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Summary

Banks are financial institutions that lend money from other parties and provide loans to individuals
and organisation for a higher interest. Lending out money is associated with the risk that debtors
are not able to fully or partially repay the loans. This is called credit risk.

Banks have to make an estimate of the credit risk in their portfolios and have to keep reserves
for potential losses. The way this risk is to be determined, is decided by the government where
the bank is established. In Europe, the United States, Russia, China among others, the legislation
on credit risk is derived from Basel III. Basel III is an international framework to homogenise
banking regulation across the world.

There are three important factors to determine credit risk In Basel III, namely Probability of
Default, Loss Given Default and Exposure at Default. In this thesis I investigate Probability of
Default (PD) modelling.

The size of the portfolio, for which the Probability of Default has to be estimated, can vary
greatly. When the amount of defaults in a portfolio is low and the amount of explanatory variables
is high, there is a risk of overfitting. Variable selection methods can be used to counteract
overfitting and give understanding of the important predictors. I apply variable selection methods
on on a logistic regression.

I look at three Frequentist variable selection methods, namely Forward Selection, Lasso and
Relaxed Lasso. I compare these three methods with Predictive Projection combined with a
Horseshoe prior, which is a Bayesian approach to variable selection.

Forward Selection starts with only the intercept in the model and adds variables one by one
to the model. The variables are added in such a way that each step increase the estimated
performance the most.

The Horseshoe prior and Lasso Regression are types of regularisation, where the estimates of
the regression coefficients of the logistic regression get shrunk to zero. In Lasso regression, this is
done by adding a L1 penalty of the regression coefficients to the logistic regression. This causes
weak signals to be pulled to zero. Lasso shrinks all regression coefficients to zero to some degree,
even those with a strong signal.

Lasso can also be used to find an order of importance for the regression coefficients by varying
the strength of the L1 penalty. Regression coefficients are set to zero one-by-one as the penalty
increases. Relaxed Lasso uses this rank and refits the variables without regularisation.

In Bayesian statics, regularisation is added via the prior. The Horseshoe prior can adjust to
the average sparsity in the model and the Horseshoe prior either shrinks a signal aggressively to
zero, or leaves the signal almost unchanged. The posterior of the model is never truly sparse.
Predictive Projection can induce sparsity by setting the Monte Carlo samples of the posterior to
zero for certain variables. This is done in such a way that the Kullback-Leibler divergence between
the full posterior and the projected sparser posterior is minimised.

I investigate the behaviour of the variable selection methods. The main focus is on the
predictive performance, the sparsity, the computation time and the reliability of the estimated
performance for the selected models.

I apply the methods to various types of simulated data to compare the variable selection
methods. The simulated data consist of data with independent predictors, collinear predictors and
non-normal predictors, among others. The simulations studies show that Lasso and Predictive
Projection lead to models with the highest performance overall and the predictive performance
is more stable over different realisation of the data. For the same performance the Predictive
Projection produces models with less variables. This makes Predictive Projection the most
attractive method. I also employ the techniques to FreddieMac data, which is a data set on
single-family mortgages. The results are similar to the simulated data and Predictive Projection
with the Horseshoe prior is the most attractive variable selection method. Both the simulation
studies and the FreddieMac application imply that the estimated performance of the Predictive
Projection and Lasso are better than those of Forward Selection and Relaxed Lasso. However,
the behaviour of the estimated performance remain unclear to a certain degree. More simulations
per data type and more data types are needed for more insight into the estimated performance.
Additional resources are needed to achieve this.
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List of Symbols and Abbreviations

Latin Symbols

H Hamiltonian
K Kinetic Energy
n Index of sample from data set
N Size of data set
p Probability mass distribution, probability density distribution, likelihood
P Probability measure
s Index of Monte Carlo sample
S Size of set of Monte Carlo Samples
T Markov Chain Transition Kernel
V Potential Energy
x Explanatory variables x ∈ X
X Set of explanatory variable

X̃ Explanatory variable corresponding to unobserved ỹ
y Response variables
ỹ Unobserved value of response variable

Greek Symbols

α acceptance rate (MCMC)
β0 Intercept of Regression
β Vector of Regression Coefficients
βi Single Regression Coefficient for i ∈ {1, ..., D}
θ Parameters θ ∈ Θ, Probability of Default
Θ Random Variable (Parameter)
κ Shrinkage Weight
λ Regularisation parameter, Local shrinkage parameter (Horseshoe prior)
ρ Correlation coefficient
σ Standard deviation
Σ Covariance matrix
τ Global shrinkage paramater (Horseshoe prior)
ζ Momentum (HMC)
Ω Parameters/Sample space

Abbreviations

EAD Exposure at Default
elpd expected log predictive density
ESS Effective Sample Size
HMC Hamiltonian Monte Carlo
KL Kullback Leibler Divergence
LGD Loss Given Default
LOO Leave-One-Out Cross Validation
MAP Maximum a Posteriori estimate
mlpd mean log predictive density
MCMC Markov Chain Monte Carlo
PD Probability of Default
PSIS Pareto Smoothed Importance Sampling
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1 Introduction

Lending money to people or organisations is associated with certain risk. One of those risks is
that the borrowed amount will not be repaid on time, not fully or not at all. A reason this might
happen is that the debtor has a structural deficiency in his cash flow, for example a debtor may
have lost its job. Even if the debtor has sufficient cash flow over an extended period of time, it
might happen that the debtor is not able to pay for a couple of months. This risk associated with
lending money to people is called credit risk and is the topic of this thesis.

There are a couple of reasons to determine the credit risk. The first one is to determine whether
to provide a loan to a potential debtor and to determine which interest rate needs to be charged.
The second reason is to determine the amount of defaults and losses that will be incurred during
a upcoming period. A bank might get into bankruptcy itself, when too many defaults happen at
the same time. Banks need to keep capital reserves to mitigate this risk. Furthermore, the correct
identification of the loans that go into default next year is of interest to the banks, so that they
can take appropriate measures to prevent excessive losses on loans.

1.1 Basel III

Banks need to maintain capital reserves to handle defaulting debtors. The way the capital reserve
is determined is highly influenced by the laws of the country where a bank is located. In 1974 the
Basel Committee on Banking Supervision (BCBS) was founded in order to homogenise legislation,
related to banking activities, across its members states. The Basel Committee does not produce
binding legislation, however the advice given by the committee often leads to legislation in the 48
member’s jurisdiction. These members include the European Union, The United States, Japan,
China and Russia (Basel Committee membership, 2013).

Currently the third Basel accord, Basel III, is being implemented. Under Basel III, three
important factors to determine the necessary reserves are the Probability of Default (PD), the
Exposure at Default (EAD) and the Loss Given Default (LGD). Basel III defines these factors as
(Basel Committee on Banking Supervision, 2017) :

• Probability of Default: A bank should consider a client to be in default when the client is
90 days past-due on any of its credit obligations to the banking group, or/and the client
is unlikely to pay its credit obligation. Furthermore, the Probability of Default should be
calculated for a one-year basis, so the probability that the debtor goes into default in the
upcoming year.

Throughout this thesis the definition of PD only consists of a three month pay delinquency.
This definition neglects clients that are not likely to repay their debts. Also, this definition
disregards other credit products where the client may have defaulted. The reason for this
choice is that the data is not available and therefore is not remains outside of the scope of
this thesis.

• Exposure at Default: The outstanding amount of the loan at the time of default. This
amount can be higher than the current outstanding amount. For example, when client with
liquidity issues has a credit line, the client might withdraw extra money, which leads to a
higher exposure at default. In case of a mortgage the Exposure at default can be higher
than the current exposure due to cumulative interest that has not been paid during the 90
days prior to the default.

• Loss Given Default: The default on a loan does not immediately lead to the loss of the entire
EAD. The loan can sometimes be restructured to such an extent that the client can continue
paying a portion of the original loan. For a mortgage, the collateral can be sold off, leading
to a lower loss then the Exposure at Default. The LGD is measured as a percentage of the
Exposure at Default.

Under Basel III, there are three different approaches for banks to determine their mandatory
capital reserves, namely:

• Standardised Approach.
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• Internal Ratings-Based Approach.

– Foundation Internal Rating Based approach (F-IRB).

– Advanced Internal Rating Based approach (A-IRB).

Under the Standardised Approach, banks do not provide their own estimates of PD, LGD and
EAD. Instead, banks use risk weights provided by the regulator, for example the European Central
Bank. These risk weights are based on the credit rating and the type of the credit product. For
example, a low risk sovereign AAA-bond has a risk weight of 0 % and a risky corporate B-bond
has a risk weight of 150%. Multiplying the weight of the assets by the value of the assets results
in the Risk Weighted Assets (RWA). For RWA the regulator demands that the bank maintains
certain capital reserves.

Under the Foundation Internal Rating Based (F-IRB) approach, banks must provide their own
Probability of Default estimates. The supervisor provides the Loss Given Default estimates and
Exposure at Defaults estimates. The calculation of the PD gives banks a better insight into the
risks that are present in their portfolios. In general, the required capital reserves under F-IRB are
lower than the reserves under the Standardised Approach.

The last approach is the Advanced Internal-Ratings Based approach, where banks have the
most freedom to calculate their risk, namely it has to calculate the PD, EAD and LGD. This
approach gives the most insight into the risks of the loans, and in general has the lowest capital
requirement of the three methods.

I only consider the Probability of Default. The Exposure at Default and the Loss Given Default
are also important in calculating the risk. However these are not in the scope of this thesis.

1.2 Probability of Default models

A famous model Probability of Default is Merton’s model (Merton, 1974). This model tries to
predict the future value of a company with a geometric Brownian motion. The company goes into
default when the value of the company falls below its debts. The Merton model is closely related
to the Black-Scholes model for pricing financial options (Black & Scholes, 1973).

The geometric Brownian motion of the Merton model is not an accurate model for the real
future value. The geometric Brownian motion assumes that the company has lognormal returns,
however in reality the returns often have more heavy tails. Moody’s KMV is a model of the
American cooperation Moody’s, that tries to give a better prediction of the future value of the
company by using empirical data. Moody’s KMV also relaxes some unrealistic assumptions of
Merton’s model. For example in Moody’s KMV, companies can go into default multiple times a
year throughout the year. While in Merton’s model this can only happen once a year on a fixed
predetermined date.

The previous two models are structural models, in which there is a clear theoretical explanation
of the mechanisms behind the default, that is to say, the value of the company drops below the
value of its debts. The problem with these models is that they are only applicable to publicly
traded companies where the value of the company is known. These types of models are not really
applicable to consumer credit, because it is hard to evaluate the value of the consumer. I model
the Probability of Default of mortgages, which is a type of consumer credit.

In consumer credit non-structural models are more often employed. Examples of these models
are time-series models, survival analysis models and the logistic regression. The choice of the
model depends on which types of variables are used. For different types of variables, the model
gives either a Through-the-cycle (TTC) estimate or Point-in-Time (PiT) estimate. The goal of a
Through-the-Cycle estimates is to give a stable estimate over multiple years. Macroeconomic and
other time dependent variables are avoided in these types of estimates. The goal of Point-in-Time
estimates are to give a as well as possible estimate of the PD for any given time. These types
of estimates utilise macroeconomic and other time dependent variables, when this increases the
predictive power of the model.

In the Basel Framework, Point-in-Time estimates are not desirable as they lead to procyclicality.
When a model is dependent on macroeconomic variables, the reserves in a booming economy will
be low, because the Probability of Default and the Loss Given Default are low in those periods.
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On the other hand, when the economy goes into a recession, the mandatory reserves will increase.
This can lead to a situation where banks are less likely to lend money to others, which causes a
credit crush that may aggravate the recession.

Through-the-Cycle estimates are meant to be stable estimates throughout a credit cycle, and
will lead to less fluctuation in the capital demands of banks. This is the reason why in the
Internal-Ratings Based approaches, TTC estimates are preferred to PiT estimates. Even if the
models has less accurate predictions than the PiT estimates.

When modelling Point-in-Time PD, a natural choice would be a model which takes time effects
into account, for example, a vector autoregressive model. In a TTC estimate, we do not want this
time effect, therefore time series models are not considered. Instead, I use a logistic regression, this
model is a parametric model that assumes a linear relation between the log-odds of the Probability
of Default and explanatory variables X.

1.3 Variable Selection

Portfolios of debtors can vary greatly in size. The size can range from only a couple of observations
up to millions of observations. An observation is a data input of a loan for every year that a loan
is in the portfolio. The issues associated with the two extremes are different. For huge data set,
there is an abundance of information, but due to the size of the data set it can take a long time
to fit models and only simple models, like Frequentist logistic regression, are a real option. On
the other extreme there are the low-default portfolios with only a couple of observed defaults. For
low-default portfolios there is little information in the data set. In this situation using explanatory
data is not feasible as it is even hard to estimate average default rate of the portfolio.

For portfolios that are slightly larger than a low-default portfolio, it is still hard to estimate the
Probability of Default. However, it might be possible to use some explanatory variables. There
are many potential features that might help predict the Probability of Default. logistic regression
is likely to overfit when using all there features. Furthermore, models become less comprehensible
when too many variables are used. This means that only certain variables should be included in
the model. Where the preference is of course for the variables which have the highest explanatory
power of the Probability of Default.

There are multiple approaches to select variables for the model. A method where all possible
combination of explanatory variables are fitted and taking the model with the best estimated
performance is not a good approach. If there are D explanatory variables, the amount of model
that need to be fitted is 2D. For twenty variables this already leads to fitting over a million models.
Moreover, this approach has the tendency to pick models that have too many explanatory variables,
overestimate the performance of the chosen model, while performing badly (Piironen & Vehtari,
2017).

Heuristics can greatly reduce the amount of submodels that need to be fitted and evaluated.
Forward Selection is the first type of variable selection that I consider. This method starts with
only the intercept and adds variables one at a time to the model.

It is also possible to use regularisation as a heuristic to find the most important explanatory
variables. In Frequentist statistics, Lasso regression is candidate for variable selection. By
increasing the regularisation parameter in Lasso regression, more and more regression coefficients
corresponding to the explanatory variables are set to zero. This gives a ranking of the features,
which can be used for feature selection. In Section 4 Forward Selection and Lasso variables selection
are discussed. In section 5, I investigate a type of Bayesian variable selection, namely Predictive
Projection with a Horseshoe prior. The Horseshoe prior is a type of Bayesian regularisation,
which shrinks features with a weak signal towards zero, while leaving the strong signals almost
unchanged. Lasso regression does not have this property and has the tendency to also partially
shrinks strong signals towards zero. The posterior of the Horseshoe prior is not truly sparse. True
sparsity is induced by Predictive Projection, which projects the posterior from the full model space
to a model space with less variables. I apply the variable selection methods to simulated data
(Section 6) to investigate the way they perform. In these simulation studies the data generating
process is known, so the models can be compared to the real data generating process.

Lastly the variable selection methods are also applied on real life data, namely on mortgage
loans in the FreddieMac data set. FreddieMac is a American government-sponsored company,
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which is tasked with buying and selling mortgages on the secondary market with as goal to
increase the liquidity, stability and affordability of houses in the United States. On their website,
FreddieMac has a publicly available data set on single-family mortgages.

1.4 Research Design

In this thesis, I investigate modelling credit risk of portfolio that only contain a couple of dozen
defaults. This means that the information in the data set is scarce, which makes inference hard.
Nevertheless, portfolio with few observation can have represent large money value. Getting a
better insight in these portfolios are important to mitigate risks.

Probability of Default is relevant for both Internal Rating Based approaches. I only consider
Probability of Default modelling. Loss Given Default and Exposure at Default modelling can only
be applied to the Advanced Internal Rating Based approach. Furthermore, Loss Given Default
and Exposure at Default models only consider the defaults of the portfolio. The amount of data
is even more limited, and therefore LGD and EAD are not discussed.

There are many potential features that may help in predicting defaults. Including too few
variables gives the risk of not finding the important variables and suboptimal prediction. Including
all variables can lead to overfitting and bad predictive performance as well. Variable selection
methods can counteract overfitting and increase the performance of the model. I look at methods
that finds the features necessary for predicting Probability of Default.

As a base model I use logistic regression, which is an industry standard. Although, the
Probability of Default is dependent on the year of the observation, I still make the assumption
that the observations are time independent to get a Through-The-Cycle estimate. I apply feature
selection methods on the logistic regression to find the important variables. The new method I
examine is a logistic regression with a Horseshoe prior. The fitted model contains all variables,
where noisy variables are shrunk towards zero. Subsequently, Predictive Projection selects the
variables which contributes the most to the prediction. This is a Bayesian approach to variable
selection.

I compare the Horseshoe prior with Predictive Projection to three common methods. The
three methods are Forward Selection, Lasso regression and relaxed Lasso.

Bayesian models automatically represent some correlation in the model fit. Forward Selection
does not directly take this into account. Furthermore, the Horseshoe prior has better shrinkage
characteristics than the Lasso regression. Therefore, I expect that the Horseshoe prior has better
predictive performance than the other methods, especially for correlated data. This leads to the
first research question.

• Research Question: How does Bayesian variable selection, with a Horseshoe prior and
Predictive Projection, compare to Forward Selection, Lasso variable selection and relaxed
Lasso variable selection in simulated PD data?

– Independent Explanatory Data.

– Collinear Explanatory Data with:

∗ Masking effect.

∗ Aligned effects.

∗ Correlation with unimportant variables.

– Non-normal Predictors.

– Misspecified Models.

To answer this question, I apply the different methods to simulated data. The simulations offer
a controlled environment, making them suitable for the comparison of the methods on different
types of data.

Throughout the thesis I use 4,000 samples with 80 observed defaults and 20 explanatory
variables in the examples. All the variable selection methods work reasonably in this setting.

In the simulations studies I consider 1,000 samples, with 20 defaults. For 1,000 samples the
difference between the variable selection methods becomes more pronounced, because the variable
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selection becomes harder. Even though 1,000 observations sounds like sufficient data, variable
selection is hard due to the fact that the data is imbalanced. I run 30 simulations for the four
methods and six data types, which This results in 720 runs.

The drawback of simulated data is that it might not be representative of real data. It is likely
that in real data there are unforeseen relations. For this reason, I also test the variable selection
methods on real life data.

• Research Question: How do the variable selection methods perform on real life data?

I look at the performance of the different methods on FreddieMac data. This data is publicly
available and easily accessible. Consequently, it is often used for research. This data set contains
26.6 million loans, however I only take a small portion to recreate the hypothetical low-information
feature-selection setting. Due to the abundance of data, I can make numerous training data sets
with 1,000 observations, and a hold-out data set with 100,000 observations to test the predictive
performance. Combined with the simulation, this gives seven different types of data. I run 30
iterations for different realisation of the data for the seven scenarios and four variable selection
methods, Which results in 840 runs.

1.4.1 Evaluation Criteria

To compare the performance of the variable selection methods, I keep the following criteria in
mind:

• Predictive performance: Methods with better performance are preferred as they give
more insight into the credit risk of the portfolio.

• Variability in the predictive performance: Everything equal, methods that have similar
predictive performance for different realisation of the data are preferable, because they induce
less risk.

• Number of variables in the model: Models that need less variables to give the same
predictive performance are preferred, because they give more insight into the important risk
drivers of the portfolio.

• Computation Time: Everything equal, methods with lower computation time are preferred.

As a measure of predictive performance I use the expected log predictive density (elpd). Which
is an estimate for the cross entropy of the model. I predict the elpd via psis-loo and K-fold cross
validation.

• Research Question: Do PSIS-LOO and K-fold cross validation give good estimates for
the real out-of-sample performance for the different variable selection methods?

To answer this question, I look at the difference of the real performance and the estimated
performance in the simulations. I also consider the variability of the error of the estimated
performance.
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2 Logistic Regression

In this section I give a short recap on the basics of the logistic regression. Here I discuss
the difference between Bayesian and Frequentist logistic regression. Furthermore, I discuss the
problems associated with imbalanced data. In credit risk, data is often imbalanced as there are
often more non-defaults than defaults in the portfolio. These topics are the building blocks for
the variable selection methods.

2.1 Notation

Throughout this thesis, the response variable y is written as a vector with n observations. The
notation yi denotes a single observation in the vector y. The response variable y is a Boolean, with
values default and no default. Sometimes I write y ∼ p(y), this denotes that the observed response
variable is generated according to a certain data generating process. The models can depend on
explanatory data X, which is a D × n matrix, where D is the number of explanatory variables.
As in case of the response variable, the explanatory variables Xi refers to a single observation
of the data with D variables. The goal is to make prediction whether a loan will default or not.
This is an unobserved events and is denoted by ỹ. Again the prediction can be made with use of
explanatory data X̃. This explanatory data is observed, but the tilde means that it corresponds
to the unobserved default event ỹ.

θ refers to a realisation of the parameter Θ. This notation is used as a general notation, but
when in specific cases the more common notation is used. For example, the symbol that is used
for regression coefficients is β. A list of common symbols is shown in Table 1 and a full list of
symbols and abbreviations is on page 5.

Symbol Definition Dimension
D Dimension/Number of explanatory variables
n Number of observations
S Number of Monte Carlo Samples
y Observations of the response variables (1× n)

ỹ, θ̃ Unobserved variables
X Matrix of explanatory variables (D × n)
Xd Vector of one explanatory variable (1× n)
Xi Response variables of single observation (D × 1)

X̃ Observed explanatory data associated with ỹ
β Row vector of regression coefficients (1×D)
βd Single regression coefficient
β0 Intercept (1× 1)
βs, θs, ỹs Monte Carlo Sample of variable

β̂, θ̂ Estimates of the parameter (1×D)
θ Probability of Default

Table 1: Symbols and definitions

The likelihood function is written as p(y|θ), which is a common notation in Bayesian statistics.
This denotes the same as L(θ; y), which is more commonly used in Frequentist statistics. Often
the scaling parameter in the normal distribution is written as a variance, such that N(µ, σ2).
However, I prefer the standard deviation notation, such that it is N(µ, σ). Standard deviations
scales linearly instead of quadratic, and linear relations are more intuitive than quadratic relations.
The same is done for other distributions when applicable.

2.2 Logistic Regression

Modelling defaults is a classification problem, where the outcome is either 1 for a default, or 0
for no default. The probability of a default is denoted as P (y = 1|θ) and the probability that the
loan will not go into default is P (y = 0|θ). For a Bernoulli distribution P (y = 1|θ) = θ, so the θ
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is the Probability of Default and the probability of no default is P (y = 0|θ) = 1 − θ. There are
many models that can be used for classification. The one that I am using is the logistic regression.
The model is most conservative in the sense that it is a maximum entropy model for independent
observations (see Appendix B for more information on entropy and Information Theory). The
logistic regression has a highest entropy given the data, and therefore is more conservative than
for example the probit model (McElreath, 2018). Ohlson (1980) applied logistic regression to
estimate the Probability of Default of companies. Besides the theoretical justification, the logistic
regression is also an industry standard. This makes the logistic regression useful for explaining
the results of the model in the banking branch.

Logistic regression assumes a linear relation between the log-odds and explanatory variables
X, which is a matrix with n observations and D variables. Regression coefficients β express the
effect size of this relation. This is a vector with D variables. The intercept β0 does not represent
a relation between y and a variables, but serves as parameters that set the model to the right
amount of average y.

logit(θ) = log

(
θ

1− θ

)
= β0 + βX (1)

y ∼ Bernoulli(θ)

0.00

0.25

0.50

0.75

1.00

-5.0 -2.5 0.0 2.5 5.0
x

θ

Figure 1: Logistic function with one explanatory variable x, where β0 = 0 and β = 1, in Equation
1

Figure 1 shows a logistic function with one explanatory variable. The logistic function is
bounded between zero and one. This is also the case for a probability. If x = 0 then P (yi = 1) =
P (yi = 0) = 1

2 . As x get smaller the Probability of Defaults θ get lower, for example for x = −5 ,
the probability is 0.67%.

