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As urbanization increases around the world, high-rise buildings will continue to become a more prevailing 

typology, nonetheless, due in part to cumbersome computational simulations, rarely do designers have 

enough information during the early stages of design, which is the time when their choices affect the most 

the efficiency of their building. Surrogate models, aka meta-models that predict how the original 

simulation models behave offer a clear advantage in terms of speed of the results. This study delves into 

performance-based design using surrogate models to give the designer a tool to quickly understand the 

variables that will affect its efficiency. Looking specifically to improve four (4) results: energy consumption, 

natural daylight, comfort, and floor area. This study contemplates 16 unique variables ranging from effects 

of the Context (1), general building shape & orientation (6) to façade variables (9). The energy results are 

validated in DesignBuilder software before proceeding to collect 500 samples for two different locations: 

Bogotá and Amsterdam. This data is then run through three machine learning methods, Multilinear 

Regression, Non-linear Regression, and ANN. Next, the chosen ANN-based surrogate models for each of 

the outcomes are trained and hyperparameters finetuned to increase their R2 value and reduce their 

standard error (MSE) and mean absolute error (MAE). Finally, the generic surrogate models are run and 

compared through various optimization algorithms to determine Pareto-frontier options that ultimately 

improve the energy performance of a solution with the daylight, comfort, and floor area as design 

constraints or goals. A time reduction of up to 99.96% was achieved to collect another 500 samples. 

Finally, the final model also serves as an aid for visualization of the design space by allowing near-real-

time (6 seconds) to generate the form of each design solution   

High-Rise, Performance-based design, Surrogate Model, Energy Efficiency, Energy Use Intensity (EUI), 
Daylight, Useful Daylight Illuminance (UDI), Comfort, Machine Learning, Computational Optimization, 
Artificial Neural Networks (ANN), Uniform Latin Hypercube sampling (ULH)
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Our future will be marked by scarcity of resources and fossil fuels (IPTOES, 2010) therefore, now more 
than ever, our buildings should aim to become more efficient in their use of energy and resources. Andy 
van den Dobbelsteen makes a great point by highlighting that the price of oil is embedded in everything 
that we consume. (Dobbelsteen, 2012) He stresses that today, it is critical to breaking off from our fossil 
fuel energy dependency. Our new buildings need to be energy conscious by allowing for the lowest 
possible environmental footprint but equally maintaining the essential reasons for architecture: shelter 
and comfort. 

Most current high-rise buildings reflect the architectural language of the High-tech movement.  
The High-tech movement, the predecessor of today’s most modern high-rise buildings, was born in the 
ecological techno-optimism of the 1960s by Frei Otto and Buckminster Fuller. They encouraged the 
conscious use of materials and methods due to our limited resources on earth. Fuller´s “Spaceship 
Earth” concept stated that we live on a finite planet; therefore, we should use all tools and resources as 
efficiently as possible. However, current high-rise buildings rarely follow their original idealistic 
principles: sustainability, efficiency, ecological and humanistic responsibilities. (Harper, 2019) 

The goal of this research is to provide architects and engineers with an efficient tool of design for quick 
insight into their proposal. Ideally, High-rises should be designed contemplating locality in design during 
the early concept stage of the design process. Computational simulations and optimization can help the 
designer to identify promising design solutions, however, existing simulations are computationally 
expensive and thus cumbersome during this initial stage, therefore designers rarely design with enough 
contextual information. Surrogate models have the potential to provide performance assessments 
without the need to run all related performance simulations, offering a faster alternative to the use of 
simulations only. This leads to the following research question: 

Research Question:  
“How can a computational method using surrogate modeling be used to quickly identify, and optimize 
the most influential factors and their combinations for context-based passive solutions of sustainable 
High-Rise office buildings during their initial design phase?” 

with the following sub-questions: 
o How do different locations/climates dictate the building’s ideal shape and orientation?

o How does the volumetric context of surrounding buildings affect its shape and façade

parameters?

o How does the position of its Core affect a building´s energy performance concerning its

location/climate?

o What is the Pareto-optimality of these parameters when simultaneously seeking energy

consumption, thermal comfort, and natural daylight optimums?

o What are the key validation metrics and features necessary for obtaining suitable

surrogate models?

The goal of this research is to ultimately provide architects and engineers with an alternative efficient tool 

of design for quick insight into their proposal. This, in turn, would aid the designer to rapidly optimize 

their project through parametric optimization tools as well as allow them to explore their design choices 

effectively.  



1.1 Scope 
The research aims at understanding how a computational method can using surrogate modeling be used 
to look at how shape and façade variables affect building energy, daylight, and comfort performance on 
high rise building typology. It also provides results regarding how shape and façade variables affect 
building energy, daylight, and comfort performance on high rise building typology. Due to the implicit 
cost of building high-rises, the usable floor area is also a key metric to consider, therefore it is similarly 
monitored. Likewise, a good high-rise typology can vary drastically depending on the location it is 
implanted; hence, location-specific design and differences will be addressed. 

Although HVAC settings are important on the performance outputs, these parameters will be 
defined but kept constant, thus falling out of the scope of this research. Production of energy within the 
site was another possible research theme yet was not included due to time constraints. Similarly, the life 
cycle costs of a building are another theme that is excluded within the scope. 

1.2 Methodology 
In terms of the computational realm, this research aims to shed light on parametric modeling, 
simulation and optimization applied to the architectural realm. It will look at data collection (design of 
experiments) and parametric optimization using Galapagos (Rutten, 2019) as the main Graphic User 
Interface and Octopus (Vierlinger, 2018) and Optimus (Cubukcuoglu, et al., 2019) as the optimization 
software plugins. Also, the application of various Machine learning methods for creating surrogate 
models in Grasshopper such as Ant (Rahman, 2017) Dodo (Lorenzo, 2019) and Lunchbox (Miller, 2018) is 
used. The surrogate models and their “power to predict” will be addressed, thus looking at their 
performance and precision metrics. For the energy review, the Grasshopper simulations Ladybug and 
Honeybee (Sadeghipour & Mackey, 2017-2020) are compared with DesignBuilder software 
(DesignBuilder, 2020) to validate the Grasshopper model. Finally, a redesign is made of one of the 
generic proposals into a basic scheme architectural proposal in the form of 3D Diagrams, Plan, and 
Views.  





2.0 Literature Review 

2.1 High-Rise Typology 
Firstly, it is important to define what constitutes a High-Rise building. The Council on Tall Buildings and 

Urban Habitat (CTBUH) explains that the definition of “tall” can vary depending on three factors: Its 

context, its proportions, and its technologies. 

• Context: If the building is taller compared to its neighbors, it could be considered a high-rise.

• Proportion: If the proportions make it a slender construction, in contrast with a building that has the same

height but its large footprint unqualifies it from being considered tall.

• Technology: If the building uses structural or vertical transportation technologies on tall buildings

On the other hand, according to Emporis a high-rise building is a structure between 35-100 meters or has 

between 12-39 floors.  Above 100 meters it is considered as a skyscraper. (Emporis, 2020) 

Due to the imprecise definition of a high-rise, for this study, a High-Rise building will be defined as one 

with at least 20 floors (≈ 85 m at FFH 4.2). The parametric model contemplates a height of up to 30 floors 

(≈ 300 m at FFH of 4.2 m) as CTBUH identifies most high rises built in the last century falling within this 

category (see blue dots). 



Table 1 High-Rises between 150 and 300 m (CTBUH, 2019) 

With this definition in mind, a quick exercise was done to classify the three main building typologies and 

some significant examples of each: 

Type Subtype Example Author Date Page 

Office Modernist Seagram Building  Mies van der Rohe 1958 -

High-Tech  HSBC Norman Foster 1985 -

Landmark (proposal) Doric Column Chicago Tribune Adolf Loos 1922 33 

Residential Modernist Unité d´Habitation LeCorbusier 1952 45 

Landmark - Tallest 432 Park Avenue Rafael Viñoly 2015 -

Mixed-use Landmark - Tallest Burj Khalifa SOM 2009 38 

The Hyper Building  CCTV OMA 2008 39 

Quasi-Public spaces Tour Signal Jean Nouvel 2008 39 

Table 2 Tall building Typologies - Own production. Info from: (Zandbelt, 2012) 

These different typologies have a significant impact on energy consumption, ideal daylighting and thermal 

comfort optimums, thus only one typology was chosen: the office building. Office buildings are widely 

related to the high-rise typology due to many of the reasons in the following segment.  

High-rise constructions are an essentially unique building type in modern architecture, yet when it comes 

to categorizing differences, they are significantly different from other building typologies mainly in the 

following two categories:  

2.1.1 Façade technologies 
High rise envelopes need to account for more extreme weather conditions than traditional windows (such 

as higher wind loads and UV radiation). This, in turn, leads to more specialized façade technologies and 

even new ways of constructing. The curtain wall system, for instance, was born from the high-rise 

typology. This high level of specialization of the facades also means that applying dedicated glazing and 

insulation parameters are much more appealing.  

2.1.2 Vertical Core 
The core is the means of transportation of the building. It is employed not only to transport people but 

also the Mechanical Electrical and Plumbing (MEP) fixtures. As the building grows, the cores need to grow 

as well to provide for vertical lift shafts, emergency stairs, and all the MEP ducts that allow for the building 

to function properly. This means that the core size depends largely on architectural design, vertical 

transportation methods, and the ducts & equipment. Generally, the area dedicated to the core is from 

15-25% of the Net Floor Area (NFA)  

Also, the space efficiency of a building is directly related to the core. This is because, the higher the 

building, the larger the structural elements required to support it. Consequently, the larger the core, the 

lower the efficiency. This trend can be seen in the following table. 



Table 3 Efficiency of High-rises related to their height (ÖZGEN, 2009) 

For this reason, the model that will be developed should consider this loss of efficiency as the tower 

height increases. See section 3.2.1 Core Type. 

Efficient High-rise buildings have employed many different core strategies, but they can be mainly 

categorized into two types: Central core and Perimetral core. 

Central Core  

In 2009, 9 of the tallest buildings in the world all employed a variation of the central core typology. 

Figure 1 Central Core Typology (ÖZGEN, 2009) 

This typology is very efficient in terms of lease span, which is a definition that expresses the distances 

between the façade of the building and the fixed interior divisions, usually the core walls. When lease 

spans are kept between the ideal 6-8 m, good daylight illumination levels are achieved. Also, this 

configuration permits buildings to have high relative compactness, thus be good at saving energy 

consumption.  

Perimetral/Lateral cores 

This does not mean that lateral cores are not good design. There are many examples of well-designed 

skyscrapers with lateral cores and irregular shapes: 



In the last example, Ken Yeang used the atrium as well as the core location to improve the passive 

sustainable strategies in his buildings. The location of the core depended on the climate type. He placed 

the cores on the hot sides of the buildings to act as thermal buffers, thus reducing the insolation. Exploring 

the core location parameter depending on the climate type could lead to even smarter eco-skyscraper 

design.  

The core of a high-rise is a versatile and vital element to this typology yet there is little research on its 

effects on a building’s energy, daylight, or thermal performance.  The vertical cores show great potential 

to improve this by serving as a thermal shield, thermal mass, or daylight reflection mechanism, therefore, 

it was considered as an important variable for this research.  

Figure 5 Ken Yeang - Menara Mesiniaga - Petaling Jaya 
(Yeang Sdn. & Bhd, 1992) 

Figure 3 LBR - Torre Reforma – Mexico 
(Romano, 2016) 

Figure 2 Fosters & Partners Commerzbank – Frankfurt 
(Buchanan, 1998) 

Figure 4 Rogers & Partners – Leadenhall – London 
(Rogers, 2014) 



2.1.3 Advantages and Disadvantages of High-Rises 
A general literature review on the reasons For and Against the construction of high-rises was the starting 
point to understand what a “sustainable high-rise” meant. The main identified topics regarding High-Rise 
sustainability were: Power & Value, Urban connections, Density, Vitality/Urbanity, Economy, Context, and 
Energy/Resources. (See Summary Table 3) All these topics fall into two main categories: the building shape 
or the building context. A frequently recurring concern is that high-rises usually suffer from lack of context 
specificity: most high-rise buildings designed today are rarely site or location-specific. Metaphorically, 
they are imposing, self-centered giants.  And although this site-specificity can be viewed from the different 
views of the topics previously identified; such as the vitality, density, or social aspects, this thesis chose 
only to focus on energy(resource) performance based on its urban context and climate.   If any of these 
topics can be improved, then the High-Rise typology will be much more defendable within the future of 
our cities. 



Table 2: Reasons for High-Rises. Own production. Info from: (Zandbelt & Mayer, 2012) 



2.1.4 Sustainable High-Rises 
As previously stated, one important way to achieve sustainability is by designing locally. Possible local 

design factors include: 

• Urban Context

• Social Context

• Historical Context

• Local Culture

• Climate

• Economy

• Availability of Resources

• Life Cycle analysis

Due to the broad subject and limited time, only Urban context and Climate were chosen as the main topics 

due to their possible applicability to the computational realm. An important point to consider with the 

urban context is that tall buildings receive much more direct solar radiation, yet this can vary in areas with 

other tall buildings. (Elotefya, et al., 2015) For this reason, the shadows created by the surrounding 

buildings were an important element to be considered. 

Another way to improve a building´s sustainability is by applying optimization strategies on buildings. Ken 

Yeang, creator of the self-proclaimed “eco-skyscraper” shows many great strategies to achieve this 

through many of his designs. (See table 4).  The reason for this table was to identify all the possible 

optimization strategies applied to high-rise buildings. The recurring theme of this table also highlights the 

importance of designing locally.  

Again, aspects like social vitality or wind behavior on buildings are important elements to consider when 

designing tall, yet a conscious decision was made to not include them in the scope of this thesis. Social 

vitality is something that relates to human relationships and community, therefore computational tools 

seem unfitting for its study.  

Wind behavior, on the other hand, is a subject that has been studied extensively in other fields such as 

Aerospace Engineering that study aerodynamics with the use of Computational Fluid Dynamic (CFD) 

software. This part of this subject was consuls left out to focus on lighting and energy factors that play an 

equally important role in high-rise design. Likewise, the subject on CFD is a very specialized one, requiring 

much more research to master and use properly.  

Finally, another theme mentioned in the table is green technologies such as vertical landscapes or 

agricultural production along the building’s facade.  Although there are many examples of green filled 

proposals in renders and competition entries, actual successful real-life projects currently applying this 

technology are few and far between.  Successful examples of this are Bosco Vertical in Milan by Stephano 

Boeri and Oasia Hotel Downtown Singapore by WoHa. These projects have both overcome many 

challenges like water supply and drainage, additional weight from planters, redundant safety systems to 

keep the plants in place, costly maintenance, and plant replacement, yet green facades offer little 

improvement compared to traditional shading devices for internal temperature. (Phan Anh Nguyen, 2019) 

That is not to say that planting technology is a negative solution; it offers many other advantages such as 

reducing heat island effect, purifying air, noise cancelation, and creating relaxing atmospheres for the 

user. This technology seems particularly desirable in low/mid-rise building typologies that have lower 

wind velocities hitting the plants and potentially damaging them. Hence, green technology is a potentially 

important subject for a designer to consider but for now, they seem like few niche solutions on high-end 

skyscrapers, therefore they were not contemplated for this thesis.  



Table 3 Optimization Strategies for High-Rises- Own Production, info from  (Zandbelt & Mayer, 2012) 



2.2 Building Physics 

2.2.1 Climate Zones 
The Köppen climate classification divides climates into five main climate groups: 

A (tropical), B (dry), C (temperate), D (continental), and E (polar), these are subdivided with a second 

later that indicates seasonal precipitation and temperature patterns, while the third letter indicates the 

level of heat. These climatic zones affect the outdoor temperature, relative humidity, solar radiation, 

and wind speed and thus have a great impact on the configuration of a building´s passive design and 

control strategies. It is crucial to design according to its specific climatic context.  

As defined by the research question, the idea is to generate a tool that contemplates different climate 

factors. Preferably, various climate types and locations would be reviewed, but at least 2 locations should 

prove the methodology. Weather zones with larger seasonal variations offer more complexity when 

designing because while some solutions might work well in the warm summers, they might not be as 

effective in cold winters. 

Amsterdam, Netherlands 

Elevation: 2 meters  

Latitude: 52 18N      Longitude: 004 46E 

Köppen Classification:  

(Cfb) Marine West Coast Climate 

Figure 6 Climate Annual Summary (Weather Base, 
2020)) 

The reason for choosing Amsterdam is to start with a control “local” location that will be able to be 

compared to other locations worldwide. Also, Amsterdam has some seasonal variation that will show the 

tradeoffs when optimizing the three intended outputs.  

Bogota, Colombia 

Elevation: 2547 meters    

Latitude: 04 42N     Longitude: 074 08W 

Köppen Classification: (Cfb) Marine West 

Coast Climate  

Figure 7 Climate Annual Summary (Weather Base, 

Bogotá has the same climate classification of 

Amsterdam yet because of its location near the equator, the climate is much more constant throughout 

the year, showing barely any seasonal variation. There is a marked difference between summer or winter 

season. Most days are cloudy, but when the sun shines there is a high radiant load that should be 

protected.  



Dubai, United Arab Emirates 

Elevation: 4 meters     Latitude: 25 15N 

Longitude: 055 20E 

Köppen Classification: (BwH) Tropical and 

Subtropical Desert Climate  

Figure 8 Climate Annual Summary (Weather Base, 
2020) 

The reason for choosing Dubai is because today it is the city with the highest skyscraper, the Burj Khalifa 

in a harsh desert environment. Although these buildings undoubtedly showcase a feat of human 

engineering, research on the basics of building physics makes it seem completely out of place with large 

glazing areas and non-existent shading strategies.  This location would thus be an ideal extreme desert 

climate study.  

2.2.2 Building Energy Performance  
Many regulations, codes, and standards around the world are in place for classifying energy-efficient 

buildings. Next is a summary of the most recognized international standards reviewed for this report. 

International Green Construction Code and ASHRAE Standard 189 

This is a general code that covers land use, water conservation energy conservation, and other criteria. It 

was established by ICC, AIA, ASTM International, ASHRAE, US Green Building Council, and IES with the 

idea to provide baselines for green construction. (Efficient Windows Collaborative, 2000-2018) 

ENERGY STAR certification 

In the United States, the Environmental Protection Agency (EPA) and the US Department of Energy 

(DOE) developed the ENERGY STAR certification for products that meet certain energy performance 

criteria. 

