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Abstract

The advancements in driver assistance systems in cars and the development
of autonomous vehicles require more states of the car to be known than
the conventional sensors can accurately determine. Load sensing bear-
ings (LSBs) are under development that measure the wheel forces under
dynamic load. Through sensor fusion, the addition of this sensor can in-
crease the robustness and accuracy of the state estimators used in cars. An
algorithm uses the strain measured on the surface of an instrumented LSB
to calculate the forces on the bearing. The development of LSBs requires
a tool that simulates the strain signals in a fast and accurate manner to
gain insight into the bearing behavior.

Due to the complex nonlinear behavior of the bearing, there is not a
fast, straightforward tool available that estimates its strains. This thesis
presents a methodology that uses finite element analyses (FEA) to con-
struct a model that calculates the strain in the outer ring of a wheel bear-
ing for any given load. The FEA consists of a linear elastic model of the
outer ring and a single loaded ball that is modeled by a Hertzian contact.
Multiple simulations are done for different positions of the ball, such that
a rotating bearing can be approximated. A nonlinear analytical bearing
model in conjunction with a, from FEA constructed, outer ring flexibility
model calculates the load on each bearing ball. A strain model, also built
from the FEA, uses these loads to calculate the strain on the outer ring.

The simulated strains are validated with experiments performed on a bear-
ing test rig of SKF. Measurements from a with strain gauges instrumented
bearing show that the model predicts the observed behavior in the signals.
Analyses of the simulated and measured signals in the frequency domain
show a difference in gain and offset, which can be calibrated. Unexpected
discrepancies are observed within the measured signals of symmetrically
placed sensors on the LSB, which should give identical signals, that are
likely caused by a distortion of the shape of the outer ring introduced by
the manufacturing process or installation of the bearing.

The scope for future work should focus on further validation of the model
and developing a calibration method to increase the accuracy. It is be-
lieved that the uncertainties in the model can be summarized into a small
set of parameters that can be calibrated for a specific instrumented LSB
with only a few measurements. Once accurate strains can be simulated,
the model could be utilized in a state observer to convert actual strain
measurements into loads, and it is possible to use it to optimize the design
of the LSB and the location of the strain gauges.
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1
Introduction

Cars are being designed and mass-produced for more than 100 years now, while safety
and efficiency are continually improving. The next big step in transportation tech-
nology is the introduction of the autonomous car. Estimations show that about 90%
of all traffic accidents are caused by human error, so it is expected that autonomous
driving systems will improve safety while it also improves the traffic flow [1]. Due to
technological advancements, the systems required for autonomous cars become better
and cheaper to implement, and the desire to reduce traffic incidents and casualties in-
creasingly makes these systems integral to the design of the car [2]. For these systems
to function well, the car should know what happens in and around it with increased
performance and reliability, which can be achieved with sensor fusion. Similar require-
ments also become necessary for the wheel dynamics where the states of the wheels
should be known, since estimating the wheel force from only the accelerometer is not
reliable and has low performance with 150 ms delay [3]. Multiple different technologies
are being developed to sense the forces that act on the wheels like suspension force
sensors [4], wheel force transducers [5, 6], smart tires [7–9], and load sensing bearings
[10–12].
This thesis focuses on the development of a methodology to calculate the strains in an
outer ring of a wheel end bearing which can aid in the development of a load sensing
bearing.

1.1. Introduction to HBU3 bearings
For more than a decade, SKF has been developing one of these load sensing bearings
(LSB) on their HBU3 (Hub Bearing Unit 3) bearing series, which are double-row ball
bearings that are placed inside the wheels of cars. Figure 1.1 shows an image of such
an HBU3 bearing. It is cut open so that the internals can be seen. The red part is the
inner ring and, the green part is the outer ring. Two rows of balls, the so-called rolling
elements, transfer the load on the inner ring to the outer ring while it can rotate freely

1
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Figure 1.1: An HBU3 bearing cut open so its internals can be seen. The outer and inner ring are
shown in green and red, respectively. Between the rings are two rows of balls, the so-called rolling
elements. The brown part around the rolling elements is called a cage and keeps all the rolling
elements at an equal distance from each other. Seals are on either side of both rows to prevent grease
from leaving the bearing and dust entering it.

around its axial axis. Each row has a cage, the brown parts, that keep all the rolling
elements at an equally spaced distance in their respective rows. To ensure low friction
and increase the lifetime of the bearing, grease is placed around the rolling elements.
Seals on either side of the rows keep the grease in place and prevent dust from entering
the bearing. In a car, each wheel contains one of these HBU3 bearings. The outer ring
has four threaded holes which are used to assemble it on the knuckle of a car. The
brake disk and wheel are attached to the inner ring.

In this report, two coordinate systems are used in the bearing. In some cases, a
Cartesian system is used with coordinates x, y, and z, and a cylindrical system is used
with coordinates r, ψ, and y in other cases. The y-axis is the same in both systems.
Figure 1.2 shows a schematic cross-section and side view of the HBU3 bearing. As
with the previous picture, the outer ring is green, and the inner ring is red. The left
side in figure 1.2a is mounted on the knuckle. This side is called the inboard side, and

2
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r
y

(a) A schematic cross-section of the HBU3 bearing with an inner
and outer ring in red and green, respectively. There are two
ball rows; the row on the left is closest to the car and called the
inboard row, or row 1, and the other outboard row is called row
2. In this reference frame, the horizontal axis is the y-axis, and
the vertical axis is the r-axis.

z
x

ψ

(b) A schematic side view of the bearing. This view is looking to
the outboard side of the bearing. The axes to the left and top are
the x- and z-axes, respectively. The y-axis is pointing towards
us. ψ depicts the azimuth of the polar coordinate system.

Figure 1.2: Schematic views of the bearing. A Cartesian (x,y,z) and a cylindrical (r,ψ,y) coordinate
system are used often throughout this report. The y-axes of both systems are the same.

the row in that position is called row 1. The right side is attached to the brake disk
and wheel and is called the outboard side. The corresponding row is row 2. Figure
1.2b shows the side view of the bearing when looked upon from the outboard side. Any
azimuth ψ is referenced from the top, the z-axis, and rotates counterclockwise. The
x-axis is pointing to the left side, and the y-axis is pointing towards us, the outboard
side. The coordinates of both coordinate systems are shown in both figures.
Any load applied to the inner ring will be transferred through the rolling elements
to the outer ring. The contacts between the rolling elements and the rings can be
considered as nonlinear springs which deform under load. This means that the inner
ring displaces with respect to the outer ring when a load is applied. This displacement
also causes a change in the contact angle. This is the angle between the contact force
acting on the rolling element and the radial axis. Figure 1.3 shows animations of how
the inner ring and rolling elements schematically deform when a moment is applied
(left) and when an axial load is applied (right). The inner and outer ring are considered
rigid in these animations, while in reality the outer ring deforms significantly due the
loads on the individual rolling elements. Each different load case on the bearing creates
a different distribution of the loads over the rolling elements. This, in turn, creates a
distinct deformation of the outer ring. By measuring the strain on the outer ring of
the bearing, it should, in theory, be possible to estimate the total load that acts on

3
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(a) A moment applied to the inner ring will rotate it. The
contacts between the rolling elements and the rings act as a
nonlinear spring and will deform.

(b) When a pure radial load is applied to the inner ring, it will
stay aligned with the outer ring but move closer or further away.

Figure 1.3: Schematic of the loaded bearing. The inner ring displaces with respect to the outer ring.
These figures are animations and only work in Adobe Reader.

the bearing.

1.2. Challenges in load estimations
In SKF, this HBU3 bearing unit is equipped with strain gauges that measure the strain
on the surface of the outer ring of the bearing. Most algorithms used to determine the
forces are data-driven and show promising results, but remain not accurate enough
[10, 13]. The exact reasons for these problems remain unclear although the following
phenomena are believed to be the source of these uncertainties:

Preload Both bearing rows are installed with a certain preload to ensure that there is
no play in the bearing and to increase its life. The preload strongly influences the
strain on the outer ring. To give an example, the loads on the rolling elements
are calculated for different bearing loads and preloads with the rigid bearing
model, presented later in this report. Figure 1.4 shows how the load on the
highest loaded element is related to the preload (defined in axial interference)
and the radial bearing load. Assumed here is a rigid outer bearing ring. Due to
creep, wear, and plastic deformation, the preload will change over time.

Temperature An increase in temperature expands the material and thus directly
changes the strain [14]. This deformation also changes the preload on the bear-
ing, which indirectly affects the strain. The influence of the temperature can be
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Figure 1.4: The load on the maximum loaded rolling element as a function of a radial load applied to
the bearing and a preload (defined by axial interference). Assumed is a rigid inner and outer bearing
ring. A change in preload drastically changes the loads on the rolling elements. An HBU3 bearing
typically has a preload of about 30 µm.

categorized into a local temperature difference and a global temperature differ-
ence. Rolling friction of the loaded elements causes local temperature differences
and has the same deformation shapes as the strains and are thus hard to com-
pensate for. The global temperature differences are caused by the temperature
of surrounding components, which for instance heat up due to braking.

Row interference The strain gauges measure the superposed strains of both rows
at the same time. It is difficult to distinguish the contribution of each row to
this signal.

Surrounding stiffness The HBU3 is mounted in the car on a knuckle which has a
varying stiffness along the whole bearing circumference [15]. Although this is a
factor that can be modeled beforehand, it complicates the understanding of how
the bearing behaves. The clamping force of each bolt also influences the strain
by creating stresses in the outer ring. These change each time a bearing in being
reinstalled on the car.

Different load algorithms have been explored that try to eliminate some of these ef-
fects. These algorithms can be classified into generation 1 (G1) and generation 2 (G2)
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algorithms. Note that generation 2 does not imply that it is more advanced or better
at estimating the loads. Each generation has its advantages and disadvantages:

Generation 1 This first-generation tries to determine the individual contact forces
and angles of each rolling element in order to calculate the total force acting
on the bearing. Generally, these algorithms are less sensitive to global temper-
ature differences. On the other hand, these algorithms need to distinguish the
contribution of each row, which is difficult.

Generation 2 The G2 algorithms look at the global bearing deformation, specifically
the outer bearing ring deformation, to estimate the forces that are applied to
the bearing. This basically means that the bearing is modeled as a load cell,
and a low-pass filter is applied to the measured signals. The advantage of these
methods is that they can observe fast load variations. Any temperature gradient
in the bearing makes these algorithms very inaccurate.

The existing data-driven load estimation algorithms are at the moment not capable
enough to cope with all the uncertainties. More understanding of how the bearing
behaves is necessary to make the algorithms more accurate.

1.3. Challenges in gaining insights
To better understand how the bearing behaves under loading conditions, two methods
are used to acquire strain gauge signals for different load cases. The first method
is by simulating the bearing in a finite element analysis (FEA) model. This model
consists of an inner ring and outer ring within between 32 rolling elements, divided
over two rows. Each rolling element has one contact with each ring, resulting in 64
contact constraints in the model. Since all these constraints are highly nonlinear and
need a very fine mesh, the model takes a very long time to solve. Solving this model
for one load case and for one position of the rolling elements takes at least one hour
on a computing cluster. If the bearing rotates in time, and thus the rolling elements
change position, then the model needs to be solved again. Due to this time-consuming
process, only a limited amount of load cases can be calculated.
Another method for gaining the strain gauge signals is by using a physical test rig. A
bearing unit is instrumented with strain gauges and placed on this rig which rotates it
and applies a load. This gives more accurate results and can easily apply many different
load cases to the bearing, but these setups are limited in the number of strain gauges
that are installed on the bearing. These sensors, including their conditioners and AD-
converters, are expensive, and the surface of the bearing can only accommodate a finite
amount of sensors. On top of that, the bearing acts as a black box on which a load is
applied and outputs certain strains. It is hard to directly know the loads and contact
angles of each rolling element and their individual influence on the strains. There are
currently no tools available that are fast and accurate in calculating the strain signals
for certain load cases.

6



Jens Ravesloot, 4010140 1. Introduction

1.4. Research question
The development of a load sensing bearing requires knowledge about the strain signals
from an HBU3 bearing when it is loaded. Since the modeling in FEA and experiments
on the test rig are expensive, a third option is explored in this thesis; a fast semi-
analytical model is proposed that can generate the strains based on FEA simulations.
This Master’s thesis tries to answer the following question:

Main research question:
How can a bearing model be constructed with finite element analyses data such that
the strains on the outer bearing ring can be simulated for different load cases?

Some subquestions are made related to the research question that could help to better
understand the strains due to the bearing mechanics. To simulate the strains on the
outer ring, it is necessary to know the loads and possibly the contact angles of each
rolling element. This leads to the first subquestion:

Subquestion 1:
What mechanics in the bearing determine the loads and contact angles on each rolling
element?

The strains on the outer ring of the bearing are simulated once the loads and contact
angles are known. Generation 1 algorithms try to estimate the loads on each individual
rolling element. One way to do this is by translating the measured strain into the fre-
quency domain. This shows a peak at the frequency at which all the rolling elements
pass the sensor. The amplitude of this frequency is called the first harmonic. The
second harmonic is the same at twice the frequency. Analyses of previously measured
strain signals have resulted in the hypothesis that by looking at these first and second
harmonics of the strain gauge signal, it might be possible to distinguish between ball
rows and observe the contact angles more accurately. To better understand how the
measured signal is related to the mechanics of the bearing, the following subquestion
is composed:

Subquestion 2:
What are the effects of the contact angle on the first and second harmonics of the
strain signal?

Strain gauges installed on the bearing give a signal on one location in the time domain.
When the bearing is circular symmetric and an axial load is applied (i.e., all the

7
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individual rolling element loads are identical) it is easy to visualize that the measured
signal is the same as the strain along the circumference of the ring. In other words,
the strain in the time domain is the same as the strain in the spatial domain. See
figure 1.5 for an example of this strain.

Figure 1.5: Polar plot of radial strain (mm/mm) on a line along the circumference of an axisymmetric
outer ring where a pure axial load is applied. In this case, the strain is perfectly rotational symmetric;
thus the strain signal measured at one fixed location during rotation would be identical to the strain
measured along the outer ring.

It would be interesting to know if this relation between the time domain and the spa-
tial domain is the same for a different bearing or a different load case:

Subquestion 3:
Are the strains in the time domain and the spatial domain related?

The proposed methodology will use FEA simulations to generate data for the model.
These simulations can take up a long time, especially when many nonlinear behavior
is modeled. Since one of the goals of the model is to be fast, the FEA needs to be
simplified to reduce the computation time. This leads to the final subquestion:

Subquestion 4:
How can the FEA be simplified to decrease the computation time, but maintain accu-
racy?

8
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With the help of these questions, a methodology will be proposed that is fast and can
estimate the strains on the strain gauge locations.