When the response variables y are drawn conditionally independent given β0 and β, then the
likelihood function is:

p(y|β0, β,X) =

n∏
i=1

p(yi|β0, β,Xi)

=
∏
i:yi=1

1

1 + exp(−β0 − βXi)

∏
i:yi=0

1

1 + exp(β0 + βXi)
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2.2.1 Frequentist Logistic Regression

In this thesis I deal with two statistical paradigms, namely Bayesian and Frequentist. The main
focus is on Bayesian statistics, however due to the wide prevalence of Frequentist statistics this
is also considered. A fundamental difference between Frequentist and Bayesian statistics is the
definition of probability. In the Frequentist paradigm the assumption is that there exists a fixed
value θ, which represents the a real data generating process. The goal is get a estimate θ̂ which
get as close as possible to this real value θ. This estimate θ̂ is seen as a fixed value as well. As
the name suggest Frequentist statistics is based around the frequency of events occurring. Where
probability is defined as relative frequency of events occurring as the number of observations goes
to infinity.

θ = lim
n→∞

∑n
i=1 yi
n

A common technique to get an estimate is the maximum likelihood estimate, which is defined as:

θ̂MLE = argmax
θ

p(y|θ)

But in practise this problem is often solved by maximising the logarithm of the likelihood, which is
numerically more attractive. Optimisation algorithm can find β0 and β that maximise the values
of the likelihood function. For the logistic regression the maximum likelihood is solved by:

argmax
β0,β∈RD+1

− ∑
i:yi=0

log(1 + exp(−β0 − βXi))−
∑
i:yi=1

log(1 + exp(β0 + βXi))


2.2.2 Bayesian Logistic Regression

In Bayesian statistics, probability is not seen as a asymptotic relative frequency, but as a representation
of uncertainty about knowledge. In the Bayesian paradigm the consensus is that the only way
to represent the uncertainty is to model it as a parameters as random variable Θ. From this
philosophical difference, a different approach of inference originates. To get inference on a parameter
θ Bayes’ Theorem is used.

Theorem 1 (Bayes’ Theorem). For a parametric model with data y and parameters θ.

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

Where p(θ|y) is called the posterior, the posterior is a distribution on θ after seeing the data y.
As in the case of Frequentist statistics, the likelihood function p(y|θ) is used. Unlike in Frequentist
statistics the p(θ) defined. This is the prior and it represents the knowledge of the parameter θ
before seeing the data. The interpretation of priors has been a subject of debate and this can be
divided into two ideal typical views:

• Subjective view - Probability represent uncertainty about knowledge and personal beliefs.
The prior can be used to implement prior knowledge and beliefs in the model. For example
if we expect a parameter to have a influence, the prior can represent this belief by setting a
prior with much mass around the prior value. (reference subjective)

• Objective view - The prior should have the least possible effect on the posterior inference
and there is not place for subjectivity in science. A prior suggested in this view are the
reference priors, which are least informative in the information-theoretic sense (Berger et
al., 2009).

Throughout this thesis, I adapt a subjective view. The priors I use are weakly informative in
the model as I do not have a priori information on which variables are important. The weakly
informative priors still imply a believe on what is possible amount of non-zero parameters β
corresponding to in the data set. These priors are also sometimes needed to guarantee numerical
stability.
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A common way to find results in the Bayesian framework is to use the proportional sign ∝,
which means left hand side of the equation is proportional up to a constant to the right hand side.
The denominator p(y) is an normalising constant, therefore the proportional sign can be applied
to the posterior. When this notation is used the right hand side of the following formula is called
the unnormalised posterior.

p(θ|y) ∝ p(y|θ)p(θ)
In some cases an analytic result can be found for the posterior p(θ|y). A class of priors for which
this is possible are the conjugate priors. A prior is conjugate when the posterior is of the same
class of distributions as the prior. For example, for a binomial likelihood the beta distribution is
a conjugate prior. The Beta(α, β) distribution is proportional to:

p(θ|α, β) ∝ θα−1(1− θ)β−1

And the binomial likelihood can be written as proportional to:

p(y|θ) ∝ θk(1− θ)n−k

Where k denotes the number of observation where y = 1 and n is the total amount of observations.
The unnormalised posterior is:

p(θ|y) ∝ θα−1(1− θ)β−1θk(1− θ)n−k = θα+k−1(1− θ)β+n−k−1

This unnormalised posterior corresponds to the proper posterior Beta(α + k, β + n − k). These
conjugate priors are computationally convenient, however do not always exist or are not desirable.

The conjugate prior can be used for the estimation of Probability of Default if no explanatory
variables are considered. However, explanatory variables could benefit the prediction. The logistic
regression can do this and the equation to solve is:

p(β0, β|y,X) ∝ p(y|β0, β,X)p(β0, β)

In general priors are not conjugate and the priors applied in thesis are not conjugate either.
The unnormalised posterior is often easy to calculate, however the normalising constant, which
can be found by integration, is hard to calculate in high dimensional probability space. To find the
posterior, I use a Markov Chain Monte Carlo method called Hamiltonian Monte Carlo. Markov
Chain Monte Carlo methods are numerical methods that draw samples from the posterior with use
of (pseudo-)random numbers. Hamiltonian Monte Carlo only needs the unnormalised posterior
to draw samples from the posterior. These samples are called Monte Carlo samples and are
denoted by θs. From the Monte Carlo samples, statistics can be calculated, such as the mean and
variance of the posterior distribution. There is more information on Markov Chain Monte Carlo
in Appendix A. I implement the Bayesian Logistic regression with R-package rstanarm and the
Frequentist logistic regression with R-package glm. These two packages have the same syntax, but
for rstanarm a prior has to be chosen.

Example 2.1 and Example 2.2 show two applications of Bayesian and Frequentist logistic
regression on two types of data.

17



Example 2.1: Logistic Regression on Independent Explanatory data

For a model with data generating process of a logistic regression such that:

logit(θ) = β0 + βX

With the parameters β as in Table 2. Furthermore let:

y ∼ Bernoulli(θ)

The explanatory variables X are drawn from a multivariate normal (MVN) with correlation and
a standard deviation of one:

X ∼MVN(0, ID)

Where ID is the D ×D identity matrix

β0 β1 β2 β3 β4 other β
Value 0 1 0.75 -1 -0.75 0

Table 2: Parameters of the data generating process

Draw n = 4000 observations, from this data generating process. This data generating process is
balanced, that is to say that are as many defaults as non defaults. This can be seen in Figure 1.
Because β0 is zero and X is symmetric all the probabilities are centred around a probability of
50%.

For the Frequentist estimates I use the glm-packages in R . The estimates are show in Table
3. The estimates are close to the coefficients of the data generating process. The ∗-symbol
indicates that the estimates are significantly different from zero (p < 0.05). The Frequentist
method correctly identifies the first four important β to be non-zero. All other parameters are
correctly not significantly different from zero.

Frequentist Bayesian
MLE std. error E[βi|y] std. dev.

β0 0.00 0.04 0.00 0.05
β1 0.99* 0.05 1.00* 0.04
β2 0.80* 0.04 0.81* 0.04
β3 -0.91* 0.04 -0.92* 0.04
β4 -0.70* 0.04 -0.70* 0.04
β5 0.04 0.04 0.04 0.04
β6 -0.01 0.04 -0.01 0.04
β7 -0.05 0.04 -0.05 0.04
β8 0.05 0.04 0.05 0.04
β9 0.04 0.04 0.04 0.04
β10 -0.02 0.04 -0.02 0.04

Table 3: Frequentist and Bayesian estimates and variability of the first 11 parameters. For
Frequentist the estimate is the maximum likelihood (MLE) and the variability the standard error
(std. error). For Bayesian, the estimates are the expected values of the posterior (E[βi|y] and
the standard deviation of the posterior (std. dev.)

The Bayesian model needs a prior. For now choose the flat prior.

p(βi) ∝ 1, for i ∈ {0, ..., D}
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The flat prior is not a probability density distribution, because it does not integrate to one. A
prior that does not integrate to one it is called an improper prior. Still the posterior can be
proper probability density in case that the likelihood function integrates to a constant, which is
the case in this example.

For the Bayesian method the result is a posterior distribution. Table 3 shows the expected
values of the posteriors of the regression coefficients E[βi|y]. The results of the Bayesian and
Frequentist methods are very similar. The ∗-symbol means that zero is not part of the 95%
credible interval. So the Bayesian method also correctly identify the non-zero parameters. The
expected value is a point estimate of the posterior distribution. Figure 2 shows the Monte Carlo
samples of β1 and β2. These Monte Carlo samples represent the joint distribution of β1 and β2.
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Figure 2: Dot plot of 400 Monte Carlo samples from independent data, the histograms represent
the marginal posterior distributions of the β1 and β2.
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Example 2.2: Logistic Regression on Collinear Explanatory Data

Take the same data generating process as in example 1, but now change the way the X variables
are generated such that there is collinearity between some X variables. The explanatory variables
X are drawn from a multivariate normal, with covariance matrix Σ.

X ∼MNV (0,Σ)

With the following covariance matrix Σ:

Σ =


1 0 0 0 0
0 1 0.8 0 0
0 0.8 1 0 0 07×13

0 0 0 1 −0.8
0 0 0 −0.80 1

013×7 I13

 (2)

Where 0i×j is the zero matrix, with i rows and j columns. In this matrix the following relations
are present:

• X1 has a real effect and is uncorrelated with the remaining variables in X.

• X2 and X3 are correlated and both have a real effects

• X4 has a real effect and is correlated with X5, which has no real effect

• All other X are uncorrelated and have no influence on y.

The maximum likelihood and the expected value of the posterior distribution give similar
results as the previous example.

Frequentist Bayesian
MLE std. error Eθ[p(θ|y)] std. dev.

β0 0.00 0.04 0.00 0.04
β1 1.05* 0.05 1.06* 0.05
β2 0.73* 0.6 0.73* 0.06
β3 -1.00* 0.07 -1.00* 0.06
β4 -0.76* 0.07 -0.77* 0.07
β5 0.04 0.06 0.04 0.04
β6 -0.05 0.04 -0.05 0.04
β7 0.04 0.04 0.04 0.04
β8 0.05 0.04 0.06 0.04
β9 0.04 0.04 0.04 0.04
β10 0.00 0.04 0.04 0.04

Table 4: Intercept and first ten regression coefficient

Figure 3 shows the joint distribution of β2 and β3. Even though the priors were independent,
the posteriors are correlated. This can be seen in the sloping orientation of the Monte Carlo
samples. The parameters that are not correlated have similar round shapes as depicted in figure
2. The correlation in the posteriors is a result of the collinearity in the data. The marginal
distributions of correlated X variables are wider than for the uncorrelated X variables in Figure
2. However, the conditional distribution distribution, for example p(β2|β3 = −1) is much narrower
than the marginal distribution. So in case of collinearity, the marginal distribution can give a
wrong impression of the uncertainty in the model. This phenomenon is also present in maximum
likelihood estimate where the standard error of the estimates with correlated explanatory variables
is about 50% larger, see table 4.
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Figure 3: Dot plot of the Monte Carlo samples from correlated data. The Monte Carlo samples
of the posteriors β4 and β5 are negatively correlated.

The Bayesian methods incorporate the correlation structure of the X variables, while the
Frequentist methods do not do this directly.

2.3 Predictions

In Frequentist statistic prediction are made by using the point estimates (β̂0, β̂) and the new
explanatory data X̃ . This is done by the logistic formula, and the result is a point prediction of
Probability of Default θ̃i. Where the Probability of Default is given by:

θ̃i =
exp(β̂0 + β̂X̃i)

1 + exp(β̂0 + β̂X̃i)

In Bayesian statistics the posteriors of the β0 and β are not point estimates, but a distribution.
From this distribution the posterior predictive distribution of the Probability of Default p(ỹ|β0, β,X)
can be calculated. Where p(β0, β|y,X) is the posterior after fitting the model.

p(ỹi|y,X, X̃) =

∫ ∫
p(ỹ|X̃, β0, β)p(β0, β|y,X)dβdβ0

For the logistic regression this gives:

p(ỹi|y,X, X̃) =

∫ ∫ (
exp(β0 + βX̃i)

1 + exp(β0 + βX̃i)

)
p(β0, β|y,X)dβdβ0

The predictive probability is found by a Monte Carlo approximation:

p(ỹi|y,X, X̃) ≈ 1

S

S∑
s=1

exp(βs0 + βsX̃i)

1 + exp(βs0 + βsX̃i)
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In the Frequentist setting, the Probability of Default is a point prediction, whereas in the
Bayesian setting the Probability of Default has a distribution. For this reason Bayesian methods
take longer to compute, however from the Monte Carlo samples of the prediction ỹs, uncertainty
statistics, like standard deviation, can easily be calculated.
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Figure 4: Predictive distribution of a Frequentist logistic regression

There is also a difference in the predictive values. To illustrate the difference between the
Frequentist and Bayesian method, I use a schematic two dimensional example. Figure 4 shows an
example of the predictive distribution of the Frequentist logistic regression. The model deems the
lower left corner to be most likely to produce a negative outcomes (non defaults), and the upper
right corner the most likely to give positive outcomes.

The predictions of the Frequentist logistic model are shown as straight lines for different levels
of Probability of Default. The most left line represents a Probability of Default of 10% and the
most right line gives a PD of 90%. The probability increases in steps of 10% per line. The blue
diamond represents new explanatory data. For this new data point, the logistic regression makes
a prediction for the Probability of Default. For the blue diamond this is approximately 22%.
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Figure 5: Posterior Predictive distribution of a Bayesian logistic regression

Figure 5 shows the Bayesian predictive probability for the same data as in figure 4. The
uncertainty in the parameters β causes the Bayesian prediction to be less certain than the
Frequentist predictions. The uncertainty of the parameters also cause the equal probability lines
to be curved.

For every Monte Carlo sample of the posterior, a prediction can be made such that it has
straight lines like in Figure 4. The exact slope changes per Monte Carlo sample as shown in
Figure 6. The posterior predictive distribution is calculated by averaging the predicted value for
all the Monte Carlo samples, which causes the curved lines in Figure 5.

-2

0

2

4

-2

0

2

4

-2

0

2

4

-2 0 2 4 -2 0 2 4 -2 0 2 4
X1 X1 X1

X
2

X
2

X
2

Figure 6: Posterior Predictive distribution of three different Monte Carlo samples of β

The Bayesian predictions have a tendency to be closer to 50% for new explanatory data, which
is far away from the training data. For the blue diamond the predicted probability is 36%. This
is about 50% higher than the Frequentist prediction.
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2.4 Imbalanced Data

Data on defaults is often imbalanced. In a year most clients pay their amortisation and interest.
Even though there can be thousands of observation, only in a fraction of these observation a
default is observed. As the regression coefficients β explain the difference between clients that
will and clients that will not go into default, the effective information on this relation is less then
when the data would have equal occurrences of defaults and non-defaults.

The problem with the low amount of defaults in the data set is two fold. First of all, the
prediction of the regression coefficients is more difficult than for balanced data. The regression
coefficients represent a relation between explanatory variablesX and response variables y. Especially
when the amount of potential explanatory variables is high this can lead to overfitting as illustrated
in Example 2.3.

Data Generating Process 1: Imbalanced Data with Independent Predictors

The data generating process is almost the same as in Example 1. The only difference is the
intercept β0 = −5, instead of β0 = 0 . This causes the data generating process to create less
positive (defaults) outcomes. The different techniques throughout the thesis are applied, among
others, to this data generating process.

Draw n = 4, 000 observations form the following data generating process:

logit(θ) = β0 + βX

With the parameters β as in Table 5. Furthermore let:

y ∼ Bernoulli(θ)

The explanatory variables X are drawn i.i.d from a multivariate normal with a standard deviation
σ = 1 and dimension D = 20:

X ∼MVN(0, ID)

β0 β1 β2 β3 β4 other β
Value - 5 1 0.75 -1 -0.75 0

Table 5: Parameters of the data generating process

Example 2.3: Imbalanced Data with Independent Predictors

Using a Frequentist logistic regression the model with the balanced data has better predictions of
the β than the imbalanced model. The L2-norm of the difference between the real coefficients β
and the estimates β̂ show the squared error of the estimates. And the L2-norm of the difference
is:

||β − β̂||2 =

√√√√ 20∑
d=0

(βd − β̂d)2

The L2-norm for the balanced data is 0.17 and for the imbalanced data this is 0.49. So the
performance on balanced data is much better than that on the imbalanced data.
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MLE std. error Eθp(θ|y) std. dev.
β0 -4.83* 0.20 -5.00* 0.20
β1 0.83* 0.11 0.85* 0.11
β2 0.65* 0.11 0.66* 0.11
β3 -0.94* 0.11 -0.95* 0.11
β4 -0.89* 0.11 -0.90* 0.11
β5 -0.03 0.11 -0.03 0.11
β6 0.10 0.11 0.10 0.11
β7 0.22* 0.10 0.23* 0.10
β8 -0.08 0.10 -0.08 0.10
β9 -0.14 0.10 -0.13 0.11
β10 0.04 0.10 0.04 0.10

Table 6: Estimate of the intercept and the first ten regression coefficients

Table 6 shows the estimates for the logistic regression. There is a clear increase in the
standard error and the standard deviation compared to example 2.1. The regression coefficient
β7 is significantly (p < 0.05) different from zero, due to randomness.

Data Generating Process 2: Imbalanced Data with Collinear Predictor

Take the same data generating process as in example 2.3, but now change the way the X variables
are generated such that there is collinearity between some X variables. The example data contains
D = 20 variables, and n = 4, 000 samples.

β0 β1 β2 β3 β4 other β
Value - 5 1 0.75 -1 -0.75 0

Table 7: Parameters of the data generating process

The explanatory variables X are drawn from a multivariate normal, with covariance matrix Σ.

X ∼MNV (0,Σ)

With the following covariance matrix Σ:

Σ =


1 0 0 0 0
0 1 0.8 0 0
0 0.8 1 0 0 07×13

0 0 0 1 −0.8
0 0 0 −0.80 1

013×7 I13

 (3)

25



Example 2.4: Imbalanced data with Collinear Predictors

This data generating process is the go to data process for collinear data throughout the thesis.
The L2-norm of the error of β is 0.57 for the imbalanced data and 0.17 for the balanced data.
This error is more than 3 times as big for the imbalanced data.

MLE std. error E[β|y] std. dev.
β0 -5.03* 0.22 -5.19* 0.22
β1 0.86* 0.13 0.87* 0.13
β2 0.87* 0.21 0.85* 0.22
β3 -1.05* 0.22 -1.06* 0.22
β4 -0.93* 0.21 -0.95* 0.21
β5 -0.16 0.20 -0.18 0.21
β6 0.03 0.12 0.03 0.13
β7 0.00 0.13 0.00 0.13
β8 0.11 0.13 0.11 0.12
β9 -0.06 0.12 -0.06 0.12
β10 -0.04 0.13 -0.04 0.13

Table 8: Estimates of the regression coefficients and their variability

The estimates and variability of the estimates are shown in table 8. The standard error
and standard deviation of correlated parameters are almost 2 times as big as the uncorrelated
parameters. Because 16 of the 20 variables do not have any predictive power these are preferably
left out of the model. In this case, the 4 variables with a real relation are known. The second
problem with the imbalanced data is that it is also more difficult to estimate the predictive
performance of the model. These estimates of performance can have a high variance, which
makes feature selection more difficult.

2.5 Final Remarks

Logistic regression is a model which assumes a log-odds relation between the response variable y
and explanatory data X. The regression coefficients β express the strength of the relation.

In Frequentist statistics inference is done by finding point estimates of the regression coefficients
β. Subsequently, these point estimates, in combination with new explanatory variable X̃, can be
used to make predictions. For Frequentist statistics these are point predictions.

The posterior distribution is the result of inference in Bayesian statistics. Because the posterior
often does not have an analytic solution, Monte Carlo methods are used to represent the posterior.
This means that Bayesian methods are slower than Frequentist, but the posterior contains more
information than the Frequentist point estimate. One example is that the posterior automatically
contain correlation among its regression coefficients β, that results from collinearity in the explanatory
variables X. For correlated explanatory variables this can be important, because the standard
error in Frequentist statistics and the standard deviation of the posterior can give misleading high
variability.

Imbalanced data makes it harder for the methods to find the estimates for the regression
coefficient and the standard error and standard deviation of the posterior is higher than for
balanced data. The regression coefficients represent the strength of the relation between the
explanatory variables and the response variable. In imbalanced data there is less information on
this relation, causing higher variance in the estimates.
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3 Model Evaluation

To select variables, criteria are needed to define what a good model is. In this section I discuss
model evaluation. This chapter is divided in two parts. The first part deals with the criteria
on which to evaluate the model performance. The second part deals with calculating a value
for the criteria. For Frequentist statistics this is cross validation. For Bayesian statistics this is
PSIS-LOO, which is an approximation of leave-one-out cross validation.

3.1 Expected log predictive density

The goal of the model is to predict defaults in the upcoming year. I use the log loss of the
predictive distribution as a measure of fit. When the model makes good predictions the expected
log pointwise predictive density (elpd) for new data (ỹ, X̃) has value near zero and a bad models
has a big negative elpd. Elpd is defined as:

elpd =

N∑
n=1

∫
pt(ỹi) log p(ỹ|θ)dỹ

Where p(ỹ|θ) refers to the posterior predictive distribution, and pt(ỹ) is the real data generating
process. In the Frequentist case the θ is a point estimate, so the elpd becomes:

elpd =

N∑
n=1

pt(ỹi) log p(ỹi|θ̂)

Elpd is founded in information theory, where it is related to the cross entropy (for Information
Theory see Appendix B). For a single point the elpd is

∫
pt(ỹi) log p(ỹi|θ). This quantity contains

two factors. The log p(ỹi|θ) factor is a the log loss of prediction. If the model perfectly predicts a
event yi happening, then the log loss is zero. On the other hand, when the likelihood goes to zero,
the log loss goes to minus infinity. The log loss does not only consider whether the prediction is
right or wrong, but also how sure the model is of the prediction. The second factor is pt(ỹi), which
is the Probability of Default under the data generating process. Even if the event is associated
with a high log loss, if the probability of this event is very low, then it contributes little to the
elpd.

The data generating process pt(ỹ) is unknown, and the goal of the model was to give a good
approximation of this data generating process in the first place. This means that the elpd can not
be calculated directly and needs to be approximated.

A quantity that is easy to calculate directly from the model is the log predictive density (lpd):

lpd =

N∑
i=1

log p(yi|y) =

N∑
i=1

log

∫
p(yi|θpost)p(θ|y)dθ

The problem with this quantity is that it uses the data set twice, first to fit the model and
secondly to evaluate the performance. This means that the lpd overestimates the performance of
the model and it has a bias towards the training data. Various techniques have be proposed to deal
with this bias, some examples are Akaike Information Criterion (Akaike, 1998), in the Frequentist
setting, and Watanabe-Akaike Information Criterion (Watanabe, 2010), in the Bayesian setting.
These criterion have the following property:

Eỹ[AIC] = Eỹ[WAIC] = −2 elpd

Instead of these information criteria, I use K-fold cross validation for Frequentist statistics (Section
3.2) and Pareto Smoothed Importance Sampling Leave-One-Out (PSIS-LOO) Cross Validation
for the Bayesian models (Section 3.3). The advantage of these methods is that they have less
assumption than AIC. For example, the that the prior has to be flat. PSIS-LOO also has some
useful diagnostics, which the WAIC does not have. Besides elpd, I use the Mean Log Predictive
Density (mlpd), which is the average of the elpd over n observations.
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mlpd =
elpd

n

When comparing the same data generating process, with different amount of data, elpd is hard
to compare as this quantity scales linear with the amount of data. The mlpd does not have this
problem. In this thesis, decision are based on the elpd and mlpd.

