrate the benefit of combining photons with protons instead of using only protons. The 
optimization is based on the BED model, which is introduced in section 2, and in section 2.1 the setting is 
described. For this demonstration we make two assumptions. Note that these assumptions are strictly only 
made for this analytical exercise highlighting why combined modality can be optimal, and not for the general 
methodology or any of the real patient cases in the paper.

Assumption A.1. The protons dose distribution has a larger high dose but smaller low dose region than the 
photon dose distribution.

Assumption A.2. For a fixed tumor dose, the proton dose distribution delivers lower mean dose to OAR 1 than 
the photon dose distribution.

Parameters f H
i  and f L

i  denote the high and low dose volume fraction of OAR 1 for modality i, respectively, 
where i = γ  denotes photons and i  =  p  denotes protons. Let w denote the high dose volume fraction of OAR 

2 for the proton beam. Assumption A.1 mathematically implies that f H
γ < f H

p  and f L
γ > f L

p . Let DT
γ, the mean 

tumor dose for photons, and DT
p , the mean tumor dose for protons, be the decision variables (superscript T refers 

to the tumor). For the OARs, the low dose can be expressed as Dlow
i = siDT

i , where si ∈ [0, 1] is the dose sparing 

factor of modality i for the low dose region. The high dose areas are assumed to receive the full tumor dose, so 

Dhigh
i = DT

i . The mean dose in OAR 1 due to modality i can be written as a function of mean tumor dose due to 

modality i:

DOAR1
i (DT

i ) = sif
L

i DT
i + f H

i DT
i = (sif

L
i + f H

i )DT
i . (A.1)

Assumption A.2 implies that for a fixed tumor dose the mean proton dose to OAR 1 is smaller than the mean 

photon dose to OAR 1, i.e. sγ f L
γ + f H

γ > spf L
p + f H

p . For notational convenience, we introduce the parameters

rγ = sγ f L
γ + f H

γ , qγ = s2
γ f L

γ + f H
γ , (A.2a)

rp = spf L
p + f H

p , qp = s2
pf L

p + f H
p , (A.2b)

which provide a linear and quadratic mapping from tumor dose to OAR dose. Using this notation, assumption 
A.2 implies rγ > rp.
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The first model (related to section 2.1.1) does not take into account fractionation, and sets a mean dose con-
straint on OAR 1 and a DVH constraint on OAR 2. In the second model (related to section 2.1.2) we allow for a 
fractionation effect in OAR 1 but not in the tumor, and we set a mean BED constraint on OAR 1 (OAR 2 is not 
taken into account). In the supplementary material (section C, suppl.) a third model is discussed, which is an 
extension of the second model also allowing for fractionation effects in the tumor. In appendix A.3 we take an 
alternative approach, and minimize OAR BED subject to a prescribed tumor dose.

A.1. Reason 1—mathematical model
To maximize the dose delivered to the tumor, while satisfying all constraints set on the OARs, we rescale the dose 

distributions, increasing or decreasing the dose in the OARs and the tumor simultaneously. That is, DT
γ and DT

p  
are the decision variables.

We set a mean dose constraint on OAR 1 and a DVH constraint on OAR 2. Let Dtol
mean denote the largest average 

dose that OAR 1 can tolerate, as determined by the physician. Suppose the DVH constraint states that no more 

than a fraction k of the volume of OAR 2 may receive a higher dose than Dtol
dvh. This constraint can potentially be 

more restrictive for the proton dose distribution than for the photon dose distribution. In the photon plan OAR 
2 receives only low dose. If k  <  w, the total dose to the proton high dose volume w must not exceed the tolerance 

level Dtol
dvh. OAR 2 receives only photon low dose. Therefore, volume w receives a dose of sγDT

γ + DT
p  in the com-

bined modality plan, which must be below the DVH tolerance dose Dtol
dvh. The optimization problem with both a 

mean dose constraint and a DVH constraint reads

max
DT
γ , DT

p

DT
γ + DT

p (A.3a)

s.t. rγDT
γ + rpDT

p � Dtol
mean (A.3b)

sγDT
γ + DT

p � Dtol
dvh (A.3c)