1.5. Report overview
This report gives an overview of what is achieved during a Master’s thesis on the
subject of creating a model that computes the strains on the surface of a bearing when
loads are applied. The model is presented in chapter 2. In chapter 3, the proposed
model is compared with experiments, and finally, the thesis is concluded in chapter 4.
Some figures contain animations instead of just static images. These animations work
in Adobe Reader, so it is advised to use this program to view this PDF.

9





2
Proposed semi-analytical model

A fast model that calculates the surface strain for loads on a bearing is instrumental in
developing an algorithm to estimate the loads on a bearing instrumented with strain
gauges. This thesis aims to construct such a load-to-strain model by using FEA data,
which will be explained in this chapter.

Load case

Rigid bearing model
Raceway deformation

model (RDM)

Strain model FEA data

Sensor signal

simulator

Bearing specs

Sensor locations

Sensor signal

Element loads

Strain at sensors

Strain signals (time domain)

Figure 2.1: Schematic overview of the proposed model. The rigid bearing model and RDM together
calculate the distribution of the loads over all the rolling elements. The strain model converts these
into a strain on the locations of the simulated sensors. Both the RDM and strain model are constructed
from FEA simulations once. The sensor signal simulator controls the load case and azimuths of the
rolling elements over time. These are fed back into the whole model. These successive simulations
generate a strain signal in the time domain.

11
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2.1. Overview of all submodels
The proposed semi-analytical model consists of multiple parts that all have their func-
tion. Figure 2.1 shows schematically how the model will be built and what the indi-
vidual submodels are. In the schematic overviews, the green blocks represent inputs,
and the red blocks represent outputs. The following list gives a description of all the
parts of this model:

FEA data The FEA should be used to calculate the full displacement field of the
outer bearing ring, which is the input for the raceway deformation model and
strain model. Only one rolling element is modeled and placed on different places
along the raceways. By calculating all these different positions, enough data
can be generated to build the other models. The FEA only contains the outer
bearing ring and its plate on which it is attached in order to reduce the number
of elements.

Rigid bearing model For the strains to be calculated on the outer ring, the loads
on all the rolling elements need to be known. All the rolling elements and the
deformation of the outer ring behave like a large system with many springs, as
can be seen in figure 2.2. Here the coils in the image represent the nonlinear
Hertzian contacts, and the green and red rings represent the deformed outer
and rigid inner ring of the bearing, respectively. To find the equilibrium of
this system, it is split into a nonlinear rigid bearing model that calculates the
loads on each rolling element for a predefined deformation and displacement of
the inner and outer ring, and a linear elastic raceway deformation model that
calculates the deformation of the outer ring as a function of the load of the
rolling elements acting on it. The rigid bearing model is an analytical model
that calculates the individual loads, contact angles, and contact shape according
to the Hertzian contact theory and bearing theory as described in [16]. The
rigid bearing model will be validated with simulations of SimPro, which has the
possibility to simulate all the contact forces with a rigid outer ring.

Raceway deformation model A semi-analytical model will be used to estimate the
deformation of the raceway due to the loads acting on it. This deformation causes
the loads to redistribute differently over all the elements. This model can then
be iterated with the rigid bearing model until equilibrium is reached. The semi-
analytical raceway deformation model uses FEA data to construct deformation
shapes and corresponding coefficients. This FEA data needs to be generated
one time only. Once this semi-analytical model is built, this FEA is not needed
anymore, making this raceway deformation model fast.

Strain model The FEA data used for the semi-analytical raceway deformation model
can also be used to construct a new model that relates the strain in the outer ring
to the loads on all the elements. The strain will be a function of the location

12
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Rigid bearing
model

Raceway
deformation model

Figure 2.2: To calculate the load distribution over all the rolling elements, the Hertzian contact behav-
ior and the outer ring deformation are split into separate models called the rigid bearing model and
the raceway deformation model, respectively. The rigid bearing model is nonlinear and analytic, while
the raceway deformation model is assuming a linear elastic outer ring, but is based on numerically
solved FEA data.

of the rolling elements and their contact angles. Before this strain model is
constructed a set of strain gauge locations is determined for which this model is
generated.

Sensor signal simulator Once the strains are known, it is possible to simulate the
sensor signals for predefined strain gauge locations. The sensor signals are cal-
culated by letting the whole model, indicated by the blue area in figure 2.1,
run with small increments in the rotation of the cages of the rolling elements
for varying load cases. The whole model can be validated by comparing these
resulting strain signals with measurements taken on the BETSY (BEaring Test
SYstem) rig.

13
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2.2. Rigid bearing model
A model is being built that is able to generate the strains based on the load that is
acting on the bearing. The first step in this model is to calculate the load distribution
of the forces on all the rolling elements. An analytical model based on the equations
from [16] is used to calculate the forces acting on each rolling element. For simplicity,
only the equations for row 1 are given. The equations for the second row are the same
but flipped in the axial direction. Figure 2.3 shows an overview of how this model is
constructed.

Raceway loci

Contact deformation

Hertzian contact model

Global load

RMS error

Optimize X
for e→ 0

Load case

Raceway deformation

Bearing specs

Element azimuths

Element loads

Contact angles

X

e

F

R,Y

δn,α

Q,α

Fref

u

ψ

Q

α

Figure 2.3: Schematic overview of the rigid bearing model. A displacement of the inner ring, X,
is used to calculate the loads and contact angles on all the rolling elements, which then is used to
calculate the global load that acts on the bearing. This load is compared to the desired load, Fref ,
and iterated until the correct X is found. The outputs of the model are the rolling element loads and
contact angles.

The outer and inner ring of the bearing are assumed rigid in this model. Later in
section 2.3 a variable u is added which represents the raceway deformation of the
outer ring account for the finite stiffness of this outer ring. The input of the model is
a displacement X of the inner ring with respect to the outer ring. The compression of

14
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the contact areas can be calculated via trigonometry. These are then used to calculate
the individual contact loads which can be combined to find the total load that acts on
the bearing. In short, this rigid bearing model calculates the global bearing load for a
given inner ring displacement.
The input of this model, however, should be the global load acting on the bearing while
the output should be the contact parameters. In order to achieve this, an optimization
is used to find the value for X such that the global load on the bearing is equal to
the desired load case. Once this displacement is found, the contact parameters can be
extracted from the model.

2.2.1. Location of raceway loci along azimuth
The first step of the rigid bearing model is to determine the loci of all the raceways.
Figure 2.4 shows a schematic of the cross-section of the inner and outer ring of the
HBU3 bearing, depicted in red and green, respectively. The outer ring is fixed to the

r
y

Ro,0

Yo,0

Ri,0

Yi,0
D

Row 1 Row 2

(a) Schematic cross-section of the inner and outer ring with the
two ball rows visible. Row 1 is on the left, and row 2 on the
right. The green and red dots represent the loci of the outer
and inner raceways, respectively. The loci are the centers of the
arcs in the image that represent the raceways. r

y

ro

ri

S0

α0

pr

py

(b) Close-up of row 1. It can be seen that the initial contact
angle α0 is the angle between the vertical line and the line that
passes through points of contact with the inner and outer race-
ways. This line also passes through both loci.

Figure 2.4: Schematic cross-section of the HBU3 bearing in unloaded condition. Green represents the
outer ring, and red the inner ring. This schematic bearing is circular symmetric around the horizontal
dashed line in figure 2.4a.

hub of the car while the inner ring rotates and is connected to the wheel. Each HBU3
bearing has two bearing rows filled with balls, the so-called rolling elements. Each row
has an inner and an outer raceway, which is the groove in which the rolling elements
roll. The center of each raceway is called the raceway locus and the locations of these
are displayed with the red and green dots in the figure.
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The centerline underneath the left image shows the axis of the bearing around which
this cross-section revolves. The vertical centerline shows the center between the two
rows. In our reference frame, the intersection of these lines is (0,0). The parameters
shown in these figures are all the parameters that define the geometry of the two
bearing rows, and thus the behavior of the whole unit. The letters i and o stand
for the inner and outer ring, respectively, while the number 0 stands for the initial
unloaded state. The parameters Y and R are the axial and radial distance from the
raceway loci to the center of the bearing. Ro,0, for instance, is the radial distance of
the locus of the outer raceway in the undeformed state. These constants are equal for
both rows since the HBU3 bearing units have symmetric rows. ri and ro are the groove
curvatures of the inner and outer raceways, and the diameter of the rolling elements
is D. The value of S0 represents the distance between the loci when the bearing is
unloaded and can be calculated with:

S0 = ri + ro −D (2.1)

Note that the rolling element will try to find a position with the least potential energy.
This means that it will go to the position in which it deforms the least. This point can
be found by drawing a line between the inner and outer raceway loci. The points where
this line intersects the raceways are where the rolling element contacts the raceways
in order to have the least deformation. The angle between this line and the vertical
line is called the contact angle α. In the figure, the contact angle under no load is
represented by α0.
The pitch circle is the mean of the inner and outer raceway contact diameters. The
pitch diameter can be calculated with

pr = Ro,0 +Ri,0 + (ro − ri) cos(α0) (2.2)

and the distance between the pitch circle of row 1 and row 2 is

py = Yo,0 + Yi,0 + (ri − ro) sin(α0) (2.3)

When a load F is applied to the inner ring, it will displace with respect to the fixed
outer ring. Figure 2.5 shows an exaggerated example of this with a radial and axial
translation and a rotation of the inner ring. In the Cartesian coordinate system, these
forces and displacements of the inner ring can be placed into a vector

F =


Fx
Fy
Fz
Mx

Mz

 , X =


x
y
z
θx
θz

 (2.4)

We assume there is no friction in the bearing. This means that the bearing is unable
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y

r
θ

(a) Schematic cross-section of the displaced inner ring. The
displacement of the inner ring due to the load on the bearing
is represented by a rotation θ and displacements r and y. This
displacement also causes the loci of the inner raceway to move.

r

y

S0

δi

δo

S

Q

Q

α

(b) Close-up of the displaced inner ring. The load on the ele-
ment, Q, compresses the contact. The deformation of the con-
tact at the outer and inner ring is represented by δo and δi,
respectively.

Figure 2.5: Schematic cross-section of a loaded bearing. The load will cause the inner ring to have a
displacement with respect to the outer ring.

to generate a moment around its axial y-axis, so there does not exist a moment My.
Also, the axial rotation θy of the inner ring itself does not influence any other state of
the bearing and is therefore not considered.
The initial radial and axial locations of the raceways, Rk,0 and Yk,0, are constants
and a property of the bearing. The locations of the raceways after deformation are
different at each azimuth ψ. From the figures, the location of the raceway loci can be
determined for each position along the azimuth. Assumed are small deformations. For
the first row these locations are

Ri(ψ) = Ri,0 + x sin(ψ) + z cos(ψ)−Yi,0 (sin(θx) cos(ψ)− sin(θz) sin(ψ)) (2.5)
Yi(ψ) = − Yi,0 + y −Ri,0 (sin(θx) cos(ψ)− sin(θz) sin(ψ)) (2.6)
Ro(ψ) = Ro,0 + ur (ψ,α(ψ),Q(ψ)) (2.7)
Yo(ψ) = − Yo,0 + uy (ψ,α(ψ),Q(ψ)) (2.8)

Since our reference frame is fixed to the outer ring, the locations of the loci of the outer
ring do not change when this outer ring is considered rigid. We will assume ur = 0
and uy = 0. Later in section 2.3, the outer ring is assumed flexible, and these raceway
deformations ur and uy will be calculated.
The locations for the second row can be obtained in a similar way. With the locations
of the loci known, it is now possible to calculate the deformations of the contact areas.
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2.2.2. Deformation of the contact areas
In order to calculate the load Q that acts on each rolling element, it is necessary to
know how much each contact area is compressed. The contact angle α is calculated
with

α(ψ) = tan−1

(
Yi(ψ)− Yo(ψ)

Ri(ψ)−Ro(ψ)

)
(2.9)

and the distance between the raceway loci can be expressed by

S(ψ) =
(

(Ri(ψ)−Ro(ψ))2 + (Yi(ψ)− Yo(ψ))2
)1/2

(2.10)

As can be seen in figure 2.5, this distance is the sum of

S(ψ) = S0 + δi(ψ) + δo(ψ) (2.11)

Here δi and δo are the deformations of the contacts at the inner and outer raceway. S
and S0 are known, but this is not enough to calculate both deformations. Therefore
the sum of the deformations δ is used, which can later be used to calculate the load
on the rolling element.

δ(ψ) = δi(ψ) + δo(ψ) = S(ψ)− S0 (2.12)

2.2.3. Loads on rolling elements
Using the Hertzian contact model, the load acting on the rolling elements can be
calculated from these deformations. If δ < 0 then the load on the element is 0. The
load on each contact is

Qi = Kiδ
3/2
i , Qo = Koδ

3/2
o (2.13)

Here K is the load-deflection factor. Assumed is that Qi and Qo are the only forces
acting on the rolling elements, thus Qi = Qo. Combining this with equations 2.12 and
2.13 gives

Q = Kδ
3/2 (2.14)

with K being the equivalent load-deflection factor given by

K =

(
1

K
−2/3
i +K

−2/3
o

)3/2

(2.15)

The load-deflection factor for the inner and outer raceway, Kk (with k = i, o), is
defined in the Hertzian contact model as

Kk =

(
C2
k

2

)−3/2

(δ∗k)
−3/2Σ(ρ)

−1/2
k (2.16)
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Here Ck is a constant related to the material properties of the bearing, the curvature-
sum Σ(ρ)k is a constant related to the geometry of the bearing, and δ∗k is a dimen-
sionless contact parameter which is also related to the geometry of the bearing (with
again k = i, o). Ck is calculated with

Ck =

(
3

2

(
1− ν2

k

Ek
+

1− ν2
b

Eb

))1/3

(2.17)

ν and E are the Poisson’s ratio and Young’s modulus of the raceway and the ball.
In our case, the values for these are assumed to be the same for all raceways and all
rolling elements. For a ball bearing the curvature-sum is defined as

Σ(ρ)k =
4

D
− 1

rk
+

1

Rk,eff
(2.18)

Here rk and D are the bearing parameters, as shown in figure 2.4. Rk,eff is the effective
radius of the raceways at the location of the contact calculated with

Ri,eff =
1

2

(
pr

cos(α)
−D

)
(2.19)

Ro,eff = −1

2

(
pr

cos(α)
+D

)
(2.20)

The so called curvature-difference is calculated as follows

F (ρ)k =

1
rk

+ 1
Rk,eff

Σρk
(2.21)

This curvature-difference,F (ρ)k is used to obtain the dimensionless contact parameter
from table table A.1 in appendix A. The contact parameters are a∗, b∗, and δ∗, and are
used to calculate the size and deformation of the contact area. δ∗ is used in equation
2.16 to calculate the load-deflection factor. This contact area is assumed to have the
shape of an ellipse from which the semi-axes a and b are calculated as

ak = a∗kCk

(
Q

Σρk

)1/3

(2.22)

bk = b∗kCk

(
Q

Σρk

)1/3

(2.23)

Figure 2.6 shows a detail of what this ellipse can look like on the outer raceway.
a and b can be seen here as the semi-axes of the ellipse, and x and y are the local
coordinate system along these semi-axes. The stress is distributed on this ellipse as

σk =
3Q

2πakbk

(
1−

(
x

ak

)2

−
(
y

bk

)2
)1/2

(2.24)

All these variables are the contact parameters and define the contacts between each
rolling element and the raceways.
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x

y

a

b

Figure 2.6: Schematic of the contact area between the rolling element and the raceways. This contact
area is in the shape of an ellipse with semi-axes a and b. This ellipse has its own local 2D coordinate
system with coordinates x and y.