3.2 K-fold Cross Validation

Both the elpd and the precision-recall plot should be based on the out-of-sample fit to give a good
representation of the performance of the model. A better approximation for the out-of-sample
performance can be found by splitting up the data in K different sets. Then one of these sets is
left out, and on the other K − 1 sets the logistic regression is fitted. The set that has been left
out did not influence the fit of the model. Therefore, the log predictive density (lpd) of the model
on this set is actually an out-of-sample elpd. This process is repeated for all the K set and the
sum of the lpd gives the elpdK-fold.

elpdK-fold =

K∑
k=1

∑
i∈Ik

log p(yi|y−Ik)

With Ik being the set of the indexes in the k-th fold. Such that {I1, ..., IK} = {{1, ..., n1}, .., {1, .., nK}}.
In this process the model needs to be fitted K times, which means that the computational

time of K-fold cross validation takes about K times as long. The more folds there are the more
accurate the model, but it also takes longer. I choose to have one fold for every 10 observation,
because the speed of the Frequentist methods this is not a problem.

Example 3.1: K-fold

In this example I show that using K-fold cross validation is better approximation for the out-of-sample
performance than using the log predictive density (lpd). For the model in Example 2.3 on page 24
the value of the lpd, K-fold elpd and the elpd on a data set with 100,000 observation are shown.
Both the lpd and elpdk-fold overestimate the performance of the Frequentist model, considering
that a value closer indicate a better performance. The error of the lpd is approximately four
times as big as elpdk-fold.

lpd elpdk-fold elpdhold-out

-281.83 -304.82 -312.59

Table 9: Estimated performance and hold-out performance

For the Frequentist model in Example 2 the lpd also overestimate the performance. In this
case elpdk-fold underestimates the performance. The error of lpd is in this case two times as big
compared to the error of elpdk-fold (Table 10).

lpd elpdk-fold elpdhold-out

-318.83 -340.06 -334.83

Table 10: Estimated performance and hold-out performance

The K-fold cross validation is not perfect, but the performance is much closer to the real
performance of the model.
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3.3 PSIS-LOO

K-fold cross validation can be a time consuming process in Bayesian statistic as every model
has to be fitted K times, and as the Monte Carlo methods are slower than the optimisation
algorithms used in Frequentist inference. Instead of this I use Pareto-Smoothed Importance
Sampling Leave-One-Out Cross Validation (PSIS-LOO), this is approximation technique of the
leave-one-out cross validation for Bayesian statistics, which is a fast methods with a number of
diagnostics.

3.3.1 Leave-one-out cross validation

Taking the amount of folds K equal to the amount of data n, K-fold cross validation becomes
leave-one-out cross validation (loo). By giving the response variable the following partition y =
{yi, y−i} = {{y−i}, {y1, ..., yi−1, yi+1, ..., yn}}, the leave-one-out estimate is:

elpdloo =

n∑
i=1

log p(yi|y−i)

With:

p(yi|y−i) =

∫
p(yi|θ)p(θ|y−i)dθ

So this is the likelihood of a point yi when the model is fitted on the data without point yi.

3.3.2 Importance sampling

To get around refitting the model I use a technique called Importance sampling, which is a method
to sample from one distribution while only having samples from another distribution. After fitting
a single model on all data, the samples that are available are p(yi|y), however the samples of interest
are p(yi|y−i). First of all, assume that the output variables y are conditionally independent given
all Monte Carlo samples from the posterior θs (see appendix A for Monte Carlo methods), and
using the partition as specified before the following result holds:

p(y|θs) = p(yi|θs)p(y−i|θs)
And define the importance ratios as:

rsi =
1

p(yi|θs)
=
p(y−i|θs)
p(y|θs) ∝

p(θ|yi)
p(θ|y)

Using this ratio leave-one-out likelihood can be written as:

p(yi|y−i) ≈
∑S
s=1 r

s
i p(yi|θs)∑S
s=1 r

s
i

(4)

In this equation the ratios rsi with high values have a greater influence on the approximation,
hence the name importance sampling. The previous equation can be simplified by plugging in the
ratios.

p(yi|y−i) ≈
1

1
S

∑S
s=1

1
p(yi|θs)

3.3.3 Pareto Smoothing

The raw importance ratios rsi can have a fat tail, resulting in high variability, especially in the
domain with high values of the ratios. Combined with the fact that the high importance ratios
have a relatively big impact on the final estimate, the estimate can have high variance as well.
This in turn can cause the estimates to be an unreliable measure of the leave-one-out performance.

Because the importance ratios of the importance sampling can be highly variable, Vehtari et
al. (2015) suggest smoothing the M largest importance ratios, by fitting a generalised Pareto
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distribution and reweighing the largest M ratios with this distribution. Fitting a generalised
Pareto distribution to the largest ratios is justified by the Pickard-Balkema-de Haan theorem.

Theorem 2 (Pickard-Balkema-de Haan theorem (Pickands III et al., 1975)). For a sequence Wi

which are identically and independently distributed and a threshold u, define the tail distribution
as:

fu(w) :=
p(w)

1− P (w ≤ u)

The tail distribution converges to a Generalised Pareto Distribution as as the threshold u goes to
infinity:

fu(w)→ pgpd(w|u, σ, k), as u→∞

The probability density of the generalised Pareto distribution is:

pgpd(w|u, σ, k) =
1

σ

(
1 + k

(
w − u
σ

))− 1
k−1

The distribution has support on (u,∞). In this case, set u equal to the smallest importance
ratio of the M largest ratios with:

M = min

(
S

5
, 3
√
S

)
Where S is the amount of Monte Carlo samples. This choice for M is based on numerical test
(Vehtari et al., 2015). In figure 7 a generalised Pareto distribution is fitted to the M biggest
importance ratios. k is a shape parameter and determines the shape of the tail, and σ is a scale
parameter. Most of the importance ratios are near the threshold u, however there are importance
ratios with values that 40 times higher than the threshold.
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Figure 7: Fitted generalised Pareto distribution to the tail of the importance ratios as in figure 8,
where u = 16.57, k = 0.66, and σ = 9.81

The fitted generalised Pareto distribution is used to smooth the M largest importance ratios
to stabilise the estimate. The M largest ratios are replaced by the Pareto smoothed weight wsi ,
which are given by:

wsi = F−1
gpd

(
z − 1/2

M

)
F−1

gpd is the inverse cumulative density function of the generalised Pareto distribution and z =
{1, ...,M} , and M is the amount of ratios being used in the smoothing. The rest of the weights
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are not smoothed and are used as raw ratio, so wsi = rsi . This gives the Pareto Smoothed version
of equation 4.

p(yi|y−i) ≈
∑S
s w

s
i p(yi|θs)∑S
s w

s
i

And the Pareto Smoothed Importance Sampling Leave-one-out expected log posterior density
(elpdpsis):

elpdpsis =

N∑
i=1

log

(∑S
s=1 w

s
i p(yi|θs)∑S

s=1 w
s
i

)
Besides approximating the elpd, p(yi|y−i) can be used as an input for measures like precision

and recall. Which makes it possible to get an cross validation approximate for these measures.
The calculation of the elpdpsis only takes fraction of the time needed to fit the model itself. I

often found that fitting a model with a Horseshoe prior could take in the order of tens of minutes.
Using K-fold cross validation would take K times as long and using a real leave-one-out cross
validation could take half a day. In my experience PSIS-LOO only takes a couple of minutes,
making this a very useful tool.

Example 3.2: PSIS-LOO

For this example I introduce a new data generating process, which is has only one explanatory
variable. This makes it possible to make a 2D plot and give insight into the mechanism of psis-loo.

logit(θ) = −3 + 1.5x

with 20 data points {yi, xi}. After fitting the model, the likelihood p(yi|θpost) can be calculated.
By taking the inverse of the p(yi|θs) we find the importance ratios. For a single yi the ratios are
plotted in figure 8.
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Figure 8: Importance ratios for yi

The importance ratios in the tail are highly dependent on a particular realisation of the sample
p(yi|θs). This causes high variance in the tails of the distribution of the importance ratios.

In figure 9 the 20 y-values of given there corresponding x are plotted. The approximation of
the importance sampling using raw importance ratio does not give a good approximation of the
out-of-sample fit. However Pareto Smoothed Importance sampling gives a good approximation.
This technique is discussed after the example. The log loss calculated via the raw importance
sampling is 10% higher than the log loss calculated by PSIS-LOO as shown in Table 11.
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lpd Real elpd PSIS elpd Raw IS elpd
-1.05 -1.62 -1.68 -1.85

Table 11: Expected log predictive density for data point 19 in figure 9
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Figure 9: Logistic regression on 20 y-values given there corresponding x. The solid line
corresponds to the expected probability of the posterior fitted on all 20 points. The dashed
line corresponds to the model fitted on the data except the data point depicted as a hollow point.
A good approximation of the out-of-sample performance for the hollow point should lie on the
dashed line.

3.3.4 Diagnostics

When a model has a good fit to the data the PSIS-LOO likelihood p(yi|y−i) should have a value
that is close to the likelihood of the entire model p(yi|θ). When this is not the case a single data
point {yi, Xi} has a big influence on the inference. This can be seen by rewriting the importance
weights and using Bayes’ formula:

rsi =
1

p(yi|θs)
=
p(y−i|θs)
p(y|θs) ∝

p(θs|y−i)
p(θs|y)

In this case the raw importance ratios rsi can have very fat tails. When fitting the generalised
Pareto distribution to the raw importance ratios a high tail shape parameter k will be found.
The k-value in the generalised Pareto distribution corresponds to the fatness of the tail of the
distribution. The amount of moments of the distribution that are defined, is always less then b 1

k c,
this meas that the variance is only defined when k < 0.5 and the mean of the distribution only
exists when k < 1.

In case that the variance does not exist raw importance sampling does not converge to a
solution, however the Pareto smoothed version still works for k > 0.5. Vehtari et al. (2015) find
that if k < 0.7 that the PSIS-LOO is still reliable. In example 3.2 the Pareto distribution has a
k-value of 0.56, so the raw importance sampling approximate gives a bad representation and the
PSIS approximation is still good. A data point yi has a k-value over 0.7 indicates that either the
point is an outlier or the model is misspecified .

3.4 Final Remarks

In this thesis, I use a logarithmic loss to evaluate the performance of a model. The logarithmic
loss is closely related to information theory, Where it is called the cross entropy of the model.

The goal is to find a quantity that predicts the logarithmic loss on unseen data. This quantity
is the expected log predictive density (elpd). To compare data sets of different sizes I take the
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mean of this value, which is the mean log predictive density (mlpd).
The logarithmic loss gives overly optimistic estimation of the performance when it is calculated

on the training data.
K-fold cross validation gives a better estimate of the out-of-sample performance. The data is

split up in K-fold. One fold is left out and the model is trained on the rest of the folds. Then the
logarithmic performance is calculated on the left-out fold. This is repeated for all the folds, and
summing the all the logarithmic losses give the elpd.

Bayesian model takes longer to fit, therefore, K-fold cross validation takes to long. Instead,
I use Pareto smoothed importance sampling leave-one-out cross validation (psis-loo). This is
an approximation of leave-one-out cross validation. The method takes less time than fitting a
single Bayesian model. Furthermore, it is easy to detect if the method does not produce good
approximations.
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4 Frequentist Variable Selection

Out of the variable used in the logistic regression only a few might actually contribute to the
performance of the model. The variables that do not add predictive power to the model are
undesirable in the model. On the one hand, the extra variables make the model less interpretable.
However, the more problematic fact is that the added variables can lead to overfitting of the
model.

For a small dimensional problem a way to approach this problem would be to fit the model
for all possible combinations of the variables and taking the model with the highest performance
criterion. In the high dimensional case this would not be viable due to the exponential increase
of possible model, namely the amount of fits would be 2D. Where D is the dimension of the
data. Furthermore, this approach has the problem that the performance criteria can have a high
variance. This can lead to overfitting in the model selection. The regularisation based variable
selection methods, do not have the same exponential growth with dimension, but has a polynomial
growth depending on the method that is being used.

4.1 Forward Selection

The first type of variable selection considered is the Forward Selection. In the first step of this
method a logistic regression is fitted with only an intercept β0. In the second step of the algorithm,
D different models with the intercept and one extra βd are fitted.

logit(θ) = β0 + βdX
d, for d ∈ {1, ..., D}

Where Xd is the explanatory variable associated with parameter βd. Then by using K-fold
cross validation (Section 3.2) the parameter with the best predictive performance is chosen. Now
in the subsequent steps one extra parameters per step is added, until all parameters are included
in the model. After this is done the model with the highest predictive power is chosen. The choice
of the submodel is based on the difference between the submodel with the highest elpd, the base
model, and the smallest submodel for which the following relation holds.

P (elpdbase > elpdsubmodel) < 0.84

This is the smallest submodel which is one standard deviation away from the model with
the best predicted performance. This selection criterion is applied to all other variable selection
methods.

Using this approach, instead of using all 2D possible model, reduces the amount of steps needed

to fit the model is
∑D
d (D− d) = D(D+1)

2 . In case of dimension D = 20, this heuristic reduces the
complexity from 1,048,576 combinations to 210 combinations. Which decreases the time to fit the
model by a factor of approximately 5,000. This method can also be used in Bayesian statistics,
but I only consider the frequentist method, because fitting 210 model is in Bayesian statistics
takes long time.

Example 4.1: Forward Selection

For data generating process 1, Forward Selection algorithm gives the output in Figure 10. In this
case the method correctly identifies the amount of variables that model should have (namely four).
The model performance is better on the out-of-sample data than the cross validation indicates.
The grey line (corresponding to external set) has higher value than the black line (internal cross
validation) . This has to do with the difference in amount of defaults that are in the data set.
The default parameter y in the training data has an average of 2.25% defaults, while the external
set has a average of 1.96%.
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Figure 10: Variable selection when using Forward Selection. The black line is based on K-fold
cross validation (in-sample) and the grey line is based on an external set. The dashed horizontal
line is the suggested model size

4.2 Variable selection & Regularisation

When fitting a logistic regression with many variables and relatively low amounts of data, the
regression has the tendency to start modelling noise, this phenomenon is called overfitting. This
modelling of noise deteriorates the predictive performance of the regression.

When the regression models noise, the regression is too sensitive to the particular realisation
of the data. If some data points would change a little, the inference could change a lot, which
leads to unstable inference. Regularisation makes the model more resilient against overfittig, but
still consider all the parameters in the model. Regularisation is done by restricting the freedom
of the values that the parameters β can take. In Frequentist inference this is done by restricting
a norm of the parameters β. In Bayesian statistics is done via the priors.

Furthermore, regularisation can be divided into two classes depending on the assumption on
the regression coefficients β.

The first assumption is that all parameters β are important, thus all add predictive power
to the model. In this case the parameter vector β is said to be dense. On the other hand the
assumption can be made that the parameter vector contains parameters βi which are equal to
zero, in this case the parameter vector is sparse. Methods with this assumption have the tendency
to set some parameters in β to zero or shrink some of them heavily to zero.

Techniques like Lasso are focused on sparse regression vectors β, where a part of the regression
coefficients in the vector are zero.

Techniques like the ridge regression assume that all variables β have some influence on the
predictive power of default, hence all β 6= 0. These techniques typically do not set parameters to
zero.

The different types regularisation do not necessarily lead to variable selection, but can be used
in variable selection methods. In particular the techniques which assume sparsity are useful for
variable selection, as they produce a ranking of importance for the variables. The methods that
do not induce sparsity, do not produce such a ranking.

4.2.1 Ridge Regression

In Frequentist regularisation, a penalty is given to the use of bigger parameters β. These techniques
are only applied to the regression coefficients β and not to the intercept β0. As the model with
only β0 is seen as the base model and we want to keep the intercept in the model after variable
selection. One type of regularisation in the Frequentist framework is ridge regression, which is
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this case is a logistic regression where a L2-norm penalty is added. The estimate for the ridge
regression β̂ridge are found by the following equation.

argmin
β0,β∈RD+1

{− log p(y|β0, β,X)} subjected to ||β||22 ≤ t (5)

So ridge regression searches for the highest likelihood for values of β that are in a sphere with radius
t. Figure 11 shows a schematic example for a two dimensional ridge regression. The maximum
likelihood is represented by a dot, and the concentric ellipsoid represent the different levels of the
likelihood function. The value of the ridge estimate β̂ridge is represented by the plus symbol.

Equation 5 is often solved via the Lagrangian from of the ridge regression, which is shown in
Equation 6. This form can has a derivative. This derivative is used in the algorithm coordinate
descent, which finds the solution to β0 and β.

argmin
β0,β∈RD+1

{
− log p(y|β0, β,X) + λ||β||22

}
(6)

The exact relation between λ and t depends on the realisation data and there is no nice way to
represent this relation. There is not clear a priori way to pick λ, instead multiple different values
of λ are used and the value with the highest elpd is chosen.
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Figure 11: Schematic representation of ridge regression. The circle represent the constrain as in
equation 5. The ellipsoids represent different levels of the likelihood. The dot is the maximum
likelihood estimate and the plus symbol is the ridge estimate.

Ridge regression does not induce sparsity, because of the smooth geometries, and does not give
a ranking of the importance of the different variables. Making it unsuitable for variables selection.
However, it can still counteract overfitting, this can also be seen in Example 4.2.
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Example 4.2: Ridge Regression

The data in this example is a little different than the normal data from data generating process 1.
Here we take only n = 1, 000 samples instead of 4,000 samples from the data generating process.
The deviation from the standard is because the effects are more pronounced than in the standard
example data from the data generating process.
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Figure 12: Ridge Regression for different levels of regularisation λ, the regularisation is weakest
on the right hand side and strongest on the left hand side. The estimate of the get closer the
zero as the regularisation gets stronger.

Figure 12 show the ridge estimate for various values of the parameter λ, the ridge regression
does not induce sparsity and it shrinks all parameters towards zero, but never puts them on
zero. There are two opposite effects in this regularisation, on the one hand the prediction get
better because the noise, originating from the 16 zero-valued parameters, get shrunk towards
zero. On the other hand, the prediction get worse, because the effect of the four important β
also get shrunk. The regression does somewhat improve the model as can be seen in figure 13 at
a regularisation coefficient λ ≈ 0.01. This is point where the two opposite effects are equal.
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Figure 13: Performance of the Ridge Regression for different levels of regularisation λ.

Table 12 contains the first ten regression coefficients of the ridge regression. The other 10
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variables are all similar to β5 to β10.

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

0.85 0.42 -0.73 -0.39 0.02 0.13 -0.24 -0.16 -0.04 -0.20

Table 12: Estimates of the regression coefficients for the Ridge Regression with the highest mlpd

4.2.2 Lasso Regression

A frequentist method to induce sparsity is Least Absolute Shrinkage and Selection Operator
(Lasso) regression. Lasso regression penalises the L1-norm of the regression coefficients β (Tibshirani,
1996), where the L1-norm is the sum of the absolute values of the parameters β:

||β||1 =

D∑
i=1

|βi|

And the Lasso regression is defined as:

argmin
β0,β∈RD+1

{− log p(y|β0, β,X)} subjected to ||β||1 ≤ t (7)

The Lagrangian form of Lasso, used in computing the Lasso regression is equation 8.

argmin
β0,β∈RD+1

{− log p(y|β0, β,X) + λ||β||1} (8)

Solving for λ in equation 8 and t in equation 7 have is the same. Equation 8 is the Lagragian
form of Equation 7. The exact relation between λ and t depends on the realisation data.

In this equations there are to two terms, which have an opposite effect in the minimisation.
The fist term of the equations − log p(y|β0, β,X) is the minus loglikelihood of the logistic model.
Minimising this term is equivalent to maximising the likelihood. In general the likelihood gets
higher the more parameters get added to the model, as the model becomes more flexible and it
can more easily fit the data points.

The second term λ||β||1 has the opposite effect. This is the L1-norm of the parameters. For
larger β, this term becomes bigger.

Figure 14 shows a schematic representation of a two dimensional Lasso regression. The
constraints are represented by the diamond. Due to the perpendicular corners of the constrains,
the equal-likelihood ellipsoids are likely to be maximised in the corners. The corners are zero for
at least one regression coefficient β, thereby inducing sparsity in the regression vector β. The
likelihood of the estimate of the Lasso regression and the likelihood of the Ridge estimate (Figure
11) are the same.

38



-1.0

-0.5

0.0

0.5

1.0

1.5

-1 0 1 2 3
β1

β
2

Figure 14: Schematic representation of Lasso regression. The diamond represent the constrain as
in equation 7, where t = 1. The ellipsoids represent different levels of the likelihood. The dot is
the maximum likelihood estimate and the plus symbol is the Lasso estimate.

Example 4.3: Lasso Regression on Independent Data

Fit a Lasso regression for the example data with 4,000 observations from the data generating
process 1.
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Figure 15: Lasso regression for different values of λ, the dotted line is the model where the 4 non
zero β are the only parameters in the model

The estimates when using a Lasso regression are shown in Figure 15. As λ get bigger (− log10 λ
gets smaller) the regularisation effect gets stronger. This corresponds to a smaller 20 dimensional
diamond (Figure 14). The four parameters with a real effect are labelled, the other 16 parameters
are not labelled. On the left side the regularisation is the strongest and on the right side the
weakest. As the regularisation gets stronger more and more variables are set to zero. The
parameters β that do not have a real effect are set to zero, which is desirable. However as the
regularisation continues to get stronger even the real parameters are estimated to be zero.

The vertical line represent the least regularised estimate where only the four important
parameters are included.
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Figure 16: Cross Validation of the Lasso Regression with different values of λ. The top axis
shows the amount of non-zero parameters β. The black dots are the estimates and the bars
around them is the standard deviation of the estimate. The black dotted line is the model with
the correct amount of β, the red dashed line is the model with the best predictive value

In Figure 16 the results of cross validation are shown for a Lasso regression with multiple
values regularisation values of λ. On the left hand side the regularisation is the weakest and
on the right hand side the strongest. When increasing the regularisation the performance of
the model becomes better, until the regularisation shrinks the non-zero β to much and the
performance deteriorates.

Table 13 shows the estimates of parameters of the model with the highest elpd and the model
only containing the four important regression coefficients. When Lasso only includes the four
parameters, the important regression coefficients are heavily biased towards zero. The model
performs better when more variables are included. In the highest elpd model the important
parameters are much closer to their true value. The unimportant included variables are relatively
small, for example β7 = 0.08 and β9 = 0.15. This means that these parameters do not have a big
influence on the Probability of Default.

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

four important 0.61 0.49 -0.46 -0.59 0.00 0.00 0.00 0.00 0.00 0.00
highest elpd 0.78 0.66 -0.64 -0.75 0.00 0.00 0.08 0.00 -0.15 0.00

Table 13: Estimates of the regression coefficients

Example 4.4: Lasso with Collinearity in Data

Now the same is done with the collinear data as in data generating process 2.4 (p. 26) and the
results are shown in Figure 17. The regression coefficient with correlated data have the tendency
to go faster to zero than the coefficients without correlated data. For example parameter β3,
which has a correlation with β2, goes quickly towards zero, until β2 = 0, and then its descent
goes slower again. The same happens for β4, which is correlated with β5. In this example the
Lasso regression does not correctly identify the most important parameters. Parameter β2 is the
seventh parameter to be kept in the model, this meas that if all relevant parameters are included,
that there are 3 noisy parameters in the model.
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Figure 17: Lasso regression on data with collinearity, the four real contributing β are shown in
black. The regression coefficient β5, which correspond to the explanatory X5 that is correlated
with X4, is also shown in black. All other β are shown in grey.