DT
γ � 0, DT

p � 0. (A.3d)

In the problem described by (A.3) it does not necessarily have to hold that using only photons or only protons 
is optimal. Problem (A.3) is a linear programming problem with two variables. The feasible region of (A.3b) is 
illustrated in figure A1. It can easily be verified that the vertices of the feasible region are

C1 =
(

0, 0
)

, C2 =
(
min

{Dtol
mean

rγ
,

Dtol
dvh

sγ

}
, 0
)

,

C3 =
(

0,min
{Dtol

mean

rp
, Dtol

dvh

})
, C4 =

(Dtol
mean − Dtol

dvhrp

rγ − sγrp
,

rγDtol
dvh − sγDtol

mean

rγ − sγrp

)
.

(a) (b)

Figure A1. Feasible region (grey) of (A.3), which is the convex hull of (some of) the vertices C1–C4. The feasible region is 
constrained by a DVH constraint (on OAR2) and a mean dose constraint (on OAR1). (a) Feasible region (in grey) for (A.3) if vertex 
C4 is feasible. (b) Feasible region (in grey) for (A.3) if vertex C4 is infeasible because the horizontal coordinate is negative.
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Linear programming theory states that the optimal solution is attained in one (or more) of these vertices. 
Vertex C1 is clearly not optimal because the corresponding objective value is 0. Vertices C2 and C3 comprise 
single modality solutions and C4 is the combined modality solution. Vertex C4 is only a feasible vertex if both 
coordinates are positive. It readily follows that this leads to the following condition:

rp <
Dtol

mean

Dtol
dvh

<
rγ
sγ

. (A.4)

In figure A1(a) this condition holds, so all vertices C1, C2, C3 and C4 are feasible. In figure A1(b) condition (A.4) 
does not hold, and the horizontal coordinate of C4 is negative. In this situation, the mean dose constraint (A.3b) 
is binding at any feasible vertex. In case the vertical coordinate of C4 is negative, DVH constraint (A.3c) is binding 
at any feasible vertex.

We are interested in conditions under which C4 is optimal, in case it is feasible (the situation in figure A1(a)), 
rather than the single modality solutions (vertices C2 and C3). In (A.3a) the coefficients for DT

1  and DT
2  are both 1, 

so the objective function is a straight line with slope  −1. Due to assumption A.2 the mean dose to OAR 1 is lower 
for the proton dose distribution than for the photon dose distribution. Therefore, in the mean dose constraint 
(A.3b) the coefficient for proton dose is smaller than that for photon dose, implying that the slope for the mean 
dose constraint is smaller than  −1. If the slope of the DVH constraint (A.3c) is larger than  −1, combined modal-
ity is optimal. This reduces to sγ < 1, which holds by definition. Hence, combined modality is always optimal as 
long as the solution candidate C4 is feasible, which holds if the dose tolerances satisfy condition (A.4).

For example, let f L
γ = 0.82, f H

γ = 0.18, sγ = 0.32 be the parameters for the photon dose distribution, and let 
f L
p = 0.37, f H

p = 0.23 and sp   =  0.38 be the parameters for the proton dose distribution. Then the proton high 

dose area is larger than the photon high dose area, while the photon mean dose to OAR 1 is larger than the proton 
mean dose to OAR 1. Condition (A.4) reads

0.37 <
Dtol

mean

Dtol
dvh

< 1.38, (A.5)

which is satisfied by for example Dtol
mean = 20 Gy and Dtol

dvh = 35 Gy.

A.2. Reason 2—mathematical model
We extend the previous model to allow for a fractionation effect in OAR 1. For this model, OAR 2 is ignored to 
demonstrate that even with a single OAR combined modality treatments can be optimal. Let ρ  denote the inverse 
α/β-ratio of OAR 1. With ri and qi defined by (A.2a), one can verify that the mean BED to OAR 1 due to modality 
i is

BEDOAR1
i (di, Ni) = ri

Ni∑
ti=1

di,ti + ρqi

Ni∑
ti=1

d2
i,ti

. (A.6)

We assume that the α/β-ratio in the tumor is very large so that we can neglect the fractionation effect in the 
tumor. That is, we are interested in the physical tumor dose