2.2.4. Load on whole bearing
Now that the individual contact loads are computed, it is possible to calculate the
global load that acts on the bearing in order to obtain the given displacement X. For
clarity, the element loads are split into a radial and axial component

Qr = Q cos(α) (2.25)
Qy = Q sin(α) (2.26)

F =


Fx
Fy
Fz
Mx

Mz

 =


∑
Qr sin(ψ)∑
Qy∑
Qr cos(ψ)∑−Qy pr2 cos(ψ)−Qr py2 cos(ψ)∑
Qy

pr
2 sin(ψ)−Qr py2 sin(ψ)

 (2.27)

Now that the global loads on the bearing are known an optimization is used to find
the value of the displacement vector X such that the global load equals the desired
load case.

2.2.5. Verification of rigid bearing model
In the rigid bearing model proposed in section 2.2, the Hertzian contact model was
used to calculate the load distribution over all the rolling elements. A load case F
is the input of the model, and an optimization algorithm tries to find a displacement
vector X that produces a force equal to the load case. The outputs are the individual
loads on all the rolling elements and their contact angles. This model will be verified
by comparing the load distribution against a simulation performed in SKF SimPro
Expert.
SimPro is a simulation tool from SKF that uses multi-body physics together with a
component mode synthesis algorithm to calculate the load and contact angle on each
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rolling element, and it is often used in SKF to simulate bearings. The inner and outer
ring will be kept rigid in order to compare it to the proposed model, and the only
deformation that takes place is in the rolling element contacts, which are modeled
with Hertzian contacts. The rigid bearing model and SimPro will both model the
SKF BAR0162 HBU3 bearing unit. The following load is applied to the bearing:

F =
[
5000 N 0 0 −1000 N m 0

]T (2.28)

Figure 2.7 shows the load acting on each rolling element and the corresponding contact
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Figure 2.7: Comparison of the rigid bearing model to SKF SimPro Expert. Both assume a rigid inner
and outer ring. Note that the rolling elements on row 1 between azimuth 90° and 270° are unloaded.
This means that the contact angles on this interval are not relevant. The same applies to the rolling
elements in row 2 outside the interval.

angles calculated in both SimPro and the model. Note that only the contact angles of
the rolling elements in the loaded zone are relevant since the other rolling elements are
just loose in the bearing with no load, thus their contact angle is not of interest. The
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loaded zone of row 1 goes from 90° to 270°, while the loaded zone of row 2 is outside
this interval.
Both the rigid bearing model and the SimPro simulations were run for an HBU3
bearing. It can be seen in the plots that the loads calculated with the rigid bearing
model follow the SimPro model very closely. The largest error of the estimated loads is
less than 1.9 %. The contact angles of the ball bearing are also very accurate, with the
largest difference being 1.5 %. From this comparison, it can be observed that the rigid
bearing model performs very good. The load distribution is estimated very accurately
with the rigid bearing model in comparison with the SimPro software.

2.2.6. Verification of Hertzian contact model
Many FEA data is generated for the construction of the raceway deformation model
and the strain model. These FEA simulations are modeling an outer ring with a rolling
element on which a load is applied. The most realistic way to model this in FEA is
to create a sphere, that represents the ball, and apply a load to it. This sphere is
then constraint to the outer ring via a contact. The problem with this is that these
contact constraints are highly nonlinear and need a very fine mesh, meaning that it
is not robust and is time-consuming to solve [17]. A much faster way to model the
rolling element is to calculate the size and stress distribution of the contact ellipse
with the Hertzian contact model. In this section, we will look at the performance of
this Hertzian contact model by comparing it in FEA against a realistic ball in contact
with the raceway.

The rolling elements in the bearing are in contact with the raceway, and there is an
interaction of forces between these parts. The accurate, but time-consuming, contacts
are preferably replaced with other loads in accordance with the principle of Saint-
Venant:

If the forces acting on a small portion of the surface of an elastic body are replaced by
another statically equivalent system of forces acting on the same portion of the surface,
this redistribution of loading produces substantial changes in the stresses locally but has
a negligible effect on the stresses at distances which are large in comparison with the
linear dimensions of the surface on which the forces are changed.[18]

Since the outer ring is relatively thin, it is unknown if the principle of Saint-Venant
holds for this case. A study is therefore done to find out whether the rolling element
can be replaced by a load distribution that is applied to a surface that has the shape
of an ellipse as defined in the Hertzian contact model. The load distribution on this
ellipse is defined by equation 2.24.

A simplified model of an HBU3 bearing is built. Since this model is symmetric, only a
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half bearing is made with a symmetry-constraint on the plane that divides the model
in half. A sphere is placed at ψ = 0 in row 1 against the raceway to represent the
rolling element, and it is constraint with a contact to the raceway. Figure 2.8 shows

A

B

r
y

Q

Figure 2.8: Schematic of the 3D FEA model used to verify the Hertzian contact model. A single
rolling element in row 1 is loaded with Q, while the outer ring is fixed on its outboard edge. The von
Mises stresses on edges A (outer surface) and B (raceway shoulder) of the results are compared to
each other.

a schematic of the model set up in FEA. A load of 10.7 kN is applied at a contact
angle of 38.2°. These loads and contact angle are realistic values for a bearing with a
large moment acting on it. The corresponding Hertzian contact ellipse size and load
distribution are calculated for the model with the rigid bearing model. The boundary
on the right side is fixed. The edges A (outer surface) and B (raceway shoulder) will
be used to compare the results.
A fine mesh is used for both simulations to ensure that the discretization of the model
does not significantly influence the results. The model with the ball in contact took
1420 s to solve while the model with only the Hertzian contact took 53 s, which already
shows the need for removing the rolling element with the contact constraint. The
von Mises stresses from both results are compared to each other, because these are
independent of the direction of the stresses. Figure 2.9 shows what the von Mises
stresses are in the modeled outer ring and rolling element. The colors range up to a
stress of 200 MPa. This is not the maximum stress in the image, as the stress in the
contact is much higher. With this color range, it is possible to see what the stress is
on the outer surface of the outer ring.
The von Mises stresses on edge A and B are shown in figure 2.10. On edge A, the
difference between the two models is minimal. The largest error on A is 1.5 % at
location 16.2 mm. On edge B, the error is slightly larger, with an error of 3.9 % at
0 mm, but the error decreases rapidly further along the edge. The beginning of this
edge is located 1.5 mm away from the edge of the contact area, thus it is not surprising
that this is not entirely accurate. It is also impossible to place strain gauges this
close to the edge of the raceway shoulder, so this will not be a problem. It can be
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Figure 2.9: The von Mises stresses (MPa) in the outer ring and rolling element. The color scale ranges
up to 200 MPa, while the stresses near the contact are much higher. With this range it is possible to
see how the load affects the stresses on the surface of the outer ring. The outer ring is constrained
on the right side, causing local stresses at the right.
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Figure 2.10: Von Mises stress (MPa) along the edges as calculated with the FEA. One FEA is modeling
an outer ring and a rolling element in contact with each other. The other is just an outer ring with
a load distribution applied to an ellipse-shaped contact area, as modeled with the Hertzian contact
theory. Edge A is on the outer surface, and edge B is on the raceway shoulder.

concluded that the Hertzian contact model performs very good as a substitute for
a rolling element with a contact constraint in the FEA modeling, thus making the
simulations significantly faster and more robust.
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2.3. Raceway deformation model
The loads on all the rolling elements are calculated with an analytical model that
assumes a rigid outer ring. In reality, the outer ring of the HBU3 bearing is relatively
thin so it will deform significantly. A semi-analytical model is proposed based on
generated FEA data to model this deformation. Figure 2.11 shows a schematic of

FEA data

Raceway loci
calculator

Generate
coefficients

Compliance

Raceway
deformation

Contact angles

Element azimuths

Element Loads

Raceway deformation

C

K−1

u

uα

ψ

Q

Figure 2.11: Schematic overview of the raceway deformation model. Coefficients of the Fourier
series and Chebyshev polynomials are generated from the FEA data once. The model calculates the
deformation of both raceways as a function of the location of the rolling elements, their contact angles,
and loads.

what this model looks like. A set of coefficients C is calculated from the FEA data.
This step is done once after the FEA data is generated. After this, the FEA data is
not needed anymore when the Raceway Deformation Model (RDM) is used. Input for
this model are the contact angles and element loads that are calculated in the rigid
bearing model, and the azimuth of each element, which is an input in the whole model.
The analytical rigid bearing model looks at the location of the raceway locus in order
to determine the deformation of each Hertzian contact. This locus is a virtual line
that represents the center of the raceway. The displacements of the locus, ur and uy,
are determined in the proposed RDM and are added in equations 2.7 and 2.8. The
deformation of the outer ring is captured in the displacement of these loci.
This section will explain how the coefficients and compliance matrixK−1 are calculated
in order to determine the raceway deformations.
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2.3.1. Extracting the location of the raceway loci from FEA
The raceway locus will be extracted from the FEA data. The problem with this locus
is that it is not a physical location in the outer ring so it can not be easily extracted
from the FEA. This means that it needs to be estimated based on the location of the
other points in the outer ring. This subsection gives the algorithm used to determine
the location of these loci. Figure 2.12 shows the points used in a cross-section of one
raceway.

A

B

C

D

(a) Undisplaced location of the outer raceway locus. Assumed
is that all these point are rigidly fixed to each other.

(b) Animation of the displaced location of the outer raceway
locus due to an element load Q. Note how all the points move
and stay fixed with respect to each other. (The animation only
works in Adobe Reader.)

Figure 2.12: Location of the outer raceway locus, C. This is not a physical location in the outer ring
and can therefore not be extracted from the FEA. Assuming a fixed location of C with respect to A
and B, the locus can be estimated from these points in the FEA.

The points of the undeformed raceway are shown in figure 2.12a, and the corresponding
locations of the points of the deformed raceway due to a load Q are shown in figure
2.12b. The raceway locus is represented by point Ĉ. Points Â and B̂ are extracted
from the FEA and used to calculate the location of D̂, which is precisely in the middle
of Â and B̂

D̂i =
Âi + B̂i

2
(2.29)

where i = r, y for radial and axial direction. The displacement and rotation of D̂ are
then calculated

di = D̂i −Di, γ = tan−1

(
B̂r − D̂r

B̂y − D̂y

)
− tan−1

(
Br −Dr

By −Dy

)
(2.30)

Assumed is then that the distance between C and D does not change, or

l2 = (Cr −Dr)
2 + (Cy −Dy)

2, and l = l̂ (2.31)
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The line Ĉ-D̂ is orthogonal to the line Â-B̂. Using these equations then gives the
location of the raceway locus[

Ĉr
Ĉy

]
=

[
D̂r

D̂y

]
+

[
−Cy−Dy

Cr−Dr

1

]
l sin(γ)√

1 +
(
Cy−Dy

Cr−Dr

)2
(2.32)

With the new location of the raceway loci known the displacement of the loci is

ui = Ĉi − Ci (2.33)

The choice for the location of A and B influences the accuracy of the estimation of
the raceway loci location. High accuracy for a large part of the azimuth can, on the
one hand, be achieved by choosing a location of A and B close to the surface of the
raceway and close to the middle (i.e., close to the nominal contact angle of 38°). On
the other hand, it is crucial to ensure that the local deformation of the element load
is not measured since this local deformation is already accounted for in the nonlinear
Hertzian contact model. Points A and B are chosen at 2 mm from the surface at the
edges of the raceway. The local effects due to the contact deformation do not influence
these points much.

2.3.2. Interpolating the raceway deformation
Now that the deformation of the raceway is extracted from the FEA data a model will
be constructed that calculates the raceway loci displacements for a single load that
is applied to the outer ring via the rolling elements. These deformations are interpo-
lated using Fourier and Chebyshev polynomials. Via the superposition principle, the
deformations due to every single load will be combined to get the total deformation
of the outer raceways. These deformations can then be led back into the rigid bearing
model to calculate the redistributed rolling element loads for this deformed state. The
main concept of the model proposed by [19] is used, and improved to calculate the
displacements of the raceway loci.
The model of [19] is a simplified model of a bearing designed to be very fast so that it
can be used in an unscented Kalman filter (UKF) at the cost of accuracy. The model
uses FEA data generated at only one contact angle. This makes the state observer
and the generation of the FEA data fast, but small deviations of a few degrees from
this single contact angle increases the error of the deformation. FEA done by SKF
shows that the contact angles range from 33.4° to 52.3°, so using FEA data for a single
contact angle is not sufficient for our application as will be discussed in subsection
2.4.2. The FEA data will simulate different contact angles ranging from 33.4° to 52.3°,
and the raceway deformation model will incorporate these various contact angles. The
model of [19] also only uses the radial component of the raceway deformation. While
this is ideal for a fast state observer, it is not very accurate since the axial deformation
is of the same order of magnitude as the radial deformation and it is therefore chosen
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to use both directions. Finally, the mode of [19] extracts the deformation of a single
point in the outer ring between the raceways and assumes this to be the raceway de-
formation ur. While again this makes the UKF fast, FEA shows that this is not very
accurate, thus in the proposed model, it is chosen to estimate the true deformation of
the raceway loci as shown in subsection 2.3.1.
A total of 8 raceway deformation models are made; one for each of the possible com-
binations of

Deformed row There are two rows, which both deform.

Deformation directions The deformation is split into a radial and axial component.

Loaded row Both rows have loaded rolling elements, which affect the deformation of
their own row, but also the other.