Figure 18 shows the cross validation performance estimate of the Lasso regression. Again the
Lasso regression picks a model that is too large. The selected model is smaller than in the case of
independent data, however the performance of the model is worse than that of the independent
data.
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Figure 18: Caption

In this case the Lasso regression overestimates the amount of true variables in the model. It
should be four nonzero parameters, but it picks six nonzero parameters.

4.2.3 Relaxed Lasso

The Lasso could be used directly, however it is also be possible to just use the Lasso regression
as a way to find the most important variables. As the regularisation get stronger more and more
regression coefficients are set to zero one-by-one. This gives a rank of the regression coefficients.
The most important regression coefficient needs the most regularisation to be set to zero, and the
least important regression coefficients is set to zero with the least amount of regularisation.

Relaxed Lasso is a procedure where the model is refit without regularisation. Where the
first refit is done on the most important variable, the second model on the two most important
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variables, and so forth. So after the Lasso regression the model is fitted D (amount of variables)
times and from these D models the best model is chosen.

For the model with the real four parameters, the real contributing parameters β in Figure
15 are shrunken to zero. If the Lasso regression correctly identifies the rank of the regression
coefficients, then refitting the model would lead to a better estimate of the true parameters β. In
general this lead to a sparser model.

However, the Lasso regression does not always identify the the right order of the parameters
as can be seen in Figure 17. In this case, noisy parameters β are added to the model without any
regularisation. This can deteriorate the predictive performance of the model. So the performance
of Relaxed Lasso is dependent on the discriminatory power of the Lasso regression.

Example 4.5: Relaxed Lasso

The Lasso Regression in example 4.3 gives the parameters β a ranking, which is shown in table
14.

Lasso Rank 1 2 3 4 5 6 7 8 9 10
i : βi 1 4 2 3 9 7 15 10 5 6

Table 14: Importance rank given by Lasso regression

Picking the λ with the highest value and refitting the model without regularisation.
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Figure 19: Relaxed Lasso variable selection

4.3 Final Remarks

Frequentist methods are quick and can solve the problem in a couple of seconds. Forward Selection
Ridge regression is not a good option for variable selection, but it is still applicable to counteract

overfitting. Lasso and Relaxed Lasso are both the quickest methods for variable selection. Lasso
shrinks also shrinks the important variables, when only the important variables are included in the
model. Therefore, the model with the highest mlpd is has more variables in the model. Relaxed
Lasso refits the models for the rank given by Lasso. This causes the important variables to be
shrunk less. The risk of this approach is that if the Lasso rank is not correct that a noisy feature
is included without any regularisation.

All the models are also easy to implement, because they are easily available in packages in
most popular programming languages.
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5 Bayesian Variable Selection

Just like in the Frequentist case, there are many ways to approach variable selection in Bayesian
statistics.

The spike-and-slab prior (Mitchell & Beauchamp, 1988) is considered to be the gold standard
in Bayesian variable selection. This is a mixture of a spike on zero, and a very wide slab, for
example a Cauchy(0,1).

γi ∼ Bernoulli(η)

p(βi) = (1− γi)δ0(βi) + γi
1

π(1 + β2
i )

Where δ0 is a dirac delta on zero and η indicates the a priori sparsity of the model. If γi = 1
then the prior on β is the slab and if γi = 0, then the prior on β is the spike. The posterior of
the γi expresses the belief whether the variable should be included in the model. So when the γi
is small it should not be included and when γi is big is should be included.

A main concern in Bayesian statistics is computing the posterior distribution. As discussed,
Markov Chain Monte Carlo sampler are the common way to solve non-conjugate problems.
Traditional solvers like Metropolis-Hastings and the Gibbs Sampler are too slow in high dimensional
space and for correlated data. Algorithm that are the only real option for high dimension and
correlated data use the gradient of the logarithm of the posterior. This is not defined for the
spike-and-slab prior and are therefore not applicable to the spike-and-slab prior.

In the Bayesian setting it is also possible to get variable selection via regularisation, and very
similar results can be found in Frequentist and Bayesian statistics. To continue building on this
understanding, I consider the Horseshoe prior as a type of regularisation. This Horseshoe prior is
seen as a continuous equivalent of the spike-and-slab prior, and it can be solved by Hamiltonian
Monte Carlo.

5.1 Prior choice on Intercept

In Bayesian logistic regression the logistic function the same as in Frequentist statistics. However,
in Bayesian statistics a prior should be defined before the model can be fitted. On the regression
coefficients β special priors are applied such that it can be used for variable selection. We
always want to keep the intercept in the model as it a measure of the average default probability.
Therefore, these priors are not being used on the intercept, but still prior for the intercept needs
to be chosen.

Sometimes the Normal distribution is suggested as a prior for the logistic regression. However,
the normal distribution is prone to outliers (O’Hagan, 1979). This means that a single outlier can
heavily influence the posterior distribution. This makes the model non-robust and this is generally
true for light tailed prior distributions. To prevent the outlier sensitivity Gelman et al. (2008)
proposed using a Cauchy distribution as a prior. The fat tails of the Cauchy distribution limit
the effect of outliers on the inference of β0.

The Cauchy distribution has very fat tails, the tails are so fat that the expected value of the
Cauchy distribution is not defined. If a combination of explanatory variables X is fully predictive
of defaults, the logistic regression is called separable. In this case the likelihood function becomes
almost flat from a certain threshold till infinity. This causes the Monte Carlo to linger on in
this area. This can be detrimental to the performance of MCMC (Ghosh et al., 2018). For the
intercept β0 the use of a student-t distribution with a degree of freedom between 3 and 7 is
recommended (Gelman et al., 2013). This prior gives a more robust solution than the normal
prior and is numerically more attractive than the Cauchy prior. As the flat prior p(β) ∝ 1, is
even more diffuse than the Cauchy distribution, it is even less numerical stable than the Cauchy
distribution.

Normally the student-t is a good choice for the intercept β0 and regression coefficients β. In
this thesis this prior is only applied to the intercept β0, and not to the regression coefficients β.
The priors on β are used for variable selection. However, in general the tails of the priors on β
have a similar effect on numerical stability of the Monte Carlo methods.
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5.2 Bayesian Regularisation

In Frequentist regularisation an penalising term is added to the likelihood to penalise larger
regression coefficient β. In Bayesian regularisation no extra terms are added, but regularisation is
done via the prior. In case of the normal prior and the Laplace prior, the results are very similar to
that of Ridge regression and Lasso regression respectively, and for the Maximum a posteriori point
estimate the results are actually the same. Besides these prior, a more elaborate Horseshoe prior
can be used, which has the property that it filters out weak signals, while leaving strong signal
almost unchanged. The Normal prior and the Laplace prior are treated to give an intuition on
Bayesian regularisation and to show how the different types of statistics can have similar results.
The Horseshoe prior is the only Bayesian technique is applied in the simulation studies and to the
FreddieMac data.

5.2.1 Normal Prior

In Bayesian statistics the posterior distribution is proportional the prior p(β) times the likelihood
function p(y|β0, β,X).

p(β0, β|y,X) ∝ p(y|β0, β,X)p(β)p(β0)

In Bayesian statistics the point which maximises the posterior distribution is the Maximum
a-posteriori (MAP) estimate. When taking the flat prior p(βi) ∝ 1, the posterior is proportional
to the likelihood function. For the flat prior the MAP estimate is the same as the maximum
likelihood estimate in frequentist statistics. I only use the MAP estimate as an illustrative tool,
and not for prediction as it loses information from the posterior distribution. For example the
variance of the posterior is lost.

If a normal prior is set on the regression coefficients β,

βi ∼ Normal(0, σ)

and a mean of 0 with a small standard deviation σ is chosen, then the prior pulls the posterior
away from the maximum likelihood estimate towards 0. This phenomenon is called shrinkage.

To show that Bayesian Regression with a normal prior gives similar results to the Ridge
regression, let the model be as follows:

y ∼ Bernoulli(θ)

logit(θ) = β0 + βX

βi
iid∼ N(0, σ0)

β0 ∝ 1

This model has the following unnormalised posterior:

p(β|y,X) ∝ p(y|β0, β,X)p(β)p(β0)

∝ p(y|β0, β,X) exp

(
−||β||

2
2

2σ2
0

)

The maximum a-posteriori (MAP) estimate can be found by using the logarithm and then
maximising that:

β̂MAP = argmax
β0,β∈RD+1

{
log p(y|β0, β,X)− ||β||

2

2σ2
0

}
= argmin
β0,β∈RD+1

{
− log p(y|β0, β,X) +

1

2σ2
0

||β||2
}

The MAP estimate is the same as in the ridge estimate in equation 6 on page 36, when λLasso = 1
2σ2

0
.
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5.2.2 Laplace Prior

The Bayesian equivalent of the Lasso regression is using a Laplace prior on the regression coefficient.

βi ∼ Laplace(µ, λ)

Where µ = 0. The Laplace distribution has the following distribution:

p(βi|µ, λ) =
1

2λ
exp

(
−|βi − µ|

λ

)
Figure 20 depicts the probability density function of the Laplace distribution.
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Figure 20: Laplace distribution with λ =
√

0.5 and µ = 0 and Normal distribution with σ = 1
and µ = 0. The distributions have the same mean and variance

The Laplace prior puts more weight around 0 compared to the normal distribution. Weak
signals, that are βi for which the maximum likelihood are close to 0, will get more mass on zero
compared to the normal prior. Furthermore, the Laplace distribution has thicker tails than the
normal distribution, which means that strong signals, βi far from zero, are shrunk less than with
the normal distribution.

To make the comparison between Lasso regression and Bayesian regression with a Laplace
prior, define the model:

y ∼ Bernoulli(θ)

logit(θ) = β0 + βX

βi
iid∼ Laplace(0, λ)

β0 ∝ 1

The MAP estimate for this model is:

β̂MAP = argmax
β0,β∈RD

{
p(y|β0, β,X) exp

(
−||β||1

λ

)}
= argmax

β0,β∈RD

{
log p(y|β0, β,X)− ||β||1

λ

}
= argmin
β0,β∈RD

{
− log p(y|β0, β,X) +

1

λ
||β||1

}
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So the Lasso regression and the Bayesian regression with a Laplace prior are equivalent, only the
λ of the Laplace prior is the inverse of the λLasso of the Lasso regression (equation 8 on page 38).

5.2.3 Horseshoe Prior

The Laplace or a normal prior with give similar results to respectively the Lasso regression and
ridge regression. These methods shrink parameters β to zero depending on a common shrinkage
parameter λ for the Laplace prior and the normal prior. The shrinkage parameters of these prior
are the same for all parameters β, so they have a global effect. This causes these methods to
shrink all regression coefficients towards zero, even the strong ones.

Carvalho et al. (2010) introduces the Horseshoe prior, which has a local shrinkage prior λ,
besides global shrinkage parameter τ . The prior is constructed as follows:

βi ∼ Normal(0, λiτ)

λi
iid∼ Cauchy+(0, 1)

τ ∼ p(τ0)

The global shrinkage parameter τ is the same for all β, if τ is small, then it will shrink all
parameters towards 0, and as τ goes to infinity, all parameters are unregularised. The choice of τ0
depends on the prior assumption on the sparsity of the parameter vector β. This is often a small
value with τ < 1, the precise choice of τ0 is discussed later in this section.

Whereas the global shrinkage parameter τ shrinks all parameters towards zero, the local
shrinkage parameter λ has the opposite effect for some β. There is only one τ for all β, but every
βi has its own local shrinkage parameter λi. Due to the fat tail of the half-Cauchy distribution, β
with strong signals can escape the shrinkage τ . In the case of a strong signal the posterior of λi
can have a very high value, which negates the shrinkage effect of the small value of τ .
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Figure 21: Laplace distribution and distribution of the Horseshoe prior

The density of Horseshoe prior does not have a closed form but behaves like log(1 + 2
β2
i
)

(Carvalho et al., 2009) and is plotted in figure 21. The probability density function of the Horseshoe
prior has a infinite peak at β = 0, and has fat Cauchy like tails. Due to infinite peak, the weak
signals β are heavily shrunk towards zero. On the other hand, the fat tails do hardly influence
the signal, when the signals are far from zero.

Normal scale-mixtures In the case of the logistic regression, many results do not have a
closed-form, which makes the behaviour difficult to understand. To illustrate the behaviour of the
Horseshoe prior assume simple model where y ∼ N(β, σ).
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The different types of prior discussed before, can be expressed as normal scale-mixtures.
Normal scale-mixtures are distribution where the scale parameter of the normal distribution has
a distribution itself, such that:

β|λ, τ ∼ N(0, λτ)

λ ∼ p(λ) ,or

λ2 ∼ p(λ2)

τ ∼ p(τ)

By integrating out the λ and τ the prior distribution on β is found:

p(β) =

∫ ∞
0

∫ ∞
0

p(β|λ, τ)p(λ)p(τ)dλdτ

The Laplace prior is a normal scale-mixture where λ2 ∼ Exp(2b2). Integrating out λ2 results in a
βi ∼ Laplace(0, b). The student-t distribution can be seen as a normal scale-mixture model where

λ2 ∼ Gamma(ν2 ,
νs2

2 ). Integrating out λ2 gives β ∼ student-tν(0, s). Where ν are the degrees of
freedom and s is a scale parameter. The normal prior is a normal scale-mixture where λ = σ. So
this is for a fixed scale. The Horseshoe prior is a normal scale-mixture where λ ∼ Cauchy+(0, 1).
The derivations of these statements are in Appendix C. The posterior of a normal scale-mixture
model, given λ and τ , is:

p(β|y, λ, τ) ∝ p(y|β)p(β|λ, τ, σ) = exp

(
− (β − y)2

2σ2

)
exp

(
− β2

2λ2τ2

)
This the product of two Gaussian models is conjugate, so the posterior is:

β|λ, τ, y ∼ N
(

τ2λ2

1 + τ2λ2
y,

λ2τ2

1 + τ2λ2
σ2

)
So the conditional expected value of β in posterior is.

E[β|y, κ, σ] =

(
1− 1

1 + λ2τ2

)
y

For the normal scale-mixtures, except the Horseshoe prior, τ is always equal to one and may be
omitted when not applicable.

Now define κi = 1
1+τ2λ2

i
. This is the shrinkage weight associated with βi. The shrinkage weight

has support of [0, 1], when λ2τ2 →∞ the shrinkage weight κ goes to zero and for λ2τ2 → 0, then
the shrinkage weight κ goes to one. The expected value of the posterior can be expressed in terms
of κi:

E[β|y, λ, σ] = (1− E[κi|y, σ, τ ]) y

And variance (Datta et al., 2013):

var(β|y, λ, κ) =

(
1− 1

1 + λ2τ2

)
σ2 = (1− κi)σ2

The shrinkage weight κi determines the amount of shrinkage towards zero. In case that κi is
zero there will be no shrinkage. When κi is one there will be perfect shrinkage and the expected
value of the posterior on β is equal to zero. The variance of the posterior also goes to zero as the
shrinkage weight κi goes to one.

47



0

1

2

3

0.00 0.25 0.50 0.75 1.00
shrinkage weight κi

de
ns

ity

Prior
Horseshoe
Laplace

Figure 22: Shrinkage profile of Laplace and Horseshoe prior

By change of variable from λ ∼ Cauchy+(0, 1), the implicit prior on κi can be found. The
unnormalised prior on κi for the Horseshoe prior is:

p(κi) ∝ κ−1/2
i (1− κi)−1/2

and the proper prior is κi ∼ Beta(1/2, 1/2). This distribution is shaped like a Horseshoe as
depicted in Figure 22, hence the name Horseshoe prior. The prior shrinkage weight puts a lot of
mass on either total shrinkage or no shrinkage at all. So there is a prior preference to estimate a
βi as either near zero or near the unconstrained signal.

The same change of variable can be done by for the Laplace prior, with λ2 ∼ Exp(2). This
gives:

p(κi) ∝ κ−2
i e
− 1

2κi

This is also depicted in figure 22. The prior shrinkage weight associated with a Laplace prior has
little weight on no shrinkage and most of the weight in the middle. This causes the Laplace prior
shrink even the strongest signals towards zero. The Lasso regression in figure 15 on page 39, also
shows this behaviour.

For the normal prior the shrinkage weight is just a fixed value κ = 1
1+λ . So it shrinks all β

indiscriminately of signal strength. This is visible as well for the ridge regression in Figure 12 on
page 37.
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Figure 23: Estimate of the maximum likelihood, Horseshoe prior and the Laplace prior for given
maximum likelihood estimate

Figure 23 shows the the expected value of posterior β for different priors. The Laplace prior
gives a estimates closer to zero than the maximum likelihood, even for strong signals. The
Horseshoe prior shrinks parameters β with a weak signal, but parameters β with a strong signal
are almost unchanged (Carvalho et al., 2010).

Global shrinkage parameter Besides the local shrinkage parameters λ, the global shrinkage
parameter τ has influence on the sparsity of the parameter vector β.

κi =
1

1 + τ2λ2
i

When τ has a value that is much less than zero, then it shrinks all β towards zero. So the choice
of τ depends on the sparsity assumption of the regression parameters β. If a priori the amount
of non-zero parameters is low, then τ could be picked as a low number and vice verse for a high
amount of non-zero parameters. The effect of two different τ is shown in figure 24. A smaller τ
puts more weight on larger κ, hence more prior shrinkage weight. Furthermore, the implied prior
on β has more weight around zero. In the right plot the smaller τ shrinks a bigger range of the
maximum likelihood estimate Y towards zero.
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Figure 24: Effect of τ on prior distributions. The dotted is τ = 0.05, and black line is τ = 1
(Reprinted from Van Der Pas et al. (2014))

Now consider the model which use more than one data points (y,X), consider a linear regression
instead of the signal model and define the effective amount of parameters meff of the in the
parameter vector:

meff =

D∑
i

(1− κi)

Much a priori shrinkage means that the κi are big so meff is small. For a linear regression the
expected value of meff is (Piironen et al., 2017):

E[meff |τ, σ] =
τσ−1

√
n

1 + τσ−1
√
n
D

If the true number of effective parameters m0 is known then the previous equation can set equal
to m0, which gives the following result:

τ0 =
m0

D −m0

σ√
n

In general the amount of non zero parameters m0 is not know, and setting a fixed τ0 may be to
restrictive. To give the model more flexibility to choose the right amount of important parameters,
a half Cauchy prior can be put on τ .

p(τ) ∼ C+(0, τ0)
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Figure 25: Difference between fixing τ and giving τ a half Cauchy prior.
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The value of τ0 is often a really small value and so the scale of the Cauchy distribution is small.
Most of the prior mass of τ is located between [0, 1]. In figure 25 the effect of using the Cauchy
prior is compared with using a fixed value for τ .The prior on meff for the fixed τ has most mass
around m0. Whereas the implied prior on meff , with a half Cauchy prior on τ has more evenly
distributed weight in its support of meff .

In case that τ has a prior, it also has a posterior. Given the shrinkage κ , τ is conditionally
independent on y. Also the κi’s are conditionally independent given τ . τ is estimated via the
average signal strength. So the Horseshoe prior adapts to the average strength of β from the data
itself. This is different from the other regularisation techniques, which are not adaptive. In the
case of Lasso regression many runs, with different regularisation coefficient λ, are done to find the
right amount of regularisation.

The previous results are in case of linear regression, however the classification of defaults is
done via a logistic regression. For a linear model the variance σ2 is a constant for all data points,
but for the logistic regression this is not the case. Still a value for σ is needed and as a plug-in
value for the variance the pseudo variance of logistic regression is used, which is (Gelman et al.,
2013):

σ̃2 = ȳ−1(1− ȳ)−1

Where ȳ is the sample mean of y.

Finnish Horseshoe The Horseshoe prior has Cauchy-like tails with O(β−2). As discussed as
in section 5.1, this can cause computational problems when solving the model. For computational
reasons it would be preferable to have thinner tails than the Cauchy distribution.

Piironen et al. (2017) introduced the Finnish Horseshoe, which is an adaptation of the Horseshoe
prior and is constructed as follows:

βi ∼Normal(0, λiτ)

λ̃i ∼Cauchy+(0, 1)

τ ∼Cauchy+(0, τ0)

c ∼Inv-Gamma(ν/2, νs2/2)

λ2
i =

c2λ̃i
2

c2 + τ2λ̃2
i

The Finnish Horseshoe prior has a student-tν(0, s2) tails instead of a Cauchy tail (see Appendix
C). Which makes it numerically more stable .

Where as the Horseshoe prior does not regularise parameters with strong effect the Finnish
Horseshoe prior has some regularisation for strong signals. When τ2λ̃i � c2 , then λi ≈ λ̂i, and

the Finnish Horseshoe has the same value as the Horseshoe prior. When τ2λ̃2
i � c2, then λ2

i → c2

τ2 .
So for strong signal the Finnish Horseshoe slightly regularises β. The shrinkage for strong

signals is much weaker than the shrinkage for weak signals. Also the shrinkage of the Laplace
prior is much stronger than the Horseshoe prior for strong signals.

The Horseshoe prior is a special case of the Finnish Horseshoe prior, where ν = 1 and s = 1.
This is the basic setting I use, unless error occur in fitting the model or when psis-loo gives errors.
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Example 5.1: Horseshoe prior on Sparse Data

For data generating process 1, the logistic regression is fitted with a Finnish Horseshoe prior and
the problem is solved using Hamiltonian Monte Carlo. The results of the first eight parameters
are shown in Figure 26.

The a priori effective numbers of parameters m0 = 4. s = 1 and ν = 1, and D = 20 This
gives:

τ0 =
4

20− 4

√
50√

4000
≈ 0.03
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β3

β2

β1
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Figure 26: Marginal distribution of posterior associated with the first eight (out of twenty)
variables.

The data generating process of the first four parameters have a real effect on the prediction of the
response variable y. The posterior distribution do not include zero in their 95% credible interval.
The other parameters have no influence in the data generating process. In this case the Finnish
Horseshoe prior causes the posterior to have a peak around zero.

The time to find 1,000 Monte Carlo samples of the posterior takes a couple of minutes.
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Example 5.2: Horseshoe with Collinearity

For data generating process 2.4, fit the Horseshoe prior. The posterior of uncorrelated data shows
the same behaviour as in Figure 26. For the correlated contributing data X2 and X3 the joint
distribution looks similar to the ridge as in Figure 3 on 21. Figure 27 shows the Monte Carlo
samples of the β4 and β5, which corresponds to the correlated data, where X4 really contributes
to the prediction and X5 is noise. The marginal posterior distribution of β5 has a peak around
zero. Just like in the case of the uncorrelated data in Figure 26. The posterior of β4 does not
have this peak. It is still visible that the two parameters are correlated. This correlation causes
the marginal distribution of β4 to be wider than the conditional distribution p(β4|β5 = 0)
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Figure 27: The effect of the Horseshoe on correlated parameters
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Example 5.3: Dense Data

Now consider a model where all parameters β are non-zero. Such that the first ten β = 1 and
the last ten β = −1. Like before, the explanatory variables X are drawn i.i.d. with standard
deviation σ = 1. The Horseshoe prior is specified as in Example 5.1. Figure 28 shows the
posteriors intervals of the dense data. Even though the initial guess of the amount of effective
parameters m0 is four, the Horseshoe prior adapts to the dense signals. The 95% credible interval
all contain the true value.
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Figure 28: Posterior intervals of the logistic regression with Horseshoe prior and dense data.

Finding the posterior of the Horseshoe prior is computationally more difficult than the finding
the posterior when using a Laplace prior or a Gaussian prior. This has to with the fact that
the Horseshoe prior has a hierarchical structure, where all the parameters β depend on a the
global shrinkage parameter τ . This hierarchical structure causes high gradients in the posterior
where τ is small. Therefore, the steps size in the leapfrog integrator (Appendix A.2.2, p. 94) of
Hamiltonian Monte Carlo needs to be smaller than for the other priors. The (Finnish) Horseshoe
prior takes about 5 to 10 times longer than non-hierarchical priors. In our case this is not a real
problem, because it takes only couple of minutes. On the other hand, the Horseshoe prior does
not require as much tuning as for example the Laplace prior, which needs many runs with different
regularisation parameters λ to do something comparable with Lasso Regression.