Windows have labels that show the zones in which they are qualified. The building envelope performance 

should vary by climate therefore the recommendations are given for four distinct U.S. climate zones:  

• Northern Zone Required Properties (mostly heating)

• North/Central Zone Required Properties (heating & cooling)

• South/Central Zone Required Properties (heating & cooling)

• Southern Zone Required Properties (mostly cooling)

This regional climatic specification is specific to the US but the principle of differentiation of building 

components can be broadened for the whole world. (Efficient Windows Collaborative, 2000-2018) 

The two most common international certifications on the sustainability of constructions are LEED (US) and 

BREEM (EU), each has its chapters on energy efficiency and reduction.  



Dutch building degree 2012 (Bouwbesluit) 

This is the Dutch building degree that determines a series of parameters the must be met depending on 

building type and stage (new or existing). This document has all the legislations that a building in the 

Netherlands must comply with. Section 3.11 specifies the daylight and Article 3.75 about the daylight 

surface. Chapter 5 specifies the technical building regulations from the energy efficiency and 

environmental performance.  (Ministerie van Binnenlandse Zaken en Koninkrijksrelaties, 2012)   

Heat Balance and Energy demands 

The fundamental principle of energy modeling is based on the first law of thermodynamics: All energy is 

transformed, never destroyed. Energy In = Energy Out 

Thus, any space has thermal balance when, under stationary conditions, the internal and external energy 

achieve balance, thus Qin = Qout.  

The energy balance formula is: 

 ± Qtransmission ± Qventilation - Qinfiltration + Qsun + Qinternal + Qenergyuse = 0 

Modifying any of these components will affect in turn the final energy use. 

± Qtransmission ± Qventilation - Qinfiltration + Qsun + Qinternal = -Qenergyuse  

Therefore, by varying the variables of the façade, like the transmission or Qsun, the final energy 

consumption can be lowered.   

Looking at each independently: 

Qtransmission is the energy that is transmitted through the façade, thus dependent on envelope 

parameters and the climate conditions.   

Qtransmission = Σ U * A * (Te - Ti) 

U = the U value  
A = the area of the façade 
Te = the temperature outside (climate dependent) 
Ti = the temperature inside (comfort dependent) 

Qventilation is the energy from the Natural Ventilation or HVAC system 

Qventilation= Qvent*ρ*Cp*(Te – Ti) 

Vvent = Ventilation flow 

ρ = air density = 1.2  

Cp = air heat capacity  

Te = temperature outside (climate dependent) 

Ti = temperature inside (comfort dependent) 



Qsun is the energy input from the sun. 

Qsun =Aglass * qsun * g  

Aglass = area of the glazing 
qsun = Intensity of the solar radiation on the glass (climate dependant) 
g = g-value (solar transmittance factor of the glass) (see SHGC) 

Qinfiltration is the outdoor air filtered through cracks and that was not intended to enter the space 

Qinfiltration = Vi*ρ*Cp*(Te – Ti) 

Vi = infiltration flow (0.2) 

ρ = air density = 1.2  

Cp = air heat capacity  

Te = temperature outside (climate dependent) 

Ti = temperature inside (comfort dependent) 

Qinternal is the energy that is added to the building through lighting, people, and equipment. 

Qint = Qpeople + Qlight + Qequipment 

Figure 9 Summary Heat & Energy Balance (source: own) 

This table shows a summary of all the elements that come into play. In orange the envelope dependent 

parameters, in blue the climate/location-dependent parameters and green the comfort dependent 

parameters. Consequently, if these parameters are carefully modified and enhanced, the final energy use 

of a building will be improved.  The final chosen parameters are described in chapter 3.2  



Energy Modeling 

The main steps to generate an energy model are to define the following variables: 

1. Envelope Geometry + Materials (Insulation)

2. Program / Uses

3. Internal Mass

4. Internal Loads

5. Schedules

6. Natural Ventilation

7. HVAC System (Levitt, 2015) 

Ultimately, energy consumption is a metric that depends on various factors such as window properties, 

people density, typology or use, HVAC system type, ideal user comfort, occupancy schedules, peak 

electricity demand. The heat lost or gained through its envelope represents a significant portion of the 

building’s heating and cooling loads.   (Efficient Windows, 2011-2020) 

Energy Modeling Performance Metrics 

The final step in achieving a trustworthy energy model is choosing the right output to review and optimize. 

Among the possible outputs are Cooling, Heating, Equipment, and Lighting loads, but these are 4 separate 

output variables measured in KW h / m2. A way to unify them into a single output is, to sum up, the Total 

Annual energy demand measured in Kw H /m2 / yr. Even further, by looking at this yearly output and then 

normalizing the results by floor area the site Energy Use Intensity (EUI) is defined.  

EUI 

Site energy EUI is used to understand the energy use of that individual building. Source energy, on the 

other hand, incorporates all the energy required for the building including transmission, delivery, and 

production. This measurement provides a complete assessment of the energy efficiency of the building 

by contemplating all possible losses and forms of energy. (EnergyStar, 2020)  

Nonetheless, due to the uncontrollable variable of different energy generation sources per location, it 

makes it impossible to equate between generic buildings across different locations.  For comparison 

purposes, only site energy EUI will be used for this paper because it accounts for only the energy required 

to run the building. Energy production or HVAC system efficiency would add yet another variable to the 

comparison. Looking only at site Energy makes the comparison simpler. Reducing this base energy 

consumption would result in a more efficient building, independently of the further improvements or 

internal energy production that would be a supplementary improvement for this benchmark.  

Location-specific EUI means that climate change has a significant impact on EUI due to the variations in 

heating and cooling costs per country. For this reason, sometimes EUI values are “weather-normalized” 

to compare buildings in different climates and regions. This method, however, was not applied to the 

models in this paper.  

The building use is also important for EUI; Hospitals, for example, use more energy because of their 

specialized equipment, it is, therefore, it is crucial to compare buildings with similar uses to each other. In 

this research, an only open office building typology is used and compared.  



2.2.3 Natural Daylight 
There are many ways to measure the daylight on a building, including Daylight uniformity that is necessary 

for stadiums and conference rooms, Daylight access that is especially useful in public spaces, Daylight 

factor that is very applicable in places with substantial periods of overcast skies where daylight is sought 

after or Spatial Daylight Autonomy (sDA) that is used on LEED and BREEAM certifications and considers 

geographical location and specific weather information on an annual basis. (Advanced Buildings, 2020) 

Nonetheless, the metric that was used for this study Useful Daylight Illuminance (UDI) was used.  

Useful Daylight Illuminance UDI 

Useful daylight illuminance (UDI) is a relatively new paradigm created by Mardaljevic and Nabil in 2005 to 

measure annual daylight over the work plane that users would consider “useful”. The graphical percent 

values represent the percentage of the floor area that meets the UDI criteria at least 50% of the time. The 

author argues that “UDI also preserves the interpretive simplicity of the conventional daylight factor 

approach. The degree to which UDI is not achieved because illuminances exceed the upper limit is 

indicative of the potential for occupant discomfort” (Mardaljevic, 2005) 

Consequently, this single value is especially convenient because it contemplates useful special daylight 

autonomy while seeking to limit possible glare occurrences. In other words, only by counting lux values 

below 2000 it implicitly avoids solutions with intolerable glare or excessive warmth from solar radiation. 

(Thomas Wortmann, 2015) The widely accepted 100-2000 luxe range was used for the parametric model. 

(Mackey & Sadeghipour, 2019)   Finally, it must be noted that this metric should be taken critically as it 

also depends on the depth of the floorplate; meaning that places near the windows could present good 

UDI while place deep in the floorplate would fair much worst.  

2.2.4 Thermal Comfort 
Even though the energy model can predict an indoor temperature, it is then important to review if this is 

a temperature that the users will find comfortable. We must differentiate the various temperature 

measurements to know which one to review and how they are related to each other:  

Air Temperature is the average temperature of the air inside the building. 

Dry-Bulb Temperature is the air temperature outside the building. 

Mean Radiant temperature is the mean of the mean internal air and mean radiant temperatures of all 

the surrounding objects. It is the temperature of all surrounding surfaces multiplied by the angle and 

divided by 360°, meaning that the material´s emissivity plays a role.  

Operative (comfort) temperature is based on both the air and radiant temperatures. It is the 

measurement of the average perceived temperature of each zone, thus the measurement that is 

affected by the other temperatures and that which is sensed by the building’s users; hence, it will be 

used to review comfort.    (DesignBuilder, 2020) 

The static PMV / PPD method 

Thermal comfort is a measure to express the level of satisfaction of the user in their environment. The 

HVAC system´s main goal is to maintain a comfortable level of thermal comfort. When climate permits, 

buildings should seek natural ventilation as they typically use about half of the ones which air conditioning. 

(M.A Humphreys, 2002)



Through field surveys, users are asked to fill in a “comfort vote” on a scale. The scale is then categorized 

between 7 points, with the middle of the scale being the ideal 0 or neutral comfort. The two classification 

methods are ASHRAE and Bedford, but they offer similar classification.  

 Table 4 (Humphreys & Nicol, 2002) 

The main issue with thermal comfort is that because of the two user variables (metabolic rate and 

clothing) are impossible to define and that field surveys are conducted differently, there is usually a 

discrepancy between rational indices and field measurements. (Humphreys & Nicol, 2002) 

This method is one of the most recognized comfort models, but it is not necessarily the ideal on. This 

model is commonly used in buildings that utilize 

HVAC systems. It was developed by P.O. Fanger 

in the 1960s in a room under strictly controlled 

climate conditions. It plots the predicted 

percentage of dissatisfaction against the 

predicted mean vote. The range of 

international standard for the thermal limit is 

between 10% of people dissatisfied, this 

correlates between -0.5 to 0.5 PMV  

This complies with ASHRAE 55-2017. This 

standard is met by 80% user satisfaction and 

would fall within the blue rectangle like so:  

For naturally ventilated or hybrid buildings other methods are more useful. This method has the potential 

of being dangerous for sustainability because most HVAC engineers apply this same static method in 

developing tropical and arid regions. Chris Mackey notes that this cycle should be broken, to avoid 

excessively air-conditioned buildings that by having higher cooling demands, burn more fossil fuel. 

Instead, passive design and natural ventilation should be sought after. (Mackey & Sadeghipour, 2019) 

Adaptive Comfort Standards 

More recent adaptive comfort paradigms have much higher energy-saving potential because they assume 

that users tend to shift their comfort range depending on the outside temperature. This high correlation 

between the average outdoor temperature translates to more energy-efficient buildings because the 

indoor temperature setpoints adapt to the season. Although the assumptions for these set points are still 

relatively crude and there is still much research potential in this area.  (Mackey & Sadeghipour, 2019) 

According to literature, there are currently 3 adaptive standards: the American ASHRAE 55 2010, the ISO 

7730, and the European EN 15251 with an updated version: NEN-EN 16798-1 for the Netherlands. They 

Figure 10 (SIMSCALE, 2019) 



are based on Humphreys Adaptive method that was developed using collected data from field studies 

where the users interact within the building. 

The adaptive method assumes that if a change occurs in the environment to produce discomfort, people 

will react in ways that tend to restore their comfort. This implies that the comfort temperature is 

continually changing. In free-running buildings this comfort temperature is closely related to the outdoor 

temperature and can be simplified to the following formula: 

Tc = 13.5 + 0.54 To 

Tc = Comfort temperature 

To = monthly mean of the outdoor air temperature 

For heated or cooled buildings, the relationship is more complex because the user presence starts to play 

a role. In these types of buildings, consequently, the indoor comfort temperature will change with the 

seasons as the users adjust their clothing to the weather, thus an “adaptive algorithm” is proposed by the 

authors. It is a more precise method than the ASHRAE adaptive as it relates the set-point directly to the 

running mean of the outdoor air temperature.  

Table 5. Example of interior comfort temperature related to exterior mean temperature (Humphreys & Nicol, 2002) 

Recent research suggests that this indoor variable does not increase occupant discomfort yet reduces 

energy demand. With this proposed method, up to 18% savings are expected for the European Union 

(Humphreys & Nicol, 2002) 

Later, this study is even more radical. It asks if buildings should need to specify indoor climate. It argues 

that the characteristics of a building´s controls and building management concerning the local climate are 

more meaningful. 

This study seeks to improve passive building parameters to improve thermal comfort, however, this does 

not mean that it should stop there. Humphrey et al conclude that when users are given other means of 

control to suit their conditions their thermal discomfort is lowered; thus, traditional curtains or window 

blinders continue to be just as important today.  

The thermal comfort field of study is still being actively updated and developed nowadays, as there 

exists no unifying model for hybrid passive buildings with AC so there is a great potential for additional 

research in this field. On the other hand, this adaptive method is not a good predictor for calculating 

outdoor comfort, rather the UTCI is recommended.  



2.2.5 Conclusions of Building Physics 
The following are general conclusions found in literature about efficiency in high-rises, these findings will 

eventually be compared to the results given by the surrogate model to verify its reliability: Having the 

spaces that need more natural light oriented towards the north direction in the northern hemisphere 

leads to a decrease in the energy consumption required from artificial lighting. (Dobbelsteen, et al., 2007) 

There is a strong connection between energy consumption and the shape coefficient (60) meaning that 
buildings with higher relative compactness, have lower perimetral façade area, thus less energy is lost 
for cooling or heating.  (Raof, 2017) For this reason, for energy purposes, the ellipse is usually the most 
efficient in all climates and the Y shaped plan is the least efficient in all climates. Likewise, a 0°-degree 
rotation from the north tends to be the most efficient for all climate types. (Raji, et al., 2017) The effect 
of plan shape on building energy consumption is the highest in the sub-tropical climate (15.7%) and is 
lowest in the temperate climate (12.8%) and tropical climate (11.0%). (Raji, et al., 2017).  

Finally, Babak et Al made an extremely useful general table that shows the improvement of energy savings 

by summarizing the effects of various building ratios, shapes, and orientations regions: 

Table 6 – Early-stage design considerations 
for energy efficiency of high-rise office 
buildings (Raji, et al., 2017) 



Envelope 

The solar heat gain coefficient is negatively related to the indoor comfort index, therefore a careful 

balance must be found. The visible light transmittance (VLT) must be maximized to reduce the daylight of 

unsatisfied time (DUT) (Chen, et al., 2016) 

In general, temperate climates have the most complex solutions because of the complex trade-offs 

between energy demands (cooling, heating, lighting). Very hot climates have the simplest solutions 

because the main objective is to reduce solar gain. (Evins, et al., 2012) 

Shading elements / Overhangs should be designed in conjunction with the glazing area as they are closely 

related. (Evins, et al., 2012) 

This table shows the relationship with the parameters and what outcomes they affect: 

 VLT – Visible light transmittance 
WGR – Window to ground ratio 
OPF - overhang projection fraction 
WU – Window U Value 
SHGC – Solar Heat Gain Coefficient 
WTR - external wall thermal resistance 
EOA- external obstruction angle 

Figure 11- The contribution of design variables to indoor assessment indices (Chen, et al., 2016) 

Babak Raji et Al performed a sensibility analysis concluding four of the most influential envelop 

parameters that affect the buildings energy performance: their chosen parameters were glazing type, 

window-to-wall ratio, sun shading and roof strategies  (Raji, et al., 2016) As high rise buildings typically 

have a low roof to façade ratio, roof strategies will not be considered in this study.  

For their case study of a typical residential building in Hong Kong: “As the building orientation turns from 

north to south, the thermal comfort time decreases whereas the daylight and ventilation performance is 

enhanced.”  It is important to note that, overhangs, wall thermal resistance (WTR), infiltration air mass 

flow coefficient (IAMFC), and wall specific heat (WSH), had a weak influence over most performance 

indices (Chen, et al., 2016). For this reason, none of these parameters were considered except for the 

overhangs as they play a big role in the architectural expression of high-rises. 

In a more extreme matter regarding overhangs, in a case study for a high-rise building in the Netherlands, 

the overhangs surprisingly had a minimal detrimental effect on the total energy consumption; yet it is 

important to note that it could also affect discomfort such as glare for the occupants.  (Raji, et al., 2016)  

This means that overhangs/shading devices are elements that should be considered very carefully before 

implementing due to architectural aesthetic tastes or preconceived designers’ ideas. Careful 

consideration that can only come through sensitive site condition analysis.  

Later though, Babak Raji et Al state that external shading (such as outdoor blinds) generally performed 

better in terms of energy-saving and solar control in all climates. In northern hemispheres, a southern 

facade requires overhangs or fixed (stable) blinds, whereas east or west facades require more dynamic 

shading due to the critical low sun angle in early and late day times. (Raji, et al., 2017) 



Noteworthy is that high-performance design solutions produce considerable energy savings: 42% total 

energy, 64% for heating energy, and 34% for electric lighting energy. (Raji, et al., 2016) 

In a subsequent study by the same authors, their general conclusion is that the optimal WWR range of 

the window-to-wall ratio is 20–30% in the temperate climate, 35–45% in the sub-tropical climate, and 

30–40% in the tropical climate, 50% in a hot climate. (Raji, et al., 2017) 

It is important to note, however, that this study also includes a table where they specify the ideal WWR 

for each cardinal direction and climate location: 

Table 7 - Recommended WWR value for different orientations and climates. (Raji, et al., 2017) 

All in all, these general findings and summary tables give a good background knowledge of the overall 

expected results. These tables give general ranges during early-stage design, yet the designer is not able 

to visualize immediately the impact of each of their decisions on the building efficiency, thus the reason 

to develop this thesis.  Similarly, these solutions are mainly aimed at solely lowering building energy 

consumption, yet daylight and thermal comfort are not the focus, further reaffirming the need for an 

interactive and optimizable High-rise tool. 

2.3 Performance-Based Computational Design 
One approach of performance-based computational design used for this thesis is called the performative 

computational architecture (PCA) framework (Ekici, et al., 2019), focusing on the initial stages of the 

architectural design and being composed of main 3 steps: 

1. Form Generation / Parametric modeling

Is the process where virtual models are defined by parameters that shall be analyzed in 

the following step. Here, the solution space is determined. The number of variables and 

complexity of each must be carefully considered to avoid an excessively high 

computational cost during step 2.  

2. Performance Assessment / Building Performance Simulations (BPS)

Is the step where software mimics a building´s behavior to simulate how it would behave 

in real-life. Once this has run, the performance of one iteration can be evaluated. The 

validation of this model and the choice of indicators is key to meaningful results.   

3. Computational optimization

In this step, algorithms are used to find a solution that better fits within the defined 

objective(s), whether it means to maximize an ideal parameter or to minimize a negative 

one. It could also imply that the optimization is carried out within a certain set of objective 

constraints  



2.3.1 Form Generation 
To achieve better buildings, that reduce energy consumption and their greenhouse gas emissions, it is 

necessary to foresee a building´s physics and performance; for this, Performance-Based computational 

design is a field of study that has been growing in recent years.  