For the sake of clarity, only the deformation in a single direction of only one raceway
will be considered. The construction of all the deformations are made in the same
way.
The outer ring is modeled as any spring is modeled:

u(ψ) = K−1(ψ, Ψ,α)Q(Ψ,α) (2.34)

In this case, however, the compliance (i.e., inverse stiffness) K−1 is a nonlinear value
that relates the deformation u of the outer ring on arbitrary azimuth position ψ to
the load Q of a single rolling element which is located at azimuth Ψ and contact angle
α. An example of what this compliance function looks like can be seen in figure 2.13.
This plot shows how the compliance is a function of the azimuth of the deformation
ψ, and the azimuth of the applied load. It is also dependent on the contact angle α,
but this value is fixed in the plot to 43.4°. The deformation per load on the same
azimuth where the load is applied (i.e., ψ = Ψ) is the highest, although the raceway
also deforms for other azimuths. The influence of the shape of the outer ring can be
seen in this plot. Around azimuths 40°, 140°, 200°, and 340° the outer ring has bolt
holes, as later can be seen in section 2.5. These are very stiff and thus ensure a low
compliance of the raceways. The deformation is extracted from the FEA data. Note
that it is assumed that the deformation is linear with the applied load in accordance
with the superposition principle since the stresses in the outer ring operate in the
linear elastic range. The compliance is defined as:

K−1(ψ, Ψ,α) = ϕ(ψ)Θ(Ψ,α) (2.35)

which is composed of the predefined compliance shapes ϕ and the corresponding com-
pliance approximation Θ. This is like a Fourier series where ϕ contains the set of
sines and cosines and Θ consists of the coefficients. In this case, the coefficients are
not constant but vary as a function of Ψ and α. The compliance shapes are defined
as:

ϕ(ψ) = [sin(mψ)m=0 cos(mψ)m=0 · · · sin(mψ)m=M−1 cos(mψ)m=M−1] (2.36)
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Figure 2.13: The radial compliance K−1 of row 1 due to a load at a contact angle of 43.4° at the
same row. This compliance is a function of the contact angle α, the azimuth of the deformation ψ,
and the azimuth of the applied load Ψ. As can be expected, this plot shows that the deformation per
load on a specific azimuth is the highest when the load is applied to the same azimuth. However, the
raceway also deforms when these azimuths are not in the same place, albeit less.

As mentioned in [19], the advantages of using sines and cosines with a period of mψ
are that they are orthogonal and continuous along the whole azimuth of the outer ring.
The number of shapes can be chosen by selecting a value for M .
The compliance approximation is a vector column vector with all the compliances of
the corresponding shapes:

Θ(Ψ,α) =

 θ1(Ψ,α)
...

θ2M (Ψ,α)

 (2.37)

The FEA data is used to calculate the radial deformation along the outer ring for
predetermined element loads. Since the compliance shapes are also known, it is pos-
sible to calculate the compliances on location Ψ and contact angle α when combining
equations 2.34 and 2.35. A least-squares method is used to find a single solution of θm
such that:

min
∑
ψ

(θm(Ψ,α)ϕm(ψ)Q(Ψ,α)− u(ψ,Q(Ψ,α)))2 (2.38)

There are a total of 2M compliance approximations θm which in turn are dependent
on the load location and contact angle. The load locations and contact angles are
discretized due to the FEA data, but a continuous function is required. To do this
a combination of Fourier series and Chebyshev polynomials is used with which it is
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possible to interpolate the 2D datasets θm. A modified version of the method presented
in [20] is used for this interpolation. The following function is used to estimate a
continuous θm:

θm(Ψ,α) =

(2M)∑
k=1

(W )∑
w=1

ck,wωΨ,k (Ψ)ωα,w (α̂) (2.39)

Here ck,w are the coefficients and ωΨ,k and ωα,w are the Fourier and Chebyshev func-
tions, which are valid on the domains [0, 2π] and [−1, 1]. This means that the contact
angles α need to be normalized to this domain of [−1, 1]. These normalized contact
angles we call α̂. The Fourier function ωΨ,k is

ωΨ,k = e−ik(Ψ−1)2π/360 (2.40)

with the index k going from 1 to 2M , and Ψ in degrees. All these functions are placed
into the matrix ΩΨ. The Chebyshev functions have W shapes and are defined as

ωα,1 = 1

ωα,2 = α̂

ωα,w = 2α̂ωα,w−1 − ωα,w−2 (2.41)

here the index w goes from 1 to W . These Chebyshev polynomials are placed into the
matrix Ωα.

To calculate the coefficients ck,w, we will treat equation 2.39 as an Ax = B prob-
lem. For this, the coefficients Ck,w will be placed into the matrix C, which has one
column with a total length of 2MW . In our case we get the following system of linear
equations:

ΩC = Θm (2.42)

Θm is a column vector with a total length of the number of FEA simulations done,
containing all the values of θm for only one m. The Fourier and Chebyshev functions
are computed for all the possible values of Ψ and α at which the load is applied. The
Kronecker product of these functions is then used to construct Ω:

Ω = ΩΨ ⊗ Ωα =


ωΨ1,1Ωα ωΨ1,2Ωα · · · ωΨ1,2MΩα

ωΨ2,1Ωα ωΨ2,2Ωα · · · ωΨ2,2MΩα
...

...
. . .

...
ωΨN ,1Ωα ωΨN ,2Ωα · · · ωΨN ,2MΩα

 (2.43)

With Ω and θm known it is now possible to calculate the coefficients Cm. When θm is
to be calculated, a new matrix Ω should be constructed for the desired locations Ψ and
contact angles α. This is a continuous function, so with equation 2.42 it is possible to
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calculate θm for any location. The deformation then becomesu(ψ1)
...

u(ψi)

 =

ϕ(ψ1)
...

ϕ(ψi)

 [Θ(Ψ1,α1) · · ·Θ(Ψj ,αj)
] Q(Ψ1,α1)

...
Q(Ψj ,αj)

 (2.44)

Here the deformation is calculated at all i locations. When using this raceway de-
formation model in conjunction with the rigid bearing model to calculate the load
distribution of the rolling elements, the location at which the deformation is calcu-
lated is equal to the position of the rolling elements, i.e., ψ = Ψ. The creation of
this model is done for both radial and axial deformation of both rows due to loads
that are applied to both rows. This gives a total of 8 sets of coefficients C. One of
the assumptions of the model is that the superposition principle can be applied to the
elastic outer ring. This will be verified using an FEA with a simple load case with a
few rolling elements.

2.3.3. Amount of Fourier and Chebyshev modes
Now that the model has been constructed, it is used to analyze certain parts of it. To
start, the coefficients of θ for all the modes of the radial compliance K−1 of row 1 due
to any load on row 1 are plotted in figure 2.14. This is the same compliance function
that is depicted in figure 2.13 that was shown earlier. Note that every single Fourier
or Chebyshev polynomial is called a mode. The coefficients of the first three w-modes,
the first 15 k-modes and the first 30 m-modes are shown. It can be seen that if speed
is important, for instance, when using this model in a state observer, the modes can
be limited to about 2 w-modes, 10 k-modes, and 20 m-modes. This is the case for all
θ. An interesting artifact is present around the k = 2m line, where the coefficients
are highest. To understand why this is happening, we need to look at the shapes of
the compliance function, which are shown in figure 2.13. The compliance [mm/N] is
shown as a function of the azimuth along the loaded row and the azimuth of the load
itself. This compliance in the other direction and on the second row and for different
contact angles has a similar shape, but for simplicity, only this case is demonstrated.
The shape of the graph is somewhat symmetric along the ψ = Ψ line. When looking
at the compliance shapes as defined in equation 2.36, it can be seen that the frequency
of each m mode is

f {ϕ} = [0, 0, ψ, ψ, 2ψ, 2ψ, · · · (M − 1)ψ, (M − 1)ψ] (2.45)

while the frequency of each k-mode of the compliance approximation is

f {ΩΨ} = [0, ψ, 2ψ, · · · , (M − 1)ψ] (2.46)

This means that the frequency for each 2 m-modes are equal to the frequency for
each k-mode. Since the shape of the compliance for each contact angle is somewhat
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Figure 2.14: The coefficients C of θ for the radial deformation of row 1 due to any load on row 1. The
size of the dots represents the size of C. Only 2 w-modes, 10 k-modes, and 20 m-modes are needed
to increase the speed of the model while maintaining high accuracy. The highest modes can be found
around the k = 2m line.

symmetric, it is expected that the coefficients C, as shown in figure 2.14, are indeed
highest around the k = 2m line.
A Singular Value Decomposition (SVD) is made of the same compliance to analyze
the order of the system. Plots of this SVD can be found in appendix B where the
normalized singular values, left-singular vectors, and right-singular vectors are shown.
The normalized singular values show what part of the variance in the compliance is
accounted for in that mode. All the singular values and corresponding modes are
ordered from large to small. The left-singular vectors are orthonormal modes of the
raceway compliance, and the right-singular vectors indicate how much each mode is
activated due to the load position, which we will call mode dynamics. The modes look
very similar to the corresponding mode dynamics. This is expected as the compliance
is almost symmetric. Another interesting phenomenon that occurs is that from mode
8 and higher, the singular values seem to appear in pairs. This is not caused by the
symmetry in the compliance, but due to the fact that the physical outer ring itself
is symmetric around the Cartesian xy-plane. Each pair of modes is mirrored to each
other. If the FEA data was made with the outer ring attached to a nonsymmetric
knuckle, these pairs would not be observed. There is no clear separation in the singu-
lar values that distinguishes the noise from the rest of the modes.
An option to reduce the model size might be to ‘rotate’ the compliance in such a
way that it becomes not a function of the location of the deformation, but a func-
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tion of the phase between the deformation location and the applied load. Figure 2.15
shows what this looks like. The SVD of this function is shown in appendix C. As
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Figure 2.15: The rotated radial compliance K−1 of row 1 due to a load at a contact angle of 43.3° at
the same row. This is different from the compliance function shown in figure 2.13. In this case, the
y-axis does not represent the location of the deformation, but the phase between the location of the
deformation and the load. This function is somewhat symmetric along the ψ − Ψ = 0 line.

expected, the first few modes cover more of the variance than the first modes of the
default compliance. Also, most modes are symmetric or anti-symmetric. The first 32
cumulative singular values of both compliances are plotted in figure 2.16. Here it can
be seen that only with three modes of the singular value decomposition the rotated
compliance covers more variance than the default compliance. Other than that both
show similar performance, so in the RDM the default compliance,which is a function
of the azimuth of the load and the azimuth of the deformation, will be used. Keep
in mind that the modes of the singular value decomposition are not the same as the
Fourier and Chebyshev polynomials. These SVDs give insight in what elements of the
bearing dictate the compliance function. The symmetric shape of the outer ring can
be found back in the symmetric modes of the SVD of the default compliance. The
‘rotated’ compliance shows somewhat symmetric behavior around the loaded azimuth
(i.e., The deformation is fairly similar for ψ −Ψ = Ψ− ψ).

2.3.4. Verification of the RDM
With the RDM being built, it is essential to know if it works. Before verifying the
whole model with the BETSY rig, an FEA simulation is done for a specific load case
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Figure 2.16: Cumulative singular values of the default compliance and rotated compliance. This gives
an indication about which compliance function can best be used. For more modes, it seems best to
use the compliance function in default orientation.

in order to check whether the RDM works appropriately. This load case is shown

Quantity Value Unit
Fx -73 N
Fy 852 N
Fz 13150 N
Mx -312 Nm
Mz 249 Nm

Table 2.1: The forces applied to the bearing for the comparison between the FEA and the proposed
model.

in table 2.1. The individual forces on each rolling element can be seen in appendix
D. The raceway deformation calculated with both the FEA and RDM in both radial
and axial direction of both rows are plotted in figure 2.17. The RDM seems to work
properly as the errors are small. The maximum error for each plot is shown in table
2.2.

RMSE Row 1 Row 2
Radial 2.82 % 3.93 %
Axial 1.96 % 1.93 %

Table 2.2: The maximum errors of the deformation for the load case used to verify the raceway
deformation model. The corresponding plots can be seen in figure 2.17.

The effect of the RDM on the load distribution over all the rolling elements can also
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Figure 2.17: The radial and axial deformations of the raceways, as calculated by the FEA and RDM
for a load case, in which 23 of the 32 rolling elements are loaded. The difference between the two
models is very small.

be analyzed. This is done by applying the same load case to the bearing. This is
done for different positions of the rolling elements to get a continuous shape of the
loaded zone. The shape of this loaded zone with and without the RDM is shown in
figure 2.18. Without RDM the loads on all the balls are determined with only the
rigid bearing model, which assumes a rigid outer ring. The RDM is constructed for
the bearing that is also used for the validation in chapter 3. This bearing has very
stiff flanges around the bolt holes that fix the bearing to the knuckle. The locations
of these bolts are around azimuths 40°, 140°, 200°, and 340°. This can be seen in the
plot of the loaded zone with the RDM enabled. The loads on the location of the bolts
are higher due to the increased stiffness. For this load case, a change of up to 9.1 %
can be observed due to the RDM, which is a significant difference. This shows that
only a rigid bearing model is not sufficient in calculating the load distribution, and
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Figure 2.18: The load of the rolling elements on each position ψ for a specific load case modeled with
and without the raceway deformation model (RDM). Around azimuths 40°, 140°, 200°, and 340° the
load increases with the RDM. This is caused by the increased stiffness due to the bolt holes which
are located at these azimuths.

the raceway deformation model is needed to make a better estimate.
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2.4. Strain model
The load, location, and contact angle of each rolling element have been calculated with
the rigid bearing model in combination with the raceway deformation model. The goal
of the whole model is to simulate strains on the outer surface of the bearing. In order
to achieve this, a separate strain model is used to calculate these strains. Figure 2.19

FEA dataSensor locations

Generate
coefficients

Strain
per load

Strains

Contact angles

Element azimuths

Element Loads

Strains

C

ξ

ε

ε
α

ψ

Q

Figure 2.19: Schematic overview of the strain model. Coefficients for the Fourier and Chebyshev will
be generated from the FEA data. The difference between this strain model and the RDM is that
with this model the strain per load is calculated only for each predefined sensor location, as opposed
to the compliance function of the RDM which is calculated for the whole continuous raceway. The
strain is a function of the element loads, contact angles, and azimuths.

shows an overview of how this strain model works. The strains are the derivatives
of deformation, thus this model can be built in a similar way as the RDM, with the
exception that the strains are not described for the whole bearing but only for specified
sensor locations. These could be the locations on which the strain gauges are placed.
As with the RDM, the coefficients C have to be calculated only once for each sensor
location. Once this is done, the FEA data is not needed anymore, provided that the
model is not needed for other sensor locations.