DT = DT
γ + DT

p =

Nγ∑
tγ=1

dγ,tγ +

Np∑
tp=1

dp,tp . (A.7)

We aim to maximize the total tumor dose while constraining mean OAR BED below a fixed value BEDtol . The 
optimization problem looks as follows:

max
dγ , dp

Nγ∑
tγ=1

dγ,tγ +

Np∑
tp=1

dp,tp , (A.8a)

s.t. rγ

Nγ∑
tγ=1

dγ,tγ + ρqγ

Nγ∑
tγ=1

d2
γ,tγ + rp

Np∑
tp=1

dp,tp + ρqp

Np∑
tp=1

d2
p,tp

� BEDtol, (A.8b)

dγ,tγ � 0, tγ = 1, . . . , Nγ , dp,tp � 0, tp = 1, . . . , Np. (A.8c)

Our decision variables are dγ ∈ RNγ

+  and dp ∈ RNp

+ . In (A.8a), Nγ and Np  are considered fixed parameters, and 

treatment plans with fewer than Nγ photon or Np  proton fractions can be found by setting the corresponding 
elements of dγ  and dp  at zero. In other words, Nγ and Np  are parameters indicating an upper bound on the 
number of photon and proton fractions, respectively.

In the supplementary material (section D, suppl.) it is shown that the following problem is equivalent to 
(A.8a):
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max
xγ , yγ , xp, yp

xγ + xp, (A.9a)

s.t. rγxγ + ρqγyγ + rpxp + ρqpyp � BEDtol, (A.9b)

√
yγ � xγ �

√
N1yγ , (A.9c)

√
yp � xp �

√
N2yp, (A.9d)

xγ � 0, yγ � 0, xp � 0, yp � 0. (A.9e)

For a fixed dose to (part of) the OAR, the BED to (that part of) the OAR will be lower if this dose is administered 
over multiple fractions. Because in this problem the number of fractions does not influence the damage to the 
tumor (fractionation in the tumor is ignored), the optimal solution will always use the maximum number of 

allowed fractions. Therefore, it will always hold that xγ =
√

Nγyγ  and xp =
√

Npyp . Plugging this in (A.9b) 
gives an optimization problem with only decision variables xγ and xp . Furthermore, at optimality (A.9b) will 
hold with equality, because the total physical dose to the tumor is increased until the OAR BED tolerance is 
reached. Therefore, we can rewrite (A.9b) in terms of xγ and eliminate variable xp  as well.

The resulting optimization problem reads

max
xp

f (xp) (A.10a)

s.t. 0 � xp � xU
p , (A.10b)

where

f (xp) = xp +
Nγ

2ρqγ

(
− rγ +

(
r2
γ − 4

ρqγ
Nγ

(rpz +
ρqp

Np
x2

p − BEDtol)
) 1

2

)
 (A.11a)

xU
p =

Np

2ρqp

(
− rp +

(
r2

p + 4
ρqp

Np
BEDtol

) 1
2

)
. (A.11b)

Function f (xp ) is concave, because it is a composite function of a nondecreasing concave function and a concave 
function (Boyd and Vandenberghe 2004). Hence, it follows that a single modality photon treatment is optimal 

if f ′(0) � 0, a single modality proton treatment is optimal if f ′(xU
p ) � 0, and combined modality is optimal 

otherwise. The derivative of the objective function is

f ′(xp) = 1 +
(
− rp − 2

ρqp

Np
xp

)(
4
ρqγ
Nγ

(BEDtol − xp(rp +
ρqp

Np
xp)) + r2

γ

)− 1
2
. (A.12)

From (A.12) the following easily follows:

• Single modality photon is never optimal;

• Combined modality is optimal if BEDtol >
Np(r2

γ − r2
p)

4ρqp
;

• Single modality proton is optimal otherwise.

 (A.13)

Using basic algebra the optimal dose per fraction values can be calculated for both situations. As concluded in 
section 2.1.2 there is a threshold for BEDtol  beyond which the benefit of fractionation outweighs the worse OAR 
sparing properties of the photons in terms of physical dose.