Conversely, when looking at the whole design, the complexity of a real-world problem is enormous and 

can entail many variables presented in section 2.1.4 such as social, historical, and economic factors that 

are difficult to define objectively in the computational realm. For this reason, the basis of design theory 

must be addressed.  

The Co-Evolution paradigm states that architectural design is too difficult to “solve” objectively because 

of its subjective and intuitive nature. On the other hand, the opposing Generate-and-Test paradigm 

defines architectural design as well defined, rule-based and structured process. Within this thought 

process, a set of potential design candidates for a given problem definition is known as the “design space”. 

This design space provides the architect with a framework where multiple design solutions can be 

explored until a suitable design is recognized but also where the design problem can be better understood 

by its user. (Wortmann, 2018). In this sense, performance-based design recognized the complexity of the 

Co-evolution paradigm yet seeks to serve as an additional tool for the architect or decision-maker to 

develop a more informed choice while considering the complete problem at hand.   

In the PCA framework firstly, the design options must be generated automatically, usually through 

parametric design, scripting, and/or programing, only then can these options be run through the 

necessary computational optimization process later. This first step defines the basic rules for the model 

and limits the design space. The solutions are therefore limited by the initial set of rules defined by the 

computational designer and/or architect.  These “rules” are called the decision variables that can be 

continuous, such as a number that gradually increases or discrete, such as a set choice of the parameters. 

Similarly, the outputs must also be defined, this is called the problem formulation, in which the objectives 

such as minimizing or maximizing the outputs are determined from the start.    

Complexity 

A term coined “curse of dimensionality” explains that there is a frequently reported problem: Inputs and 

outputs must be limited in to manage the computational cost.  (Westermann & Evins, 2019) This “curse” 

is a recurring subject in the third step of the computational optimization process therefore the complexity 

of the problem must be considered initially in the form generation step.  

Being this the first stage of the workflow, the time that will be required to generate the model and 

simulate its behavior remains a critical aspect. The “cost” of the following steps: performance assessment 

and optimization, is a factor to consider at this stage. An evaluation´s cost refers to how many resources 

are needed to evaluate the function. A cheap function can be evaluated thousands of times, while a costly 

one can be evaluated fewer times. When the evaluation of the objective function is a time-expensive 

simulation, the next steps would suffer significantly. A sufficiently simple yet useful model is therefore 

key in form generation. The model must be carefully set up because there will always be trade-offs 

between speed, accuracy, and complexity. 

For this reason, discrete parameters were chosen for this thesis, showing the overall behavior of the 

model with sufficiently distanced steps between the decision variables.  



Sensitivity Analysis 

A sensitivity analysis is typically a method used in early-stage design to define which parameters influence 

most of the outcome. This is especially important to identify the parameters that play the biggest role in 

the results. The parameters can be ranked in the level of influence; thus, the least significant parameters 

could be ignored in further, more refined models. By reducing the variables, the model becomes much 

less complex and the simulation can, therefore, be less computationally expensive. The study of multiple 

parameters is Total Sensitivity. Although a sensitivity analysis was carried out for this work, the use of 

surrogate models made it less critical, because the computational cost of running a surrogate model is 

much less than that of a simulation-based model.     

2.3.2 Performance Assessment 
Once the form is generated, the next step is to test its simulated performance through Building 

Performance Simulation (BPS) (Brea, et al., 2020) to then review its accuracy. BPS uses a physics-based 

engine that replicates how a building would behave in the real world and predicts the results, nonetheless, 

the input parameters must be carefully finetuned to achieve coherent results, otherwise, the “garbage in 

/ garbage out” paradigm arises, meaning that if incorrect information is used as input, incorrect and 

unrealistic building simulations will be generated. For this reason, the validation of the simulation model 

was a crucial step, see section 3.3.  

Physics-based Engines 

For the energy and comfort simulations, Energyplus (DOE, BTO, NREL, 2020) is used.  EnergyPlus is a 

building energy analysis engine developed by the US Department of Energy. It is a simulation engine that 

has been around for many years and showed up extensively on scientific papers for research, making it a 

trustworthy option (File type: .idf). For daylight, DAYSIM is used (MIT, 2012). DAYSIM is a validated, 

RADIANCE-based daylighting analysis software that models the annual amount of daylight in and around 

buildings. (MIT, 2012) Although these tools operate independently, they can be used within the 

Rhino/Grasshopper environment through additional plugin components called Ladybug/Honeybee tools, 

the advantage of this coupling is that they can be linked to the Parametric model from the previous 

section, thus allowing testing the model’s various alternatives and subsequently setting up the stage for 

the next phase: the optimization. Honeybee uses Openstudio® ( NREL, ANL, LBNL, ORNL & PNNL, 2020) 

API (application programming interface) to connect with EnergyPlus (DOE, BTO, NREL, 2020) engine and 

run the simulations. (File type: .osm).   

Figure 12 Tool Interoperability (Mackey, 2019) 



2.3.3 Computational Optimization 
Following the automated form generation and the simulation of the designs, theoretical and practical 

knowledge of the optimization process is also required. Optimization in building design has been used in 

many different architectural domains such as acoustic, structural, space layout, construction, HVAC 

systems, control designs, etc. (Kheiri, 2018); nonetheless, this thesis focuses on the optimization quest 

for energy-efficient buildings within the daylight and comfort framework.  

During the literature review, the two encountered search strategies are single (SOO) vs multi-objective 

optimization (MOO) (Wortmann, 2018). Single-objective problems are much simpler because they only 

seek to improve one goal. Conversely, MOO problems, as their name indicates, must consider multiple 

objectives simultaneously, drastically increasing the complexity of the problem.  

Mathematical optimization or mathematical programming is simply the selection of the best element by 

meeting a criterion from a set of alternatives. The most basic optimization problem consists of 

maximizing or minimizing a real function; nonetheless, due to the complexity of the model or the high 

cost associated with running it, usually for the designer it is more advantageous to find a “sufficiently 

good” solution rather than the best one, thus metaheuristic optimization is used. (Wortmann, 2018) 

Simply put, metaheuristic is a set of clever strategies to improve the search for acceptably good 

solutions.  

Multi-objective optimization typically uses heuristic algorithms to explore near-optimal design options 

for different, sometimes even conflicting objectives.  As these objectives are defined from step 1, it is 

necessary to have some criteria to evaluate it, the criteria are expressed as functions of the decision 

variables, also called objective or fitness functions. Only then can a design solution be classified as good 

or better.  

A building optimization for a multi-objective problem can be expressed mathematically as: 

min fm(x)  m = x1, x2, …, xM; 

fm denotes the objective and x is the set of n building design variables. With multiple objectives, the 

solution of the multi-objective problem means that there will be a trade-off between objectives. When 

these objectives are conflicting, they make up a multidimensional space Z (in contrast to a single-objective 

optimization), this means that there is no single optimal solution. (Brea, et al., 2020) 

In multi-objective optimization the Pareto-Front (Cenaero, 2018) is the set of optimal design solutions 

that are not dominated by other solutions, meaning that, in what’s known as the “Pareto-front”, one 

objective cannot be improved further without reducing or deteriorating the other. The Pareto frontier will 

always seek to approximate to a utopian objective vector z where both objectives are improved.    

The optimization aims to aid the designer to learn and understand the trade-offs between the objectives 

and find an acceptable “balanced” solution.  



One of the most used performance indicators for the optimization algorithm in architecture is the 

resulting area between the Pareto frontier and the utopian objective, this area is known as the 

hypervolume. (Auger, et al., 2012)  

Meta-Heuristic Optimization algorithms 

Figure 14 (Nojhan, 2007) 

As seen in the image above, there are many types of optimization algorithms, yet according to a review 
of optimization in the architectural domain,  the most common ones used are evolutionary computation 
(EC) and swarm intelligence (SI) (Ekici, et al., 2019) 

Constraints 

In all optimization problems, there are restrictions imposed by the characteristics of the environment, 

available resources, physical limitations, time restrictions, etc. These restrictions must be satisfied to 

consider a certain solution acceptable. The formulation of the problem in form generation is already the 

first constraint because only the solutions that the parametric model can recreate will be considered. 

Thus, the parameters become the first constraint. The second constraint is when, within the design 

space the decision-maker decides to narrow the search by limiting the preferred solutions within the 

objectives he deems acceptable, such as comfort above a certain benchmark.  

Figure 13 Example of Pareto front on a bi-objective 
optimization problem (Facundo Brea, 2020) 



Local and Global Optima 

In any optimization problem, four important terms were key to understanding the search for an optimal 

design: Local vs Global optima and Robustness vs Accuracy.  

In the search for optimal solutions for a problem algorithms risk on remaining to look for optimal solutions 

in a design space known as the local optima. This might seem like the ideal solution, but other, better 

solutions might be available in what is called the global optima, which is the definitive goal of any search 

algorithm.   

Figure 15 Robustness vs Accuracy (ESTECO, 2020) 

Robustness vs accuracy is contradictory terms when looking for this optimum, as some robust algorithms 

will find inaccurate options but identify the global optima while others might find accurate options in local 

extremes. (ESTECO, 2020) This tradeoff is inherent in all search algorithms. Although robustness and 

accuracy are key during optimizing, the third important criteria to consider is an efficient computational 

cost.  

Optimization Platforms 

There are many optimization platforms: free academic versions are AMPL, GAMS, MPL, AIMMS. Other 

platforms work from a server: NEOS or are open-sourced: COIN-OR or GNU Octave (Hakanen, 2015). Yet 

more options were encountered during the research including Matlab, Scilab, SciPy, Wolfram Alpha, 

Lingo.  Other optimization methods come as plugins within Grasshopper environment such as Galapagos, 

Octopus, Dodo, Wallecei among others.  Finally, process integration platforms that enable various 

modeling/simulation and optimization platforms in a single platform are Optimus, ModeFRONTIER, BOSS 

Quattro, OptiSLang, and Heeds (Hakanen, 2015).  



2.3.4 Relevant Precedents 
Ayca Kirimtat et Al studied the effects of amorphous shading devices in buildings using multiple 

objectives such as lowering the Total Energy Consumption while maximizing the Useful Daylight 

Illuminance. This study compared two different algorithms NSGA II against JcGA-DE, an energy saving of 

up to 14% was achieved while maintaining daylight availability above 50%.  (Kirimtata, et al., 2019) 

Although relevant, this study only looked at the shape of the shading devices towards the south façade 

and did not consider possible additional savings by reviewing the general building shape or orientation.  

Farshad Kheiri published an extensive review of the optimization methods for energy-efficient buildings 

where the objective was to lower building energy while considering both envelope parameters and 

geometric configurations. It gave a good overview of various optimization algorithms. They briefly 

mention the use of surrogate models and a concept in Machine learning coined “neuro-evolution”, that 

describes the use of evolutionary algorithms to train an artificial neural network or similar ML method. 

EnergyPlus simulation tool was used most frequently and more than half of the studies that used 

visualization tools used Rhino and the next widely used was Design builder, all software that was used 

for this thesis. They conclude exactly what this thesis seeks to explore further:  

“The trade-off between accuracy and time is still a challenge. Implementation of different machine 

learning techniques has assisted accelerating the optimization process whereas the applicability of many 

meta-models is limited by the utilized trainset. Future research can improve creating more robust 

models to estimate building energy performance with diverse configurations.”  (Kheiri, 2018) 

Just last year, researchers from TUDelft conducted a comprehensive review of the use of swarm and 

evolutionary algorithms applying optimization on the built environment. This review served as the basis 

to review what had been done in the building optimization realm and what could be further explored. 

Important conclusions from this article state that “only three sources focused on different building topics 

as part of the same optimization problem such as the skin and layout” thus presenting promising potential. 

Furthermore, it concluded that due to the expensive computational time, limited studies included tall 

buildings yet “objective functions based on ANN could be an effective solution”. (Ekici, et al., 2019) This 

reinforced the idea of exploring the use of surrogate modeling using envelope and shape parameters 

simultaneously as a topic for this research.  

This year, Evangelia et Al aimed to reduce the energy consumption on a typical central-core, open plan 

high-rise office building; in this case, for the Mediterranean climate (CsA) of Athens, Greece. Similarly, 

energy simulations with DesignBuilder were used as a benchmark for the Honeybee/Ladybug 

Grasshopper component. Of the optimized variables, WWR, U-value, and external shading area, g-value 

were also parameters reviewed. On the other hand, it also included airtightness of the façade, cooling 

setpoint, and PV surface area. Nonetheless, designs where simulated in two distinct optimization 

rounds, and limiting the search space to 1000 designs. Likewise, the shape was limited to four options: 2 

rectangles (3:1, 1.5:1), 1 square (1:1), and an octagon (1:1) while the orientation to 4: East/West, 

NW/SE, North/South, NE/SW. This paper focused on one specific location and did not contemplate the 

effects of the urban context. Also, differently from this work, more than one optimization algorithm 

could be compared because a lighter surrogate model didn’t render the optimization too 

computationally expensive.  (Evangelia Despoina Giouri, 2020) 



2.4 Surrogate Modeling & Machine- Learning 
This thesis aims to predict real numbers based on collected data from a simulation model, therefore the 

supervised regression type of machine learning is utilized. Through machine learning methods, surrogate 

models are developed.  

On the other hand, this thesis does not focus on the accuracy of the models but rather discusses its 

applicability in the context of simulation-based optimization. And although the use of the validation 

metrics presented in section 2.4.4 is necessary to develop trusted models, the method and approach of 

using these models for design exploration and optimization is the main goal of this paper.  

2.4.1 Surrogate models in architecture 
In the frame of this thesis, a surrogate model is as meta-model of the original simulation model, simply 

put, a model of a model. As they seek to approximate or mimic the original results, their main challenge 

lies in achieving this behavior as closely as possible and representing the full spectrum of the design 

options. For this reason, the sampling method, sampling count, and validation metrics are vital for a good 

surrogate model. 

As a workflow, the surrogate model is generated through a machine learning method that reads the 

results from the simulations to build a statistical model. This simplified version of the model can be then 

used at a fraction of the computational cost to predict results, and thus bypassing the traditional 

simulation step: 

Figure 16 Simplification of a surrogate model workflow (source: own) 

Through the literature study, various surrogate model types were identified: ANN (Artificial Neural 

Networks), RBF (Radial Basis Function), Gaussian Processes, Linear and Non-Linear Regression, MARS, 

SVM (Support Vector Machines), Random Forests, Ensembles, among others. 



The main advantage of using this Meta-model approach lies in 

the time and computational cost that can be potentially saved 

with its use. Facundo Brea et Al show a diagram of how, even 

though the first steps of Form generation, optimization 

algorithms, and Physics-based BPS (Simulations) (Wortmann, et 

al., 2015) are the same, the surrogate model can produce results 

faster because fewer total simulations are required. Albeit, two 

additional, speedier steps are still necessary: Training and 

Evaluating. (Brea, et al., 2020) 

Training the Meta-model model is optimizing its 

hyperparameters in a way that the predicted results are closer to 

the results the simulations would provide.  

Evaluating the metamodel is done through reviewing and 

optimizing its validation metrics presented in section 2.4.4.  

As surrogate models handle such large amounts of data, this information must be made to be 

visually understandable images to humans. Thomas Wortmann presents a review of visualization graphs 

to better understand the design space and potential solutions. He concludes that design optimization 

should be viewed in a wider context, not simply as a methodology to find the “best” performing solution 

but a way to better understand the relationships between design variables and the performance criteria, 

therefore a graphical and visual representation of the design options is a critical tool to comprehend these 

relationships. (Wortmann, 2017). : “Further avenues of development are a user-friendly implementation 

and a visual interface that facilitates the exploration of the (space of) solution spaces.” (Wortmann, et al., 

2015) 

Developing a Surrogate model 

An overview of the steps required to create a surrogate model are: 

1. Problem definition

2. Implementation of a building model

3. Simulation of the samples based on a sampling strategy

4. Collection of samples to a dataset

5. The Surrogate model is trained (fitted)

6. Surrogate model is evaluated / validated (Westermann & Evins, 2019)

Potential Time Savings 

The use of machine learning methods to develop surrogate models shows very promising results in 

reducing the amount of computation time needed, thus significantly improving the information 

available in early-stage design. Through the literature review, studies mention the savings compared to 

a simulation-based approach: 

• From more than seven hours to a few seconds (Chen & Yang, 2017)

• Saving up to 90 days (Ekici, et al., 2019)

• Saving up to 75% of the simulations. (Brea, et al., 2020)

Figure 17 Computational cost: simulation vs 
metamodel approach (Brea, et al., 2020) 



2.4.2 Design of experiments 
Design of experiments (DoE) is an analysis tool aimed at organizing the information that is collected to 

study the relationships between the input variables and the output aka dependent variables, simply put, 

DoE is a sampling strategy. Literature shows that there are two strategies for collecting data: sequential 

vs iterative (Westermann & Evins, 2019). In 2017 researchers present a general review of the Design of 

computer experiments applied to a wide range of subjects, not only the built environment. (Garuda, et 

al., 2017) Similarly, to sequential vs iterative, they classified DoE into two broad categories: Static vs 

Adaptive. Static / Sequential sampling first collects defined by a sampling strategy an uses this dataset to 

train the model; it is more widely used nowadays. Adaptive / Iterative sampling picks samples by 

identifying parts of the design space that need further accuracy. (Westermann & Evins, 2019) 

2.4.2 Plugins for Machine Learning / Surrogate Modeling 
The following plugins for Grasshopper include Machine learning components for developing the 

intended surrogate models for supervised regression: 

Octopus 

Octopus was initially created as a Multi-Objective Evolutionary Optimization; it is based on SPEA-2 and 

HypE optimization algorithm from ETH Zurich. It also includes Support Vector Machines from statistical 

mathematics, using the 'kernel trick' for dimensionality reduction. Likewise, it includes the Artificial 

Networks component by a multi-core resilient propagation algorithm, using the Encog library by Jeff 

Heaton. Only the original multi-objective search and optimization module was utilized for this thesis. 

(Vierlinger, 2018)  

ANT 

ANT is a plugin that takes advantage of the “Skicit Learn” python module. This module includes many 

machine learning algorithms including Lasso (LARS, Elastic Net, k-Nearest Neighbors, PCA, linear and 

logistic regression, stochastic gradient descent as well as Support vector classification and regression. 

(Rahman, 2017) 

Lunchbox 

The Lunchbox plugin counts with many tools for paneling and shapes as well as machine learning 

algorithms such as regression analysis, clustering, and networks using the Accord.NET framework. (Miller, 

2018). This tool proved the most useful due to its widely available information, tutorials, and examples. It 

was used for the validation and linear and non-linear regression sections of this research. (Miller, 2019) 

Dodo 

“Dodo is a collection of tools for machine learning, optimization, and geometry manipulation Regarding 

AI, it features neural networks, gradient descent, stochastic gradient descent, and swarm optimization. 