2.4.1. Interpolating the strains
The interpolation of the strain on the surface of the outer ring is similar to the method
shown in subsection 2.3.2. Equation 2.39 to 2.43 are used to construct the strain model.
Only in this case, we will not use θm but a set of ξ that will be interpolated. This ξ
represents the strain per load as a function of the location and contact angle of the
rolling element, on different predetermined sensor locations. An example of what the
strain per load looks like for a specific sensor can be seen in figure 2.20. For each
sensor (i.e., strain gauge) the following equation is used to calculate the local strain
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Figure 2.20: Strain data ξ for any load on row 2 and sensor at the bottom of the bearing (ψ = 176°).
The strain per load is highest when the rolling element is exactly on the same azimuth of the sensor,
while the strain becomes negative directly next to this location. This lot shows that the influence of
the contact angle on the strain is significant.

due to each rolling element
ε = ξQ (2.47)

The equation for the continuous ξ becomes

ξ(ψ, α̂) =

(2M)∑
k=1

(W )∑
w=1

ck,wωψ,k (ψ)ωα,w (α̂) (2.48)

Here ωψ,k and ωα,w are of the polynomials, as shown in equations 2.40 and 2.41. The
coefficients ck,w are calculated as described in the previous section. An example of the
coefficients can be seen in figure 2.21. Here the same sensor is used as in the previous
figure. This figure shows that if the model needs to be faster, only the first 3 w-modes
and the first 45 k-modes can be used without a significant consequence in accuracy
for this bearing type.
When transforming a continuous time signal into a discrete time signal, the sampling
frequency of the continuous signal must be twice as high as the highest recorded
frequency in the discrete signal, according to the Nyquist-Shannon sampling theorem.
In the case of the bearing, the signal, which is the strain, is not a function of time,
but of the azimuth of the load. This azimuth is a continuous signal that needs to be

sampled into a Fourier series with the highest frequency at
45

360°
. This means that at
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Figure 2.21: The coefficients C for Strain data ξ for sensor at the bottom of the bearing due to load
on row 2. This shows that only the first three w-modes and first 45 k-modes to maintain full accuracy.

least 90 simulations along the azimuth are needed in order to be able to reconstruct
this Fourier series.

2.4.2. Comparison of contact angle interpolation variations
SKF uses a detailed model in FEA of a BAR0282 bearing unit to simulate the strains
on the outer ring. Analyses show that the contact angles in this bearing range from
33.4° to 52.3° for realistic load cases. Analysis with the proposed strain model show
that FEA data needs to be generated for different contact angles on every azimuth.

Different variations of the strain model are compared to determine their accuracies.
To generate the FEA data fast, ideally, all the simulations are done at only one contact
angle of, for instance, 41°. The problem with this is that the model will be accurate
around this contact angle, but as soon as the contact angle is much larger or smaller,
the accuracy will drastically decrease. The variations of the model which are tested
are:

Single contact angle The FEA data is generated with all the rolling elements on a
fixed contact angle of 41°.

Single contact angle split into components Separate simulations are done in which
the load from the rolling element is split up into a radial and an axial load.

Multiple contact angles on one location Again the FEA data is generated with
all the rolling elements on a fixed contact angle, but this time some separate
simulations are done on one azimuth location with multiple contact angles. From
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these separate simulations, a gain is calculated for each contact angle and applied
to each azimuth location.

Multiple contact angles on all locations The simulations are done with multiple
contact angles on each azimuth.

All the variations of these models are made and compared to each other. A load case
is used with a single element in the second row at azimuth position 270°. The contact
angle is varied, and the resulting strain on the outer surface close to the rolling element
is analyzed and compared to a validation FEA. The results can be seen in figure 2.22.
Only the model that is constructed from FEA data generated at all contact angles at
all azimuths gives an accurate result for contact angles far away from 41°, so therefore
this variation is chosen to be used. This means that the number of FEA simulations
will be multiplied by the number of contact angles that need to be simulated. This
significantly increases the simulation time, but also the accuracy of the strain model.
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Figure 2.22: Estimated strain by different models for a single element with varying contact angles.
Only the model that considers the contact angle on every azimuth is very accurate when compared
to the validation FEA.

2.4.3. Influence of contact angle on strain signal
As mentioned in the introduction, the generation 1 algorithms try to estimate the loads
on each individual rolling element. Often the signal is converted to the frequency
domain in order to analyze the amplitude of the ball pass frequency. This is the
frequency at which the rolling elements pass the sensor. This amplitude is called the
first harmonic, H1. The same can be done for twice the frequency, which is the second
harmonic H2. The strain model will be used to show the difference in signal due to a
varying contact angle. Only the rolling elements in row 2 will be loaded with a force
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of 7.5 kN while they rotate. The strain is sampled in two locations on the surface of
the outer ring. These locations can be seen in figure 2.23. The first location is on the

r
y

Figure 2.23: Schematic outer ring where only the elements in row 2 are loaded. The red marks
indicate the location on which the strain is analyzed. One is between the two rows, while the other
is above row 2.

surface between the two rows, and the other is above row 2. The contact angle will
be varied, and the first and second harmonics will be extracted from the signal. The
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Figure 2.24: The first and second harmonics and their ratios of the strain signals measured for different
contact angles and a fixed contact load of 7.5 kN. The strain signal close to the rolling element shows
a much higher H2/H1. It can also be seen that then the contact angle is around 42°, this ratio is
lowest for the strain measured between the rows. At this contact angle the distance between this
location and the contact area is also the smallest.

results are shown in figure 2.24. First of all, the harmonics of measured above row 2 are
on average higher, which is expected, because this location is much closer to the loaded
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contacts. Estimating the load based on the strength of the first or second harmonic
alone is not sufficient, because these also vary with the load on the ball. The ratio
between the second and first harmonic, however, should remain constant for a varying
load because it is assumed that the amplitudes of both harmonics are proportional to
the load. This ratio is shown in the right plot and shows that the closer the contact of
the rolling element comes to the sensor location, the higher this ratio becomes. The
same simulations are done for a fixed contact angle of 41° and varying loads on all the
elements to verify that the ratio is not dependent on the element loads. These results
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Figure 2.25: The first and second harmonics and their ratios of the strain signals measured for different
loads and a fixed contact angle of 41°. The ratio between the second and first harmonics is not related
to the load that acts on the rolling elements.

are plotted in 2.25. It shows that the ratios remain constant for varying loads.
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2.5. FEA data
The raceway deformation model and the strain model extract the deformation and
strain from FEA simulations to construct the models. The FEA data is created by
running 1536 simulations, each with a single rolling element on 128 different places
along the azimuth and 6 different contact angles, for both rows. The total time to
compute these is around 5 days continuously on a laptop. This might seem a long
time, but is still significantly shorter than the 30 days it takes SKF to simulate the
FEA of only 20 load cases of a complete bearing on a computing cluster. Once these 5
days of computing are over, any load case can be simulated with the proposed model.
This section will discuss the setup of the FEA data used to construct this model.

2.5.1. The FEA setup
The proposed model will be verified on the BEaring Test SYstem (BETSY) rig where a
modified BAR0282 bearing will be mounted onto a thick steel plate. The FEA model
will be made in such a way that it best represents the validation setup. The modified
outer ring of a BAR0282 HBU3 bearing is modeled in COMSOL Multiphysics together
with the plate. Figure 2.26a shows an image of the model in COMSOL.

(a) Front view of the outer ring and plate with fixed con-
straints applied to the blue surface. The bolts are shown
in red.

(b) Rear view of the outer ring in COMSOL. The green
parts are the shims that are placed between the outer ring
and plate.

Figure 2.26: Front and rear view of the COMSOL model of the modified outer ring.

The plate is constrained on its outer surface and is shown in the figure by the color
blue. Many simulations will be done, so a fast FEA model is a must. Ideally, the
FEA is linear since this keeps the solving fast and stable. In reality, this is not the
case because there are a few highly nonlinear contact constraints, namely between the
rolling elements and the outer ring, and between the outer ring and the plate. Solving
such problems in FEA can take a long time and is not robust [21, 22]. As shown in
subsection 2.2.5, the Hertzian contact model is an accurate alternative for a rolling
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element with a contact constraint and is thus used in the FEA model. The contact
ellipse from the Hertzian model can be observed in figure 2.27, where it is highlighted
in blue. A distributed load is applied on this surface in accordance with equation
2.24. Simulations show that the contact between the plate and the outer ring is in full

Figure 2.27: Close-up of COMSOL model of the outer ring with the Hertzian contact ellipse high-
lighted in blue. A distributed load is applied to this area to simulate a rolling element in contact.

contact during some load cases, while it comes loose during other load cases. In order
to get rid of this nonlinear behavior, the outer ring will be mounted on the plate in
the validation setup on shims around the bolt holes and can be seen in green in figure
2.26b. This ensures that it is always in full contact with the shims during any load
case which means that a fixed constraint can be used in the FEA model, thus making
the FEA linear and fast in solving.

2.5.2. Mesh refinement
An FEA always calculates the displacement field of a finite amount of elements due
to the loads acting on them. These elements can vary in size and are determined
by the mesh. A general rule of thumb is that smaller, and thus more, elements give
more accurate results but also take more time to compute. An optimum needs to be
found in order to generate the FEA data which is both fast and accurate. To find this
optimum, a series of simulations are done with different mesh sizes. A rolling element is
placed on an azimuth of 270° and the strains are extracted on the outer surface closest
to the rolling element. This location is marked by a red cross in figure 2.28. These
locations are chosen because here the material is the thinnest and hence the least stiff.
It is therefore expected that the inaccuracy due to a too large mesh is highest on this
location. Assumed is that the error in the strain converges to zero when the number
of degrees of freedom (DOF) is increased (i.e., the mesh size is decreased). Figure
2.29 shows the results of this mesh refinement. All the simulations are performed on
a laptop with an Intel Core i7-8550U CPU and 32GB memory. An iterative solver is
used as opposed to a direct solver because they are faster and require less memory
[23]. The computation times of simulations with more than 1.5× 107 DOF are not
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Figure 2.28: Location to sample the strain marked by the red cross. On the raceway just underneath
this location, a rolling element is placed. This is the thinnest piece of the outer ring, so it is expected
that the largest discretization inaccuracies are located here.
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Figure 2.29: The computing time and the calculated strain for different amounts of degrees of freedom
of the FEA system. At around 1.4 × 107 the simulations need more than the available 32GB of memory
and become significantly slower. The simulation times of the last two simulations are clipped off and
are 2917 s and 35 148 s, respectively. A mesh size of 0.75 mm, which corresponds with 0.35 × 107DOF,
is chosen since all the simulations with smaller mesh sizes show an error of smaller than 1 % with
respect to the finest mesh simulated.

shown, because for simulations with more than 1.3× 107 DOF the computer runs
out of memory and the hard disc drive was used as temporary storage making the
simulation times increase rapidly. The second to last and last simulation took 2917 s
and 35 148 s, respectively. Since it is assumed that the simulation with the finest mesh
gives the most accurate result, this is taken as the reference strain when calculating
the error. The error seems to be converged at around 0.35× 107 DOF with an error of
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less than 1 %. This corresponds to a mesh size of around 0.75 mm for the whole outer
ring, and this simulation is marked in the figure with a red asterisk. The time of each
simulation takes around 5 minutes, which is acceptable, so all the simulations will be
done with this setting.

2.5.3. Verification of linearity
One assumption that is made in the model is that the outer ring behaves linear and
thus that via superposition it is possible to combine the strains and deformations due
to each individual rolling element in order to get the total strain and deformation of
the outer ring. To test the validity of this assumption, a load case is chosen such that
a large amount of the rolling elements are loaded. For each rolling element, a simula-
tion is done, and all the resulting deformations are superimposed such that the total
deformation is calculated. This is then compared in figure 2.30 to the deformations
in an FEA simulation which comprises all the rolling elements. Appendix E shows
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Figure 2.30: Comparison between the superimposed FEA simulations of each element and the FEA
simulation of all the elements together. The largest error is 0.019%. This shows that the superposition
principle is valid for the FEA simulations.

the contribution of all the elements on both rows to the radial deformation of row
1. Also, the loads and contact angles on each rolling element can be found here in
table E.1. The difference between the superimposed FEA and the complete FEA can
hardly be observed as both graphs lie over each other. The maximum error between
the two is 0.019 %, which is zero to none. This shows that for this linear outer ring,
the superposition can be used in order to calculate the total deformation and strain.
If the superposition principle holds then also the compliance of the raceway and the
strain per load on the outer surface should be independent of the load. To test this,
a few simulations are performed where the load on a single element is varied, and the
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strain per load is calculated. The results are plotted in figure 2.31. The strain per
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Figure 2.31: The strain per load as a function of the load. A minimal effect due to a change in load is
observed in the strain per load caused by varying contact ellipse sizes. It was assumed previously that
the strain is proportional to the load. This strain is sampled at a distance of 7.6 mm from the contact
area, which is very nearby. Other sensor locations are located further away from the contact area,
thus this effect is less. A jitter can be observed in the results. This is caused by the discretization of
the mesh.

load is not exactly equal for each load. This is caused by the fact that an increase in
load is not only an increase in the stress that is applied to the contact area, but also
an increase in the Hertzian contact area. This small variation is enough to change the
strain per load slightly. It is expected that the maximum load that will occur on a
rolling element is around 15 kN. All the FEA data will be generated with a load of
7.5 kN since this is half of the expected maximum load. For this value, the maximum
error on the strain per load will be 2.2 %. Keep in mind that in this example, the
strain is measured 7.6 mm away from the applied load, which is a very short distance.
According to the principle of Saint-Venant, which is stated in subsection 2.2.6, the
effect of the size of the contact area will vanish when the distance between the applied
load and the location on which the strain is measured is increased.
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2.6. Summary
In this chapter, a methodology is proposed that uses FEA to construct a model that
calculates the strain on the outer ring of a wheel bearing. The FEA consist of a series
of simulations of a linear elastic outer ring with a single rolling element, modeled
with the Hertzian contact theory, on different positions. The so-called rigid bearing
model and raceway deformation model (RDM) together find the load and contact
angle on each rolling element. The rigid bearing model assumes a rigid inner and
outer ring, and calculates the contact angles and loads for a given force on the bearing
and deformation of the raceway with trigonometry and the Hertzian contact theory.
The RDM calculates the deformation of the raceway as a function of the contact angle,
load, and position of all the rolling elements. This model is constructed from the FEA
by interpolating these with Fourier and Chebyshev polynomials. The strain model is
similar to the RDM and is also constructed from the FEA. The difference is that the
strain model only estimates the strain for a predefined set of locations, while the RDM
calculates the deformation for a continuous raceway. The whole model can simulate a
strain signal in the time domain changing load case and updating the positions of the
rolling elements.
The rigid bearing model is verified with a simulation done in SimPro, which shows
an error smaller than 1.9 %. The Hertzian contact model is validated for use in FEA.
With errors smaller than 1.5 % on the outer surface of the outer ring, the Hertzian
contact model is useful in the FEA as a fast alternative to a rolling element with a
contact constraint. The RDM and strain model are compared to FEA, and both show
very small differences.
The strain signal simulated with the model is analyzed by looking at the harmonics.
This shows that the ratio between the second and first is a function of the contact
angle but does not change for different loads. This indicates that the contact angle
can be estimated from the measured strain signals by analyzing this ratio.
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3
Validation with experiment

A model is built in the previous chapter of an outer bearing ring that is able to deter-
mine the strain by using a semi-analytical approach, which is faster than conventional
approaches like FEA or experiments. In order to determine if the model is accurate,
an experiment is conducted so that the model can be validated. This is done by in-
strumenting a bearing with strain gauges and placing it into the BEaring Test SYstem
(BETSY) from SKF. This system is able to apply loads to this bearing while it is ro-
tating. This chapter will elaborate on how this experiment is executed and will discuss
the results when compared to the model.
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3.1. The experiment setup
For the experiment, a BAR0282 bearing was modified such that strain gauges can be
glued onto the surface of the outer ring of this bearing. Figure 3.1 shows a picture
of this bearing and the corresponding COMSOL model. It can be seen that pockets

(a) Photo of the modified BAR0282 bearing. Pockets are
milled out of the outer ring to create a good surface for
the strain gauges to adhere to. There are a total of four
of these pockets.