5.3 Predictive Projection

After fitting a Bayesian logistic regression, the posteriors of the regression coefficients β are never
truly sparse. Even though a parameter has almost no influence on the prediction, there is never
any posterior mass on zero. Features that do not have any predictive power to the models are
preferably left out.

Dupuis & Robert (2003) suggest projecting from the full model, or reference model, to a
subset of the parameter space that contains less features. The goal of the projection is to get a
smaller model, with as similar predictive power as possible to the reference model. In this case the
reference model is the posterior of logistic regression with Horseshoe prior with all the variables.

A measure for the difference predictive power between two distributions is the Kullback-Leibler
(KL) divergence, which is grounded in Information Theory (see Appendix B). The Kullback-Leibler
measures the information loss of describing one distribution by another distribution. Let q(θ⊥)
be the reduced model, where a part of regression coefficients from the full reference model p(θ|y)
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are set to 0. The difference loss of information by using the reduced model is:

KL(q(θ⊥), p(θ|y)) = Eỹ [p(ỹ|X, y)− log q(ỹ)] (9)

And this gives a approach to find the projected parameters θ⊥:

θ⊥ = argmin
θ∗∈Ω

KL(p(ỹ|θ∗), p(ỹ|θ)) (10)

The projection does not consider the data anymore, and the flow of information from the data set
is stopped after fitting the model. The projection only uses information from the reference model.
In other words, the goal is to make a smaller model with less dimensions, that is as similar as
possible to the reference model.

In the reference model the parameters that contribute to the prediction are the regression
coefficients β with the design matrix X. Let the parameters of the reduced model be θ⊥ =
{γ0, ...., γr}, where dim(γ) < dim(β). The explanatory variables matrix Z ⊂ X is the subset of
the full design matrix, associated with the projected parameters γ.

Dupuis & Robert (2003) show that, in the case of the logistic regression, solving equation 9 is
equal to solving:

argmin
γ∈Rdim(γ)

n∑
i

{
(βXi − γZi)− log

(
1 + βXi

1 + γZi

)}
A similar simplification can be found for all generalised linear models. The projected γ are found
by solving the following equation.

n∑
i=1

exp(γsZi)

1 + exp(γsZi)
Zi =

n∑
i=1

exp(βsXi)

1 + exp(βsXi)
Zi

In the fitted model, β is not a single point but a collection of Monte Carlo samples such that
β = {β1, .., βS}. For every value of Monte Carlo estimate βs, a projection can be made to the
reduced space in which case there are as many Monte Carlo samples in γ as in β. This is called a
draw-by-draw projection. On the other hand, it is also possible to project the parameters β to a
single point estimate γ. This single point process is quicker than the draw-by-draw procedure, but
it loses information that is present in the full posterior. Piironen et al. (2018) suggest a clustered
approach, which is a generalisation of the single point projection and the draw-by-draw projection,
where for a cluster of β a single γ is calculated. Where draw-by-draw has an amount of clusters
C equal to the number of Monte Carlo Samples S and the single point projection only has one
cluster. In the clustered approach the Monte Carlo samples of βs are split up in cluster and for
each cluster a projected value of γc is calculated. Such that:

γc = argmin
γ∈Rdim(γ)

n∑
i

(
γZi + log(1 + γZi) +

1

Sc

Sc∑
s

βsXi − log(1 + βsXi)

)
Sc is the size of the Monte Carlo cluster of β and γc is a single corresponding to the cluster.

For a model with 4,000 points the the single point projection takes about half an hour. The
draw-by-draw approach would take days to complete. So the time difference is quite big. I
choose 10 clusters for the predictive projection for model selection. For 10 clusters the predictive
projection gives a better prediction than with one cluster and takes approximately four hours to
finish. For the implementation I use the R-package projpred, This package is compatible with
rstanarm, which is use for fitting of Bayesian general linear models.

The amount of submodels is 2D and calculating the Kullback-Leibler divergence and the
projected parameters γ for every possible submodel of the reference model takes too long. To
get around this problem, the Forward Selection or the Lasso regression can be used on Equation
5.3. For less than 20 parameters projpred applies the Forward Selection and for larger it uses the
Lasso ranking. Forward Selection is more accurate in picking the right features, but it is much
slower for higher dimensions.
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Example 5.4: Predictive Projection

Take the same logistic regression as before with the Horseshoe prior as in Example 5.1 on page 52.
Projecting from the refence model with the Horseshoe prior, correctly identifies the important
variables. In figure 5.4 the elpd is plotted against the number of variables the method picks. This
is a typical profile of this method. The elpd increases till the amount of the selected variables and
then is almost constant. The reason that the elpd remain constant is that the noisy parameters
β are shrunk towards zero and do not influence the prediction of the reference model.
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Figure 29: Projection of full model to sparse model, the vertical dashed line is the suggest model
size
For the Forward Selection variant of the predictive projection and 4,000 samples, computation

takes about three hours.
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Example 5.5: Predictive Projection with Collinearity

Take the fit of the Horseshoe as in example 5.2 and use Forward Selection predictive projection.
Again the method correctly identifies the 4 non-zero regression coefficients.

The marginal distribution of the posterior β4 is wide due to the correlation with the posterior
β5. However the predictive projection algorithm finds that β5 has no predictive contribution to
the model and drops the variable out of the model. The Monte Carlo samples of β4 are projected
and the result is shown in Figure 5.5. The projected posterior is much narrower than the marginal
posterior of the reference model. The figure also shows the posterior for the logistic regression
which is refitted on the four important variables X. Even though it is not really visible, the
projected posterior has a variance that is 12% bigger than the refitted model. This increase in
variance is a result of the uncertainty of the feature selection.

refit

project

marginal

-1.0 -0.5 0.0

Figure 30: The marginal posterior, projected posterior and refitted posterior of β4. The grey
area is the 95% credible interval and the dark grey line is the expected value of the distribution.

5.4 Final Remarks

In Bayesian Statistics, prior provide regularisation. The normal prior and Laplace prior give
similar results to the ridge regression and the Lasso regression respectively. The Horseshoe prior
has a different shrinkage profile than Lasso regression. Where Lasso has the tendency to shrink all
regression coefficients, the Horseshoe prior leaves certain signals unchanged while heavily shrinking
others. If by chance an important variable has a maximum likelihood estimate near zero, than
the Horseshoe prior aggressive shrinks the posterior of that parameters towards zero. Both the
Bayesian and the frequentist variable selection methods have similar predictive power for 4,000
samples. The thing that stand out is that Lasso regression selects too many variables. In the
next sections I consider a smaller amount of data, in this case the difference between the variable
selection methods become more apparent.
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6 Simulation studies

So far the variables selection have been applied to two data set with with 4,000 observation. For
this amount of observation all methods worked reasonably. In this section the selection methods
are applied on more simulated data. For these simulation I use 1,000 sample. For this amount
overfitting is important, while this is not the case for 4,000 observations. In this section different
types of simulated data are used to investigate the behaviour of the variable selection methods.

6.1 Independent Explanatory Data

Throughout the thesis I use data generating process 1 with independent explanatory variables
(p. 24) to show the effect of different variable selection methods. The data is sparse, because
only 4 out of the 20 parameters have a non-zero value. The explanatory variables X in this data
are drawn from a multivariate normal distribution with a covariance matrix that is equal to the
identity matrix. In this section the number of observations is 1,000 instead of 4,000 as on page 24.

Figure 31 shows the predictive performance for the amount of variables that are selected by
the Predictive Projection with a Horseshoe prior. The method correctly identifies the amount
of parameters. The performance of the model does not change much above a certain number of
variables in the model. This has to do with the fact that in the reference model, unimportant
regression coefficients β are shrunk to zero and do not influence prediction. This is typical
behaviour for this method and means that selecting a model with too many variables does not
induce much overfitting.
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Figure 31: Horseshoe projection with 1000 data points. The black line is the psis-loo performance
estimate and the grey line is the performance on the hold-out-set, the dotted vertical line is selected
amount of variables.

In Figure 32 Lasso variable selection is shown. Lasso variable selection with 1,000 observations
overestimates the amount of important variables in the model, just like Lasso with 4,000 observations
op page ??. Both the Horseshoe prior and Lasso regression the curve of the estimated performance
and the real performance have a similar shape. The real performance is lower than the estimated
performance. However, all predictions have a error in the same direction.
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Figure 32: Lasso variable selection for 1000 data points. The black line is the K-fold estimate and
the grey line is the performance on the hold-out-set, the dotted vertical line is selected amount of
variables.

Relaxed Lasso (Figure 33) has a different pattern than Lasso regression. Compared to Lasso
it has a relatively quick increase of the out-of-sample performance by adding more variables to
the model. This is caused by the refitting of the parameters, such that they are not regularised
anymore. When increasing the amount of parameters further, the performance of the model also
decreases relatively quickly. This is again a result of removing the regularisation, which causes
overfitting. The best out-of-sample performance occurs when the submodel has 4 parameters.
However, Relaxed Lasso only picks three regression coefficients, causing worse performance than
for Lasso and Horseshoe. Whereas there is a clear relation between the estimated and predictive
performance of the Lasso and Horseshoe, this relation is less clear in the Relaxed Lasso.
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Figure 33: Relaxed Lasso variable selection for 1,000 data points. The black line is the K-fold
estimate and the grey line is the performance on the hold-out-set, the dotted vertical line is selected
amount of variables.

The same is true for Forward Selection in Figure 34. The out-of-sample performance increases
quickly, but after reaching four variables the performance deteriorates. Forward Selection also
picks the wrong number of variables. The relation between the predictive and estimated performance
is also less clear than for the Horseshoe prior or Lasso regression.
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Figure 34: Forwards selection for 1,000 data points. The black line is the K-fold estimate and
the grey line is the performance on the hold-out-set, the dotted vertical line is selected amount of
variables.

The relation between the estimated and predictive performance is important for the variables
selection, because, the variable selection is done on the relative performance. I decompose
estimated mlpd in different parts to illustrate this:

mlpdest = mlpdreal + systematic error + idiosyncratic error

The systematic error is the error that is the same for all submodels. The idiosyncratic error is the
error that is unique to every submodel.

The selection criterion (SC) are based on the relative performance of the model. So:

SC(mi) = mlpdbase −mlpdi

SC(mi) = real effect + idiosyncratic error of base model + idiosyncratic error of i

SC(mi) = real effect + variability of selection criterion

mlpdbase is the model with the highest estimated performance. This means that the systematic
error is not relevant for the selecting features. The two thing that matter are the real effect of
adding a parameter and the idiosyncratic errors. The selection criterion makes the right decision
when the real effect is large compared to the variability of the selection criterion.

Figure 35 shows the hold-out mlpd for the variable selection methods. The performance of the
best possible model is higher than both best Lasso and Horseshoe model. However, the selected
model perform worse. Unlike the Horseshoe and Lasso selection procedure, Relaxed Lasso and
Forward Selection do not have the same direction of bias for the predictions, which leads to a
selection induced bias (Cawley & Talbot, 2010).
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Figure 35: Hold-out performance of models of the variable selection methods on independent
explanatory variables

6.1.1 Multiple runs

Due to randomness in the data generating process, one method might perform better than another
method on one realisation of the data generating process and worse on another realisation. To
deal with this randomness, I draw multiple training sets from data generating process 1 and I
apply each variable selection method to all the training sets.

The amount of defaults in the generated data can also vary due to the randomness. However, I
am interested in the case that there are 20 defaults in the data set. To guarantee that all data sets
contain the same amount of defaults, I create a large data set from the data generating process.
From the large data set, I use stratified sampling to get training sets with 20 defaults and 980
non-defaults. Besides the training set, I also create a test set containing 100,000 observation to
get the hold-out performance.

Algorithm 1: Multi Run

Draw big data set with training data
Draw hold-out validation set (n = 100, 000).
for i in 1:30 do

train data = stratified sample from big data set
Run variable selection methods.
Check performance on the hold-out set

end

Predictive performance I calculate two reference values of the performance for the data
generating process. Namely, an upper limit of performance and and a lower limit of performance.
The lower limit is the performance of random guessing that a loan will default with a probability
of 2% . This is equal to the entropy of a Bernoulli distribution with P (y = 1) = 0.02. The mlpd
for this model is:

mlpdrandom = −98.04 · 10−3

The other reference value is seen as the upper limit of prediction. This limit is found by making
predictions with the true values of the four important variables on the hold-out set.

mlpddatagen = −72.52 · 10−3

Table 15 shows the out-of-sample performance of the variable selection methods over 30 iterations.
Predictive Projection and Lasso have the highest performance and Relaxed Lasso and Forward
Selection have the worst performance. Lasso regression has the lowest variability of the performance
over different realisation of the data, however, it selects the most variables. All methods perform
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worse than the theoretical maximum value of the data generating process. This is caused by
two thing, firstly, the methods sometimes include unimportant variables and exclude important
variables. Furthermore, the estimation of the important regression coefficients is not perfect due
to the lack of data.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpd) (×1000) -77.28 -76.93 -77.70 -78.33
sd(mlpd) (×1000) 4.74 3.42 5.21 4.66

# var. 3.90 7.76 4.07 3.70

Table 15: Hold-out-performance (mlpd) and Average number of included variables (# var.) for
selection methods on independent explanatory data. There are four important variables.

Table 16 shows the difference in performance between the best submodel and the selected
submodel. The performance of the submodel with the highest performance on the hold-out set
ismlpdbest and the hold-out performance of the selected model is mlpdselect .

∆mlpd = mlpdbest −mlpdselect

Predictive Projection and Lasso regression have a lower difference between the best submodel
and the selected model. For Relaxed Lasso and Forward Selection this difference is bigger. The
performance of the best submodels of Forward Selection and Relaxed Lasso is on average better
than the best submodels of the Horseshoe prior and Lasso regression. This shows that the former
methods have more difficulty with finding the right submodel. Furthermore the first two method
have a lower standard deviation of ∆mlpd, so the selection mechanism is more stable.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpdbest) (×1000) -76.00 -75.78 -74.58 -75.07
mean(∆mlpd) (×1000) 1.28 1.15 3.11 3.26

sd(∆mlpd) (×1000) 1.74 1.71 4.14 3.11

Table 16: Difference between the hold-out performance of best submodel and hold-out perfomance
of selected submodel

Estimated mlpd Besides that Relaxed Lasso and Forward Selection have difficulty with selecting
the right submodel, there is another problem with these two methods. This has to do with
the estimate of out-of-sample performance. K-fold cross validation and PSIS-LOO are unbiased
estimates for the out-of-sample performance without variable selection. However, the selection
procedures can cause these out-of-sample predictions to be biased. To show this, define the
difference between the real mlpd of the selected submodel (mlpdreal) and the estimated mlpd of
the selected submodel (mlpdest) as,

ε = mlpdreal −mlpdest

Table 16 shows the difference between the estimated mlpd and the real mlpd. The average of
the difference is small for Predictive Projection and for Lasso. For Relaxed Lasso and Forward
Selection there is a clear difference between the estimate and the real value of mlpd. The prediction
overestimates the performance of the model. Furthermore, the standard deviation is higher for
Relaxed Lasso and Forward Selection. This makes the K-fold estimates less reliable for the last
two methods.

Horseshoe Lasso Relaxed Lasso Forward

mean(ε) (×1000) 0.10 0.84 -2.85 -2.82
sd(ε) (×1000) 6.50 5.86 8.04 8.72

Table 17: Difference between estimated performance and real performance
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The reason Relaxed Lasso and Forward Selection have a selection induced bias has to do with
the variability of the selection criteria. The variable selection depends on the mlpd given by K-fold
cross validation and psis-loo.

mselect = argmin
i:mi

{
mi : P (mlpdmax −mlpdmi < 0) > 0.36

}
mlpdmax = max

i∈D
mlpdi,hold-out

mlpdselect = mlpdmselect,hold-out

Due to the maximisation operation the estimate is biased.

Selected Variables Table 18 displays which variables the variable selection methods pick. All
methods are less likely to include regression coefficient β2 and β4 than β1 and β3. The effect of the
second and fourth variables are weaker than those of the first and third variables, which makes it
harder for the methods to detect the signal.

Horseshoe Lasso Relaxed Lasso Forward

β1 0.87 0.97 0.93 0.87
β2 0.53 0.80 0.57 0.60
β3 0.93 0.97 0.90 0.93
β4 0.70 0.90 0.73 0.73

other β 0.20 4.00 0.63 0.53

Table 18: Average Inclusion of parameters by the different methods.

Predictive Projection with a Horseshoe includes the least amount of unimportant variables
and Lasso includes the most unimportant variables. Although Lasso includes the most variables,
the performance of Lasso does not deteriorate much, because of regularisation. The amount of
falsely included and excluded variables in Table 19 show that Relaxed Lasso and Forward Selection
also include more unimportant variables. For these methods the unimportant variables are not
regularised, which causes a worse performance.

Horseshoe Lasso Relaxed Lasso Forward

False Inclusion 0.20 4.00 0.63 0.53
False Exclusion 0.97 0.36 0.87 0.87

Table 19: False inclusion and false exclusion of variables.

Computation Time As expected, the Frequentist methods are fast compared to the Bayesian
method. Both variations of the Lasso Regression are the quickest. The selection methods take a
couple of second to find the result. Forward Selection takes a bit longer, with a couple between
30 and 60 seconds.

Finding the posterior of the model with the Horseshoe prior takes a couple of minutes.
Predictive Projection takes the most time which runs for 30-40 minutes. This is approximately
the same for all data generating processes.
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6.2 Collinear Explanatory Variables

Correlation between different explanatory variables is a common occurrence in economic data.
In this section I consider three different types of collinear data, namely correlation that causes a
masking effect, correlation with aligned effects and correlation with unimportant variables.

6.2.1 Masking effect

The second example throughout the thesis is the a data where the explanatory has collinearity, and
is drawn from data generating process 2.4 introduced op page 26. To be precise ρ(X2, X3) = 0.8,
β2 has a positive effect and β3 has a negative effect. With an increase of X2, variable X3 is also
likely to be increase. These effects almost cancel each other out on average. This means that both
β2 and β3 are needed to make good predictions. If only one of the variables is included in the
model, then the effects is not detected.

This cancellation can also be seen in the performance of the data generating process, which is
lower than that of the independent explanatory variables.

mlpddatagen = −81.13 · 10−3

The lower reference value remains the same, as random guessing remains the same.

mlpdrandom = −98.02 · 10−3

Predictive performance The performance of the feature selection methods (Table 20) are also
relatively worse than for the independent predictors. This can be contributed to the fact that two
variables are needed to explain the weak effect. In this case Forward Selection performs best, but
the differences between the selection procedures are small and can be contributed to randomness.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpd) (×1000) -88.06 -87.78 -88.41 -87.42
sd(mlpd) (×1000) 3.45 3.97 4.51 3.97

# var. 1.90 4.63 2.07 2.40

Table 20: Hold-out-performance (mlpd) and Average number of included variables (# var.)
different selection models on masked data. The true amount of variables is 4

The performance of the best submodel is again highest for Relaxed Lasso and Forward Selection,
and they make a larger selection error than the Horseshoe and Lasso regression (Table 21).

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpdbest) (×1000) -85.10 -85.18 -84.39 -84.30
mean(∆mlpd) (×1000) 2.96 2.61 4.02 3.12

sd(∆mlpd) (×1000) 2.24 2.96 3.55 3.14

Table 21: Difference between best submodel and selected submodel

Estimated mlpd The estimated performance of Predictive Projection and Lasso is again more
conservative than that of Relaxed Lasso and froward selection. The standard deviation of the
error ε is also lower for the first two methods.

Horseshoe Lasso Relaxed Lasso Forward

mean(ε) (×1000) 0.64 1.12 -1.10 -0.86
sd(ε) (×1000) 5.64 5.35 7.66 6.91

Table 22: Difference between Estimated performance and real performance
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Selected Variables The problem of the masking effect is visible in the selected variables (Table
23). Regression coefficients β2 and β3 are less likely be to picked than β1 and β2. From these two
masked variables, β3 has the stronger effect and is picked more on average than the unimportant
variables, while β2 is not. The data with masking effect acts like a data set with three important
variables, where β3 has a small effect.

Horseshoe Lasso Relaxed Lasso Forward

β1 0.77 0.87 0.80 0.87
β2 0.03 0.17 0.00 0.10
β3 0.17 0.47 0.20 0.27
β4 0.60 0.83 0.67 0.73
β5 0.00 0.13 0.00 0.03

other β 0.33 2.17 0.40 0.40

Table 23: Average Inclusion of parameters by the different methods.

6.2.2 Aligned effects

The masking effect can only be identified if both variables are correctly diagnosed to have an
effect. This makes the regression coefficients that are masked harder to find. On the other hand,
when there is positive correlation between effects with the same sign, then one of the variables can
explain part of the other variable’s effect. Picking only one of the two correlated variables does
have a minor cost of predictive power.

Data Generating Process 3: Aligned correlation

The data generating has 20 variables with regression coefficients as shown in Table 24.

β0 β1 β2 β3 β4 other β
Value - 5.25 1 0.75 -1 -0.75 0

Table 24: Parameters of the data generating process

The explanatory variables X are drawn from a multivariate normal, with covariance matrix
Σ.

X ∼MNV (0,Σ)

With the following covariance matrix Σ:

Σ =


1 0.8 0 0

0.8 1 0 0
0 0 1 0.5 04×16

0 0 0.5 1
016×4 I16

 (11)

The defaults are drawn from a Bernoulli distribution y ∼ Bernoulli(θ) with:

logit(θ) = β0 + βX

The upper reference of the mlpd is:

mlpddatagen = −62.49 · 10−3

When using the parameters from the data generating process the predictions are better than in
the case of the masking effect and independent predictors. The lower limit remains the same,
because the average amount of defaults remain the same.
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mlpdrandom = −98.02 · 10−3

Predictive performance The performance of Relaxed Lasso is highest for this data generating
process. However there is only a small difference with the Lasso. In this case the Horseshoe with
Predictive Projection performs slightly worse. Predictive Projection gives the most sparse model
and the Lasso gives the least sparse model.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpd) (×1000) -70.32 -69.65 -69.45 -71.18
sd(mlpd) (×1000) 1.92 2.13 2.48 2.45

# var. 2.66 6.51 3.09 3.09

Table 25: Hold-out-performance (mlpd) and Average number of included variables (# var.)
different selection models on collinear data with aligned effects. The true amount of variables
is 4

In the previous data types, Forward Selection had a best submodel with relatively good
performance, but in this case it has the worst performance. Relax Lasso still has the best submodel
with the highest performance.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpdbest) (×1000) -68.03 -68.52 -66.87 -69.26
mean(∆mlpd) (×1000) 2.28 1.15 2.53 1.93

sd(∆mlpd) (×1000) 1.77 1.30 2.30 2.82

Table 26: Difference between best submodel and selected submodel

Estimated mlpd For this simulation all the out-of-sample performances are overestimated by
psis-loo and k-fold cross validation. However, Predictive Projection and Lasso are again more
conservative than the mlpdest belonging to the selected submodels by Relaxed Lasso and Forward
Selection. The standard deviation of this difference is larger as well.

Horseshoe Lasso Relaxed Lasso Forward

mean(ε) (×1000) -1.97 -1.44 -2.70 -3.65
sd(ε) (×1000) 6.35 5.30 7.02 7.96

Table 27: Difference between Estimated performance and real performance

Selected Variables The relative bad performance of Forward Selection is a result of the
variables it chooses. Together with Predictive Projection it has highest false inclusion rate,
however it also has a relatively high false exclusion rate compared to Relaxed Lasso and Predictive
Projection. Lasso again has the highest false inclusion rate.