Dodo has tools for scalar, vector, and tensor fields manipulation which can be visualized using 

isosurfaces.” (Lorenzo, 2019) Ultimately, the ANN component of this plugin was the one chosen for the 

final surrogate models because of its speed and predictive results once properly trained. See Section 3.4. 



2.4.3 Concepts  
Overfitting and Underfitting 
Overfitting is when the model is too closely related to the training data, resulting in less predictable 
results from new data. (Oxford, 2020) Underfitting, conversely, occurs when a model cannot predict 
correctly the underlying structure of the data, also failing to give more accurate results. A good 
surrogate model is when there is a balance between the “tendency” of the model with fewer errors.  
To avoid this, overtraining or undertraining must be evaded. Overtraining happens when the 
predictive "line" is forced to follow too closely all the data points, while undertraining usually occurs 
when there are not enough samples therefore the model is not precise enough. Likewise, trying to fit a 
linear model to an exponential curve, for example, is also a case of underfitting because although the 
data is enough in this case, a more accurate non-linear curve would better predict the results. 
(Wikipedia, 2020) 

Bias vs Variability 

In general, Machine learning is about making predictions. It requires input data, aka training data to 

“learn” what predictions to make. Then, testing data is used to compare the predictions to the generated 

predictive model. The training data will not always fit perfectly because it must also account for the 

predicted data. The resulting poor predictions are called the Bias-Variance Trade-off.  Although the data 

used for training should not be the same used for testing because, otherwise, there would be no way to 

know if the predictions are working, for this reason, the data must be cross-validated.  In machine learning 

lingo, the difference in fits between the data is called variance. This variance is critical for understanding 

the behavior and precision of the machine learning method. (Starmer, 2018) 

 Figure 18 Low Bias High Variablity  (Starmer, 2018) 

Figure 19 High Bias  Low Variability  (Starmer, 2018) 



2.4.4 Validation Metrics  
To achieve a precise and statistically significant surrogate model, it is essential to understand the metrics 

to validate the outputs of the machine learning method. First, commonly used terminology:  

• Inputs = X = independent variables

• Outputs = Y = dependent Variables

• Predicted (aka Fit) Outputs by the machine learning method = Y hat or Ŷ

Next is a brief description of the evaluation metrics used to determine how well the predicted outputs (Y 

hat) match the originally measured outputs (y). The most important terms are:  

R / Pearson coefficient 

The most commonly used coefficient of correlation (R) also known as the Pearson coefficient shows how 

strong a relationship is between two variables. A negative 1 shows a strong negative correlation and a 

positive 1 shows a strong positive correlation. R is not as intuitive as R² that shows the percentage of 

relationships that can be explained. (Starmer, 2018) 

R² and Adjusted R² 

Simply squaring the value of R gives the R² Value, also known as the coefficient of determination. Because 

squared values cannot be negative, it no longer explains the direction of the correlation, nonetheless, this 

single value explains the percentage variance of the results that can be explained by the independent 

variables, in other words, its “predictive power”. (Starmer, 2018) Example: R² 80% would mean that 80% 

of the results can be explained by the surrogate model. Therefore, the closer to 100% the more precise. 

Attentively it is presented as a decimal. 80% = 0.8  

The way to compute the R² value is by calculating the variance of the trained inputs Y as well as that for 

the predicted (fit) Ŷ. (Anderson, 2020) The formula for variation is:  

∑  (Yi – Ȳi)²

𝑛

i=1

 

Y = mean of the samples 

Ŷ = predicted data 

Yi = training data 

The Predicted Ŷ variance is then divided by the measured Y variance. This is the R².  

Alternatively, R squared can be calculated using the sum of squares (SS) looking at either the RR 

Regression or SS Residuals divided by the SS total: (Wikipedia, 2020) 

𝑆𝑆𝑟𝑒𝑔

𝑆𝑆𝑡𝑜𝑡
or  1 −  

𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡



Adjusted R²  

Once the R2 is validated, the Adjusted R² metric is necessary when multiple variables are considered, it 

is adjusted to the sample size. The more samples, the better results; and the more variables, the higher 

the penalty. When comparing 2 different models, the Adjusted R², represented as (Ṝ²) is a more 

accurate measurement. (Anderson, 2020) 

Ṝ2 = 1 − (1 − 𝑅2) [
𝑛 − 1

𝑛 − (𝑘 + 1)
] 

N = the sample size (500) 

k = the number of independent variables  

MSE / RMSE  

This metric is frequently confused therefore another terminology clarification must be made: 

• Mean square error (MSE) = Mean squared deviation (MSD) = Standard Error of Regression (SDR)

Similarly, related, but not the same is: 

• Root mean square error (RMSE) = Root Mean square deviation (RMSD) aka Standard error of the

mean (SEM) = and sometimes only referred to as the “Standard Error”

The MSE tells us on average how much each observation is missing the prediction. The higher, the worst 

fitting the model, therefore values closer to 0 is always preferred.  

The variance is a squared metric so it cannot be plotted to the same histogram as the data so the new 

term, the (SDR) is required. MSE measures the quality of an estimator as so:  

MSE= 
1

𝑛
∑  (Yi – Ŷi)²

𝑛

i=1

 

As MSE and RMSE are means, they depend on the number of samples (df Total) and the number of 

variables, also known as the Degrees of Freedom (df). Subtracting these (n-1) gives the degrees of freedom 

of the regression, used to compute MSE. For this thesis, this was also computed with a custom GH script 

(see method). The RMSE is simply the squared root of the MSE, thus normalizing the calculation with the 

data. (Dekking, 2005) 

MAE - Mean absolute error 

The mean absolute value is a similar output to MSE and is also used to validate the accuracy of the 

model. Instead of squaring the variance and then calculating its squared root, MAE simply finds the 

absolute value of the results. (Willmott & Matsuura, 2005) 

MAE = 
1

𝑛
∑ ׀ Ŷi –Yi׀ 

𝑛

i=1

 



P-Value

Once R² has been determined, it must also be reviewed that this information is statistically significant, 

meaning that the results simply did not happen by chance. (Koehrsen, 2018) 

Any experiment starts with a null hypothesis (H0) meaning that one assumes that there is no significant 

difference between the data. Only if at least one of the variables affects the data, the Null Hypothesis (H0) 

can be rejected thus we can infer that a variable affects the outcome:    (Koehrsen, 2018) 

• H0 = Var1 = Var2 = Var3 = 0 … means there is no useful linear relationship between features and

outputs because the slope of the regression line is 0.

• H1 = Var(i) ≠ 0 …. If it’s not a 0 however, at least one of the variables affects the data, and a 

relationship can be inferred, and that one variable is significant. 

This value is the P-value: the smaller the values for P, the higher the confidence, in other words, the more 

likely the parameters affect the results. P-Value is, therefore, how much confidence can be given to the 

parameters affecting the results. A commonly used threshold is 0.05, meaning that only 5% of the results 

could be incorrect. This threshold is referred to as Alpha. Thus, it is commonly accepted that P-values < 

0.05 mean that inputs are statistically significant. Usually trying to reduce the number of False positives 

below 5% is not worth it because of the high costs.  Likewise, lower P-value seeks to avoid False Positives 

or Negatives, meaning when the algorithm predicts classification problems incorrectly. (Starmer, 2018) 

Finally, the F Statistic or Significance F is a test statistic that shows if a group of variables coupled together 

are jointly significant. (Glen, 2020). Therefore, the F statistic must be used together with the P-value to 

validate the probability significance of the results.  

2.4.5 Relevant Precedents 
As early as 2015, which in computational terms is a lot, Thomas Wortman used an optimization problem 

for a performative façade to assess the quality of lighting conditions (UDI). He compared the best solution 

found by the RBFOpt surrogate model versus another solution found by more traditional Differential 

Evolution algorithms in Galapagos and found that RBFOpt outperformed the popular genetic algorithm by 

almost two orders of magnitude. This study showed the proof of concept of using surrogate models to 

provide good solutions and contribute to a better understanding of the problem, yet it was limited to 15-

panel variables with different louver angles. (Wortmann, et al., 2015) 

In 2016 Simong Fong and Zhonghuan Tian wrote a chapter on applying the meta-heuristic algorithms on 

neural network training. This was of interest as it delved into the subject of deep learning, using the 

metaheuristic optimization methods learned for solving an architectural problem to rather improve the 

training of the surrogate model developed by the artificial neural network. It gave a general overview of 

the use of metaheuristics implemented in neural network training. It concluded that there is a 

“…high possibility of applying meta-heuristic in DL to speed up training without declining performance. 

However, relevant publications in this direction are still rare.” (Fong, 2016) It did not delve, however into 

optimizing building components but rather focused only on the theory and applicability of this 

methodology.  



In 2017, Xi Cheng and Hongxing Yang published a research paper on optimizing passive strategies of a 

high-rise residential building with multiple building operation scenarios. They also used machine 

learning methods to develop surrogate models to reduce the computational load. For optimization, they 

used the NSGA-II algorithm. Similarly, to this research, they choose two different representative 

locations: Hong Kong and Los Angeles. The same input variables where: Building Orientation, U-Value, 

Overhang size (overhang projection fraction), window SHGC, and VLT with EnergyPlus as the simulation 

engine also. They also looked at different ventilation strategies like single-sided vs cross ventilation, 

infiltration air mass flow coefficient and analyzed Window to Ground Ratio rather than Window to Wall 

Ratio. Rather the looking to improve the comfort levels, they developed a hybrid ventilation control 

algorithm to determine when to use HVAC or natural ventilation. Their main objective was also to 

reduce the total energy demand (kW/m2). Contrary to this research, however, they used a simplified 

approach on daylight optimization by calculating required lighting as a fraction of the rated power 

according to continuous/off dimming control method and where the daylight illuminance level had to 

simply meet a threshold of 150 Luxes rather than optimizing UDI as done in this paper.  Also differently, 

this paper will look at an office building rather than a residential one and will include a parameter that 

contemplates the effects of surrounding building on the energy and daylight performance. (Chen & 

Yang, 2017) 

Last year, Berk Ekici et Al developed a surrogate model for a high rise building subdivided into 5 different 

zones, thus with 5 optimization problems. The variables were overhang length and glazing types to 

optimize the spatial Daylight Autonomy and Annual sunlight exposure. This study proved once again the 

time efficiency of the surrogate model saving up to 90 days compared to the metaheuristic simulation-

based approach. (Ekici, et al., 2019) Although this study investigates façade shading devices and 

investigates the effects of the urban context, it does not simultaneously investigate the effects of the 

shape or the location which was also considered in this thesis.  

Just this year, researchers from Argentina and Uruguay performed multi-objective optimization using 

NSGA-2 coupled with ANN-based metamodels, also trained using EnergyPlus software. It showed the 

potential of this methodology to improve a building's energy efficiency and thermal comfort on a dwelling. 

It investigated 12 variables such as roof type, external and internal wall types, solar orientation, solar 

absorptance, size and type of windows, and area of external shadings. It concluded that up to 75% of the 

building’s energy simulations could be reduced to find Pareto optimal designs. It reviewed the 

convergence of MSE based on the sample size to define better criteria on how many samples should be 

collected to achieve accurate results of the metamodel. (Brea, et al., 2020)  

From this research, it can be concluded that some investigation has been done on building optimization 

using surrogate models, yet most existing research does not explore the effects of the context and climate 

location neither does it use the full potential of the lightness of the model to empower the designer to 

“play” with the model or to compare various optimization algorithms. This is a relatively new area of study 

that shows great potential for further improving the behavior of our future designs.  



3.0 Method 
As presented during the literature review, the original performative computational architecture (PCA) 

framework (Ekici, et al., 2019), can be divided into three parts: 

1. Form Generation / Parametric Modeling (PM)

2. Performance Assessment / Building Performance Simulations (BPS)

3. Computational Optimization (CO)

Within the Performance Assessment, relevant previous showed how using DesignBuilder software 

(DesignBuilder, 2020) as a benchmark for the Honeybee/Ladybug Grasshopper component (Evangelia 

Despoina Giouri, 2020) gave higher reliability to the energy, daylight and comfort calculations. For this 

reason, this step was also considered during the performance assessment and before computational 

optimization. Moreover, having identified the potential advantages of speed and computational efficiency 

of using surrogate models, the steps in the literature review related to generating surrogate models were 

included between 2 and 3 to reduce the total number of BPS and improve the speed of the computational 

optimization. Also as identified in the literature review, an additional step: in the form of a visual interface 

tool, was necessary to facilitate the review and exploration of the optimized results.  Finally, it was 

deemed important for this new tool to showcase its applicability, for this reason, one of the optimal 

solutions was chosen as a “showcase” example to demonstrate how the tool could be integrated into the 

whole PCA workflow when working on early stages of design.  

The new methodology is thus composed of the following steps: 

1. Problem definition

2. Simulation of the Parametric Modeling (PM) / Form Generation

3. Building Performance Simulations (BPS) / Performance assessment

4. Validation of Simulation Model in Design Builder

5. Data Collection based on the sampling strategy

6. Training of the Surrogate model

7. Evaluation of Surrogate model

8. Computational Optimization (CO)

9. Surrogate model in Design Process

10. A showcase of a design Solution

The following figure shows a summary of the tools used for each of the steps defined in the general 

method defined above.   



3.1 General Workflow 

Figure 20 Final Workflow 

The parametric model is built in Rhino/Grasshopper with Ladybug/Honeybee (Daysim/Energyplus) as the 

building physics simulation engine, then ModeFRONTIER (ESTECO, 2020) is utilized as data collection 

software. Following, this data is saved as an excel sheet and read back into a new Grasshopper 

environment to be run through various plugins with Machine learning methods. The best performing 

Surrogate models where trained and chosen.  

Next, the original parametric form generation model was simplified by striping it from its 

Ladybug/Honeybee simulation components and then coupled with the trained surrogate models. The 

form generation model was given the option to be turned off, this allowed for the optimization process 

to run extremely quickly by using only the trained surrogate models. Once an interesting solution was 

found, the model could be turned back on to immediately review the results, thus making it more useful 

in the design process.   

Finally, the generic Rhino geometry was translated through the Rhino.Inside Beta ( Robert McNeel & 

Associates, 2020) plugin into Revit Architecture (Autodesk, 2020). This would thus allow the designer to 

quickly generate plans, sections, elevations, and 3D images to showcase any of the Pareto-optimal 

solutions.  

3.2 Overview of the Parametric Model 
Many factors play a critical role in improving the energy, daylight, and comfort of a building, such as the 

HVAC system type or dynamic façade technologies. Nonetheless, the following parameters were chosen 

to be studied for this research because of their high influence according to the literature review and 

because of the effects they have on the architectural image of a high-rise.   



3.2.1 General Parameters 
Table A 

General Parameters 

Building Parameter ID Description Units Range 
Min 

Range 
Max 

Data 
Interval 

# of 
Inputs 

x6 Orientation BO The angle to the 
north 

° 0 315 45 7 

x9 Shape BS General shape: 
Triangle, 
Parallelogram, 
Octagon, Ellipse 

# of 
Segments 

3, 4, 8, 32 - 4

x4 Plan Length BL Length of plan m 20 80 20 4 

x16 Plan Width BW Width of plan m 20 60 20 3 

x1 Analysis Level AL Building where 
building level is 
performed 

m 0 30 15 3 

x4 Floor to floor Height FFH Distance from 
floor to next floor 

m 3 4.5 0.5 4 

x2 Core Type Core Position of the 
core to the plan 

- Central Core
Lateral Core

- 2

Geographic Location Loc Options for 4 
different 
locations and 
climates 

- Amsterdam
Bogota, Dubai

- 3

Orientation 

The orientation of a building and its facades play a crucial role in the 3 performance parameters. 

Differences in annual electricity use between orientations are driven by the solar gains that affect the 

cooling or heating or natural daylight. (Efficient Windows, 2011-2020) 

In the northern hemisphere, a southern orientation is usually preferred because it is possible to shade 

from the sun but also capture daylight (through light-shelves for example) to reduce lighting energy load. 

In contrast, northern oriented facades receive good ambient and indirect daylight, therefore glare is rarely 

an issue.  The hardest orientations to shade are the eastern and western ones because of the low position 

of the sun, thus vertical sun-shading can be good passive strategies on these sides.  

The model was developed to rotate 315 degrees with steps of 45° to keep the variables to a minimum of 

7. Even though a 180° rotation would result in the same option for the central core, this same 180° rotation

would result in a different mirrored version for the lateral core, making it a significant option to be

reviewed.



Shape 

For the shape parameter, four (4) different shapes were chosen depending on the number of segments 

of the polygon in plan view: Triangle, Parallelogram, and Octagon had their respective 3, 4, and 8 sides. 

The ellipse option was simplified to have only 32 sides to keep an acceptable model complexity, so 

although it is not a perfect ellipse, it is categorized as such for this exercise.   

Length and Width / Usable Area 

The width and length of a building are critical variables to consider when seeking to optimize the interior 

floor area of a high rise, being this a key measurement within this typology, as every squared meter of 

usable floor area is particularly more expensive when building a Highrise.  For this reason, the interior 

usable floor area is calculated as an additional performance metric.  

Likewise, the length and the width of a typical floor plate of a Highrise can drastically influence the depth 

of the plan, therefore it was expected that these parameters would have a high impact on the daylight 

penetration into the deeper parts of the floorplate, ultimately affecting UDI.  

These parameters are measured in meters and limit the external perimeter of the shape, the smallest 

polygon is limited to 20 m x 20 m for a triangle with a floor area of only 130 m²; lower than this is 

considered economically inviable because of the high cost vs usable area ratio, making it a good minimum 

range. The largest external perimeter is 60 m x 80 m for the ellipse with a floor area of up to 4300 m²; 

rarely was a floor area for a high rise found in the literature review making this a good maximum range.  

Analysis Level 

The analysis level parameter was defined as the position were the analysis was taking place within the 

height of the building:  the first, middle, or top floors. While the context remained static, the level of 

analysis could give insight into the effects of different urban contexts. The top floor could be interpreted 

as the lower level of a building with no context (such as the countryside), the middle level could be 

interpreted as a building with medium height context, and the lower level could be interpreted as a 

building with a densely packed high-rise context (such as Manhattan).  

Figure 21 -Parametric grasshopper model with Analysis Levels: N00, Mid-Level and Top Level (source: own) 



Floor to Floor Height 

The floor to floor height affects the daylight and energy demand as a higher floor to floor height allow 

for deeper penetration of natural daylight into the floorplate, thus potentially improving UDI but also 

creating larger surface area towards the outside, affecting the energy consumption. Hence, floor to floor 

height variable was considered in the model.   