(b) Outer ring model in COMSOL of the same modified
bearing. Blue indicates the pockets that are milled out.

Figure 3.1: Side by side photo and COMSOL model of the modified BAR0282 bearing.

are milled out of the surface of the outer ring such that a flat and smooth surface is
produced which are ideal for applying the strain gauges. On these surfaces, a total of
18 strain gauges are placed.
Strain gauges are tiny sensors that are able to measure the strain on the surface that
they glued to. They consist of a thin foil on which a conductive material is placed in a
zig-zag pattern. When the bearing under the strain gauges deforms, the strain gauge
is extended or contracted, thus changing its resistance. This change in resistance can
be measured and converted into the strain underneath the sensor.
The locations of the 18 strain gauges that are placed on the bearing are shown in figure
3.2a. A photo of strain gauges 13 to 18 is shown in figure 3.2b. In this picture, they
are glued but not yet connected with cables.

The strain gauges are placed in a Wheatstone bridge as schematically shown in figure
3.4. The strain on the strain gauge can be calculated with

ε =
Rsg −Rsg0
Rsg0GF

(3.1)

Here ε is the strain that acts on the strain gauge. The measured resistance of the
strain gauge is Rsg, and the resistance on the gauge when there is no strain is Rsg.
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(a) The locations of strain gauge 1 to 18 on the outer ring.

(b) Strain gauges 13 to 18 glued on the surface of the
outer ring. In this picture, they are not yet connected
with cables.

Figure 3.2: The strain gauge locations.
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Figure 3.3: All the locations of the 18 strain gauges on the outer surface of the bearing, indicated
by the red squares. The image shows a projection of the outer surface onto a 2D plot. The azimuth
position ψ is shown in the horizontal direction. The top of the image is the front side of the bearing,
while the bottom is side is attached to the plate on BETSY.

The gauge factor, GF, is a property of the strain gauge. The resistance of the strain
gauge can be determined with

Rsg =
RVs − 2RVc
RVs + 2RVc

R (3.2)

Here Rsg is the measured strain gauge resistance, and R are the other 350 Ω resistors.
A supply voltage Vs of 10 V is applied to the bridge, and the remaining terminals are
connected to a conditioner which amplifies the signal Vc by a factor of 1000. The con-
ditioners are Burster 9236 amplifiers, which are specifically designed for strain gauge
signal amplification. This is finally connected to a Müller PAK MKII G2 controller
which captures the signals with a sampling rate of 12.8 kHz and a resolution of 24 bit
on a 20 V scale.
With the instrumentation in place, the bearing is installed on a plate that is mounted
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Figure 3.4: The circuit diagram of the strain gauge placed in the Wheatstone bridge. A supply voltage
of 10 V is used, and the output of the bridge is connected to the conditioner.

on the BETSY rig in the orientation of a left front wheel in a car. This means that
the bearing is rotated 165°. Figure 3.5 shows photos of this setup.

(a) The BETSY rig with the bearing installed on the plate. There
is an actuator (the large black rods) in the x-axis and z-axis. Three
actuators along the y-axis are used to create Fy , Mx, and Mz . Each
actuator has a load cell that measures its load.

(b) The instrumented bearing installed on
BETSY with shims between the outer ring and
the plate.

Figure 3.5: Photos of the experiment setup in BETSY.

52



Jens Ravesloot, 4010140 3. Validation with experiment

BETSY has five actuators that can apply loads to the plate. The unique property of a
bearing is that it can not counter a moment around the axial axis, when zero friction
is assumed. This means that five actuators are enough to apply any desired load case
on the remaining degrees of freedom of the bearing. There are two actuators that both
apply a radial force, in x- and z-direction, while the remaining three actuators are all
placed in the axial y-direction. These are able to apply an axial load and a moment
around the x- and z-axes.
As mentioned in section 2.5, the bearing is mounted on shims to ensure that it stays
in full contact during any load case, thus making the deformation of the outer ring
linear. A total of four bolts are tightened by hand with an ordinary wrench.
During all experiments shown in this thesis the inner ring of the bearing rotates at a
speed of 600 rpm. The speed of the cages, that keep the rolling elements in place, is
different.Its speed can be estimated with the formulas to calculate the gear ratios of
planetary gears. In this case, the cages act like planet carriers while the outer ring is
stationary. The speed of the cages become

ωc
ωi

=
Ri,0 − ri cos(α)

Ri,0 +Ro,0 + (ro − ri) cos(α)
(3.3)

Here
ωc
ωi

is the ratio between the rotation speed of the cages and the inner ring. All the

other parameters can be found back in figure 2.4. Effectively this equation calculates
the ratio between the mean inner raceway contact diameter and the pitch diameter,
which is defined in equation 2.2. For the BAR0282 bearing, this ratio equals approx-
imately 0.43. With an inner ring speed of 600 rpm, which equals to 10 Hz, and 16
rolling elements per row this corresponds to a ball pass frequency of 68.4 Hz.

Keep in mind that this function is dependent on the contact angles of the rolling ele-
ments which are different for each row and change slightly for each different load case.
This also means that the speed of the inboard and the outboard cages vary from each
other. The frequency of each row will be determined from the signals of each load
case and will be used as input to the model to determine the location of all the rolling
elements. Each actuator of BETSY has a load sensor that is recorded in sync with
the strain gauge signals. These measured loads will also be the input for the model.
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3.2. Comparison with Axial loads
For the first comparison, we will first look at a varying axial load from 10 kN to −10 kN
that is applied in different steps to the bearing on BETSY. Table 3.1 shows the axial

Load case Fx [kN] Fy [kN] Fz [kN] Mx [kNm] Mz [kNm]
1 0.00 10.00 0.00 0.00 0.00
2 0.00 6.67 0.00 0.00 0.00
3 0.00 3.33 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00
5 0.00 -3.33 0.00 0.00 0.00
6 0.00 -6.67 0.00 0.00 0.00
7 0.00 -10.00 0.00 0.00 0.00

Table 3.1: The load cases used to validate the model. The loads shown in this table are rotated to
the reference frame of the bearing used in this report.

load cases used. In order to be able to compare the strain signals with each other,
the signals will be converted to the frequency domain via the fast Fourier transform
(FFT). Figure 3.6 gives an example of what the signal looks like for load case 4 of table
3.1, and figure 3.7 shows the same signal in the frequency domain. The left plot
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Figure 3.6: The measured strain of strain gauge 1 when no load is applied, and the bearing rotates
at 600rpm. A clear amplitude modulation can be observed in the signal.

shows the signal for the first 150 Hz. At 10 Hz a peak can be seen that corresponds to
the rotation frequency of the bearing of 600rpm. Its higher harmonics can be observed
at 20 Hz and even 30 Hz. The peaks around the ball pass frequency of 68.4 Hz are
the largest peaks in the plot, and the middle plot is focused upon these. The second
harmonic of the ball pass frequency is shown in the right plot. The frequency and
amplitude of these peaks are useful information that needs to be extracted from this
FFT. Since the signal is discrete, these values can not be found directly in the FFT,
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Figure 3.7: The FFT of the strains measured by strain gauge 1 during no load on the bearing and a
rotating speed of 600 rpm. The left plot shows the complete FFT from 1 Hz to 150 Hz. The rotation
frequency (10 Hz) can be observed and its higher harmonics. The middle plot is focused on the two
large peaks around 68.4 Hz, which are the ball pass frequencies of the two rows. A clear difference in
speed can be observed between the speeds for this load case. The red marks indicate the estimated
amplitude and frequency of the peaks. The right plot shows the second harmonic of this ball pass
frequency.

but need to be calculated. The frequency is estimated using barycentric fitting around
each peak, while the amplitude is calculated by taking the root sum of squares of the
samples around the peaks. The resulting frequencies and amplitudes are also shown
in the plots by a red mark.
The fact that there is a speed difference between the two rows while there is no load
acting on the bearing may appear strange. There are, however, differences in stiffness
of both rows. Combining this with the bearing preload that is maintaining a load on
the rolling elements creates different contact angles in each row. Also, the diameters
of the inner rings might vary due to the way they are produced. Ideally, each sensor
gives clear distinguishable peaks for each row, but unfortunately, this is not always
the case. When, for instance, the speed difference between the rows is minimal, these
peaks will merge together. Also when the load under the strain gauge is low, the peak
diminishes to zero and is thus undetectable in the noise.

The bearing is symmetric around the horizontal plane, and since the applied axial
load is also symmetric over this plane, we expect the distribution of the loads along
all the rolling elements to be symmetric around the same plane. Using the model,
the distribution of the loads on all the rolling elements can be calculated for these
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Figure 3.8: The loaded zone of all the rolling elements in the outboard row during an axial load of
−10 kN. The loads on the other row are almost zero. The locations of the strain gauges and bolts
are shown around the plot. Since the bearing is symmetric along its horizontal plane and the load is
axisymmetric, the loaded zone is also symmetric. The stiff parts of the bearing increase the loads on
the rolling elements.

load cases while the bearing is rotating. Averaging these rolling element loads for each
azimuth with an axial load of −10 kN gives a smooth line of the load distribution,
which can be viewed in figure 3.8. For clarity, the axis around the plot does not show
the azimuth, but the locations of the bolts and the strain gauges, as can also be seen
in figure 3.2a.
The outer ring of the bearing is thick around the bolts, while it is thin on the locations
of the strain gauges, especially around strain gauges 13-18. This can be seen in the
load distribution where the loads are higher at the top and bottom of the bearing
where the bolts are. It is expected that this behavior will give the same signals on the
top and bottom of the bearing.
When looking at figure 3.3, it can be observed that the following pairs of strain gauges
are in symmetric positions and should give identical signals: 1&10, 2&9, 3&12, and
4&11. The mean value of the signal (H0), the amplitudes of the first harmonic (H1),
and the amplitudes of the second harmonic (H2) are plotted in figure 3.9. In summary,
the figure shows three columns containing:

Column 1: H0H0H0 This zeroth harmonic is the mean value of the strain signal.

Column 2: H1H1H1 The first harmonic is the amplitude of the ball pass frequency. Since
there are two rows, each row has its own H1.

Column 3: H2H2H2 H2 is the same as H1, but at twice the frequency.

Each row contains all the harmonic for the same strain signal(s).
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Figure 3.9: The amplitudes of zeroth, first and second harmonics of the symmetric sensor pairs for
each row when only axial loads are applied to the bearing. Each load case can be seen in table 3.1. It
is expected that each sensor pair generates identical strains, which can be seen is not the case. The
abbreviation SG in each legend stands for strain gauge.
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Looking at these plots, it can be clearly seen that each pair of sensors does not give
the same signal. The same behavior is seen within each pair, but with different offsets
and different slopes. For instance, all the sensors show a decline in H0, but all with
different offsets. Not only is there an offset in H0 between the sensors, but the slope
of the decrease changes within each pair. This is especially clear in the plot for strain
gauge 1 and 10 where the decline in H0 is larger for strain gauge 10.
In the frequency domain of each signal for these load cases, a distinction could be made
between the amplitudes of the harmonics for each separate row. This is only possible
because a constant load and constant rotation speed are used for an extended period
of time. Due to this, the contribution of each row to the signal can be determined.
These separate row 1 and row 2 signal amplitudes on each sensor pair are plotted in
the middle column (H1) and right column (H2).
Strain gauges 1, 2, 9, and 10 are all located above the center of both rows. Despite
this, the signal strength due to row 1 during a large axial load (e.g., load case 1) is less
than the signal strength due to row 2 during the same axial load in reverse direction
(e.g., load case 7). This can be explained by the fact that the outer ring is stiffer
around row 1 due to a flange being present above this row, as can be seen in figures
3.1 and 3.2. This prevents the outer ring to deform as much as it would do due to
loads on rolling elements in row 2. When a high positive or negative axial load is
applied to the bearing the loads on the unloaded row become very small. Otherwise,
during load cases 3 to 5, the preload on the bearing will ensure that both rows stay in
contact. This can be seen in the plots where the signal is produced by both rows.
When comparing H1 and H2 of each symmetric sensor pair with each other, a signif-
icant difference can be seen within each pair. Especially the strain gauge pairs 2&9
and 4&11 show a very large difference. Keep in mind that these sensor pairs are next
to each other on the same azimuth. Since the same difference is spotted in both sets of
sensors, it is believed that this is not caused by a defect strain gauge, but by differences
in the load of the rolling elements close to these sensors.
During load case 3 and 4, the first and second harmonics due to a load on row 2 can
be identified for strain gauge 9 and 11, while these are near zero for strain gauge 2
and 4. This indicates that the rolling element is loaded under strain gauge 9 and 11,
but not under strain gauge 2 and 4. Although not shown in these plots, substantial
differences are also present in the symmetric strain gauge pairs 5&6, 7&8, 13&15, and
16&18. A few possible sources for these differences could be:

Strain gauge location The strain gauge is glued on the outer surface of the outer
ring by hand. The position along the azimuth can be verified by looking at the
phase of each signal. This shows that for this bearing, the strain gauges are
placed quite accurately along the azimuth. The axial placement of each sensor
can not easily be determined by analyzing the signal, but may influence it.

Strain gauge installation During the gluing process, the strain gauges are pressed
against the outer ring. This may cause a permanent deformation, and thus offset,
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in the strain gauge signal. This can explain the large differences in H0. Since
the strain gauges are linear, this does not explain the differences in H1 and H2.
The glue between the outer ring and the strain gauge may also attenuate the
strain on the outer surface.