Horseshoe Lasso Relaxed Lasso Forward

β1 0.56 0.97 0.80 0.59
β2 0.62 0.91 0.68 0.59
β3 0.85 0.97 0.91 0.88
β4 0.47 0.93 0.53 0.59

other β 0.18 2.65 0.18 0.47

Table 28: Average Inclusion of parameters by the different methods.
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6.2.3 Correlation with unimportant predictors

The masking effect and aligned effects occurs when two important variables are correlated. In this
simulation I look at the effect of correlation between unimportant and important variables.

Data Generating Process 4: Correlation with unimportant variables

The data generating process has regression coefficient β as shown in Table 29.

β0 β1 β2 β3 β4 other β
Value - 5.25 1 0.75 -1 -0.75 0

Table 29: Parameters of the data generating process

The explanatory variables X are drawn from a multivariate normal, with covariance matrix Σ.

X ∼MNV (0,Σ)

The correlation among the variables is as follows:

• X1 has a correlation of 0.8 with X5, X6, X7, X8, X9.

• X2 has a correlation of 0.8 with X10, X11, X12, X13, X14.

• X3 has a correlation of 0.8 with X15, X16, X17, X18, X19.

• X4 and X20 are uncorrelated with other variables in X.

The defaults y are drawn from a logistic model.

Two references, with the low point being random guessing whether a loan will default or not:

mlpdrandom = −98.04 · 10−3

The other reference is the prediction on the hold out data with the data generating parameters:

mlpddatagen = −72.52 · 10−3

The collinearity of the other data generating process changed the information that was available
in the data set. For this data generating process the available information is the same as for the
independent explanatory variables.

Predictive performance All the selection procedures have a worse performance than in the
case of independent explanatory data. So the correlation makes it harder for all methods to find
the important variables. Especially, the performance of Forward Selection and Relaxed Lasso is
much worse. (Table 30). For the previous data types, this effect was less pronounced.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpd) (×1000) -80.92 -81.79 -87.20 -88.30
sd(mlpd) (×1000) 3.87 4.16 6.19 6.05

# var. 4.20 7.90 3.60 2.93

Table 30: Hold-out-performance (mlpd) and Average number of included variables (# var.)
different selection models for full correlation matrix. The true amount of variables is 4

Part of the worse performance, compared to the independent predictors, can be explained by
the difference in the performance of the best submodels (mlpdbest). The performance of the best
submodel is about 3 · 10−3 to 5 · 10−3 mlpd points worse than for the independent case. So far the
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best submodels of Relaxed Lasso and Forward Selection have a better predictive performance than
those of the Horseshoe and the Lasso, but in this case the best submodel of the Forward Selection
performs worse than the other best submodels. Both Relaxed Lasso and Forward Selection have
a high error in selecting the right submodels, which makes them perform poorly.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpdbest) (×1000) -79.24 -79.61 -79.90 -80.62
mean(∆mlpd) (×1000) 1.68 2.18 7.30 7.68

sd(∆mlpd) (×1000) 2.45 3.65 6.24 7.06

Table 31: Difference between best submodel and selected submodel

Estimated performance In this type of data, the estimated performance of Forward Selection
is again less conservative than that of Predictive Projection and Lasso. In table 32 there occurs
something unusual. The estimated performance of Relaxed Lasso underestimate the real performance,
while for all other procedures the estimated performance overestimates the real performance. In
the previous data types the Relaxed Lasso always was less conservative than Lasso and Predictive
Projection. The reason for this value is not clear to me. Because the bad predictive performance
of Relaxed Lasso and a lack of time I did not investigate this further.

Horseshoe Lasso Relaxed Lasso Forward

mean(ε) (×1000) -2.28 -0.67 2.88 -4.44
sd(ε) (×1000) 5.53 5.11 5.40 6.05

Table 32: Difference between Estimated performance and real performance

Selected Variables The cause of the poor performance of Relaxed Lasso and Forward Selection
can also be explained by the selected variables. The correlation in the explanatory variables
makes it harder for the methods to find the correct variables. Regression coefficient β4, which
is uncorrelated with other variables, is included more often than β2, which is correlated with
four unimportant variables. The Horseshoe prior and Lasso have a higher inclusion rate of the
important variables. Predictive Projection includes the most important variables compared to the
amount of variables that are correlated with the important variables (Table 33).

Horseshoe Lasso Relaxed Lasso Forward

β1 0.86 0.83 0.66 0.59
corr. with β1 0.31 1.45 0.45 0.38

β2 0.57 0.52 0.28 0.21
corr. with β2 0.59 1.65 0.62 0.45

β3 0.79 0.90 0.62 0.45
corr. with β3 0.34 1.48 0.55 0.38

β4 0.69 0.86 0.41 0.41
β20 0.03 0.24 0.03 0.07

Table 33: Average Inclusion of parameters by the different methods.

In this data generating process there are three types of variables, namely the important
variables, the variables that are correlated with the important variables and unimportant variable
β20. It would be optimal to pick only the variables that are important. If the method picks a
variable that is correlated with the important variable, instead of the important variable, this is
suboptimal. However, it still gives a better prediction than not picking that variable.
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Horseshoe Lasso Relaxed Lasso Forward

False Exclusion 0.99 0.89 2.03 2.44
False Inclusion

- Corr. 1.24 4.59 1.62 1.21
- Uncorr. 0.03 0.24 0.03 0.07

Table 34: False inclusion and false exclusion of variables.

6.3 Misspecified Models

In all the previous example and simulation studies the assumption was made that the model
was specified correctly. Both the model and the data generating process have log-odds of the
Probability of Default θ that are a linear function of X. In simulated data the real relations are
know, however, in real life data this is not the case. The assumption that the model is specified
correctly might be too restrictive.

Example of model specification in credit data might be that a variable only has an effect is it
reaches a certain threshold. So the correct relation would be to model the effect as a step function.

Other variables could have an effect that may not increase linearly, but it might be better to
model a exponential relation, for example, the payment-to-income ratio (PTI). When this ratio is
low, a slight increase of PTI, is unlikely to cause a lot more defaults. However, if the amount that
has to be paid gets closer to the income of the household, a slight increase might cause a large
change in the default probability.

Data Generating Process 5: Misspecified Model

The explanatory data is draw from a multivarate normal where the mean is zero and the covariance
matrix is the identity matrix ID, with D=20.

X ∼MVN(0, ID)

There are two non-linear function, the first is the step function g.

g(X) = 1X≥0

The second is the explonential function f .

f(X) = exp(0.5X)

The regression coefficients are shown in table 35.

β0 β1 β2 β3 β4 other β
Value - 5.25 -1 -0.75 -3 1 0

Table 35: Parameters of the data generating process

And functional relation of the data generating process is:

logit(θ) = β0 + β1X
1 + β2X

2 + β3f(X3) + β4g(X4)

For every data realisation 1,000 observation are drawn, where the defaults are drawn from a
Bernoulli distribution.

y ∼ Bernoulli(θ)

When using the correct non-linear relations, as in the data generating process, to make
predictions on the hold-out set, the performance of the model is:

mlpddatagen = −70.18 · 10−3

69



the model performs worse than the data generating process, when the model is misspecified and
only linear relations are assumed. I fit the a frequentist logistic regression with incorrect linear
relations on 200,000 observation and the four important variables to get a reference value for the
best linear model. The coefficients belonging to this regression are shown in Table 36.

Intercept β0 β1 β2 β3 β4

-5.10 -0.97 -0.75 -0.82 0.74

Table 36: Regression coefficient of a linear model on data with 200,000 observations from data
generating process 5

The out-of-sample predictive power for the best linear model is:

mlpdbest linear = −75.25 · 10−3

Like in all other cases the random model has a performance of:

mlpdrandom = −98.03 · 10−3

Predictive performance Predictive Projection with a Horseshoe prior and Lasso perform
better than Relaxed Lasso and Forward Selection under misspecification. Lasso again picks too
many variables. The Horseshoe prior also picks slightly too many variables.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpd) (×1000) -82.49 -82.74 -84.78 -84.61
sd(mlpd) (×1000) 4.02 3.04 6.26 7.55

# var. 4.20 6.60 3.70 3.70

Table 37: Hold-out-performance (mlpd) and average number of included variables (# var.) of
selection models for a misspecified model.

The worse performance of Forward Selection and Relaxed Lasso is again caused by picking the
wrong submodel as shown in Table 38

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpdbest)(×1000) -80.97 -81.11 -80.25 -80.59
mean(∆mlpd) (×1000) 1.52 1.62 4.53 4.01

sd(∆mlpd) (×1000) 2.52 2.30 4.58 5.28

Table 38: Difference between best submodel and selected submodel

Estimated mlpd On average the estimated performance of the selected models is higher than
the real performance for all selection methods. For Predictive Projection and Lasso this overestimation
is less severe.

Horseshoe Lasso Relaxed Lasso Forward

mean(ε) (×1000) -2.73 -1.32 -5.52 -5.82
sd(ε) (×1000) 8.15 7.70 10.83 12.83

Table 39: Difference between Estimated performance and real performance

Selected Variables All the methods, except Lasso, pick approximately same amount of important
variables. Predictive Projection with a Horseshoe prior picks more unimportant β than normally
in this scenario.
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Horseshoe Lasso Relaxed Lasso Forward

β1 0.90 1.00 0.80 0.87
β2 0.80 0.93 0.73 0.77
β3 0.97 0.97 0.97 0.90
β4 0.80 0.90 0.67 0.73

other β 0.73 2.80 0.53 0.43

Table 40: Average Inclusion of parameters by the different methods.

6.4 Non-normal Predictors

So far, all data generating process had normally distributed explanatory data. In real life data,
variables are often not normally distributed. Data can be discrete, flags often indicate certain
events or states in credit risk data. For example, what kind of house the debtor has.

Data can also be skewed, an example is the income distribution of a country. This also leads
to skewed distributions in housing prices and loan sizes. Lastly variables can also have fatter tails
than a normal distribution. In the data generating process 6, I consider these three different types
of distributions.

Data Generating Process 6: Non-normal predictors

Data generating process with non-normal explanatory variables. All the variables are centred and
scaled to a mean of zero have and a variance of one. The explanatory data is created as follows:

• X2: Discrete variable, Bernoulli Variable with a probability of 50 percent on -1 and 1.

• X3: Asymmetric, Centred Exponential distribution with a rate of 1.

• X4: Fat tail, Normalised Student-t distribution with a degree of freedom of 4.

All other variables in X are drawn from a normal distribution with a standard deviation of one.

β0 β1 β2 β3 β4 other β
Value - 5.25 1 0.75 -1 -0.75 0

Table 41: Parameters of the data generating process

Predictive performance For the last data simulated data type, the performance of the variable
selection methods is similar to other simulated data. Horseshoe gives better performance with a
sparse model, Lasso has gives model with good performance with too many variables. Relaxed
Lasso is in third place and Forward Selection is the worst method.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpd) (×1000) -79.23 -78.51 -80.62 -81.33
sd(mlpd) (×1000) 4.75 2.93 7.26 7.91

# var. 2.83 6.50 3.40 3.03

Table 42: Hold-out-performance (mlpd) and Average number of included variables (# var.)
different selection models for non-normal explanatory data.

The performances of the best submodels is are now approximately equal and the selection error
causes the poor performance of Forward Selection and Relaxed Lasso.
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Horseshoe Lasso Relaxed Lasso Forward

mean(mlpdbest)(×1000) -76.67 -76.87 -76.51 -76.27
mean(∆mlpd) (×1000) 2.56 1.63 4.11 5.05

sd(∆mlpd) (×1000) 2.98 2.10 5.66 5.95

Table 43: Difference between best submodel and selected submodel

Estimated mlpd The estimated mlpd of the Horseshoe and Lasso regression are again more
conservative and with have a lower standard deviation than those of the Relaxed Lasso and
Forward Selection. In this simulation the estimated performance on average is closer to the real
performance for Forward Selection and Relaxed Lasso.

Horseshoe Lasso Relaxed Lasso Forward

mean(ε) (×1000) 2.29 3.35 -0.22 -0.58
sd(ε) (×1000) 5.72 6.01 10.51 11.74

Table 44: Difference between Estimated performance and real performance

Selected Variables Regression coefficient β3 that correspond to the skewed explanatory variable
X3, is picked less than β1, even though they have the same effect size. The reason this difference
is not clear.

Horseshoe Lasso Relaxed Lasso Forward

β1 0.93 1.00 0.97 0.90
β2 0.70 0.90 0.70 0.63
β3 0.50 0.77 0.47 0.53
β4 0.67 0.97 0.83 0.77

other β 0.03 2.87 0.43 0.20

Table 45: Average Inclusion of parameters by the different methods.

6.5 Final Remarks

Depending on the type of data, some variable selection method perform better than other. When
the explanatory data is drawn from a independent multivariate normal, all method perform
approximately the same. For harder data, for example correlated explanatory variables, the
difference in the predictive performance becomes more apparent. In general, Forward Selection
performs worse than the Horseshoe prior and the Lasso regression. Especially in the case where
multiple variables have a strong correlation with each other. Relaxed Lasso sometimes performs
similar to Lasso and Predictive Projection, but on other occasions performs badly.

Lasso and Predictive Projection give a relatively stable estimate over multiple realisations of
the data. The variability of the predictive performance of these methods are often lower than
those of for the other methods.

There is also a clear difference for the estimated performance between the variable selection
method. The mlpdest for the Horseshoe prior and Lasso are generally more conservative than the
mlpdest for Relaxed Lasso and Forward Selection. The standard deviation sd(mlpdest −mlpdreal)
was in general lower for Predictive Projection and Lasso.

The Horseshoe prior has the lowest false inclusion rate, combined with its other properties,
makes it the most attractive variable selection method.

The Horseshoe is clearly the slowest method, it takes approximately 35 minutes to do one run.
While the other methods all take under a minute.
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7 FreddieMac Data

In this chapter I apply the feature selection methods to real life data. This data contains
information on single-family mortgages in the United States. These mortgages finance the purchase
of houses. The data comes from the website of FreddieMac, which is a government sponsored
company which operates on the secondary mortgages market. The goal of the company is to
provide, among others, liquidity and stability in the housing market.

The loans in the data set have fixed interest rate and the original loan term is between 25 and
35 years (Freddie Mac, 2019). The mortgages have a annuity amortisation scheme, which means
that the payments of the debtor to the bank are equal for every month.

7.1 Variables in the Data Set

In the introduction I quickly presented the notion of Through-the-cycle and point-in-time estimates.
The goal of the point-in-time estimates is to give an as good as possible estimate of the PD, and
macro variables can be included to make a prediction. This approach leads to procyclicality, and
therefore a Through-the-Cycle estimate is more preferable. This means that in this section no
macro-economic variables are used. The data analysis is only done on the data available at the
FreddieMac website.

The data is organised in two types of files. The first type relates to the state of the loan when
it was taken out. An example of variables in these files are the original Unpaid Principal Balance
(UPB), which is the original amount of the loan. Other information like the original maturity
term and the fixed interest are also present.

In the other types of files, the FreddieMac data set also contains variables that are updated
every month. An examples is the delinquency status, that is the time (in months) that the debtor
does not meet its financial obligation to the creditor.

In the monthly data there are various variables that are related to costs of debtors that have
defaulted. For example, legal cost, maintenance cost and cost associated with reorganising the
loan structure. These can be used for the Loss Given Default, however these variable are not of
interest for the modelling of Probability of Default. Therefore, I do not take these variables into
consideration.

Besides the variables present in the original data set, I also combine certain variables to create
new predictors. The goal of the model is to estimate the Probability of Default of the loans.
However, the defaults are not present in the data set. I define the default to be a loan that has a
delinquency status of 3 months or higher.

The first created explanatory variable is the Payment-to-Income ratio. This is ratio of the
payment can easily be calculated as the sum of the paid amortisation and interest. Another
variable I create is Prepayment. This happens when a debtor pays a higher amount of amortisation
than the agreed amount. If the actual UPB is lower than a contractual UPB then a prepayment
happened at time t. The contractual UPB is not present in the data set, but can be calculated
with the annuity formula:

UPBt,contratual =
1− (1 + r)t−T

1− (1 + r)−T
UPB0

Where UPB0 is the original UPB, t is the loan age, T is the original maturity and r is the
interest rate.

An overview of the variables is shown in Table 46

73



Variable Type Description

Age ratio Continuous Age of the loan to its original maturity
UPB ratio Continuous Unpaid Principal Balance as a percentage of the

original amount
FICO Continuous Credit Score provided by the Fair Isaac

Cooperation (FICO).
Borrowers Discrete 0 for a single borrower, 1 for multiple borrowers
Units Discrete 0 for single-unit, and 1 for multi-unit. A single

unit house is intended for one family, a multi-unit
house is intended for multiple families.

cltv Continuous Cummalative amount of loan to original value of
the collateral (house)

MI ratio Continuous Mortgage insurance as percentage of potential
incurred loses

Log(Income) Continuous Logarithm of the income when loan was taken out.
Debt-to-Income Continuous Ratio of current UPB to original income.
current UPB Continuous Current Unpaid Principal Balance in $100.000
Purchase Discrete If the goal of the loan is to buy a house, then this

variable is 1 and 0 otherwise.
Primary Residence Discrete Indicator whether the house is the primary

residence of the debtor.
First Home Discrete Indicator whether the house is the first home of

the debtor.
Prepayment Discrete Indicator whether the debtor paid more

amortisation than agreed upon in the payment
plan.

Payment-to-income Continuous Ratio of interest and amortisation to original
income

Delinquency status Discrete Month of unpaid interest and/or amortisation
Super Conforming Discrete Indicator whether the loan is super conforming.

Super confirming loans have higher permitted
maximum loan limits designated for high cost
areas.

Table 46: Explanatory variables for the FreddieMac data set (Freddie Mac, 2019)

7.2 Preprocessing & Sampling Procedure

The full FreddieMac data set contains 26.6 million observation. The data has monthly observation
and spans 20 years. I only take a small portion of this data, because I am interested in the low
information variable selection setting. Firstly, I reduce the size of the data set by sampling
300,000 loans and discarding the rest. Under Basel III a minimum of 5 years of data is required
for PD modelling (Basel Committee on Banking Supervision, 2017).Therefore, I only keep the
observations of these loans that occurred in 2010 to 2015 to meet this criterion.

Some variable have missing values. I drop observations that contain missing values. In a real
life situation where data is scarce, this is not the ideal approach, because you lose information by
dropping out observation that only miss few variables. Instead, a model of missingness can be
made for the approximation of the missing data. I do not do this as it is not the goal of the thesis
and the amount of missing variables is low (Table 47).

FICO DTI cltv
0.02% 0.54% 0.03%

Table 47: Percentage of missing variables in the data set. The other variables do not have missing
values

74



The loans still have monthly observations, and the goal is to make a yearly prediction. For
each loan I draw a random month. This turn the data into the right time format and the random
month counteracts seasonal effects.

In this step I create the variables that are not present in the original data set as discussed in
section 7.1.

The next step is to split up the data set into a test set and a raw training data set, such that
they both contain 2% defaults. This is the same percentage as in the simulation studies. There are
approximately 100.000 observations in both data set. The performance of the different methods
is evaluated on the test set. From the raw training data I draw the small training data set with
1,000 observations.

Many variables are the same for all observations of the loan, because they represent the loan
at its origin, for example the original UPB. This causes repetition in the data. Furthermore, the
loans that did not default have on average more observations than the loan that did default.

The raw data set contain many loans with a maximum of 5 years of observation with 2%
defaults and 98% non-defaults. From each loans I draw one observation and take 1,000 random
loans, where I force the set to have 20 defaults and 980 non-defaults. This means the different
observation can be from one of the 5 years, but there is only one observation per loan.

The regularisation depends on the scale of the explanatory variables X. Some parameters in the
data set have small values, while others have values in the hundreds. Variables that have a large
value would be more regularised than variables with smaller values. For an even regularisation
over all variables, I normalise all variables, such that they all have a mean of zero and a standard
deviation of one.

7.3 Single Run Example

In this section I take one realisation of the FreddieMac data and go through the selection method
as an example. I refer to the realisation of the FreddieMac data as the training set. Figure 36
shows the marginal distributions of variables in the training set. Some variables, like Log(Income)
and Debt-to-Income are somewhat similar to a normal distribution. However, most variables are
clearly non-normal. There are skewed variables, such as the FICO score. Furthermore, there are
many explanatory variables that are discrete. Some of these variables, like delinquency status, are
imbalanced.

The Kendall τ correlations of the variables are shown in Figure 37. Most variables only have
a moderate correlation, but the data set also contains some strong correlations. One example is
the UPB% and the Age%, as the age of the loan increases, the value of the loan decreases due to
payments by the debtor. This relation is not perfect as the debtor might do a prepayment. On
the other hand, the debtor might take out a additional loan on the same mortgage and then the
UPB increases.

The Kendall correlation between UPB and log(UPB) is equal to one, because the logarithm
is a monotonic increasing function. So if UPB goes up, then the log(UPB) also increases. Even
though, the Kendall τ correlation is one, the two variables are different.

The rest of the correlation coefficients make intuitive sense. The only unforeseen value is
between cumulative loan to value (CLTV) and Mortgage Insurance as a percentage of potential
losses. A possible explanation is that banks demand a mortgage insurance for people who have
a high CLTV. When the size of the loan is small compared to the value of the collateral and the
debtor default, the bank can minimise its loses by selling the collateral. The bank might not be
able to cover its loses by selling the house if the CLTV is high.
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Payment-to-Income Delinquency Status SuperConform

Primary Residence First Home Prepayment

UPB Log(Income) Purchase

MI% Log(UPB) Debt-to-Income

Units Borrowers cltv

Age% UPB% FICO
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Figure 36: Marginal distributions of the explanatory variables in the FreddieMac data set.
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Figure 37: Kendall τ correlation of the explanatory variables in the training set.

The correlation matrix only shows the relation between two variables. The relations in the
data can be more complex than the correlation might suggest. For example, the Prepayment is a
value that can be deterministically calculated from the UPB%, Age%, Maturity time and interest
rate. Figure 38 shows this interaction. For the prepayment variable this is easy to determine,
because I constructed it myself. This might be hard to detect in other variables.
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Figure 38: The relation between prepayment, UPB% and Age % is more complex than a pairwise
relation.

7.3.1 Variable Selection

First I consider the Horseshoe prior with Predictive Projection. The marginals of the posteriors of
the logistic regression with the Horseshoe prior is shown in Figure 39. The correlation in the data
set causes the marginal posteriors to be wide an some variables have heavy tails. The posterior
belong to the super confirming flag even has -4 in its credible interval. All the 95% credible
intervals of the regression coefficients, except for the Delinquency status, include zero.
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Figure 39: Posterior of logistic regression with a Horseshoe prior on FreddieMac data.

Predictive Projection determines that only Delinquency and the Payment-to-Income ratio are
important variables. Where Delinquency is the most important variable, and PTI the second
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most important variable. The projected posterior of the Payment-to-Income ratio, in Figure 40,
is much narrower than the unprojected posterior. The posterior of the Payment-to-Income ratio a
standard deviation that is about twice as big as the standard deviation of the Delinquency status,
0.21 instead of 0.11. The standard deviation of the intercept is 0.34.

Payment-to-Income

Delinquency Status

Intercept

-6 -4 -2 0 2

Figure 40: Projected Posterior of the two important variables according to Predictive Projection.

Figure 41 shows the Lasso regression on the training data. Lasso agrees with Predictive
Projection that Delinquency status and Payment-to-Income ratio are the two most important
variables. Just like in the simulation studies, Lasso Regression includes more variables in the
model. Some variables are quite stable over different values of the regularisation parameters λ.
While the regression coefficients of cltv and Units have a steeper descent.
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Figure 41: Lasso regression on the training set. The coloured lines are the included variables and
the dotted black lines are the excluded variables.