To simplify the model for efficiency, the total number of floors was kept at 30 floors while the context 

building height was kept between 15 to 20 floors. This, however, did not affect the ability to modify the 

total height of the building as the Floor to Floor Height (FFH) parameter was kept. According to research, 

older office buildings from the 1980s have an FFH of at least 3 m while more modern ones offer 4 m and 

even 4.5 m to allow for MEP ducts flexibility and more daylight, therefore the chosen range was between 

3 and 4.5 m  

Core Type 

As seen from the research from section 2.1.2, efficient high-rise buildings can be designed with central 

or lateral cores. The parametric model accounted for two options by allowing for a 1:1 ratio central core 

versus a 2:1 ratio for the lateral one (inspired by the Leadenhall building lateral core in the literature 

review). Both core options used the following formula to calculate its size to the floorplate:  

𝐶𝑜𝑟𝑒 𝑠𝑖𝑧𝑒 = (𝐺𝐹𝐴 ∗ 0.2) + (𝑇𝑜𝑡𝐻 ∗ 0.02) 

GFA = Gross floor area 

TotH = Total Height 

An average of 20% was used. Similarly, it seeks to consider that as high-rises increase in height, their core 

must expand to accommodate additional MEP ducts and lifts required to service its new height. The total 

height is therefore multiplied by 0.2 to account for this increase. This formula was custom developed for 

this model as a hypothesis, yet it could be further refined with additional information on high-rise/core 

ratios, which was not the main objective of this paper.     

Figure 22 Core Options: Central (Internal) versus Lateral (External) (source: own) 



Another essential aspect of the parametric model was assigning the core as a Thermal Mass component. 

When the central core type was chosen, it was important to realistically model the effects of a solid 

concrete core within the floorplate, possibly affecting the temperature inside. Its walls were assigned as 

adiabatic surfaces to restrict the energy/heat exchange from the floorplate to the core. This option could 

have significant advantages in passive design.  

Inversely, when the option for the exterior lateral core was chosen, the script automatically updated the 

core walls to react as exterior walls. Then, depending on the orientation of the building, the core could 

theoretically serve as a thermal shield from direct sun.  

Although more core options are possible, like 3 cores from the Commerzbank building, for simplicity 

purposes, only these two options where considered. The goal of this variable was to see the general 

effects of the core position rather than to do an in-depth analysis of high-rise core positioning. Further 

studies could further investigate this subject.  

Geographic Location 

The three chosen locations where: Amsterdam, Bogotá, and Dubai. 

500 samples were collected for each location. Because the geographic location of a simulation naturally 

changes the weather and sun path, this one variable would drastically change the outcomes of each of 

the variables, further complicating the training phase of the Surrogate model. To keep it simple, initially, 

three different surrogate models were developed for each location rather than one that contemplated 

all 4 locations. 

Once acceptable surrogate models were developed for each location, the 500 results from each of the 

locations where simply compiled in a master 1500 sample table that contained the four locations, and 

the meta-model was trained.  

Figure 23 Example of the 16 parameters set up in Grasshopper 
(source: own) 



3.2.2 Envelope Parameters 
Table B 

Envelope Parameters 

Building Parameter ID Description Units Range 
Min 

Range 
Max 

Data 
Interval 

# of 
Inputs 

x8 Solar Heat Gain 
Coefficient / g value (0-1) 

SHGC Solar radiation 
through 
transparent 
materials 

- 0.2 0.8 0.3 3 

x13 WWR_North/West Nw Aglass/ Awall ratio 0.2 0.8 0.2 4 

x15 WWR_West/South Sw Aglass/ Awall ratio 0.2 0.8 0.2 4 

x14 WWR_South/East Se Aglass/ Awall ratio 0.2 0.8 0.2 4 

x12 WWR_East/North En Aglass/ Awall ratio 0.2 0.8 0.2 4 

x11 Visible Light 
Transmittance  

VLT / VT Glazing % 30 90 30 3 

X7 Overhang_Size HS Overhang length m 0.4 1.6 0.4 4 

x5 Number of Fins #Fin Number of 
Vertical Fins per 
window  

1 4 1 4 

x10 U value of total window 
assembly 

U Value / 
α 

Rate of heat flow W/m²K 0.7 4.9 0.7 7 

Solar Heat Gain Coefficient 

This coefficient is a glazing only parameter and measures the amount of 

radiation that the glazing permits into the building.  

A low SHGC is the most important window property in warm climates. To 

improve energy performance, windows should have an SHGC of 0.25 or 

less. As a means of example, Triple vacuum Low-E glazing has an SHGC of 

0.1 while traditional single clear glazing has an SHGC 0.9 

SHGC is very similar to the g-value and is usually presented between values 

of 0 to 1.  

For this model, the SHGC also accounted for the frames in the 

construction, not just the glass, thus representing the entire window 

assembly, as recognized by the National Fenestration Rating Council (NFRC) The whole window SHGC is 

typically 0.8 times lower than glass-only (Efficient WIndows, 2019) 

Figure 24 SGHC (Efficient Windows 
Collaborative, 2000-2018) 



Wall to Window Ratio  

Window area or the window-to-wall ratio (WWR) is an important variable affecting energy performance 

in a building. This parameter is the percentage of opaque vs glazed areas of the facade. It essentially 

affects energy performance in two ways.  

The first is that opaque areas of a façade tend to have much better insulation, therefore less energy is 

lost. The lower ratios mean smaller glazed areas, therefore more insulation. On the other hand, higher 

ratios mean more glazing, this usually means that the glazing will be the worst insulator than the opaque 

zone, therefore more energy is lost. It is worth mentioning that highly insulated glazing does exist, but it 

comes as a high price, hence not frequently used.  

The other way that it affects the energy performance is by allowing more daylight in through the glazing 

area. This results in less lighting energy consumption. This means that the WWR is a parameter that must 

be carefully chosen by contemplating the tradeoffs of energy lost but daylight gain through the glazing.  

Finally, another important factor is the views because a lower WWR allows for more broad views of the 

surrounding, thus affecting positively the human experience. Views, however, will not be a subject of this 

thesis because it depends specifically on the chosen site instead of a generic one. Window to wall ratio is 

a parameter that is equally linked to all three optimization goals as it affects the insulation level of the 

façade, the amount of daylight that enters the building, and the user experience.  

Visual Light Transmittance 

VLT is an optical property of the glazing that indicates the fraction of 

visible light that can pass through it. In simple terms, VLT is the 

measure of the transparency of the glazing. The higher the measure, 

the more you can see through the window, likewise, the more natural 

daylight will permeate the interior space.  VLT is usually measured 

within a range of values of 0 and 1, although on other occasions it is 

presented as a percentage that ranges from 0 to 100% which is 

essentially the same.   

As a means of example, the range varies from above 90% for uncoated 

water-white clear glass to less than 10% for highly reflective coatings 

on tinted glass. A typical double-pane IGU has a VLT of around 78% 

Shading Elements 

The Center for Window and Cladding predicts that that global warming will lead to an increase of several 

degrees in summertime temperatures over the next few decades. This means that we must seek to 

reduce summertime gains. The simplest and most efficient way to achieve this is by using shading 

devices. These are efficient methods to reduce solar heat gain while maintaining daylight. (CWCT, 2000) 

There are many types of shading elements such as blinds, brise soleils, awnings, egg crates, louvers, and 

overhangs. Also, external shading is much more effective than internal shading (Givoni, 1998), thus 

external was used. This thesis focused only on a simple extrusion of the Overhang size and the number 

of fins because the goal for this parametric model is to generate a more global understanding of the 

general effects of these elements. Once this is understood, further refinements or different shading 

types could be developed during the later stages of the design process.  

Figure 25 VLT (Efficient Windows 
Collaborative, 2000-2018) 



Overhang size  

Overhang size is simply the length of the overhang above the window. This parameter is dynamically 

dependent on the WWR, so when the window changed width, did the width of the overhang. This 

parameter is of special importance on the southern facades (in the Northern Hemisphere) because it can 

easily protect the façade from unwanted gains from the high positioned sun on the skydome during 

summer months. Inversely, overhang size is very important on northern facades in the Southern 

Hemisphere. (Givoni, 1998) 

Number of fins 

The “fins” are defined for this exercise as vertical elements attached to the façade. This parameter is 

also dynamically dependent on the WWR, so when the window changed height, did the length of the 

fins. This parameter was chosen due to its energy-saving potential on eastern and western facades. 

(Givoni, 1998). From this literature review, it was suspected that multiple fins would better shield the 

low sun rather than longer ones. Initially, the fin length was also included as one of the parameters to 

review but was discarded after reviewing the isolated P-Values and discovering that the fin size was 

barely playing a significant role in the results of energy, daylight of comfort.  

U Value / thermal resistance 

U value measures the rate of which heat is transferred through a 

building’s envelope. Unlike SHGC that measures radiation only transfer 

though glazing, this measure contemplates the three basic heat transfer 

mechanisms: conduction, convection, and radiation. It can also be used 

to measure the insulating values of the opaque zones of the façade.  

 The lower the U-value of a façade, the more slowly heat will be 

transmitted through it, and so the better it will work as an insulator. So, 

the lower the U-value, the less energy will be required to keep the 

building under comfortable conditions.  

U values can be measured in two ways, the first is the Overall U factor that 

considers the façade as a whole component (including the edge of the 

glass and the frame) and the second is by measuring the U-factor from the center of glazing assuming 

perpendicular heat flows. For this  

As an example, traditional single glass has a U factor of 6.0, High-performance double-pane windows, and 

its framing can have U-factors of 0.70 or lower, while some of the most expensive triple-pane windows 

can achieve rare U-factors as low as 0.2. For this exercise, more common and accepted values between 

0.7 and 4.9 were selected within the range of parameters to optimize.  In contrast, the R-value is the 

reciprocal of the U-Value (R=1/U) The higher the R-value of a material, the higher the insulating value; 

while the lower the U-factor, the lower the rate of heat flow. 

Figure 26 U-Value (Efficient 
Windows Collaborative, 2000-2018) 



3.2.3 Out of scope Parameters 
WWR Window Position  

A noteworthy fact is that even though the WWR is important for the energy calculations, the position of 

the window is also decisive. Two facades with the same WWR could behave differently for the daylight 

and energy simulations depending on the window spacing or if its located higher or lower regarding the 

internal space. This exercise does not aim to optimize this parameter; therefore, for both GH and DB 

models, all window location parameters were kept as similar as possible, with the windows originating 

from the center of the façade and at a preferred spacing of 2 m.    

Light-to-Solar-Gain Ratio 

This is a measure that contemplates both the VLT and the SGHC. Previously, windows depended on tints 

to reduce the radiative heat gains and therefore reduced also the light transmittance. Now, high-

performance tinted glazing or low-E coatings allow reduced solar heat gain with little reduction in visible 

transmittance. For cold weather, this is overall a positive ratio to increase, as it allows light to enter the 

building without causing overheating. Nonetheless, the proposed model keeps both VLT and SHGC as 

separate parameters to specify their correlation with the outputs.  

Automated Façade Technologies 

Newer façade systems such as motorized shades, switchable electrochromic/gas chromic coatings, or 

variable double/triple chamber optical and thermal properties are all state-of-the-art technologies that 

allow for dynamic shading. Although all these can be additional improvements once a good performing 

passive design is defined.  

Façade Area * Glass% * g-value 

Another efficient way to look at the envelope parameters is by combining multiple variables.  Combining 

Façade Area, glass percentage, and g-value makes it possible to reduce these three variables into one. 

Although this can be very efficient when simulation times are critical, this approach was not taken for the 

following two reasons: 

1. The methodology using surrogate modeling allowed for a much larger number of variables than

traditional simulated modeling techniques because once the model was set up correctly, the

results of any combination of variables could be assessed almost immediately through the

surrogate model. Meanwhile, the computer-intensive simulations were limited to the 500

samples, approximately 150 hrs.

2. The goal of the thesis is to allow for the designer/engineer to use the surrogate model to explore

how changing each parameter affects the outcome performance metrics; this means that keeping

the parameters separate allowed for each input to be tweaked independently, allowing for

reflection and understanding of the potential gains or losses of their choice.

Nonetheless, this method continues to be as a valid analysis tool for quick hand calculation analysis 



3.2.4 Chosen Parameters and Objectives 
A total of 16 independent parameters were chosen, including effects of the Context (1), general building 

shape & orientation (6) to façade variables (9). These parameters were chosen because of the potential 

they showed on affecting the energy, daylight, and comfort during the literature review.  Likewise, they 

were chosen due to their ease of application to the parametric model and their high effect on the final 

“look” of any initial architectural design scheme. While other parameters, such as the HVAC system or the 

infiltration rate certainly affect the energy demand, they were not included in this optimization because 

they would not significantly affect the architectural definition of the proposal during the early stages of 

design.   

Table C 

Topic Building Parameter ID Description Units 

y1 Energy Energy Use Intensity (site) EUI AED / GBA - Annual total energy 
consumption related to the area 
and use  

kW h /m2 
yr 

y2 Daylight Useful Daylight Illuminance UDI Useful daylight illuminance - the 
annual occurrence of illuminances 
across the work plane that are 
within a range considered “useful” 
by occupants (9).   

% 

y3 Comfort % of Time Comfortable Com As defined by EN 15251   % 

y4 Area Area of Floorplate Area The useful floor area of one 
floorplate 

m² 

The four chosen dependent variables where: Energy, Daylight, Comfort, and Area. The choice and 

reasoning for the validation metrics can be found in section 2.2 of the literature review. The main objective 

was to lower the energy of a building concerning its floorplate, for this reason, Energy Use intensity (EUI) 

was chosen. Next, to balance the daylight levels within the office space, improving the Useful Daylight 

Illuminance (UDI) (100-2000 luxe) was the chosen metric. Finally, a minimal comfort range is desired, thus 

utilizing the adaptive comfort metric as determined by the EN 15251; this single metric for comfort, only 

considered the times when the temperature would not fall above or below the adaptive comfort range, 

thus avoiding the times when the user might consider the temperature too hot or too cold. Finally, 

because of the various shapes and building dimensions, the area of the floorplate was deemed critical to 

comprehend the results within a useful and comparable framework.  

In conclusion, the 16 variables (reordered according to the dataset collected) are x1 Analysis Level, x2 

Core Type, x3 Floor to Floor Height (FF), x4 Floor Length, x5 Number of Fins, x6 Orientation, x7 Overhang 

Size, x8 Solar Height Gain Coefficient (SHGC), x9 Shape, x10 U value of the total window assembly, x11 

Visible Light Transmittance (VLT), x12 WWR_East/North, x13 WWR_North/West, x14 WWR_South/East, 

x15 WWR_West/South, x16 Plan Width. The output objectives are 4: y1 Energy Use Intensity (EUI), y2 

Useful Daylight Illuminance (UDI), y3 Percentage of time Comfortable, and y4 Area of the Floorplate.    



The variables were modeled as discrete parameters rather than continuous, the reason for this was to 

limit the number of options, reducing the complexity significantly. Due to the way the variables were 

modeled for the form generation in Grasshopper (Rutten, 2015), the discrete variables were translated 

into integers. Below is a table that serves as a legend for the parameters.  

Table D 

Parameters Legend 

Analysis Level (m) 30 15 0 

0 1 2 

Core Type Central Lateral 

0 1 

FFH (m) 3 3.5 4 4.5 

6 7 8 9 

Length (m) 20 40 60 80 

1 2 3 4 

Number_Of_Fins 1 2 3 4 

1 2 3 4 

Orientation (°) 0 45 90 135 180 225 270 315 

0 1 2 3 4 5 6 7 

Overhang_Size (m) 0.4 0.8 1.2 1.6 

1 2 3 4 

SHGC 0.2 0.5 0.8 

1 2 3 

Shape Triangle Square Octagon Ellipse 

0 1 2 3 

U_Value (W/m²K) 0.7 1.4 2.1 2.8 3.5 4.2 4.9 

1 2 3 4 5 6 7 

VLT (%) 30 60 90 

1 2 3 

WWR_East_North (%) 20 40 60 80 

1 2 3 4 

WWR_North_West (%) 20 40 60 80 

1 2 3 4 

WWR_South_East (%) 20 40 60 80 

1 2 3 4 

WWR_West_South (%) 20 40 60 80 

1 2 3 4 

Width (m) 20 40 60 

1 2 3 



3.3 Validation of Simulation Model 
After the parametric model was created in the Grasshopper (Rutten, 2015) environment, initial 

simulations were run through the Ladybug/Honeybee plugins (Sadeghipour & Mackey, 2017-2020), these 

results were then compared with a widely accepted energy modeling software known DesignBuilder 

(Version 5.5.2.007) (DesignBuilder, 2020)  to ensure the consistency and validity in the results.  One 

random control option of the many possible iterations was chosen to be represented in both software.  

Two methods of modeling validation were tested, the first was to use a ladybug node to export the gbXML 

file from grasshopper. This proved very efficient to transfer the general geometry. It correctly transferred 

the space dimensions, walls, and shading surfaces. Likewise, this also served as a valuable method to 

identify the errors of space definition or geometry that would have been ignored in the grasshopper 

environment.  

The second method was to create a model from an exported 2D .dwg file from Grasshopper (GH)/Rhino. 

This meant that all the objects, walls, and openings were re-modeled in Design-Builder (DB). Although this 

proved more time consuming, it ensured that all the parameters from both models matched as closely as 

possible. The results of both independent (GH vs DB) models were then compared.     

The examination and definition of each of all these steps was a critical part of validating the two 

independent energy models (Grasshopper vs DesignBuilder) to ensure that the results made sense and 

were aligned to a hypothetical real case scenario.    

At first instance, only Level 00 was validated, once this provided similar results, three levels at higher 

altitudes were also reviewed.    

Figure 27 - Grasshopper model Level 00 DesignBuilder model Level 00 (source: own) 

The first runs the energy results from the Ladybug component were off the charts: The energy 

consumption was extremely high, not in line with the results from the DesignBuilder. As this software has 

been designed from the ground up for simplified energy modeling with a controlled and straightforward 

graphical user interface, the most trusted results were those provided by DesignBuilder.  