Residual stress The first step in the production of the outer ring is forging it to the
approximate shape. After this, only the inside is ground to achieve the correct
dimensions and surface roughness for the raceways. In modifying the bearing
for the experiment, the strain gauges had to be placed on a flat and smooth
surface. To accomplish this, pockets are milled out of the outer ring as can be
seen in figure 3.1a. The forging process creates large stresses in the material of
the outer ring. If suddenly some pockets are milled out, it is not unthinkable
that the residual stresses in the outer ring deform the raceways, thus significantly
changing the loaded zone of the rolling elements.

Bolt tightening When the bearing was installed on the rig, it was tightened down
on four bolts. This was done with a regular wrench and not with a torque
wrench. If this was done unevenly, this can cause small differences in stresses
and thus deformations near these bolts. Besides this, the tightening of the bolts
is an asymmetric process as all the bolts turn clockwise to fasten. The friction
between the bolt and the outer ring might rotate it locally around the bolt and
deform the raceways considerably.

Thickness of outer ring The outside of the outer ring is not accurately machined
after it was forged. This means that the thickness of the outer ring may vary in
each position. The stiffness of the outer ring is a function to the third power of
the thickness of the material, so this could be of significant influence.

These possible sources affect the following aspects of the bearing:

• The distribution of the loads over all the rolling elements.

• The individual contact angle of all the rolling elements.

• The transfer of the element loads to surface strains.

• The difference in measured strain by the strain gauges and the true strain.

It is unknown how much each of these possible sources contributes to the differences in
the signals, and there may be even other sources. All these effects are not calibrated in
the model because it is difficult to quantify them in terms of measures that can be used
in the model. Unfortunately, this makes it hard to make a quantifiable comparison
between the model and the experiments.

A comparison is made between the measured and simulated strain signals from strain
gauges 1, 5, 9, and 13, one from each quadrant of sensors. The zeroth, first, and second
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harmonics of these strain signals are plotted in figure 3.10. The harmonics of all the
strain gauges can be found in appendix F.
The strain gauges on the top and bottom of the bearing (i.e.,1-4 and 9-12) show higher
strain signals (H1 and H2) than the other strain gauges in both the model as the ex-
periment. This is expected as the outer ring is stiffer around these strain gauges. As
shown in figure 3.8, this causes the loads on the rolling elements near the top and
bottom to be higher.
When a small load is applied to the bearing, as is the case in load cases 3-5, a strain
signal generated by both rows can be observed. This is expected, as a preload in the
bearing ensures that the rolling elements in both rows stay loaded when a small load
is applied. Looking at the top and bottom strain gauges again, the rolling elements in
one row lose their load, and the signal is only generated by loads in one row.
Due to the different stiffness for each row, the load distribution of row 1 during the
first load cases will not be the same as the load distribution in row 2 during the latter
load cases. However, if the outer ring would be rigid, they would be the same. Strain
gauge 5 and 13 show this for both the experiments as the model where row 2 continues
to be loaded during load cases 1 and 2, while the elements in row 1 are unloaded during
load cases 6 and 7.
The model shows the same behavior as the measured signals, but with a significant
difference. These differences are in the same order of magnitude as the difference
between the symmetric sensor pairs analyzed before. It is therefore not possible to
make any quantifiable conclusions regarding the accuracy of the model. It is clear that
further research is necessary in order to determine how much the outer ring is stati-
cally deformed while it is clamped on the plate in BETSY. The simulated signals do
show the effect of the preload in the same way. The simulated signals show the same
differences in signal strength due to each individual row as the measured signals do.
This shows that the model is very good in predicting behavior similar to the measured
signals. It is believed that the model can become more accurate, if further research is
done on calibrating the model to a specific bearing.
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Figure 3.10: The harmonics of the strain signals measured and simulated on strain gauges 1, 5, 9, and
13. The left, middle, and right columns show the zeroth, first, and second harmonics, respectively.
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3.3. Comparison with Radial loads
Further comparisons are made for a radial load that is applied to the bearing. The load
will range up to 8 kN, which is a realistic load for a car wheel. The load is applied to
an azimuth of −75° from the top, and all the load cases are shown in table 3.2. During

Load case Fx [kN] Fy [kN] Fz [kN] Mx [kNm] Mz [kNm]
1 0.00 0.00 0.00 0.00 0.00
2 -1.93 0.00 0.52 0.00 0.00
3 -3.86 0.00 1.04 0.00 0.00
4 -5.80 0.00 1.55 0.00 0.00
5 -7.73 0.00 2.07 0.00 0.00

Table 3.2: The radial load cases used to validate the model. The loads shown in this table are rotated
to the reference frame of the bearing.

these loads, both rows will be loaded approximately equally. As could be seen before
in the frequency domain of the strain signal of an unloaded bearing, both rows rotate
at a different speed. During the radial load cases, this is expected to still be the case,
because the outer ring is less stiff around row 2 than it is around row 1. This means
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Figure 3.11: The signals measured and simulated on strain gauge 15 for a pure radial load case of
Fx = −7.67 kN and Fz = 2.05 kN. The top graph shows the measured strain signal from the BETSY
experiment and the lower graph shows the simulated strain signal. A modulation of the signal is
clearly present due to the fact that the speed of the elements in one row is slightly faster than in the
other row.

that the outer ring around will deform more around row 2, thus causing the contact
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angles in each row to be different. The signal measured on strain gauge 15 during
the highest radial load case is simulated, and both signals are shown in figure 3.11.
The top plot shows the measured signal, while the bottom plot shows the simulated
signal. The mean value of both signals is removed such that the y-axes of both plots
are comparable. The rolling elements in row 1 pass by the sensor with a frequency of
67.94 Hz and row 2 with 67.70 Hz. This is a small difference, but any difference will
create an amplitude modulation in the signal, as can also be observed in the signal. At
the beginning of each plot (t=140.5 s), the rolling elements of both rows are in phase
with each other. Since row 1 is slightly faster, it will eventually be exactly out of phase
with the second row (t=142.7 s). The frequency of the modulation can be estimated
with:

fmod =

(
fr1
fr2
− 1

)
fr1 = 0.25 Hz (3.4)

Here fr are the ball pass frequencies of row 1 and 2, and fmod is the frequency of
the modulation. The modulation frequency of 0.25 Hz can be seen in the signal, as it
repeats itself every 4 s. In this time the rolling elements of row 1 have overtaken one
rolling element of row 2.
The simulated and measured signals from strain gauges 1, 6, 15, and 18 will be ana-
lyzed. Strain gauge 6 is on the opposite side of the loaded zone, so it is anticipated
that it will show no first and second harmonic in the signal during the larger load
cases. Strain gauges 15 and 18, on the other hand, are closest to the highest loaded
elements. Finally, strain gauge 1 is also close to the average loaded elements. The
results of these strain gauges can be found in figure 3.12, while the results of all the
sensors can be found in appendix G.
Looking at the first strain gauge, which is located between both rows, the strain signal
due to both rows seems to be about equal and slightly increasing for increasing loads.
Strain gauge 15, also located between both rows, shows a much larger contribution of
row 2, while the model estimates an equal contribution. On strain gauge 18, next to
15, the model and measurements show similar behavior for both rows. It is, of course,
expected that when the load is increased, the signals also increase in these locations.
Strain gauge 6, however, is on the opposite side, and here a decrease in signal strength
can be seen for increasing load cases. This is expected as the loads on the rolling
elements reduce. Due to the preload in the bearing, the load on these elements are
not zero for the first four load cases.
All signals show a slight exponential increase or decrease (depending on location),
which is also predicted in the simulated signals.
Again, as with the axial load cases, there is a significant difference in the signals of
the model and the measurements, but the general behavior found in the experiment
is also encountered in the model.
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Figure 3.12: The harmonics of the strain signals measured and modeled on strain gauges 1, 6, 15, and
18 while a radial load is applied. The left, middle, and right plots show the zeroth, first, and second
harmonics, respectively.
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3.4. Comparison with Moment loads
The final comparison will be made for a moment that is applied to the bearing. Rang-
ing up to 2.5 kN m in steps of 500 N m, the moment is applied in 6 load cases under
an angle of 15° from the top, all shown in table 3.3. These moments occur during

Load case Fx [kN] Fy [kN] Fz [kN] Mx [kNm] Mz [kNm]
1 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 -0.48 0.13
3 0.00 0.00 0.00 -0.97 0.26
4 0.00 0.00 0.00 -1.45 0.39
5 0.00 0.00 0.00 -1.93 0.52
6 0.00 0.00 0.00 -2.41 0.65

Table 3.3: The moment load cases used to validate the model. The loads shown in this table are
rotated to the reference frame of the bearing.

cornering of a car when a lateral force acts on the contact patch of the tire. In the
bearing these moments create the highest loads on all the rolling elements, thus these
moments are considered the heaviest loads that act on a bearing, with loads on the
rolling elements ranging up to 15 kN. It is expected that if there are temperature
effects present, they will be most apparent during these load cases.
Figure 3.13 shows what the strain signal measured by strain gauge 2 looks like during
load cases 2 to 6. Each load case is applied for 30 s after which a 10 s resting period is
employed in order to distinguish each separate load case. During this resting period,
the bearing continues to rotate at 600 rpm, but no load is applied. Looking at the
strain signals during these resting periods, a drift can be observed. This drift can even
be seen slightly during the load cases, where a slow decline of mean strain signal over
time is present. The right side of the figure shows two plots containing the zeroth and
first harmonic of these signals.
The temperature increase in the bearing deforms the outer ring so that the strains
change over time. This deformation, in turn, affects the loads on the rolling elements,
thus influencing the first harmonic. The temperature affects the first harmonic only
slightly, but the exponential trend in the strain signals appears to not yet be at a
steady-state value. This indicates that the temperature will probably increase even
further if the experiment took longer. Further experiments with high loads for a long
time should show how much the temperature affects the first harmonic of the signals.
The change in zeroth harmonic, due to the temperature change, is in the same order
of magnitude as, for instance, the increase due to increasing load during the axial and
radial load cases. This shows that it is very hard to estimate the load on the bearing
based on the zeroth harmonic alone.
For the comparison of the signals from these load cases, strain gauges 2, 4, 10, and
12 are used. Figure 3.14 shows the results. All the other signals can be found in
appendix H. During these load cases, both rows have a loaded zone in the opposite
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Figure 3.13: The signal measured with strain gauge 2 while different moments are applied to the
bearing is shown in the left plot. Between each load case there is a small resting period in which no
load is applied for 10 s. It can be seen that the signals increase between each applied load case due
to thermal effects. The right two plots show the amplitudes of H0 and H1 of the signal during each
resting period between the load cases.

direction in order to counteract the moments that act on the bearing. Strain gauges 2
and 4 are closest to the highest loaded elements in row 1, while strain gauges 10 and
12 are closest to the highest loaded elements in row 2. See figure 3.15 for a schematic
overview of the locations of the strain gauges and the loaded rows. Both sets of strain
gauges are next to each other on the same azimuth. Strain gauge 2 and 10 are between
the rows, while the other two are above row 2. The first observation that can be made
is that the zeroth harmonic increases for an increasing load at strain gauges 2 and
4, while it remains somewhat constant on the other strain gauges. The model also
predicts this behavior, albeit with an offset. The model also follows H1 quite good,
but 50 % higher. Since only row 1 is loaded near strain gauges 2 and 4, a strong H1 is
seen in strain gauge 2, but not in strain gauge 4. Strain gauge 4 is located above row
2, so this behavior is expected. The other two strain gauges both show a strong H1

due to row 2.
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Figure 3.14: The harmonics of the strain signals measured and simulated on strain gauges 2, 4, 10,
and 12. The left, middle, and right plots show the zeroth, first, and second harmonics, respectively.
The simulated signals show the same behavior as the measured signals, with only an offset and a
different factor.
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Figure 3.15: A schematic overview of the moment load cases with the locations of strain gauges 2,
4, 10, and 12. Gauge 2 and 10 are between both raceways, and the other two not. Strain gauge 4 is
located far away from the loaded elements, while strain gauge 12 is very close.

It is expected that when the distance between the strain gauge and the loaded element
is close, the higher harmonics become stronger. In other words, when a strain gauge is
right on top of the raceway, it is expected that H2/H1 becomes larger than if the strain
gauge would be placed further away. This can be seen in the signals. Strain gauge
4 is able to detect a first harmonic strain signal with insignificant higher harmonics.
Strain gauge 2 is closer to row 1, and although its H1 is 3 times higher, the H2 is
around 8 times higher. Strain gauges 10 and 12 show this as well. Both H1 are about
equally high, while the H2 of strain gauge 12 is more than 50 % higher in both the
measurements and the model.
While the moments are applied, the increase in harmonics is almost linear. This is
measured during the experiments but is also simulated with the model. Other than
an offset in H0 and a ratio in H1 and H2, the model performs good during these
moment load cases. Note that during these extreme moment load cases, with large
element loads, the effect of any static raceway deformation diminishes, since these
effects are an order of magnitude lower than the strain signals generated by the element
loads. This explains why the model shows the exact same behavior as the experiments,
disregarding any offset and ratio present in each strain gauge.
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3.5. Summary
A methodology for calculating strain signals on the outer ring of a wheel bearing as a
function of the load applied to the bearing was presented in chapter 2. In the current
chapter, this model was compared to experiments. For these experiments, a bearing
was instrumented with strain gauges and placed in a test rig. This rig rotates the
bearing and applies load to it while the strain signals are recorded.
An axial load applied to the bearing shows unexpected behavior of the bearing. The
strain gauges opposing each other with respect to the symmetry plane show a large
difference in signals when compared to each other, while a symmetric load is applied.
The observed signals indicate that a large distortion in the shape of the raceways may
be present due to manufacturing or installation of the bearing.
When comparing all the measured signals to the simulated signals, the differences
are in the same order of magnitude as the differences due to the distortion in the
raceway, making it difficult to make a quantifiable comparison. All the signatures
in the measured signals are seen in the simulated strains, indicating that the model
might work good, but needs to be calibrated. It is believed that the uncertainties in
the bearing, like the distortion in the raceway, can be defined with only a small set of
parameters that can be calibrated with only a few measurements.
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4
Conclusions and
recommendations

For SKF it would be useful to have a fast model of a bearing which calculates the
strains for certain loads for their development of a load sensing algorithm. During this
thesis, a model was developed in order to achieve this goal.
The semi-analytical model consists of a part that calculates the load and contact angle
of each rolling element, by means of a rigid bearing model and a raceway deformation
model, and a part that converts these into strains on the surface of the bearing. This
last part, which is called the strain model, and the raceway deformation model, are
constructed from a set of linear elastic FEA simulations. These simulations contain
a finite element model of an outer ring on which a single rolling element is modeled
with the Hertzian contact model. The inner ring of the bearing is assumed rigid. The
model can be run continuously for different loads and positions of the rolling elements
to obtain strain signals in the time domain.
The model is compared with experiments performed on the BEaring Test SYstem
(BETSY) at SKF on which a modified HBU3 bearing is placed. All the phenom-
ena that can be observed in the signals as a result of the load are predicted by the
model, and both the model and the experiments show similar trends. With the model
it becomes much easier to understand the experiments, because not only the strains
are generated, but also the individual rolling element loads and contact angles can
be extracted, and the direct relation between these and the strain signal. This gives
insights on how the physical shape of the bearing influences the strains, which can be
used to improve the bearing design and strain gauge location during the development
of the load sensing bearing.
The results of the comparison show that the bearing itself shows unexpected behavior,
which is likely caused by static deformations of the raceways, which in turn modify
the distribution of the loads over all the rolling elements. There is also doubt in the
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precision of the placement and installation of the strain gauges. These factors have a
large influence on the signal, making it very hard to compare them to the model. A
difference is observed between the model and the measured strains which is in the same
order of magnitude as the difference caused by the unforeseen static raceway defor-
mations and the uncertainties in the strain gauges, making any quantitative measures
to compare the two of limited value. Other than that the model predicts the same
general behavior as can be seen in the experiments, indicating that the main processes
that act in the bearing are simulated properly. However, any quantifiable conclusions
about the performance of the model can not yet be made.