A.3. Minimization of OAR BED
To show that the optimality of combined modality treatments is not restricted to the previously presented 
models, we analyse a model where we do not maximize tumor dose but minimize OAR BED, while delivering a 
prescribed dose D̂ to the tumor. We immediately apply the mapping from tumor dose to OAR dose defined by 
(A.2a), and the reformulation provided in the supplementary material (section D, suppl.). The optimization 
problem looks as follows:

min
xγ , yγ , xp, yp

rγxγ + ρqγyγ + rpxp + ρqpyp, (A.14a)

s.t. xγ + xp = D̂, (A.14b)

√
yγ � xγ �

√
Nγyγ , (A.14c)
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√
yp � xp �

√
Npyp, (A.14d)

xγ � 0, yγ � 0, xp � 0, yp � 0. (A.14e)

Similar to appendix A.2 the optimal solution will always use the maximum number of allowed fractions. 

Therefore, it will always hold that xγ =
√

Nγyγ  and xp =
√

Npyp . This leads to a problem with four variables 
and three equality constraints, which can be simplified to a problem with one variable. Making the substitution 
z =

√
yp leads to

min
z

(
ρqγ

Nγ

Np
+ ρqp

)
z2 +

(
(rp − rγ)

√
Np − 2ρqγD̂

√
Np

Nγ

)
z +

(
pγD̂ + ρ

qγ
Nγ

D̂2
)
, (A.15a)

s.t. 0 � xp �
D̂√
Np

. (A.15b)

The first order condition, i.e. zero-derivative, gives

ẑ =
(rγ − rp)Nγ

√
Np + 2ρqγ

√
NpD̂

2ρ(qpNγ + qγNp)
.

Because rγ > rp, it holds that ẑ > 0, so a single modality solution using only photons cannot be optimal. It is 
easily verified that ̂z  satisfies (A.15b) if D̂ � D∗, where

D∗ =
(rγ − rp)Np

2qpρ
. (A.16)

In this case, we can write xγ = D̂ − xp = D̂ −
√

Npẑ , from which it follows that if D̂ > D∗ holds we have xγ > 0 
(and thus yγ > 0). This implies a combined proton-photon fractionation scheme. On the other hand, if D̂ � D∗, 
then the optimal solution to (A.15a) is

xp =
D̂√
Np

.

Because 
√

yp = xp, we obtain xp = D̂, xγ = 0 and yγ = 0. Summarizing, we find that two situations can be 
distinguished with regard to a single modality or combined modality solution:

{
D̂ � D∗ A single modality solution using only protons is optimal.

D̂ > D∗ A combined modality solution is optimal.
 (A.17)

Using basic algebra the optimal dose per fraction values can be calculated for both situations. Similar to 
appendix A.2, combined modality is optimal if a threshold is exceeded, although there the threshold is in terms of 
OAR BED tolerance while here it is in terms of the prescribed tumor dose. Nevertheless, the intuition for the cur-
rent result is analogous to the intuition for the result in appendix A.2, which is presented in section 2.1.2.

Appendix B. Single modality optimal fractionation problem

Let ρT be the inverse α/β  ratio for the tumor, let M denote the set of constraints and let ρm denote the inverse α/β  
ratio for constraint m ∈ M. In Saberian et al (2015) it is shown that the single modality optimal fractionation 
problem with maximum point dose constraints, DVH constraints and mean dose constraints can be formulated 
as

max
x, y

rx + ρTqy (B.1a)

s.t. σmx + ρm(σm)2y � Bm, ∀m ∈ M (B.1b)

y � γ∗x (B.1c)

c∗x � y (B.1d)

x � 0, y � 0, (B.1e)
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where r, q, and σm, Bm, ∀m, are parameters. Furthermore,

γ∗ = min
m∈M

−1 +
√

1 + 4ρmBm

2σmρm (B.2a)

c∗ = min
m∈M

−1 +
√

1 + 4ρmBm/N

2σmρm
, (B.2b)

where N is the maximum allowed number of fractions. Variables x and y  denote the dose and sum of squared 
doses. Problem (B.1a) is a two-variable linear programming problem and is easily solved.
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