The grasshopper model was carefully compared with the Design builder model to review the most 

significant variables to achieve similar results. Next is the complete list of variables that were considered: 



Table 8 Chosen Parameters for Cross Model Validation (source: own) 

The calibration process was a back and forth process that required many runs of building energy 

simulations. On each run, the results from each of the independent models were reviewed  

3.3.1 Fine-tuned Parameters 
Mechanical Ventilation (COP) 

This coefficient is used to calculate the fuel required to meet the heating or cooling demand on an HVAC 

(Heating, Ventilation, and Air Conditioning) system. This value represents the total seasonal efficiency of 

the entire system and includes the outcome off the complete HVAC equipment (DesignBuilder, 2020) 

Since this thesis does not aim to investigate the efficiency of the HVAC variable, a CoP of 1.0 was chosen 

in the DesignBuilder software which in turn reflects most closely to the Ideal Air Loads parameter chosen 

in the Grasshopper model.  Heated and Cooled spaces were set to a CoP of 1 as per building physics expert 

recommendation. Natural Ventilation was set to similar air exchanges per hr. of 5.0.  

A discrepancy arose when Mechanical Ventilation had not been included in the DB model, once corrected 

and coordinated on both models with an equal minimal fresh air per person (0.01 m2/s) the results were 

much more equivalent.  



Natural Ventilation  

Next brief explanations of the setpoints defined for natural ventilation the model:  

• Minimal indoor temperature: the temperature at which people start opening windows, to cool

off space. Usually between 22-24°C. Set at 24°C in the model

• Minimal outdoor temperature: the temperature at which it is much too cold outside for natural

ventilation. Usually 12-15°C. Set at 14 °C in the model.

These natural ventilation set points played a significant role in energy loads, therefore getting these 

parameters as equivalent as possible was a crucial part of the cross-model validation.  

The height of the window is also important for airflow because of the temperature difference or buoyancy. 

Warm air tends to rise; therefore, the warm air exits from the top of the windows while the cool air enters 

through the bottom. There is more flow the bigger the temperature difference from indoors and outdoors 

but also the height affects how much warm air escapes through the top. (Mackey & Sadeghipour, 2019). 

For this reason, the position and spacing of the windows were also modeled as similarly as possible in 

both models.  

Temperature Control 

Similarly to natural ventilation, temperature control was critical in achieving similar results in both models.  

Heating and cooling setpoints were carefully defined and matched so that both models would be 

equivalent and thus achieve similar results. 

Usage Density 

For this exercise, the Building model will be simplified by defining one zone /activity for the entire floor 

area and occupancy density used was 0.11 people per m2, an acceptable density for office space. 

Artificial Lighting 

The Grasshopper model was developed so that the daylight simulation would automatically update the 

lighting schedule. This meant that the lights would automatically be turned off when enough natural light 

was available. This automatic lighting control significantly reduced the lighting loads. This also meant that 

automatic lighting would reduce the lighting loads in the building and ultimately the final output to 

optimize: EUI.  

This image shows how the updated lighting schedule significantly reduces the time the lights are turned 

on during highly lite summer months.  

Figure 28 Updated Lighting Annual Schedule: No light control / light control (source: own) 



Daylight Simulation 

The backward raytracing engine used by Ladybug is Radiance, it uses a stochastic sampling for calculation, 

and as such a 5-10% difference is expected between runs. For testing daylight, the test surfaces on each 

model were placed at 75 cm from the floor. Like in all computational simulations, a balance of accuracy 

vs the simulation time must be found; thus, various test runs were made to find a balance between quality 

results and acceptable simulation times.  The most important part to determine these definitions was to 

review how they would affect the energy analysis therefore a complete day of runs was employed to 

check their influence on the final energy output.  The results show that the following recipe was good 

enough and did not have a significant impact on the energy outcome.  

Ambient bounces (AB): Amount of bounces of the light rays within the 

space. When shading is present at least 2 bounces must be used to 

ensure the correct effect of the bouncing light rays.   

These rays overestimating the effect of the shading because it does 

not bounce enough times thus a balance must be found between the 

number of bounces and speed of the simulation. (Mardaljevic, 2011) 

Ambient Accuracy (AA):  This is how 

much accuracy is expected in the model. 

In terms of percentage of error, 

therefore 0.1 = 10% error. (Mardaljevic, 

2011) 

Ambient Division (AD):  Number of rays 

that are divided when the light ray hits 

a surface. The more rays the more 

accurate the results. More rays take 

longer to calculate. (Mardaljevic, 2011) 

Ambient resolution (AR): Number of 

points used to understand the scene. 

For this reason, if the scene has many 

small details, the ambient resolution 

must be higher. (Mardaljevic, 2011) 



RAD Parameters 

This study also looked at existing literature to compare and define the radiance parameters for this 

study:  

Table E 

Radiance ambient parameters 

Ambient 
bounces 

Ambient 
accuracy 

Ambien 
resolution 

Ambien 
divisions 

Ambien super-
samples 

This study 2 0.1 300 1000 20 

Ayca Kirimtata et al (2019) 2 0.15 300 1000 20 

Wagdy et al. (2017) 6 0.1 300 1000 20 

Sherif et al. (2016) 6 0.1 300 1000 20 

Mohsenin and Hu (2015) 6 0.1 300 1000 256  
Table 9 source: own & Ayca Kirimtata, 2019 

Differences in Activity Schedules: 

Initially similar “Open Office Space” activity and lighting schedules were chosen on both models, thus 

giving similar uses and occupied times. Upon more detailed inspection, however, each software had 

slightly different expected occupations, and this discrepancy built up throughout the year.  To eliminate 

this variable, a custom schedule for Ladybug component was created so that it reflected the exact 

occupancy as that used in DesignBuilder. 

Figure 29 Updating Activity Schedule for Ladybug to match Schedule of DesignBuilder: 

Differences in Core geometry: 

Likewise, the models have a slightly different core geometry but the area they occupy is equivalent. This 

proved to not be a significant difference as the final energy calculations were similar without updating 

this aspect, therefore the simplified version of the design Builder model was kept.  

Figure 30  - Grasshopper model Level 00 DesignBuilder model Level 00 



3.3.2 Results from Model Validation 

Figure 31 Energy Calculations for level 1 in Grasshopper Honeybee/Ladybug (source: own) 

Figure 32 Energy Calculations for level 1 in DesignBuilder (source: own) 



Table F 

Results from Model Validation 

Grasshopper Model (kWh) DesignBuilder (kWh) Difference % 

Results: N00    All 3 Levels N00 All 3 Levels N00 All 3 
Levels 

Cooling 7996 24787.6 8364 25696 -4.6 -3.7

Heating 29573 91676.3 27542 96698 6.9 -5.5

Lighting 4591 13773 4708 14357 -2.5 -4.2

Equipment 10924 32772 11494 34482 -5.2 -5.2

Totals 53084 163008.9 52108 171233 1.8 -5.0

Table 10 Summary of the GH/DB Validation Results (source: own) 

The above table shows how the results between the Ladybug/Honeybee and DesignBuilder models were 

finally calibrated within a +/- 5% margin for all three levels, which was considered an acceptable margin 

of error for this exercise. This concludes that once fine-tuned, the parametric model could be trusted 

because the results were sufficiently close to those obtained from the independent DesignBuilder 

software.  

3.4 Collecting samples 
As identified in the literature review, the two approaches for collecting samples for a surrogate model are 

static (sequential) vs adaptive (iterative). (Westermann & Evins, 2019) Although adaptive sampling 

strategies show promising results and have successfully shown to require fewer simulation runs to achieve 

better surrogate accuracy, this technique was not utilized due to time constraints related to the 

complexity of this subject. Further research could investigate the potential of this topic.  

Eventually, Uniform Latin Hypercube (ULH) sampling method was chosen due to its frequent use in 
existing literature (17 out of the 57 articles from the review performed by Westermann & Evins), this 
strategy also has advantages “given its simple concept, ease of implementation, and efficient 
stratification” (Chen & Yang, 2017). However, because the numbers of samples required are problem-
dependent (Brea, et al., 2020), it was difficult to accurately define the number of samples needed thus 
the simulation time was another important variable to consider 

Simulation times 
Each simulation took an average of 16 minutes, therefore only hundreds rather than thousands of 
samples where possible. Without considering unintended computer malfunctions, approximately 3.4 
samples per hour could be collected using a Desktop computer with the following specifications:  Intel ® 
Core ™ i7-5820K CPU @ 3.3 Mhz, 6 Cores, 12 Logical Processors, x64bit Windows 10 Pro, RAM: 16 GB.  

Ultimately, 500 samples were chosen to be collected for each location. 500 samples took 147 hrs. per 

location (approximately 6 days) with the aforementioned PC. Although, it is worth mentioning that this 

time could be significantly reduced if the computational load for the daylight simulation was divided 

between multiple CPUs. 500 ULH samples were collected for each location: Amsterdam, Bogotá, and 

Dubai for a total of 1500 samples.   



3.4.1 Choosing the Sampling Strategy 
Before the 1500 samples using ULH sampling strategy, however, the choice for the right sampling 
strategy was unclear, for this reason, a Quasi-Random sampling strategy Sobol was used to collecting an 
initial batch of 500 samples. The reason for this is that literature showed promising outcomes compared 
to ULH: “Sobol’s sampling was used for Monte Carlo simulation and provided more precise and robust 
output distributions than Latin-hypercube and random sampling” (Westermann & Evins, 2019) 

Hence, 500 samples were collected using the Sobol sequence and compared to the 500 samples using 

ULH; both for the same Amsterdam Location. This served as a tool of comparison to review the difference, 

if any, between a near-random sampling strategy (ULH) versus a quasi-random sampling method (Sobol) 

(Westermann & Evins, 2019) 

ModeFRONTIER software (ESTECO, 2020) was used as the tool to generate the DoE and collect the 
samples.  With this dataset, the results from each sampling method were run through Linear Regression 
data analysis to compare the usefulness of the information that could be extracted from each.  

Table G 

Sobol vs ULH sampling method 

Sobol ULH 

EUI Comfort UDI EUI Comfort UDI 

R² 0.83434507 0.99935141 0.36186573 0.84796182 0.99945149 0.35780101 

Standard Error 11.0616862 1.04635648 11.0250236 9.74086331 0.96024303 10.7197914 

P-Value 2.133E-153 0 2.4923E-32 9.339E-186 0 3.0092E-37 

Significant 
Variables 

12 3 7 12 6 11 

Table 11 Sobol Vs ULH Sampling methods (source: own) 

The significant variables count the number of variables that reject the Null hypothesis by complying with 

the p < 0.05 alpha threshold. ULH showed more significant variables than Sobol, meaning that the 

sampling method might be finding more statistically significant relationships between variables and 

outputs, making ULH slightly more interesting to utilize. As for the rest of the results, both ULH and SOBOL 

have very similar R2, Standard error, and P-Values, making the difference in these results insignificant.  

Ultimately the Uniform Latin hypercube technique was chosen to collect samples for Amsterdam, Bogota, 

and Dubai as its relatively uniform distribution showed more statistical relationships (p-value) than Sobol. 

3.4.2 Verifying Statistical Significance 
Once a total of 1500 samples using ULH were collected amongst the three locations: Amsterdam, 

Bogota, and Dubai, it was considered important to also review the statistical significance of the results. 

For this reason, an Analysis of variance (ANOVA) analysis was carried out with Data Analysis Multilinear 

Regression tool using Excel. The Significance F proved the overall statistical significance of the variables 

over each of the outcome while the p-value for each variable showed which outcome they were 

affecting.   



Next a summary table for each of the 500 samples for each of the locations.  See Appendix for complete 

tables.  

Multilinear Regression 
Summary H 

Amsterdam Bogota Dubai 

Samples 500 500 500 

EUI Area Comfort UDI EUI Area Comfort UDI EUI Area Comfort UDI 

R Square 0.8329 0.8509 0.8129 0.3722 0.7315 0.8508 0.8218 0.3937 0.7315 0.8508 0.8218 0.3937 

Adjusted R 
Square 0.8273 0.8459 0.8067 0.3514 0.7226 0.8458 0.8159 0.3736 0.7226 0.8458 0.8159 0.3736 

Standard 
Error 12.404 377.93 5.25 10.844 6.5352 378.03 7.2923 13.374 6.5352 378.03 7.2923 13.374 

Significance 
F 

2E-
175 

2E-
187 9E-164 2E-39 

3E-
126 

3E-
187 8E-169 7E-43 

3E-
126 

3E-
187 8E-169 7E-43 

Firstly, this table shows that for all outputs and all locations, the significance F is below the 0.05 Alpha 

threshold, meaning that indeed the inputs are affecting the outputs, thus the collected data is behaving 

as expected.  

This summary also shows that for the three locations, EUI and Comfort could be adequately predicted by 

using even the simplest of machine learning methods: Multilinear regression. This means that the data 

for EUI and Comfort behalves more linearly and the relationships are less complex. Conversely, for the 

area output, although the R squared value is somewhat acceptable (84%) with this method, the 

standard error is very high, meaning that its predictions could fall very far from the real data. Although 

the floor area depends only on 3 of the 16 variables: length, width, and shape; the shape variable 

changes drastically the area outputs whether it is a triangle, rectangle, octagon, or ellipse; thus, possibly 

resulting in a higher standard error. Independently, the area was simply used as a proof-of-concept to 

validate that only these three variables were statistically significant. The area in the final model was 

simply calculated geometrically rather than by predicting it through a surrogate model.   

Moreover, the UDI output has a more complex relationship with the variables therefore the R squared 

value is much lower when using simple Multilinear regression. For this reason, to have better surrogate 

models, other machine learning methods were explored: Non-linear Regression and ANN. Using more 

complex machine learning methods also meant that the EUI and Comfort could also be improved to 

better fit the data.  



Table I 
MLRegression Individual P-Values 

Amsterdam - P-Values Bogota - P-Values Dubai P-Values 

EUI Area Comfort UDI EUI Area Comfrt UDI EUI Area Comfrt UDI 

Analysis Level 2E-13 0.1872 2E-49 0.0736 2E-06 0.1951 2E-89 0.1085 1E-97 0.2017 7E-109 0.1041 

Core_Type 5E-57 0.422 0.2164 4E-38 2E-30 0.4055 0.0567 4E-42 0.3377 0.3845 5E-10 7E-42 

FFH 2E-43 0.5856 1E-05 0.0109 2E-09 0.5645 0.1502 0.9103 3E-30 0.5888 2E-10 0.9212 

Length 8E-76 
9E-
132 4E-18 2E-08 8E-51 

1E-
131 0.6818 0.1907 2E-49 

2E-
131 0.001 0.3912 

Number 
Of_Fins 0.1779 0.905 0.0073 0.3157 0.2657 0.8941 3E-07 0.6192 0.0403 0.9488 2E-05 0.6614 

Orientation 0.1596 0.256 0.803 0.3333 0.0503 0.2663 0.6743 0.2783 0.9711 0.3065 0.8088 0.2329 

Overhang 
Size 0.0726 0.6701 9E-06 0.3183 0.0042 0.6896 2E-13 0.0209 0.0082 0.7223 2E-10 0.0127 

SHGC 0.0393 0.5282 3E-50 0.9383 2E-10 0.5488 5E-97 0.7809 0.4937 0.5583 1E-73 0.8735 

Shape 1E-42 2E-87 0.0014 0.3272 6E-27 4E-87 6E-09 4E-06 3E-38 3E-87 8E-43 4E-06 

U_Value 2E-69 0.433 8E-135 0.0851 5E-62 0.4469 2E-97 0.1013 0.0127 0.4687 7E-21 0.1442 

VLT 0.0024 0.6506 0.1391 0.0299 0.0137 0.6572 0.0331 4E-10 0.2076 0.6426 0.0384 4E-10 

WWR 
East_North 1E-08 0.9275 0.0455 0.0015 0.0108 0.9608 0.0002 0.1071 1E-12 0.921 1E-06 0.3347 

WWR 
North_West 7E-11 0.8315 3E-07 0.3713 2E-05 0.8223 0.457 0.2038 1E-11 0.7862 0.0145 0.1537 

WWR 
South_East 1E-09 0.0618 9E-06 0.3744 0.0016 0.0583 0.2716 0.0194 8E-15 0.0575 0.0225 0.0101 

WWR 
West_South 8E-13 0.8455 8E-08 0.1799 0.0042 0.8212 0.2138 0.4956 3E-21 0.8491 0.0038 0.3013 

Width 2E-60 
1E-
114 9E-10 8E-05 8E-38 

2E-
114 0.0185 0.1402 1E-49 

6E-
114 1E-23 0.463 

Table 12 Individual P-Values per Location (source: own) 

This table shows the P-values for each variable in each location. Only the P-values lower than the 5% 

Alpha threshold are identified in green. This information is especially useful to identify which variable is 

statistically significant for each output, meaning that it affects it. Variables that are not colored in green 

mean that they do not affect the output for that location. It is noteworthy to see that even though most 

variables have similar statistical significance, in some locations, more variables affect the outputs more 

than in others. For example, all Wall to Window Ratios orientations, are more important for Comfort in 

Amsterdam than in the other locations presumably because of more extreme sun positions throughout 

the year due to it being farther from the equator. Also noteworthy is that the core type affects comfort, 

presumably because the core can serve as a shield from the hot summers of Dubai. The analysis level 

(effects of the context) does indeed affect the EUI and Comfort, meaning that this is an important 

variable to consider when designing High Rises. Finally, as expected, the floor area depends equally on 

the length, width, and shape similarly on any location, proving that the P-values are showing accurate 

results.  



3.5 Training the Surrogate model 
To properly train a surrogate model, it was critical to separate the collected samples into 2 main 

datasets: the training data and the test data to cross-validate the results. 

Cross-Validation of the Data 

This diagram shows how the cross-validation method was set up to train and test the surrogate model. 

According to research, a division of 80% for the training and 20% for the testing data is adequate and 

accepted.  (Westermann & Evins, 2019) A custom-cross validation Grasshopper script was developed 

with a split component that separated the data randomly by changing a seed slider. This allowed the 

various samples to be mixed randomly from the original 500-sample batch; resulting in a robust cross-

validation method.   

Next, these two datasets are separated further into two subgroups: the inputs (independent variables) 

and the outputs (dependent variables). To achieve this, the custom script also separated the 16 input 

columns from the 4 output columns. In the end, by subdividing the data into 4 parts for cross-validation, 

the predicted results from the trained surrogate model can be compared with an independent 20% of 

actual measured results, ensuring the trustworthiness of the predicted results of the trained surrogate 

model.  



As explained, the data is thus 

separated into four groups:  

80% X (training) 

80% Y (training) 

20% Cross-Validation Y (testing 

input) 

20% Cross-Validation Y (for testing 

against predicted Ŷ values)  

Once the surrogate model was trained, the data could be randomly modified using the seed slider to test 

its validity on any other random 80/20 samples.  New datasets meant that the R and Standard Errors 

changed slightly from seed to seed but the overall validation metrics remained similar.   