I also apply the Relaxed Lasso and Forward Selection to the training data and test their
performance on the hold-out set. The resulting models and their performances are shown in Figure
42. The lines have the typical pattern for the methods. Predictive Projection with the Horseshoe
greatly increases in performance for the first two added parameters and remains relatively stable
after adding more variables. Lasso also predicts better at first and slowly deteriorates with added
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variables. The performance of Relaxed Lasso and Forward Selection increase quickly as well, but
deteriorates the quickest.

Figure 42 shows the out-of-sample performance of the variable selection procedures.
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Figure 42: Predictive performance on hold-out-set for variable selection methods

Table 48 shows the performance and number of variables resulting from the feature selection.
Horseshoe prior with Predictive Projection has the best predictive performance. It also gives the
smallest model, together with Forward Selection.

Horseshoe Lasso Relaxed Lasso Forward

mlpd (×1000) -73.46 -74.08 -83.19 -74.27
#var. 2 7 4 2

Table 48: Predictive performance and number of variables for the variable selection methods.

The steep drop in performance for Relaxed Lasso and Forward Selection is a result that both
models pick Units as the fourth important variable. This is an imbalanced variable and in the
multiple Units only occurs when there is no default. The regression coefficients in the model
found by the Relaxed Lasso method has a large value (Table 49). Even though there is a relation
between defaults and Units, it is not likely that it is this large. When projecting the posterior
(of Horseshoe) to have 5 variables, it also includes the Units variable. The expected value of
that posterior E[βUnits|X] = −0.42. Lasso, in Table 49, estimates the regression coefficient to be

β̂Lasso
Units = −0.30. When adding this variable to model, projection prediction has a slight drop in

performance and Lasso has a slight increase in the performance as shown in Figure 41.
The difference between Predictive Projection, Lasso, Relaxed Lasso and Forward Selection is

that the first two methods are regularised, while the latter two are not. Thirteen loans are for
more than one Unit, therefore, the likelihood of the corresponding regression coefficient is wide.
This means that both Lasso and Predictive Projection heavily shrink the regression coefficient to
zero.

Intercept Delq. sts Pay.-to-Inc. FICO Units cltv MI% Borrowers

Horseshoe -4.53 0.60 0.84 - - - - -
Lasso -4.83 0.63 0.77 -0.34 -0.30 0.30 0.08 -0.15

Rel. Lasso -5.18 0.66 0.94 -0.46 -1.64 - - -
Forward -4.78 0.63 1.00 - - - - -

Table 49: Estimate of the regression coefficients for the variable selection methods. The Horseshoe
estimate is the expected value of the posterior.
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7.4 Multirun

Like in the simulation studies, I use multiple training set to compare the variable selection methods.
From the big data set I draw samples to get a training set with a size of 1,000 observations and
20 defaults. This is done 30 times. The average performance are shown in Table 50. The
performance of Predictive Projection and Lasso regression perform the best and only differ a
little. The performance of the Relaxed Lasso is performs worse, but is still better than Forward
Selection.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpd) (×1000) -73.98 -73.90 -76.13 -79.02
sd(mlpd) (×1000) 2.71 2.07 5.73 6.37

# var. 3.17 5.00 2.43 2.47

Table 50: Hold-out-performance (mlpd) and Average number of included variables (# var.)
different selection models on FreddieMac data

The best submodel of the Horseshoe prior and Lasso are better than the best submodels of
Relaxed Lasso and Forward Selection. This behaviour also occurs in the data generating process
4, where the important variables have a strong correlation with other variables. Combined with
the selection error the latter two methods perform badly. Especially the selection error in Forward
Selection is big.

Horseshoe Lasso Relaxed Lasso Forward

mean(mlpdbest)(×1000) -72.76 -72.54 -73.66 -74.32
mean(∆mlpd) (×1000) 1.22 1.35 2.46 4.70

sd(∆mlpd) (×1000) 1.61 1.63 5.80 6.08

Table 51: Difference between best submodel and selected submodel

For all methods the estimated performance is overly optimistic about the real performance.
As in the simulation studies, the mlpd of Horseshoe prior and Lasso are more conservative than
Relaxed Lasso and Forward Selection. The errors have approximately the same standard deviation,
except for the Relaxed Lasso, where the variability is higher.

Horseshoe Lasso Relaxed Lasso Forward
mean(ε) (×1000) -2.86 -2.51 -4.34 -7.50

sd(ε) (×1000) 8.42 8.07 10.47 8.69

Table 52: Difference Estimated performance and real performance

7.4.1 Selected Variables

Table 53 shows the inclusion percentage of the feature selection methods. All method agree
that the Delinquency status is an important parameters in the data set, as well as the original
payment-to-income ratio. The payment-to-income ratio is a variable that has some strong correlation
with other variables. This could explain the reason why the best submodels of Predictive Projection
and Lasso are better than those of the Relaxed Lasso and Forward Selection.

The third most important variable is the FICO credit score. Lasso picks this variable 70%
of the time and Predictive Projection 37% of the time. The other two methods also pick this
variable to a lesser degree. Table 53 suggest that a lot of variables are related to the defaulting in
some degree. However, the predictive power might not be strong enough for the variable selection
methods, due to the low amount of data on defaults.
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Horseshoe Lasso Relaxed Lasso Forward

Age % 0 0 0 3
UPB % 7 10 0 0
FICO 37 70 27 13
Units 7 40 3 3

Borrowers 13 37 3 3
cltv 20 27 0 10

MI % 7 23 3 3
Log curr. UPB 3 10 0 0
Debt-to-Income 7 3 0 3

UPB 0 7 0 0
Log Income 7 10 0 10

Purchase 7 10 0 3
Primary Residence 3 20 3 7

First Home 7 13 7 3
Prepayment 3 10 3 7

Payment-to-Income 90 100 93 87
Delinquency status 100 100 100 90
Super Conforming 0 10 0 0

Table 53: Inclusion percentage of parameters

7.5 Final Remarks

As in the simulation studies, Predictive Projection and Lasso have the best predictive performances,
which are roughly equal. Predictive Projection needs less variables than Lasso for this performance,
making it the preferred method. These two method also give a more stable performance over
multiple training data sets.

FreddieMac data has elements from various simulated data. The explanatory variables are
correlated, they have non-normal distributions and it is likely that the models are misspecified.
This combination is probably the reason why Lasso and Predictive Projection preform better on
the FreddieMac data set, than the two other methods.
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8 Conclusion & Discussion

In this thesis I investigated variable selection methods in Probability of Default models, where
there are few defaults in the data set, but there are relatively many potential predictors. In
this setting, using all variables directly leads to overfitting. Variable selection are intended to
counteract overfitting and give insight into the predictors of default risk. I compared four variable
selection methods on a logistic regression, namely Predictive Projection on a Horseshoe priors,
Lasso regression, Relaxed Lasso regression and Forward Selection.

8.1 Conclusion

The Horseshoe with Predictive Projection is a promising method for variable selection. Predictive
Projection and Lasso give more stable and similar or better predictions on all data types compared
to Relaxed Lasso and Forward Selection. Predictive Projection on a Horseshoe prior gives sparser
model than Lasso, which makes the model more interpretable. Therefore, the Horseshoe prior
with Predictive Projection is a more attractive method than Lasso, Relaxed Lasso and Forward
Selection.

Besides the performance, Predictive Projection and Lasso have more conservative k-fold/psis
estimated performance than Relaxed Lasso and Forward Selection. The standard deviation of
the difference between the estimated and real performance is also smaller. Therefore, Predictive
Projection and Lasso give a better insight into the real predictive performance of the model.

The main drawback of Predictive Projection is that it is slow compared to the other methods.
For the 1,000 observations and 20 explanatory variables it takes approximately 35 minutes to
run compared to seconds for Lasso. Nevertheless, this time is negligible compared to the amount
of times it takes to implement an operational PD model. Furthermore, the time is of minor
importance in comparison to the advantage of the methods.

Table 54 contains an overview of the relative advantages and disadvantages of the variable
selection methods.

Horseshoe Lasso Rel. Lasso Forward

Performance
Independent + + + -
Collinnearity

Weak + + + -
Strong + + - -

Misspecified + + - -
Non-normal + + - -
FreddieMac + + - - -

Variability of Performance + - - +
Sparsity + - + +
Computation Time - - ++ ++ +

Table 54: Relative advantages and disadvantages of variable selection methods, + is better , - is
worse.

This conclusion is based on the research questions, the simulations study and an analysis on
FredieMac data.

8.1.1 Research Questions

How does Bayesian variable selection, with a Horseshoe prior and Predictive Pro-
jection, compare to Forward Selection, Lasso variable selection and Relaxed Lasso
variable selection in simulated PD data?

• Performance: In some simulation the Horseshoe with Predictive Projection has the best
results and in others Lasso regression has the best predictive performance. From these
simulation the difference between these methods cannot be determined.
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In some easy data types, where only low amounts of collinearity was present, Forward
Selection and Relaxed Lasso had similar performances to Lasso and Predictive Projection.
In the case of more collinearity, misspecification and non-normality, the performance of
Forward Selection and Relaxed Lasso is worse than the performance of Horseshoe and Lasso.

The best submodels of Forward Selection and Relaxed Lasso are in general better than the
best submodels of Lasso and Predictive Projection. The problem with Relaxed Lasso and
Forward Selection is that they are more likely to pick a suboptimal submodel. Except for
the data with a masking effect, Forward Selection and Relaxed Lasso have a larger predictive
difference between the best submodel and the selected submodel (∆mlpd). This difference
was about 50% to 100% bigger for most data types.

• Variability of Performance: Besides good performance, the variability of the performance
is important.

The performance of Forward Selection and Relaxed Lasso is more volatile than the performance
of HS and Lasso. The standard deviation of the former methods is about 50% to 200% bigger
in the simulations, depending on the type of data.

• Sparsity: Predictive Projection, Relaxed Lasso and Forward Selection consequently included
less variables in the models than Lasso regression.

• Computation Time: Lasso and relaxed are clearly the quickest methods. The whole
procedure takes under a minute. Forward Selection is also a quick procedure and takes a
about a minute. The Horseshoe with Predictive Projection is by a great deal the slowest
method. Finding the posterior of the full model takes a couple of minutes and Predictive
Projection takes the most time with 30-40 minutes.

How do the different methods perform on real life data?

• Performance The FreddieMac data has elements of various simulations data. The explanatory
data of the FreddieMac data set is non-normal and has correlation. Furthermore, it is very
likely that there is some functional misspecification present in the model. Similar to the
simulation data, HS and Lasso perform well compared to the other methods. Especially,
Forward Selection performs badly.

• Variability: The variability of the predictive performance is lowest for Predictive Projection
and Lasso.

• Sparsity: Relaxed Lasso and Forward Selection produces the most sparse models, followed
by Predictive Projection. However, the sparsity of Relaxed Lasso and Forward Selection
come at the cost of predictive power.

• Computation time: Is the same as in the simulation studies.

Do PSIS-LOO and K-fold cross validation give good estimates for the real out-of-
sample performance for the different variable selection methods?
The estimated mlpd of the selected model was on average, on almost all data types, is higher
for Predictive Projection and Lasso than for Relaxed Lasso and Forward Selection. This means
that the former estimated performance mlpdest is more conservative for predictive prediction and
Lasso regression. Let the difference between the estimated performance and real performance ε,
defined as:

ε = mlpdhold−out −mlpdest,

The standard deviation of ε was lower for these Predictive Projection and Lasso. Which means
that the estimated mlpdest is a better estimate of out-of-sample performance for the Horseshoe
and Lasso than for Relaxed Lasso and Forward Selection. On basis of this research I cannot
conclude whether psis-loo for Predictive Projection and K-fold Cross Validation for Lasso are good,
nevertheless I can say that they are better than K-fold Cross Validation for Forward Selection and
Relaxed Lasso.
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8.1.2 Practical Implications

The choice of the method depends on the exact desire of the model. When sparsity is not a real
concern and time is scarce, then I would advise using the Lasso regression. For all the data, Lasso
gave a relative good prediction. The estimated performance gives a relatively good insight into
the real performance. Lasso can also be used as a quick first check of the potential predictive
power of the data set. In this scenario it would also be possible to use the Horseshoe prior without
Predictive Projection. The effects of the different parameters is not clear in the case of Lasso
regression, as it shrinks the strong parameters to zero and the effect of unprojected posterior is
not clear as well.

If both performance and sparsity are important, then the Horseshoe prior with Predictive
Projection is the only option of selection methods.

If Bayesian methods are not desired and sparsity is of the importance, then I would suggest
Relaxed Lasso. This however comes at a cost. Judging by the results of this thesis, I would not
advise to use Forward Selection for data containing few defaults.

8.2 Discussion & Recommendations

There are certain problems associated with the low information feature selection setting that need
to be addressed and investigated, before the techniques can be applied to predict the probability
of defaults. I also discuss other problems in credit risk with might be solved by other techniques.

8.2.1 Misspecification

Misspecification is a serious danger for all types of modelling, because it is never possible to
guarantee that the specified relations are true. The simulation studies suggest that the performance
of the Predictive Projection and the performance of Lasso is better than that of Forward Selection
and Relaxed Lasso. I suggest to further investigate the effect of misspecification on these variable
selection methods.

8.2.2 Simulation studies

Estimated Performance I could not answer the question whether psis-loo and K-fold Cross
Validation where good estimates for the out-of-sample performance when a variable selection
method was used, and I could only say that the estimates where better for Predictive Projection
and Lasso. To answer this question, a reference of the estimated performance needs to be
determined. A way this could be done is by fitting the model on 1,000 observation and calculate
psis-loo/k-fold cross validation mlpd. Now also look at the performance of the on various small
hold-out set with 1,000 observations and finally test the performance of the model on a big
hold-out set (for example 200,000 observations). If the estimation error of psis-loo and K-fold
Cross Validation are same as the error of the small hold-out sets, than the psis-loo/k-fold mlpd
are good estimates of the out-of-sample performance. If the bias and variability of psis-loo/K-fold
could be kept to a minimum, then the K-fold cross validation for Lasso, and psis-loo for the
Horseshoe prior could be used for an estimate of the out-of-sample performance. If no hold-out
set is needed that would mean that the scarce data would not have to be split up, which might
lead to better predictive performance. From my simulation studies I am not sure if this is the
case. So I recommend further research in this topic.

mlpd of data generating processes I picked the data generating processes such that they had
similar regression coefficients. Correlation between different important variables can change the
potential information in the data set. For the aligned effects data set, the theoretical maximum
mlpd is −62.49 · 10−3, while for the data set with the masking effect the maximum mlpd is
81.13·10−3. This is a big difference in information and makes it harder to compare the performance
between the data generating processes.

Due to the lack of information in the masking effect the different methods almost never pick
the variables that cause the masking effect. This is not a big problem, because the two variable
contain almost no information. However, this also means that the data generating process acts
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like a data generating process with three important variables, where one of them has a very small
effect.

To give a better comparison of the different types of data, I suggest to let the data generating
processes be similar in the maximum predictive performance (mlpd), instead of keeping the
regression coefficients the same. So for the masked data, this would mean increasing the size
of β2 and β3.

Amount of simulations In the simulation studies, I applied the methods to 30 realisations of
the data generating process per type of data. Due to time constrains I had to make the choice
between using more data types or using more realisations. I chose the former. In some measures
of the simulation studies there is a high variability, which makes it hard to be definite about these
results. I suggest rerunning the simulation studies with more realisation to get a better view of
the exact impact of the different methods. I ran everything on a laptop, but running this on a
computational server this would go much faster.

8.2.3 Clustering in Predictive Projection

I used 10 clusters for the Predictive Projection in this thesis. The reason being that this greatly
decreases the time of the simulations. For the simulations this was really necessary, because time
was an important constraint. However, running Predictive Projection on a single data set with
more clusters would not be a problem. Doubling the amount of clusters would increase the time
from 35 minutes to a little over an hour.

During the writing of this thesis I once saw that increasing the amount of clusters from 10 to
20 really improved the performance of the method, because the method was more likely to pick
the right parameters. I did not further investigate this, so I suggest exploring this.

I expect that using more cluster would be beneficial for the performance, when the posterior
becomes more complex due to correlation. In the conclusion I stated that all the computation
times where the same for all data types. However, if more collinearity in the explanatory data
demands more clusters, than the computation time is different for different data types.

8.2.4 Hierarchical Models

All the methods that have been used are highly dependent on the particular realisation of the
data. Because of the low probability of default, there is a high variance compared to the expected
value. This problem cannot be solved by using these techniques. One approach that might solve
this problem is to use expert judgement to correct the estimate in the frequentist framework. It
would also be possible to use expert judgement in Bayesian statistics, which can be implemented
via the prior.

Another approach is to combine multiple portfolio that have similar characteristics and use
hierarchical logistic regression. Every data set has its own regression coefficients, however these
are combined by a hyperprior. This makes it possible for the data sets to share information
via the hyperprior (Gelman et al., 2013). Depending on the similarity of regression coefficients
corresponding to one explanatory variable, the model automatically chooses how much information
to share among the data sets. This often leads to a better performance than using a single
regression over all the data or one logistic regression for every data set.

8.2.5 FreddieMac data

Sampling Methods In the thesis I used a simple sampling method from 1,000 loans , such that
the training data contains 20 defaults and 1,000 observation. This sampling method needs 1,000
loans to get 1,000 training points. By using a more elaborate sampling procedure, the amount of
loans might be less to get 1,000 observation. Or stated otherwise, you could get more than 1,000
observation from 1,000 loans.
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8.2.6 Computation

Monte Carlo methods are slow compared to most frequentist methods that are being used.
Frequentist methods quickly output results. Bayesian methods take longer, however, there is
currently a lot of development in Monte Carlo methods, which might decrease the time of fitting
a model. In Stan, a couple of these developments are that research is done such that graphical
processing units (GPU) can be used. Parallelising the calculation could decrease the time to fit a
model.

Besides Hamiltonian Monte Carlo, there is also a development in Piecewise Deterministic
Markov Processes. These methods are non-reversible and are potentially faster than there reversible
counterpart (Bierkens et al., 2018).

8.2.7 Different Model Types

The projpred pacakge is only two years old, and the developers are currently working on a an
implementation for survival models. Survival models are also a common model in credit risk
management. If would recommend investigating the application of Predictive Projection on these
types of models.
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A Markov Chain Monte Carlo Methods

In Bayesian statistics the posterior of the model is found by using Bayes’ Formula:

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

Let θ := {θ1, ..., θD} be a D-dimensional vector of parameters and y = {yi, ...yN} be a vector
containing N data points. In some models it is possible to calculate the result of this equation
analytically, however this is not true in general. In the logistic regression, for example, the resulting
p(θ|y) does not have a closed form. The same is true for models with a Horseshoe prior (see section
5.2.3).

Still in most cases it is easy to calculate the values for the prior p(θ) and the likelihood p(y|θ).
But the problem with the normalising constant p(y) remains.

After finding the posterior we are interested in finding statistics to summarise the distributions
on θ. There is a wide class of summary statistics which depend on an integral over the distribution
of θ and a function h : θ → R. One example of such a statistic is the mean of the parameters, this
is the case when h(θ) = θ and is calculated by the following integral.∫

h(θ)p(θ|y)dθ =

∫
h(θ)p(y|θ)p(θ)dθ∫
p(y|θ)p(θ)dθ

Other examples which can be calculated using such as the variance, which uses h(θ) = θ2

among other things. Interval probabilities in [a, b] can be be calculated by h(θ) = 1[a,b](θ). Where
1[a,b](θ) is equal to one if θ ∈ [a, b] and zero elsewhere. This also includes a histogram of the
posterior, which is a graphical representation of interval probabilities.

If it was possible to draw samples from the distribution, then we could use these samples to
calculate, for example, a mean of the distribution by averaging the samples.

One method is to draw samples is to create a Markov Chain {θ0, .., θS} which explores the
parameter space Ω. Every θs is a draw form the parameters space. A Markov Chain is a sequence
of events, where the next event only depends on the previous event. The chain is created by using a
transition kernel T : Ω→ Ω, which is a probability function such that θs = T (θs−1). To guarantee
that the chain explores the entire posterior, the kernel needs to be both measure-preserving and
ergodic.

Definition 1 (Measure-Preserving Transition Kernel). A transition kernel T : Ω→ Ω defined on
a probability space (Ω,F , P ) is measure preserving if for all A ∈ F

P (T−1(A)) = P (A)

This condition is needed to guarantee that the samples are drawn from the right density.

Definition 2 (Ergodic Transition Kernel). A transition kernel T : Ω→ Ω defined on a probability
space (Ω,F , P ) is ergodic if for every A ∈ F with T−1(A) = A, either P (A) = 0 or P (A) = 1

The ergodic property of the transition kernel is a necessary property to guarantee that the
chain fully explores the parameters space. If the transition kernel is not ergodic and T−1(A) = A
for some A ∈ F . This means that all values mapping to A are in A. If transition kernel T also
maps to another region B = Ω/A ⊂ T (A), this means that once the chain is in B it never returns
to A. The chain neglects A even though it has positive probability. If the chain is ergodic it does
not get stuck on a subset of the parameter space.

Definition 3. A function h : Ω→ R is called Lebesgue integrable, denoted by h ∈ L1(Ω,F , P ), if:∫
h(θ)p(θ|y)dθ <∞

When a function h(θ) is not Lebesgue integrable,the Monte Carlo methods will not find the
correct solution to the integration. This has to due with the fact that the samples drawn from
the posterior are always finite. So the Monte Carlo solution will give a finite solution even though
the real solution is infinite.
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Theorem 3 (Birkhoff (1931) Ergodic Theorem). Let T : Ω→ Ω be a ergodic measure-preserving
transformation kernel and let h ∈ L1(Ω,F , P ) be a lebesgue integrable function then:

lim
S→∞

1

S

S−1∑
s=0

h(θs)→
∫
h(θ)p(θ|y)dµ(θ)

Theorem 3 combines the previous definition and show that they are a sufficient condition to
find a integral via a Markov Chain..

A.1 Random Walk Metropolis Hastings

One of the earliest and most famous Markov Chain Monte Carlo methods is the Metropolis-Hastings
algorithm and is named after the writer of two papers namely Metropolis et al. (1953) and Hastings
(1970). The algorithm has the following steps.

The algorithm starts with a starting value θ, from this starting value a proposal θ′ is drawn.
The proposal value comes form a normal distribution around the original value:

θ′ ∼ Normal(θs−1, σ0)

And let the q(θ′, θs−1) denote the probability density function of the proposal distribution.
If every proposal value is used as a new input in the chain,the chain will be a random walk

and therefore will not reproduce the distribution of interest. So a method is needed to ”force” the
chain to stay in the right region. This is done by accepting only certain proposals.

Whether the new proposal is accepted depends on the proportion of the probability density of
the proposed value θ′ and the starting value θ. If the probability of the proposed value is higher
than the value of the the starting value, then the proposed value is accepted. The rationale of
this process is that the Metropolis-Hastings Algorithm always accepts a proposed value that is
has a higher density than the current value. So it has a preference to explore spaces with high
densities. When a new value is proposed with lower density there is a probability p(θ′|y)/p(θs|y)
that the new value will be accepted. This means that the chain also can explore spaces with low
probability density. The acceptance rate for the new point is:

α(θ′, θs) = min

(
1,
p(θ′|y)

p(θs|y)

)
= min

(
1,
p(y|θ′)p(θ′)

p(y)

/
p(y|θs)p(θs)

p(y)

)
= min

(
1,
p(y|θ′)p(θ′)
p(y|θs)p(θs)

)
(12)

So to calculate the acceptance rate for the normalised posteriors only the unnormalised posteriors
are needed. This is how the Metropolis-Hasting algorithm gets around calculating the normalising
constant p(y). This combined with the proposal step gives algorithm 2.