4.1. Research subquestions
In the introduction of this thesis, some subquestions to the research question were
made. Throughout the report, the evidence to answer these questions are stated. The
questions and their summarized answers are:

What mechanics in the bearing determine the loads and contact angles on
each rolling element? Both the contacts of the rolling elements with the raceways
and the flexibility of the outer ring can be considered as spring. By finding the equi-
librium of all the forces acting on all the bodies, a distribution of the loads over the
rolling elements and their contact angles can be found.

What are the effects of the contact angle on the first and second harmonics
of the strain signal? As the rolling element moves closer to the strain sensor due
to a change in contact angle, the harmonics of the signal rise. The ratio between the
second and first harmonic is a function of the contact angle but is independent of the
load that acts on the rolling elements. This ratio might be used to estimate the contact
angles of the rolling elements.

Are the strains in the time domain and the spatial domain related? Analysis
of the raceway deformation shows that the outer ring has a varying stiffness along the
azimuth. This causes a load distribution during rotation that is different in the time
domain than in the spatial domain. The same can be said for a non-symmetric load
on the bearing. This means that the strains measured in the time domain cannot be
converted into the spatial domain.

How can the FEA be simplified to decrease the computation time, but
maintain accuracy? Various simplifications are made to the FEA to decrease its
computation time. An optimization of the mesh size ensures a good accuracy while
decreasing the time to solve the simulations. The whole FEA of the outer ring is made
linear elastic by ensuring that no contact constraint has to be used between the outer
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ring and the plate. The rolling elements are replaced by a Hertzian contact model,
thus also removing a nonlinear contact constraint.

4.2. Recommendations and future work
Much work is still to be done in order to improve the model. If this is done, there are
many potential usages for the model in the future. The following recommendations
are made:

• The model should be calibrated in order to improve its accuracy. It is believed
that the factors that create the unexpected bearing behavior can be summarized
in a few parameters, which all need to be calibrated:

Strain gauge properties Due to inaccuracies in the installation process of
these strain gauges, they can deform, thus creating a static offset in the
strain signal. Also, the exact location, adhesive under the sensor, and gauge
factor can influence the strain signal. This might be resolved by calibrating
a coefficient to the simulated sensor signal.

Static raceway deformation Modifying the bearing for the experiments and
clamping it tight on the plate might have created a static deformation of
the raceways. Keep in mind that any local deformation in the raceway will
influence the loads and contact angles on all the rolling elements. The static
raceway deformation is not easily contained in only a few parameters, since
it is continuously varying along each raceway. Further research is needed to
identify all the sources for this raceway deformation in order to calibrate it,
or find a method to manufacture or install the bearing without any static
deformation at all.

Preload All HBU3 bearings are assembled with a preload. This is defined by
a single parameter, but this could be considered as an even static raceway
deformation and be incorporated in calibrating the static raceway deforma-
tion.

• The FEA simulations were done without any contact constraints, and the whole
bearing was mounted solid to the plate via washers, thus making the FEA linear
and fast to solve. This linearity is imitated in the experiments by mounting
the bearing via washers on the plate, ensuring no varying contact. Further
experiments and simulations without washers need to be compared in order to
investigate the accuracy of the model under these conditions. Alternatively, the
bearing can be redesigned such that linear behavior in this contact guaranteed.

• If the model is found to be accurate, it can be used to analyze different strain
gauge locations. An optimization can be made such that a set of locations is
found that is able to reconstruct the load while minimizing the number of strain
gauges, thus reducing the costs of this load sensing bearing.
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• The goal of the model was to estimate the strains on a bearing when a load is
applied, but it might also be used to estimate defects in bearings. When a large
cavity is present in the outer ring, a so-called spall, this might be detected in
the strain signals. When a rolling element enters a spall, its load temporarily
reduces. This means that the load is carried over the other rolling elements,
which gives a signature that might be detected in the strain signals. To fully
model this behavior, the model needs to be extended with a transient model that
simulates the rolling element rolling out of the spall.

• As explored by [19], a model can be used to create a state observer that estimates
the load based on the strain measurements. The advantage of a model-based
estimator, as opposed to a data-driven estimator, is that less calibration will
be needed since the calibration parameters can be a set of measurable physical
parameters.

As more knowledge is acquired about all the phenomena that occur in HBU3 bearings
and the understanding of the strain signals increases, a better load estimation algo-
rithm can be designed. In the not too far future, we might see cars equipped with load
sensing bearings as standard, for improved car control and safety, with controllers that
use the wheel loads as input states.
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A
Dimensionless contact
parameters
The dimensionless contact parameters are used in calculating the semi axes of the
Hertzian contact ellipse and the contact deformation. These parameters are shown in
table A.1.

F (ρ) a∗ b∗ δ∗

0 1 1 1
0.1075 1.076 0.9318 0.9974
0.3204 1.2623 0.8114 0.9761
0.4795 1.4556 0.7278 0.9429
0.5916 1.644 0.6687 0.9077
0.6716 1.8258 0.6245 0.8733
0.7332 2.011 0.5881 0.8394
0.7948 2.265 0.548 0.7961
0.83495 2.494 0.5186 0.7602
0.87366 2.8 0.4863 0.7169
0.90999 3.233 0.4499 0.6636
0.93657 3.738 0.4166 0.6112
0.95738 4.395 0.383 0.5551
0.9729 5.267 0.349 0.496
0.983797 6.448 0.315 0.4352
0.990902 8.062 0.2814 0.3745
0.995112 10.222 0.2497 0.3176
0.9973 12.789 0.2232 0.2705
0.9981847 14.839 0.2072 0.2427
0.9989156 17.974 0.18822 0.2106
0.9994785 23.55 0.16442 0.17167
0.9998527 37.38 0.1305 0.11995
1 ∞ 0 0

Table A.1: Dimensionless contact parameters for the Hertzian model.
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B
Singular value decomposition of
the compliance of the RDM
In subsection 2.3.3 the compliance function of the Raceway Deformation Model (RDM)
is analyzed. This compliance function gives the deformation of the raceway per applied
load and it is a function of the azimuth of this deformation, and the azimuth of the
applied load. The singular value decomposition of the compliance function of row 1 is
shown in figures B.1, B.2, and B.3.
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Figure B.1: Normalized singular values of the compliance function of row 1. Note that singular values 8
to 41 show up in pairs of equal value. This implies a symmetry along the x = y plane of the compliance
function.
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Figure B.2: The first 8 left-singular vectors of the compliance function of row 1. The effect of the stiff
bolt holes located at azimuths 40°, 140°, 200°, and 340° can clearly be seen.
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Figure B.3: The first 8 right-singular vectors of the compliance. Note how similar these are to their
corresponding left-singular vectors.
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C
Singular value decomposition of
the rotated compliance of the
RDM
In subsection 2.3.3 the compliance function of the Raceway Deformation Model (RDM)
is analyzed. The symmetry along the x = y plane is further analyzed by looking at the
‘rotated’ compliance function of row 1. This function gives the raceway deformation per
applied load. It is a function of the azimuth of the deformation, and because it is ‘rotated’,
also of the difference between the azimuth of the applied load and the azimuth of the
deformation. The singular value decomposition of this ‘rotated’ compliance function of
row 1 is shown in figures C.1, C.2, and C.3.
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Figure C.1: Singular values of the ‘rotated’ compliance function of row 1. As with the normal compliance
function, some singular values appear in pairs. This suggest that in this ‘rotated’ reference frame there
is still some symmetry.
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Figure C.2: The first 8 left-singular vectors of the ‘rotated’ compliance function of row 1. Most of the
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−0.25

0

0.25

Mode 1 dynamics

−0.25

0

0.25

Mode 2 dynamics

−0.25

0

0.25

Mode 3 dynamics

−0.25

0

0.25

Mode 4 dynamics

0 90 180 270 360
−0.25

0

0.25

Ψ [deg]

Mode 5 dynamics

0 90 180 270 360
−0.25

0

0.25

Ψ [deg]

Mode 6 dynamics

0 90 180 270 360
−0.25

0

0.25

Ψ [deg]

Mode 7 dynamics

0 90 180 270 360
−0.25

0

0.25

Ψ [deg]

Mode 8 dynamics

Figure C.3: The first 8 right-singular vectors of the ‘rotated’ compliance function of row 1.
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D
Load case for raceway
deformation verification

Quantity Value Unit
Fx -73 N
Fy 852 N
Fz 13150 N
Mx -312 Nm
Mz 249 Nm
(a) Forces acting on bearing.

Element Row 1 Row 2
number Q [N] α [°] Q [N] α [°]
1 930 43.9 - -
2 1230 43.7 - -
3 1281 43.2 - -
4 1267 42.3 - -
5 1487 40.9 - -
6 1839 39.2 653 36.9
7 1783 38.0 1971 37.2
8 1486 37.2 3122 37.5
9 1513 36.6 4204 37.6
10 1123 36.6 3762 38.0
11 608 37.3 2120 38.8
12 383 38.2 723 39.1
13 395 39.5 - -
14 460 40.8 - -
15 599 42.2 - -
16 747 43.3 - -

(b) Contact loads and contact angles of all rolling
elements.

Table D.1: Forces acting on bearing and rolling elements for the load case for raceway deformation model
verification.
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E
Individual contributions on the
superimposed deformation
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Figure E.1: Contribution of all the elements on both rows to the radial deformation of row 1.
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Quantity Value Unit
Fx -1325 N
Fy -5863 N
Fz 11417 N
Mx -1799 Nm
Mz 370 Nm
(a) Forces acting on bearing.

Element Row 1 Row 2
number Q [N] α [°] Q [N] α [°]
1 - - 5252 47.4
2 - - 6869 48.2
3 - - 7268 48.2
4 - - 5354 48.1
5 - - 3342 47.0
6 - - 2777 43.4
7 1668 35.1 1881 40.3
8 5338 36.3 738 37.8
9 8457 37.2 9 36.4
10 10891 37.4 - -
11 8563 38.5 6 35.0
12 4711 39.5 647 34.8
13 1648 39.1 1472 36.3
14 - - 1973 39.2
15 - - 2609 42.3
16 - - 3894 45.0

(b) Contact loads and contact angles of all rolling
elements.

Table E.1: Forces acting on bearing and rolling elements for load case 1.
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F
All the harmonics in the signals
for axial loads
During one set op experiments different axial loads ranging from −10 kN to 10 kN are
applied to the bearing in increments of 3.33 kN. This creates 7 separate load cases. When
transforming the strain signal measured by each strain gauge to the frequency domain a
clear distinction can be made between the contribution of each row to the signal. The
zeroth, first and second harmonics of these signals are plotted in the figures shown in
this appendix and compared with the modeled strains. Although large differences can be
observed between the measured strains on BETSY and the modeled strains, the general
behavior seen in the experiments can also be seen in the model. These load cases are
discussed in section 3.2.
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Figure F.1: The zeroth harmonics (mean) of the measured and modeled strains.
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Figure F.2: The first harmonics of the measured and modeled strains.
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Figure F.3: The second harmonics of the measured and modeled strains.
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G
All the harmonics in the signals
for radial loads
Radial loads ranging from 0 kN to 8 kN are applied to the bearing in increments of 2 kN.
This creates 5 separate load cases. When transforming the strain signal measured by
each strain gauge to the frequency domain a clear distinction can be made between the
contribution of each row to the signal. The zeroth, first and second harmonics of these
signals are plotted in the figures shown in this appendix and compared with the modeled
strains. Although large differences can be observed between the measured strains on
BETSY and the modeled strains, the general behavior seen in the experiments can also
be seen in the model. These load cases are discussed in section 3.3.
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Figure G.1: The zeroth harmonics (mean) of the measured and modeled strains.
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Figure G.2: The first harmonics of the measured and modeled strains.
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Figure G.3: The second harmonics of the measured and modeled strains.
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H
All the harmonics in the signals
for moment loads
Different moments ranging from 0 kN m to 2.5 kN m is applied to the bearing in incre-
ments of 500 N m. This creates 6 separate load cases. When transforming the strain
signal measured by each strain gauge to the frequency domain a clear distinction can be
made between the contribution of each row to the signal. The zeroth, first and second
harmonics of these signals are plotted in the figures shown in this appendix and com-
pared with the modeled strains. Although large differences can be observed between the
measured strains on BETSY and the modeled strains, the general behavior seen in the
experiments can also be seen in the model. These load cases are discussed in section 3.4.
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Figure H.1: The zeroth harmonics (mean) of the measured and modeled strains.
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Figure H.2: The first harmonics of the measured and modeled strains.
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Figure H.3: The second harmonics of the measured and modeled strains.

100


	Abstract
	Table of Contents
	Nomenclature
	Acknowledgments
	Introduction
	Introduction to HBU3 bearings
	Challenges in load estimations
	Challenges in gaining insights
	Research question
	Report overview

	Proposed semi-analytical model
	Overview of all submodels
	Rigid bearing model
	Raceway deformation model
	Strain model
	FEA data
	Summary

	Validation with experiment
	The experiment setup
	Comparison with Axial loads
	Comparison with Radial loads
	Comparison with Moment loads
	Summary

	Conclusions and recommendations
	Research subquestions
	Recommendations and future work

	References
	Dimensionless contact parameters
	SVD of the compliance of the RDM
	SVD of the rotated compliance of the RDM
	Load case for raceway deformation verification
	Contributions on superimposed deformation
	Harmonics in signals for axial loads
	Harmonics in signals for radial loads
	Harmonics in signals for moment loads

	anm2: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	anm1: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	anm0: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