3.6  Evaluation of the Surrogate Model 
To achieve good results from a surrogate model, the validation metrics explained in section 2.4.4 must 

be validated and finetuned.  The goal for improving the predictive power of the model was: Increase R, 

R², Adjusted R² while simultaneously reduce the MAE, MSE, or Standard Error. Likewise, the P-value 

results should be lower than the accepted 0.05 alpha threshold for the data to be deemed statistically 

significant. The formulas for R², Adjusted R², and MSE were converted into a custom grasshopper script 

that allowed immediate calculation of these metrics, independent of the machine learning method 

used. 

Figure 34 Custom Grasshopper Script for Calculation of MSE/RMSE/MAE (source: own 

Figure 33 Custom Grasshopper Script for data Cross-Validation (source: own 



This script, however, could be prone to error, therefore an initial test was carried out to compare the 

Validation outputs from the custom script with those calculated using an external Data Analysis method. 

In this case, the Excel Data Analysis tool was employed to compare the results using the most basic of the 

machine learning methods: Linear Regression. The following image shows that the linear regression 

calculations matched exactly (0.000001) with those from the script. See the image below.  

Table 13 Cross-validation: Excel Data Regression vs Lunchbox Linear Regression Component (Source: own) 

As a conclusion, this meant that the custom script developed could be trusted. Once it could validate 

Multilinear regression, it was deduced that further calculations of R2, MSE, Standard Error would be 

accurate for any other Machine Learning method because any of the predicted Ŷ outputs could be 

compared to the originally known Y values. This script would permit us to quickly identify which 

surrogate model method and what parameters should be tuned to achieve better predictive results.  

The P values however were not calculated in the custom script because the statistical significance of the 

variables was proven already in section 3.4.2. 

3.5.1 Choosing the Surrogate model 
All in all, 5 Machine Learning methods were explored in the search of the ideal surrogate model. 

Firstly, Support Vector Machines was explored with a plugin named ANT (Rahman, 2017) using the Scikit 

Learn Python module. Although promising at first, this plugin showed little information for validating the 

results (score logs); a lack of community support for solving errors and the limited method to read the 

data proved to be a cumbersome process. Multiple tests were run to read the results correctly, yet 

ultimately this method was abandoned.  

The Lunchbox plugin (Miller, 2018), using the Accord.NET framework was used for the MLR and NLR) 

machine learning methods. Rather than using the same ANN component from the Lunchbox plugin, the 

plugin Dodo (Greco, 2020) was utilized for ANN because it proved to be much quicker to train and to 

generate results. Ultimately, three machine learning types were chosen. This research tested results 

from Multilinear Regression (MLR), Non-Linear Regression (NLR), and Artificial Neural Networks (ANN). 



Figure 35 Machine learning workflow (source: own) 

Using the custom script for the validation metrics, the 5 different machine learning methods could be 

compared and the best performing one could be chosen. This script serves as a tool to identify the ideal 

method as well as a tool to play with the random seeds and finetune the parameters of the ML 

methods.  

Figure 36 Custom Grasshopper Script for choosing the best performing ML method (source: own) 



Hyperparameter Tuning 

Non-Linear Regression 

Having the custom script set up, it was possible to run a quick multi-objective optimization to adjust the 

Sigma and Complexity parameters of one of the ML methods: Nonlinear regression. Adjusted R² was 

multiplied by -1 to trick the Octopus Hype Reduction algorithm into maximizing rather than minimizing, 

alternatively, Standard error and MAE were intended to be minimized.  The results of this optimization 

slightly improved the Adjusted R² to 0.48, still significantly low and resulting in an unwanted high standard 

error of 77 and as well as a high MAE of 276, thus still not good enough.   

Figure 40 Non-Linear ML Method for UDI (source: own) 

As literature showed, the methodology of optimizing the hyperparameters of a Machine Learning method 

has been previously explored. (Brea, et al., 2020). Rather than HYPE reduction and Non-linear Regression 

however, the researchers used multi-objective Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

coupled to the ANN metamodels (Brea, et al., 2020). This step was not further explored to improve the 

final surrogate models because of time constraints and because the chosen Dodo (Greco, 2020) interface 

functions with a separate pop up window rather than optimizable sliders within the Grasshopper 

environment. Instead, the final chosen ANN model was iteratively fine-tuned to achieve acceptable 

results.  This methodology, however, shows great potential to improve the accuracy of surrogate models 

for future research.  



First, Artificial Neural Networks from 

Lunchbox was explored. For ANN the data was 

required to be normalized between 0 and 1 

and then “denormalized” again into the 

predicted UDI values. A similar optimization 

approach using ANN variables (Hidden layers, 

Alpha and Max Iterations) was tested yet the 

results did not pass the validation criteria: 80-

95% Adjusted R² / Standard Error and MAE > 

10. 

For this reason, ANN on Dodo was also tested. 

(See figures 41 & 42) 

Due to its window-based interface, the ANN variables (Neurons, Hidden Layers, Learning Rate, Max 

Iterations, Sigmoid Alpha, etc.) could not be run through a slider optimization plugin, hence it was 

modified by a trial and error method. After some manual iterations, results achieved an average Adjusted 

R² of 90% with a low Standard Error of 2.4 and MAE of less than 1, as presented in the image below: 

Figure 37 Results of Tuned ANN / Predicted Outputs (yhat) vs Cross-Validation Outputs (y) (Source: own) 

Figure 41 Dodo ANN Hyperparameter Optimization (source: own) 



The side by side table above shows a set of random 12 Y output values. The outputs (Y) from the 

independent 20% cross-validation test data show very close rapport to the simulation outputs (Ŷ) of the 

ANN model. Even when switching the dataset to other random seeds, the predictive power remained 

above 80% with the standard error below 3, suggesting a good surrogate model.  

For ANN Dodo, the training phase seemed a lot more exploratory than initially suspected because the 

choices made seemed to affect the model randomly. The improved trial an error manual method 

consisted of changing one variable at a time and reviewing if the R² increased while MSA and MAE errors 

decreased. Once an improvement was identified, the last choice was kept and the next hyperparameter 

was modified. This ensured steady yet slow progress of the ANN-based surrogate model training.    

Although, for predicting UDI, it is worth noting that in some rare runs the calculated R² value was resulting 

in values slightly higher than 1 (See Seed 3 ANN Table J Below), meaning that a higher than 100% explained 

relationship. This occurrence makes no logical sense and upon further research, it was concluded that the 

model UDI behavior might be slightly too complex in some cases for the model to accurately predict its 

behavior. (Frost, 2020). This could mean that the original 500 sample size for the 16 independent variables 

(inputs) vs its 4 dependent variables (outcomes) might have fallen slightly short and more samples could 

improve this slight error. 

Example of the final ANN Dodo model with tuned Hyperparameters: 

6 Neurons / 1 Layer / 0.01 Error threshold / Sigmoid Alpha Value 1 



Simulation BPS Model vs Surrogate model 

Yet another step to review that the results from the surrogate were significant was to use the original 

“control” parametric model to run a daylight and energy simulation. Then these results were compared 

with those from the final surrogate model:  

Figure 38 Original Simulation Control model UDI: 40.1 (source: own) 

Figure 39 Final Surrogate Model UDI:43.8 (source: own) 

As can be observed from the table 15 and figures 43 and 44, the results from the Surrogate Model were 

inline (within 10%) with the results from the simulated control model; this gave a further reassurance that 

the methodology and workflow were performed correctly.   

Table J 

Comparison of results from Simulation 

Original BPS 
Control Model 

Final Surrogate 
Model 

% 
Difference 

UDI 40.1 43.8 8.4 

EUI 95.5 100.2 4.7 

Table 14  Results from Simulation vs Surrogate Model for Amsterdam Location (source: own) 



Comparison of the Machine Learning Methods 

Table K 

R Square 
Adjusted 
R Square 

Standard 
Error 

Mean 
Absolute 
Error 

Multilinear 
Regression EUI Seed 1 0.718145 0.708789 5.980838 1.686682 

Seed 2 0.877971 0.87392 5.098759 1.791392 

Seed 3 0.969919 0.96892 5.141372 1.784924 

Seed 4 0.98683 0.986393 5.323705 1.86978 

Seed 5 0.875876 0.871756 6.217482 1.971926 

Average 0.8857482 0.8819556 5.5524312 1.8209408 

Comfort Seed 1 0.729863 0.720896 2.624437 0.886089 

Seed 2 0.71456 0.705085 0.80835 2.386 

Seed 3 0.842415 0.837184 2.474655 0.824494 

Seed 4 0.96553 0.964386 2.231078 0.730064 

Seed 5 0.962526 0.961282 2.757766 0.99436 

Average 0.8429788 0.8377666 2.1792572 1.1642014 

UDI Seed 1 0.438801 0.420172 5.044999 1.926218 

Seed 2 0.230504 0.204961 4.951339 1.834723 

Seed 3 0.346347 0.324649 4.78922 1.634628 

Seed 4 0.387203 0.366861 4.680839 1.621017 

Seed 5 0.449362 0.431084 5.576187 1.968647 

Average 0.3704434 0.3495454 5.0085168 1.7970466 

Non-Linear 
Regresssion EUI Seed 1 0.62267 0.610145 177.78455 544.72342 

Seed 2 0.73601 0.727247 171.1969 599.72839 

Seed 3 0.730072 0.721112 149.55488 507.67127 

Seed 4 0.729833 0.720865 153.29181 500.8856 

Seed 5 0.651518 0.63995 190.65296 648.33496 

Average 0.6940206 0.6838638 168.49622 560.26872 

Comfort Seed 1 0.810935 0.804659 83.224339 310.44516 

Seed 2 0.774355 0.766865 74.773485 259.47391 

Seed 3 0.951593 0.949986 72.030026 248.24983 

Seed 4 0.869526 0.865195 66.113987 218.64417 

Seed 5 0.865054 0.860574 78.121753 283.83417 

Average 0.8542926 0.8494558 74.852718 264.12945 

UDI Seed 1 0.49283 0.475994 78.454722 298.25815 

Seed 2 0.251743 0.226905 72.929642 263.21719 

Seed 3 0.355431 0.334035 70.662601 244.83104 

Seed 4 0.38354 0.363077 67.68632 228.81792 

Seed 5 0.429776 0.410847 77.260067 285.12267 

Average 0.382664 0.3621716 73.39867 264.04939 



Artificial Neural 
Network EUI Seed 1 0.983539 0.982993 7.590498 2.129707 

Seed 2 0.963922 0.962724 6.488874 1.928935 

Seed 3 1.085034 1.087857 5.802253 1.805024 

Seed 4 0.933024 0.930801 4.532912 1.550273 

Seed 5 0.945534 0.943726 4.19745 1.445061 

Average 0.9822106 0.9816202 5.7223974 1.7718 

Comfort Seed 1 0.887935 0.884215 1.388643 0.491288 

Seed 2 0.870895 0.866609 1.484493 0.506394 

Seed 3 0.957552 0.956143 1.233582 0.436458 

Seed 4 0.940751 0.938784 1.304237 0.446558 

Seed 5 0.842245 0.837008 1.951431 0.67656 

Average 0.8998756 0.8965518 1.4724772 0.5114516 

UDI Seed 1 0.951914 0.950318 4.104351 1.486348 

Seed 2 0.847411 0.842346 2.072161 0.653077 

Seed 3 0.962942 0.961712 2.037623 0.621746 

Seed 4 0.825666 0.819879 2.190636 0.710077 

Seed 5 0.915687 0.912888 1.899354 0.647612 

Average 0.900724 0.8974286 2.460825 0.823772 

In the final step to review and to choose the ideal Surrogate model, 5 random seeds were generated and 

used to compare the three selected ML methods, allowing them to identify the one with the best 

predictive power and accuracy. 

As seen from the table above, the ANN model performed best for predicting EUI, Comfort, and UDI. With 

a sufficiently high average Adjusted R Squared of 98% for EUI, 87% for Comfort, and 90% for UDI. Likewise, 

a Relatively low standard error of 5.7 and 1.8 MAE for EUI, 1.4 and 0.5 MAE for Comfort, and 2.5 and 0.8 

MAE for UDI. In conclusion, after tuning the hyperparameters of the ANN-based metamodel, this proved 

to be the most accurate among the three ML methods explored, therefore it was used for the remainder 

of this thesis.  



3.7 Computational Optimization 
The main objective of this research paper was to lower the energy consumption of a high-rise building by 

reducing the EUI while simultaneously maintaining daylight, comfort, and floor area as design constraints 

or goals. Firstly, this purpose was defined as a single objective optimization problem. Secondly, it was also 

viewed as a multi-objective optimization problem. Both optimization strategies were then compared.  

3.7.1 Single-objective optimization (SOO) 
A fitness function or objective function was defined to simplify the search space. This function served to 

define a merit criterion. The single objective was to minimize the EUI.  Moreover, UDI, Comfort, and 

Floorplate area became the constraints, essentially creating a boundary value problem. Choosing these 

benchmarks, proved critical for any of the subsequent optimization runs.  

The constraint on thermal comfort was set to a comfortable at least 60% of the time considering that 

additional steps using an ideal HVAC system would have to be taken to improve it further.  

There is no single consensus on the ideal UDI daylight for office buildings, but on average, the measured 

UDI (100-2000 lux) for at least 50% of the time is considered a sufficiently good boundary condition 

(Umberto Berardi, 2015) 

As for the floor plate area. An office building “Atrio” built-in Bogotá in 2019 was used as a reference, this 

building has a central concrete core and a Gross floor area of approximately 1200 m². A search around 

this global area proved as a good reference for a state-of-the-art and marketable high-rise office building. 

The benchmark was therefore expanded to look within a range of +/- 700 m² thus constrained valid 

solutions between 500 and 2000 m².  

A C# component was used as a penalty function with an “If. Else” gate to filter the outputs of the 

surrogate model with these conditions:  

Figure 40 C# component for single Objective optimization (source: own) 



If any of the results fell outside these conditions, the four outputs would be multiplied together, giving 

an impractically high number. Hence, the ideal EUI minimization solutions would always fall within these 

limits.   

The penalty function was then run through three different single-objective optimization components 

and four different optimization algorithms: Galapagos running Evolutionary Algorithm, Opossum 

running RBFOpt, Opossum running CMAES (with a random start) and Optimus running jEDE.  

As in previous research, to understand the performance of the optimization tools, the lowest value for 

the fitness function EUI (f x_min) was recorded. The time limit was set to 20 minutes (1200) and the 

maximum number of fitness evaluations (FES) were recorded to identify the tool that performed the 

fastest. (Cubukcuoglu, et al., 2019) . For each, at least 5 runs were performed to ensure that the 

algorithm was consistent with these results.  

The optimization problem ran on a computer with the following specifications: Intel® Core ™ i7-3630QM 

CPE @ 2.40 GHz, x64bit Windows 10 Home, RAM 8 GB  

As a proof-of-concept, the Amsterdam location was used for these single-objective optimizations, yet 

the methodology could be applied equally to Bogota and Dubai locations 

Figure 41 Convergence Graph -  Galapagos GA: FES in 20 minutes (source: own) 

For Galapagos, after 1200 seconds and approximately 2605 FES, the F(x)_min AVG remained very high 

(1.21E+08) and did not converge for any of the 5 runs. The input variables for each of the solutions were 

also recorded, yet not further explored because the solutions were not deemed valuable as they fell 

outside the ideal constraints.    
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Figure 42 Convergence Graph - Opossum RBFOPT & CMAES: FES in 20 minutes (source: own) 

Similarly, for both optimization algorithms used by Opossum, neither RBFOpt nor CMAES algorithms were 

able to achieve a feasible convergence of the fitness function within the allotted time of 1200 seconds. 

The lowest values for EUI remained very high F(x)_min AVG of 5.28E+06 and 1.41E+07, meaning that the 

results must have been stuck in a local optimum.  No solution that would contemplate all constraints was 

found. The input variables were saved yet not further results for comfort or UDI were explored. 
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Figure 43 Convergence Graph – Optimus jEDE: FES in 105 seconds (source: own) 

Differently from the previous 3 single-objective optimization algorithms, Optimus jEDE did converge in 8 

of the 10 performed tests. More impressively, was the fact that in conducted 5000 FES in 105 seconds or 

less. This speed allowed us to perform 10 rather than 5 runs. While all other optimization tools took a 

total of 6000 seconds for the 5 runs (100 minutes / 1.67 hours), on Optimus running twice as many runs 

(10) took a total of 1050 seconds (16.67 minutes). Although in some cases, like a test run 7 and 9, the

fitness function did not converge, the speed of the tool makes up for this by permitting many more runs

in total and by allowing the designer to explore various FES settings quickly and with a low computational

load.

The following table shows how the optimization is repeatedly converging to the same or similar solutions 

for each x variable. In green, the variables that constantly show up for the 8 valid iterations, while in yellow 

the variables that are also repeated, albeit less frequently.  The recurrence of these variables means that 

certain ideal solutions for the Amsterdam location can be discerned for each option.  

(To read the results correctly, refer to the Legend table D in section 3.2.4) 
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Optimus – jEDE – Amsterdam location 

105 Seconds 50 Generation 100 Population Size 

FES 5000 

Opti 
1 

Opti 
2 

Opti 
3 

Opti 
4 

Opti 
5 

Opti 
6 Opti 7 

Opti 
8 Opti 9 

Opti 
10 

Input Input Input Input Input Input Input Input Input Input 

Analysis_Level 0 0 1 0 0 0 2 0 2 0 

Core_Type 1 1 1 1 1 1 1 1 1 1 

FFH 6 6 6 6 6 6 6 6 7 6 

Length 4 4 4 1 1 1 1 4 1 3 

Number_Of_Fins 0 0 0 0 1 3 2 0 0 2 

Orientation 0 7 7 7 6 1 7 7 7 6 

Overhang_Size 4 4 2 4 1 4 1 1 1 1 

SHGC 3 3 3 3 3 3 1 3 2 3 

Shape 3 3 0 3 3 3 0 0 0 0 

U_Value 1 1 1 1 1 1 7 1 7 1 

VLT 3 3 3 3 2 2 3 3 3 3 

WWR_East_North 1 1 1 2 1 1 2 2 1 1 

WWR_North_West 4 4 4 4 4 4 4 4 2 4 

WWR_South_East 1 1 1 1 1 2 1 1 2 1 

WWR_West_South 4 2 1 1 4 2 2 1 2 1 

Width 2 1 2 3 3 3 1 2 1 3 

EUI 72.34 73.23 73.19 73.65 74.80 74.20  1.22E06 73.78  1.60E06 72.57 

Comfort 61.68 61.87 61.88 61.45 69.54 59.58 69.54 66.53 

UDI 60.37 53.63 62.27 54.77 67.99 61.33 63.41 64.47 

Floor Area 2710 1368 1480 1016 1016 1016 1480 1703 

• Analysis level: 0 means that the highest level 30 m is preferred, for balancing these objectives, a

high-rise would do better without urban context.