Algorithm 2: Random Walk Metropolis Hastings

θ0 ← random starting point
for s ∈ {1, ..., S} do

θ′ ← N(θs−1, σ0)

α← min
{

1, p(θ′)
p(θs−1)

}
u ∼ U [0, 1]
if α > u then

θs ← θ′

else
θs ← θs−1

end

end
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Example A.1: Metropolis Hastings of logistic regression

Fit a logistic model with data consisting of a single value of y = 1 and one x = 2.

log

(
θ

1− θ

)
= β0 + βx

Where there is a standard normal prior on β0 and β, such that the probability density for a single
value:

p(β∗) =
1√
2π

exp

(
−β
∗

2

)
The likelihood of the point y being 1 given β∗0 , β

∗ and x is:

p(y = 1|β∗0 , β∗, x) =
1

1 + exp(−(β∗0 + β∗x))

Combining the likelihood and the prior gives the unnormalised posterior:

p(β∗0 , β
∗|y) ∝ 1

1 + exp(−(β∗0 + β∗x))
exp

(
−β
∗
0

2

)
exp

(
−β
∗

2

)
To estimate the model draw a random starting proposal point β′0 and β′ with a the mean being
equal to the previous point βs−1

0 and βs−1. And using the result from equation 12 and the
likelihood function given before:

α({β′0, β′}, {βs0, βs}) = min

(
1,

1 + exp(−(βs0 + βsx)

1 + exp(−(β′0 + β′x)

exp((β′0)2/2)

exp((βs0)2/2)

exp((β′)2/2)

exp((βs)2/2)

)
Now draw a random sample from a uniform distribution and if the value of α is higher then

accept the value as the new input in the Markov Chain.
The Metropolis Hastings algorithm is run for this problem and the first ten values of the

Markov Chain are shown in figure 43 and in table A.1.
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Figure 43: Ten iterations of the Metropolis Hastings algorithm, each dot and cross is a proposal
which is either accepted or rejected.
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βs0 βs β′0 β′ α Accept/Reject
1 0.00 0.00 - - - Start
2 0.62 -0.15 0.62 -0.15 0.95 Accept
3 0.62 -0.15 4.20 -1.89 0.00 Reject
4 0.62 -0.15 -1.34 0.79 0.35 Reject
5 0.62 -0.15 2.58 -1.49 0.01 Reject
6 0.62 -0.15 -0.09 2.92 0.03 Reject
7 -0.48 1.20 -0.48 1.20 0.80 Accept
8 -0.75 0.05 -0.75 0.05 0.68 Accept
9 -0.75 0.05 -2.11 1.17 0.12 Reject

10 -0.75 0.05 -0.55 -0.47 0.55 Reject

Table 55: Ten iterations of the Metropolis Hastings algorithm corresponding to figure 43

Figure 44 shows 1,000 samples from the posterior distribution. Due to the high auto-correlation,
the Monte Carlo samples are clustered. Many proposed values are rejected, this means that a
single point in the plot can represent multiple Monte Carlo samples.
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-2 -1 0 1 2
β

β
0

Figure 44: Thousand samples of the Metropolis Hastings algorithm

The algorithm has to be measure preserving to converge to the solution. A way to show that a
Markov Chain is measure-preserving is by showing that the kernel satisfies detailed balance.

Definition 4 (Detailed Balance). A transition kernel T satisfies detailed balance if:

T (θs|θs−1)p(θs−1) = T (θs−1|θs)p(θs)

Because the proposal is normally distributed and therefore symmetric q(θs, θs−1) = q(θs−1, θs).
Now it can be shown that the Metropolis-Hastings kernel satisfies detailed balance.

p(θs−1|y)T (θs|θs−1) =
p(y|θs−1)p(θs−1)

p(y)
min

(
1,

p(y|θs)p(θs)
p(y|θs−1)p(θs−1)

)
q(θs|θs−1)

=
1

p(y)
min

(
p(y|θs−1)p(θs−1), p(y|θs)p(θs)

)
q(θs|θs−1)

=
p(y|θs)p(θs)

p(y)
min

(
1,

p(y|θs)p(θs)
p(y|θs−1)p(θs−1)

)
q(θs−1|θs)

=p(θs|y)T (θs−1|θs)

Lemma 1. A transition kernel that satisfies detailed balance is also measure preserving.
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To show that detailed balance implies that the transition kernel is measure preserving let
A ∈ F and let Bi ∈ F be disjoint sets, such that A = (Ω/ ∪i Bi)

P (T−1(A)) =T (A|A)P (A) +
∑
i

T (A|Bi)P (Bi) (all sets mapping to A)

=T (A|A)P (A) +
∑
i

T (Bi|A)P (A) (Detailed balance)

=P (A)

(
T (A|A) +

∑
i

T (Bi|A)

)
(T (Ω|A) = 1)

=P (A)

Jarner & Hansen (2000) show that the posterior has to have at least an exponential heavy tail,
the same a Laplace distribution, to guarantee the Metropolis-Hasting algorithm to be ergodic.

Ergodicity..korte toelichting over voorwaarden voor ergodiciteit

In the case that the Metropolis-Hastings algorithm is both ergodic and measure-preserving
then Birkhoff’s Ergodic Theory holds and the Monte Carlo solution converges to the real solution.
However, the theory does not state how quick the solution converges. A metric for convergence
speed is the Effective Sample Size (ESS) of a Monte Carlo method. The MCMC samples are by
construction dependent on the previous sample, this often means that the samples are correlated
with each other.

ESS =
S

1 + 2
∑∞
l=1 ρl

Where S is the number of samples and ρ is the l-lag autoregression coefficient of the Markov
Chain. The Effective Sample Size is a measure to estimate how many independent samples from
the distribution would give an equal error as the dependent Monte Carlo samples.

In high dimensions the Metropolis-Hastings algorithm has the problem that if the random
step is chosen to big, then the proposed step often jumps out of the region of high probability.
This causes that most of the proposed value are rejected and this means slow convergence to the
distribution. On the other hand, when small random steps are used, most of the proposed values
are accepted, however the convergence is still slow due to the fact that it slowly explores the space.
In both cases the autogregressive coefficient ρl becomes large.

To show the problem of Metropolis Hastings in high dimension draw I draw samples from a
multivariate normal with increasing dimension. Gelman et al. (1996) show that for this problem
the efficient σ0 ≈ 2.4d−1/2 and ESS ≈ 0.3S

d , the optimal acceptance rate is starts at 44% with
D = 1 and the optimal acceptance rate goes to 23% as D →∞. In figure 45 the Effective Sample
size divided by the total Monte Carlo samples is plotted against the dimensions of the multivariate
normal. The Effective Sample Size deteriorates as the quickly as the dimensions increase.
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Figure 45: Metropolis Hastings simulation from a d-dimensional independent standard normal
distribution.

A.2 Hamiltonian Monte Carlo

Because the Metropolis Hastings algorithm has slow convergence for high dimensional parameters
spaces, another algorithm needs to be found to solve the high dimensional problems. Instead of
using random steps to propose new values, the geometry of the distributions can be used to propose
new values. One method that uses this information is a class of algorithms called Hamiltonian
Monte Carlo algorithms.

The basic idea of Hamiltonian Monte Carlo is to double the parameters space fromD-dimensional
(θ) to 2D-dimensional (θ, ζ). The doubled parameter space has certain properties, which makes it
possible to make proposals with higher acceptances rates than the Metropolis Hastings algorithm.
In Hamiltonian Monte Carlo, samples are drawn from the double parameter space. From this
double parameter space the original parameter space easily can be recovered by marginalising out
the auxiliary parameters ζ, such that:∫

p(θ, ζ)dζ = p(θ)

∫
p(ζ)dζ = p(θ) · 1 = p(θ)

In practise this integration is not done, and the marginalisation is done by dropping out the ζ
parameters. Which is equivalent to the integral.

A.2.1 Hamiltonian dynamics

Hamiltonian Monte Carlo does not use random steps to make new proposals, but makes use of
the geometry of the unnormalised posterior. This is done via the Hamiltonian, which is defined
as (Neal et al., 2011):

H(θ, ζ) :=− log(p(θ, ζ)|y)

=− log(p(ζ|θ)p(θ|y))

=− log(p(ζ|θ))− log(p(θ|y))

Furthermore kinetic energy is defined as:

K(θ, ζ) = − log p(ζ|θ)
And potential energy as:

V (θ) = − log p(θ|y) = −
∑
i

log p(yi|θ)− log p(θ) + log(p(y))
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Because Hamiltonian originates from Hamiltonian dynamics, jargon from dynamics is used. That
is why the auxiliary parameter ζ is called the momentum.

The Hamiltonian equations can be used to make generate a proposal value. This is done by
making a path φ(θ, ζ) using the Hamilton’s equations:

dθi
dt

=
∂H

∂ζi
=
∂K

∂ζ

dζi
dt

= −∂H
∂θi

= −∂K
∂θi
− ∂V

∂θi

This system has the property that it preserves the Hamiltonian analytically, so the Hamiltonian
does not depend on time, this can easily be shown by:

dH

dt
=

D∑
i

∂H

∂θi

dθi
dt

+
∂H

∂ζi

dζi
dt

=

D∑
i

∂H

∂θi

∂H

∂ζi
− ∂H

∂θi

∂H

∂ζi
= 0

A way to look at this problem is that the path φt(θ, ζ) is a path with constant Hamiltonian.
As the Hamiltonian is directly related to the probability in the doubled space, the analytic path
follows the lines of equal probability. In the analytical case the new proposal is always accepted,
however the the paths can only be calculated analytically in certain cases. In the general case a
numerical integrator needs to be used.

A.2.2 Leapfrog integration

One class of integrators that is useful for this system are the symplectic integrators. These
integrators have the property that they conserve the Hamiltonian much better than other methods,
like Euler’s method or higher order variants of this method. Where other classes quickly drift away
from the original value of the Hamiltonian, these integrators stay close the Hamiltonian level, even
after long times of integration.

The leapfrog integrator is one of these integrators and has the following procedure:

Algorithm 3: Single Leapfrog Integration

(θ0, ζ0)← (θs, ζ)
ζ 1

2
= ζ0 − ε

2
∂V
∂θ (θ0)

for i ∈ {1, ..., t} do
θi = θi−1 + εζi+ 1

2

ζi+ 1
2

= ζi− 1
2
− ε∂V∂θ (θi− 1

2
)

end

ζt = ζt− 1
2
− ε

2
∂V
∂θ (θi)

(θ′, ζ ′)← (θt, ζt)

The leapfrog integrator is time reversible (Leimkuhler et al., 1996). When starting from point
(θs, ζs) and going to point (θ′, ζ ′). By changing the momentum parameters ζ ′ to −ζ ′, the path can
exactly return to the start point (θs, ζs). This is not generally the case for numerical integrator, but
it is an necessary condition to guarantee that the Hamiltonian Monte Carlo is measure preserving.

The last property of importance is that the leapfrog integrator, like other symplectic integrators,
preserve volume (Channell & Scovel, 1990).

A.2.3 Accept Reject step

Due to the numerical approximation of the path, the Hamiltonian of the proposal values (θ′, ζ ′) are
not exactly the same as the Hamiltonian of the starting point. Just like in the Metropolis-Hastings
algorithm a accept/reject step is needed to guarantee that the transition kernel is measure preserving.
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α(θ′, ζ ′, θs, ζ) = min

(
1,
p(θ′, ζ ′|y)

p(θs, ζ|y)

)
= min

(
1,
p(y|θ′)p(θ′)

p(y)

/
p(y|θs)p(θs)

p(y)

)
= min

(
1,
p(y|θ′)p(θ′)
p(y|θs)p(θs)

)
= min (1, exp(−H ′(θ′, ζ ′) +H ′(θs, ζ)))

Where H ′ is the unnormalised Hamiltonian, so without the constants that do not depend on θ
and ζ.

A.2.4 Defining the Kinetic Energy

Euclidean-Gaussian Hamiltonian Monte Carlo defines the kinetic energy as:

p(ζ|θ) ∼ N(0,M)

Such that:

K =
1

2
ζTM−1ζ + log |M |+ const.

The kinetic energy determines the how big the jumps are of the momentum. Putting all previous
steps together gives the following algorithm.

Algorithm 4: Hamilotian Monte Carlo

θ0 ← random point
for s ∈ {1, ..., S} do

ζ ∼ N(0,M)
(θ′, ζ ′) = φt(θ

s−1, ζ)
α← min

{
1, exp

(
−H(θ′, ζ ′) +H(θs−1, ζ)

)}
u ∼ U [0, 1]
if α > u then

θs ← θ′

else
θs ← θs−1

end

end

Example A.2: Hamiltonian Monte Carlo of logistic regression

Let the problem be the same as in example A.1. So define a logistic model with one data point
with y = 1 and x = 2

log

(
θ

1− θ

)
= β0 + βx

Where there is a standard normal prior on β0 and β, such that the probability density for a single
value:

p(β∗) =
1√
2π

exp

(
−β
∗

2

)
The potential energy in this problem is:

V (β0, β, y) = log(1 + e−β0−2β) +
β2

0

2
+
β2

2
+ const.

95



When the momenta are drawn for a normal distribution ζ, ζ0 ∼ N(0,m) then the kinetic energy
is:

K(ζ0, ζ) =
ζ2
0

2m0
+

ζ2

2m
+ const.

To calculate the leapfrog integration the derivative of the potential energy:

∂V

∂β0
=

−1

1 + exp(β0 + 2β)
+ β0

∂V

∂β
=

−2

1 + exp(β0 + 2β)
+ β

By arbitrarily setting the starting point to (β0, β) = (1, 1) and running the algorithm, the
Markov Chain explores the probability space as depicted in figure 46.
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Figure 46: The first six points of the Hamiltonian Monte Carlo simulation with paths between
samples.

The initial point is point 1, from this point two random momenta are drawn such that
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momentum jumps to hollow point number two (in upper two plots). By using the leapfrog
integrator, the a path is drawn for the original hollow point to the black proposal point. Because
the Hamiltonian is nearly conserved all points are accepted in this case. Now new momenta are
drawn and the points and and the chain jumps from the black 2 to the hollow 3 and the process
is repeated. The lower plot is the plot of interest, which depicts the resulting paths and point for
the β0, β plane.

Figure 47 shows 1.000 draws from the posterior distribution. Compared to the Metropolis
Hasting algorithm in figure 44, the Hamiltonian Monte Carlo method produces are more even
distribution of points through the posterior distribution.
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Figure 47: thousand samples from the distribution using Hamiltonian Monte Carlo

A.2.5 Ergodicity

Livingstone et al. (2016) prove that Hamiltonian Monte Carlo does not produce ergodic chains
under certain tail geometric conditions of the posterior distribution.

1. lim||θ||→∞
||∇θV (θ|y)||
||θ|| =∞

2. There is an M <∞ such that ∇θV (θ|y) ≤M for all θ, and E[et||θ||] =∞ for every t > 0

Where ||.|| is the Euclidean norm.
When applying these conditions to the exponential distribution family p(θ) ∝ exp(−||θ||γ),

the first conditions implies that the tails of the distribution should be heavier than the tails of a
normal distribution (γ = 2).

In case that the first condition does not hold the gradient ∇V (θ|y) becomes very large and it
becomes hard for the numerical integrator to follow the analytic path. In this case the leapfrog
integrator has the tendency to quickly diverge to high energy levels. This behaviour makes it easy
to identify such divergent iteration. In the Stan, the package I use for implementing Hamiltonian
Monte Carlo, these divergent iteration are automatically identified.

The second condition corresponds with the tails that are heavier than the tails of the Laplace(γ =
1) distribution. In this case the gradient ∇V (θ|y) has a low value, the path of the leapfrog is
marginally influenced by the information in the gradient. This causes the path to turn into a
random walk, which deteriorates the performance of HMC.

Because the shape of the posterior is unknown, these diagnostics are useful tools. In case that
one of these diagnostics points out a problem, the result may not be reliable. Metropolis-Hastings
does not have these kind of diagnostic and non-ergodicity may not be detected, leading to
misleading results.
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A.2.6 No-U-Turn sampler

Still it remains unclear what the integration time the leapfrog integrator should be. When only
a few steps are taking the path might not have explored the space enough, which leads to highly
correlated Monte Carlo samples. However when the integration time is too long, then the path
might up where it began. Even if this does not happen, the calculation time is high, due to
the calculation of the paths. Hoffman & Gelman (2014) suggest the No-U-Turn sampler (NUTS)
to solve this problem. This method dynamically chooses the integration time of the leap frog
integrator. The idea of the solver is that it adds leapfrog steps until the path makes a U-turn.
When this happens the No-U-turn sampler picks one of the leapfrog points and uses this as the
proposed value.

A.2.7 Stan

For Bayesian generalised linear models I use rstanarm. This package in turn opens the Rstan,
the R version of Stan. Rstan is package that uses the NUTS (Carpenter et al., 2017) to sample
from the posterior. The advantage of Rstan is that before sampling it optimises the kinetic energy
and the leap-frog step size in its warm-up/burn-in period (Betancourt, 2017). Furthermore, it
automatically calculates the derivatives needed in the NUTS sampler. This saves a lot of time
and effort in fitting the model. It is possible to use Stan to define your own model, which gives
a lot of flexibility. The code is compiled to C++ for fast calculations. I do not write my own
models, but I use a generalised linear model function in rstanarm. This makes implementation
easy and fast, for common statistical models.

A.2.8 Diagnostics

Hamiltonian Monte Carlo requires the posterior distribution to be differentiable, when the posterior
is not differentiable Hamiltonian Monte Carlo cannot be used. Furthermore even if the posterior
is differentiable, but the analytic paths have high curvature, the leapfrog integrator might not be
able to follow the path. When this happens the leapfrog integrator has the tendency to quickly
diverge to a high Hamiltonian value. Due to this extreme behaviour divergent iterations are easily
identifiable. Stan has a build in detection for divergence, when divergent paths are present the
results are unreliable and reparametrisation of the model might be needed.
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B Information Theory

A wide class of measure to identify the performance of a model are rooted in information theory .
As a measure of information Shannon’s entropy is used and is defined as (MacKay & Mac Kay,

2003):

H(p) = −
∫
p(y) log(p(y))dy

Entropy is a measure of the average information that is given by an outcome. So the more
uncertain the system, the higher the value of the information that the outcomes gives and the
higher the entropy.

Example B.1: Entropy

When taking a probability of default model where the default is modelled as a Bernoulli distribution,
such that:

Y ∼ Bernoulli(θ)

If θ1 = 0.5 then the entropy of the distribution is:

H = − (0.5 log2(0.5) + 0.5 log2(0.5)) = 1

And when θ2 = 0.02:

H = − (0.02 log2(0.02) + 0.98 log2(0.98)) ≈ 0.086

In the case of a 1 percent default probability there is much less uncertainty than in the of 50
percent default. In the case of a 1 percent default guessing that the model will not default is
right most of the time. In the case of 50 percent default, this is right only half of the time.

Khinchin (2013) shows that entropy is the only measure of uncertainty that satisfies the following
properties:

• The uniform distribution has the highest entropy.

• Independent events have additive uncertainty.

• Adding an outcome with zero probability has no effect on the uncertainty.

• Uncertainty is continuous in its arguments.

B.1 Cross Entropy

The cross entropy is the amount of information under the wrong assumption of the distribution.
However this can also be seen as the log loss of the fitted model pm model assumptions.

H(pt, pm) = −
∫
pt(y) log(pm(y))dy

The expected log predictive density (elpd) is equal to minus the cross entropy.

B.2 Kullback Leibler Divergence

The Kullback-Leibler divergence between the real data generating distribution pt and the estimated
distribution pm is:
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KL(pt, pm) =

∫
pt(y) log

pt(y)

pm(y)
dy

=H(pt, pm)−H(pt)

The Kullback Leibler is the difference of the cross entropy and the entropy of the real data
generating model. So this is the loss of information due to the fact that wrong model used instead
of the real model.

In real life cases the data generating distribution pt is unknown, therefore the Kullback Leibler
divergence between the the model and the data generating process cannot be calculated. The next
best thing is to use the measure the

KL(pt, pm1)−KL(pt, pm2) = H(pt, pm1)−H(pt, pm2)

This equation holds because the entropy of the true model is constant over all fitted models.
So two models can be compared by using the cross entropy. Information criteria and cross

validation techniques try to approximate the cross entropy of the fitted model.
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C Normal Scale-Mixtures

As discussed in Section 5.2.3 various distributions can be written as a normal scale-mixture. Where
the variance of a normal distribution is a random variable as well, such that:

β|λ ∼ N(0, λ)

λ ∼ p(λ) (13)

Where the prior is given by:

p(β) =

∫
p(β|λ)p(λ)dλ

The prior on λ gives an implicit prior on the shrinkage weight κi. Which is defined as:

κi =
1

1 + λ2

C.1 Laplace distribution

The Laplace prior can be written as normal scale-mixture model, where the scale mixing is done
with a exponential distribution:

λ2 ∼ Exp
(

1

2b2

)
Which has the following probability density distribution:

p(λ2) =
1

2b
exp

(
λ2

2b2

)
The Laplace distribution on β is:

p(β) ∝ 1

2b
exp

(
−|β|
b

)
C.1.1 Shrinkage profile Laplace

λ2 =
1

κ
− 1

dλ2

dκ
= − 1

κ2

The implied shrinkage prior is a result of a change of measure from λ2 to κ.

p(κ) = p(λ2)
dλ2

dκ

p(κ) ∝ exp

(
− λ2

2b2

)
dλ

dκ

p(κ) ∝ exp

(
− 1

2κb2
+

1

2κb2

)
dλ

dκ

p(κ) ∝ 1

κ2
exp

(
− 1

2bκ

)
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C.2 Horseshoe prior

The Horseshoe prior is a normal scale-mixture with a half Cauchy distribution:

p(λ) ∝ 1

1 + λ2

The shrinkage parameters for the Horseshoe prior is defined as:

κ =
1

1 + λ2τ2

Rewriting the expressions gives:
1

1 + λ2
=

κτ2

κτ2 + 1− κ

C.2.1 Shrinkage profile Horseshoe

The scale λ expressed in term of κ is:

λ =

√
1

τ2

(
1

κ
− 1

)
=

1

τ

√
1

κ
− 1

The derivative from λ to κ is:

dλ

dκ
=

1

τ

√
κ

1− κ ·
1

κ2
= τ−1κ−1.5 (1− κ)

−0.5

And the shrinkage prior of the Horseshoe prior is:

p(κ|τ) = p(λ)
dλ

dκ

p(κ|τ) ∝ 1

1 + λ2

dλ

dκ

p(κ|τ) ∝ κτ2

κτ2 + 1− κ
dλ

dκ

p(κ|τ) ∝ κτ2

κτ2 + 1− κ · τ
−1κ−1.5 (1− κ)

0.5

p(κ|τ) ∝ τ

κτ2 + (1− κ)
κ−

1
2 (1− κ)−

1
2

p(κ|τ) ∝ τ

(τ2 − 1)κ+ 1
κ−

1
2 (1− κ)−

1
2

For τ = 1, the implied prior is a Beta( 1
2 ,

1
2 ).
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D Table of distributions

Distribution Symbol Probability density/mass function Support

Normal N(µ, σ) p(x|µ, σ) = 1√
2πσ2

exp
(
− (x−µ)2

σ2

)
x ∈ R

Cauchy C(x0, γ) p(x|x0, γ) = 1

πγ
[
1+( x−x0γ )

2
] x ∈ R

Half Cauchy C+(x0, γ) p(x|x0, γ) = 2

πγ
[
1+( x−x0γ )

2
] x ∈ R+

Generalised Pareto GPD(k, σ, u) p(x|k, σ, u) = 1
σ

(
1 + k

(
x−u
σ

))− 1
k−1

x ∈ [u,∞)
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