• Core Type: a central core type is consistently better when lowering EUI is the main goal.

• FFH: The lowest floor to floor height of 3 m is the ideal for the lowest EUI.

• The number of vertical fins surprisingly shows 0 repeatedly, their effects on energy consumption

might not be as significant on this location.

• SHGC: Solar heat gain coefficient is usually ideal using the highest setting on this model (0.8)

• Shape: Elliptical shape (3) shows up repeatedly yet the triangle (0) also seems to give good EUI

• U-Value is unsurprisingly ideal when the lowest, meaning there should be less heat transfer

through the façade to save on EUI.

• VLT: Visible light transmittance is usually ideal when highest (90%)

• WWR North is consistently the highest 80%, which is as expected because only useful indirect

sunlight penetrates through the northern side.



• Conversely, WWR South is consistently lowest (20%), because direct sunlight should be avoided

to shield the floorplate from overheating during the summer, avoiding in higher cooling loads.

Figure 44 Optimus jEDE - Solutions 1-6, 8 & 10 (source: own) 



3.7.2 Multi-Objective Optimization (MOO) 
For multi-objective optimization, the grasshopper plugin Octopus (Vierlinger, 2018) was used. A three 

objective optimization using SPEA 2 Reduction algorithm was performed. The objectives optimized for 

this run were: EUI, UDI, and Comfort, while the Floor area was not optimized but still recorded to allow 

for a more complete exploration of the possible design spectrum.  

Being a multi-objective optimization, there was no need to use the C# component with the penalty 

function. Rather than limiting the search by constraints, the objectives of EUI, Comfort, and UDI were 

explored simultaneously from the start of the run; this meant that the algorithm began the search space 

within already acceptable margins and improved each design within the Pareto-front (Cenaero, 2018).  A 

Pareto-front between these outputs was quickly established and various options within this non-

dominated boundary were explored.   

Similarly, to the single-objective optimization, the tool was run 10 different times and allowed to 

optimize for 1200 seconds (20 min). After the 10 runs for a total time of 12000 seconds (200 minutes / 

3.3 hours) the results were recorded. As an example, one of the results is presented next.  

Figure 45 Convergence Graph: Octopus run 3: FES in 20 minutes (source: own) 

The above chart shows the third of the 10 optimization runs (see appendix for others) to exemplify the 

progressive reduction of the EUI and comfort. Conversely, UDI is also slightly reduced when searching for 

Pareto-optimal solutions. This trend could be explained because of the inherent tradeoffs of a multi-

objective optimization with conflicting goals, meaning that by lowering the EUI while improving comfort, 
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UDI might slightly decrease also.  Nonetheless, solutions in the Pareto front were still high in all three 

objectives as seen from the collected samples.  

Iterations within the solution space 

The following figures show the complete solution space for one of the runs performed in Octopus, each 

cube representing an iteration that the algorithm reviewed. The more transparent cubes are the history 

of the optimization process, meaning that better solutions non-dominated solutions where found, these 

solutions are represented in solid colors. The sizes of the cubes represent in an abstract manner the 

relative size of the floor plate, allowing the designer to intuitively identify which solutions have higher or 

lower floor areas.  A Pareto-optimal line can be identified with each progressive generation. By identifying 

a larger hypervolume, EUI and UDI tend to show that they are indeed conflicting objectives  

Figure 46 Multi-objective design space – EUI (x) / UDI (y)  (source: own) 
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Octopus - SPEA 2 – Amsterdam location 

Figure 48 Multi-objective design space - Comfort(x) / UDI(y) 
(source: own) 

Figure 47 Multi-objective design space - EUI (x) vs Comfort (y) 
(source: own) 

Figure 49 Multi-objective design space - EUI (x)  vs Comfort (y) vs UDI (z) (source: own) 
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1200 Seconds 36 Generation 100 Population Size 

FES 3100 

Oct1 Oct2 Oct3 Oct4 Oct5 Oct6 Oct7 Oct8 Oct9 Oct10 

Inputs Inputs Inputs Inputs Inputs Inputs Inputs Inputs Inputs Inputs 

Analysis_Level 0 0 1 0 0 0 0 0 0 1 

Core_Type 1 1 0 1 1 1 0 0 0 0 

FFH 6 8 6 7 6 6 6 6 7 7 

Length 3 1 1 3 3 3 4 2 4 2 

Number_Of_Fins 4 2 1 0 0 2 0 0 2 2 

Orientation 2 5 1 3 7 6 6 5 0 4 

Overhang_Size 2 3 1 3 3 1 3 3 1 2 

SHGC 3 3 3 3 3 3 3 3 3 3 

Shape 2 3 0 1 2 0 0 1 3 1 

U_Value 1 1 1 1 1 1 1 1 1 1 

VLT 1 2 2 2 2 3 3 2 2 1 

WWR_East_North 1 4 4 1 1 1 1 4 3 2 

WWR_North_West 4 4 3 1 4 4 4 2 3 3 

WWR_South_East 1 4 2 4 2 1 3 3 3 3 

WWR_West_South 4 1 1 4 2 1 4 4 1 3 

Width 2 3 3 2 2 3 3 3 1 2 

EUI 79.23 84.24 99.10 83.91 74.23 87.30 81.31 93.61 86.18 100.48 

Comfort 67.60 68.15 64.64 70.18 67.00 68.20 64.84 69.86 66.16 63.72 

UDI 69.01 53.46 68.87 70.08 70.84 65.56 59.41 66.03 59.41 70.11 

Floor Area 2010.3 1016.0 470.9 1560.0 2010.3 1703.4 2319.6 1560.0 1367.9 1005.0 

In the same way as the table developed for the Optimus jEDE solutions, this table also shows frequent 

solutions that further reinforce the variables that are important when considering efficient high-rises 

that contemplate EUI, Comfort, and UDI.  The conclusions for the Amsterdam Location are as follows: 

• Analysis Level: Similarly, to single-objective optimization (SOO) the consistent choice (0) is

measured at +30m meaning that for Amsterdam, an urban context is counterproductive, possibly

due to higher cooling loads associated during the summer.

• Core Type: In this optimization, the last 4 solutions show that a lateral core type can also give

good results, albeit the EUI is slightly higher in all these cases.

• FFH: The recurrence of the lowest (3m) and second-lowest (3.5m) floor to floor heights shows

that a lower FFH is ideal. Even though modern high-rises are starting to use higher FFH for

“modern-look” of flexibility, this new policy should be revisited if improving the EUI, Comfort, and

UDI has sought after.

• Number of Fins: There is no clear pattern on the number of fins, probably signifying again that the

fins do not play a major role in this location



• Orientation: Like the previous conclusion, there is no clear pattern for the orientation of the

building is neither optimization runs. The reason for this could be because most of the ideal

solutions found have a 1:1 plan ratio therefore the orientation is inconsequential. In options with

longer lengths vs widths, the orientation is indeed more important.

• Overhang size: Likewise, there is no recurring solution for overhang size, probably explained

because the sun varies drastically throughout the year, therefore there is no ideal passive solution

for this criterion, and simply does not affect EUI, Comfort, and UDI as much as the other analyzed

variables.

• SHGC: Also like the solutions from SOO, SHGC should be highest (0.8)

• Shape: Differently from the SOO shape when conducting a MOO, the shape did not have a clear

pattern because it was a choice to choose from the many design options. SOO showed that when

the sole objective is to lower the EUI, then the ellipse is the preferred option; just as was identified

in the literature review. On the other hand, when other objectives like comfort and UDI are

considered, the choice expands.

• U-Value is regularly ideal when lowest, this comes as no surprise and when design and cost

permits, U value should be lowest in this location.

• VLT: In MOO, is not as defined, while in SOO VLT should be highest, here the choice is less defined.

• WWR North is also rather repeatedly set as highest (80%) with a few exceptions, taking advantage

of the indirect northern light in the Northern Hemisphere.

• WWR South. Various the solutions for this side are “incorrect” because they do not follow the

typical low (20%) WWR that SOO showed; nonetheless, upon further inspection, it was discovered

that cleverly, the algorithm found interesting solutions (solutions 6, 8 and 10) to use the lateral

core as a shield from the sun. Therefore, the southern windows can be larger while still protected

most of the time during summer and receiving indirect sunlight during winter.

• Length and Width variables depend more on the choice of the final floor area, therefore there is

no “optimal” choice but rather it allows the designer to tweak their design.



Figure 50 Octopus SPEA 2 - Solutions 1-10 (source:own) 



This thesis-based its results as presented by the authors from the Optimus journal article  (Cubukcuoglu, 

et al., 2019)  To evaluate the performance of the optimization tools, EUI is reported as f (x)_min, 

signifying the minimum fitness value of this design problem.  

The following table shows a summary of the 5 different optimization tools and algorithms used: 4 single 

objective and 1 multi-objective (Octopus SPEA 2).  For clarity, only 1 of the 5 or 10 runs for each 

algorithm displayed, yet the overall convergence and FES are recurrent in each of the runs of these 

optimization methods.  

Figure 51 Convergence Graph- Summary of 5 Optimization Algorithms: FES in 20 minutes (source: own) 

This table shows that Galapagos GA, Opossum RBFOpt, and Opossum CMAES failed to find a feasible 

solution for the penalty function aimed to reduce EUI while maintaining the other objectives as 

constraints. Instead, Optimus jEDE found feasible solutions in 8 out of the 10 runs in a fraction of the 

time (105 seconds instead of 20 minutes). Likewise, Octopus SPEA 2 also proved useful by identifying 

many optimal Pareto solutions within the 20 min time limit.  

Galapagos GA Opossum RBFOpt Opossum-CMAES Optimus jEDE Octopus SPEA 2 

F(x)_min_AVG 6.75E+06 5.28E+06 1.41E+07 73.47 82.74 

FES 2601 136 76 5000 3186 

Time (s) 1200 1200 1200 105 1200 

Having run multiple tests on various optimization tools, Optimus jEDE proved the fastest, carried out the 

maximum average number of fitness evaluations 5000 (FES) in only 105 seconds, and achieved the 

lowest average EUI 73.47 kW h /m2 yr (F(x)_min_AVG) within the constraints. Octopus SPEA 2 on the other 

hand, performed second best while allowing for a good understanding of the tradeoffs, exhibiting the 

wide spectrum of optimal design solutions with the use of its useful graphical user interface (GUI).  
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To better review, the results, the unsuccessful and successful optimization tools were further grouped in 

independent graphs while showing the same information from the summary graph above.  

Figure 52 Convergence Graph- Summary of 3 Unsuccessful Algorithms: FES in 20 minutes (source: own) 

Figure 53 Convergence Graph- Summary of 2 Successful Algorithms: FES in 20 minutes (source: own) 
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3.7.3 Time saved  
In terms of computational load, the speed of the optimization using the surrogate models was 

significantly improved when compared to the original BPS model. Further, when the parametric 

geometry generation was turned off, the results were calculated immediately, therefore allowing for 

multiple optimization runs and tests with 5 different tools.  

The newly trained surrogate models took only a fraction of the original time. While for ladybug simulation 

model was able to simulate approximately 3.4 simulations per hour (147 hrs total for 500 samples), the 

surrogate model took around 30 seconds per simulation, including the form generation. Therefore, 

rerunning an entire optimization of 500 samples would take approximately 4 hrs. and 15 minutes. The 

simulation time for 500 samples went from 8820 minutes (100%) down to 250 minutes (2.8%), this is a 

97.2% reduction of the computational load. Even better, by turning off the form generation aspect of the 

script, the surrogate model was even faster. Using this method, 500 samples were generated in Optimus 

in 189 seconds (0.036%) meaning that it could generate an option in around 0.4 seconds; thus reducing 

the total computational load by 99.96%.  

3.7.4 Amsterdam Vs Bogotá Multi-Objective Optimization 
Before this case study, a quick study was carried out to compare two of the three metamodel locations, 

for both Amsterdam and Bogota, a three objective optimization also using the Octopus SPEA 2 

Reduction algorithm was performed. The parameters explored were: EUI, UDI, and Floor area.  

Ultimately two significant designs were chosen to make observations & conclusions about the 

characteristics of the design solution for each location.  The designs were chosen for their balance of 

EUI, UDI, and floor area: closest to the utopian objective but also for the notable conclusions that could 

be inferred from their architectural parameters.  

Amsterdam  Bogota 



Amsterdam Solution 1 

The first chosen Pareto optimal solution for Amsterdam shows the following interesting characteristics: 

1. The analysis level is lowest at N00, meaning that an urban context could indeed help reduce

energy costs while not being too counterproductive on UDI.

2. The optimization found a way to orient 1 side of the building to the south and reduce the WWR

on that side to protect it from potential high cooling energy demand during the summer.

3. The rest of the façade orientations are set to the highest WWR (80%) thus improving UDI.

4. Large overhangs are preferred to protect from the high sun path that could cause overheating

during summer.

Amsterdam Solution 2 



This solution is quite interesting as it gives relatively good results with a very unexpected shape: 

1. The triangle has its southern oriented side with a low

WWR (20%) to shield it from direct sun.

2. The northwestern façade is proposed at WWR 60% as a

balance between  and eastern facades are

3. It is suspected that the core could be acting as a

reflection surface and redirecting indirect UDI into the

floorplate, thus improving the UDI while not reducing

significantly the EUI from direct sunlight penetration.

To check this hypothesis, the original simulation model was 

reviewed. Upon inspection, the wall type chosen for the 

lateral variant of the core walls was effectively an ASHRAE 

90.1-201 Exterior Wall Metal, thus reflective. This was initially 

chosen to mimic stainless steel finishes that are seen on multiple high-rise solutions. This material was 

also chosen due to its similar U value with a wall in DesignBuilder during the validation process, yet its 

reflectance was not considered at the time. This further reinforced the theory of the reflecting core 

effect.   

Characteristics for both chosen Amsterdam Solutions: 

1. VLT is kept at a middle range of 60%

2. SHGC is kept to the highest to increase solar radiation gains that would be ideal for heating the

building during the winter, thus reducing heating loads.



Bogotá Solution 1 

Bogotá Solution 2 

In the case of Pareto optimal options for Bogotá, both solutions are similar variants in shape, one is the 

ellipsoid and the second one an octagon, with very similar energy and daylight performance yet the 

intrinsic efficiency of the ellipsoid achieved approximately +200 more squared meters of area.  Other 

important characteristics of these two solutions are:  

1. The analysis level chosen is the highest, meaning that for Bogota context shading is ideally

avoided, this could be due to the vertical sun path of this location.

2. The orientation of the floorplan is rotated 90° from the north as the eastern and western

facades allow for high UDI while needing to be protected from direct sunlight.



3. For this reason, the East and West facades required

4. Ideal overhang size is somewhere in the middle: 0,8 m

5. Fins do not change considerably the EUI or UDI, therefore, are not necessary.

General conclusions for both locations: 

Because these solutions are searching for a balance for UDI and EUI and floor area, they will not fit the 

general recommendations from the table from chapter 8.1 that discusses solely the ideal shapes and 

orientations for energy efficiency.   

1. Although Floor to Floor Height is important to improve UDI, it seems to not be worth increasing

when considering EUI because all solutions opt for the lowest FFH.

2. A narrow plan of 80 x 20 m or 4:1 ratio is ideal to substantially improve UDI even though it

would also increase energy consumption when compared to a 1:1 ratio.

3. A low façade U-value is always ideal for reducing energy consumption

Initial Comparison to Baseline Model 

Yet another advantage of exploring the whole spectrum of optimal designs was that solutions 

comparable to the control model used for calibration with DB could be performed. A Pareto front 

solution with a similar area as the original model (400) was chosen and compared. Once again, the 

triangular/lateral core solution seemed ideal. This solution also made sense, because the southern 

oriented façade had reduced WWR while the other two facades opened (WWR) 80% to allow for 

indirect to improve UDI; also similar to Amsterdam solution 2 form the previous point. 

Figure 54 Surrogate model vs Simulated model of predicted improvement (source: own) 



To further confirm the validity of this option, the original parametric model was updated to these inputs 

and then simulated again through Ladybug/Honeybee (Mackey & Sadeghipour, 2019). The results from 

the simulation were in line with what was predicted by the surrogate model with some caveats.  

Table L 

EUI Floor_Area UDI 

Control 95.41 400 40.081677 

Opt 422 (Surrogate) 91.123 422.18 77.02 

Opt 422 
(Simulation) 107.41 422.18 72.47 

% Difference (Sur) 4.49 5.55 92.16 

% Difference (Sim -12.58 5.55 80.81 

This table compares three values: 

1. The control model´s original simulated results without any optimization

2. The Surrogate model predicted results of an optimized solution

3. The Simulated model of the optimized solution found through with the surrogate model

These results show that the surrogate model effectively served to locate a more optimal solution, 

nonetheless an Error in the calculation is evident. It predicted a lower EUI of 91.1 107.4 k Wh/m2 when 

in fact the simulation gave a higher 107.4 k Wh/m2.  This could be explained because the surrogate 

model for EUI was the most basic type of machine learning method: linear regression with an Adjusted 

R2 of 84%, Standard Error of 9.74, and MAE of 7.28.  

In contrast, the predicted result for the UDI was much closer to the simulated result: 77.0 Predicted vs 

72.5 simulated. This can be explained because, for UDI, a more complex and precise ANN meta-model 

was used.   

Ultimately, what this means is that the surrogate model predicted improvements of ≈5% for EUI and 

92% for UDI while the simulated version showed a decrease of ≈12% for EUI and an improvement of  

≈80% for UDI . This measurement was made early in the design process and the ANN-based metamodel 

had not been finely finetuned, and even though the model served to locate a better solution, it is critical 

to review the chosen design again with traditional simulation tools to avoid misinterpreting the data. 

Also, calibrating the validations metrics from the start is critical for the trustworthy results of the 

metamodel.  



3.8 Surrogate model in the Design Process 
The final step in the proposed methodology of this thesis permits the designer an effective use of the 
surrogate model by allowing quick visualization of the results.  As described briefly in the introduction to 
the Method, the stripped-down initial Grasshopper parametric model was merged with the validated 
Surrogate model to permit visualization of the geometry and its predictions simultaneously. For the 
optimization runs, the geometry could be turned off to generate quicker results; once an interesting 
solution was identified the geometry could be turned back on for further inspection. This is particularly 
valuable because the human operator is not interested in the whole design space that the algorithm is 
searching but rather only in ideal Pareto-optimal solutions. This improves the already enhanced process 
of using meta-models in the design process because it takes advantage of the speed of the computer for 
the optimization but also keeps the interactive component that is required by the designer or architect.  

This image illustrates the evolution of the tool. Once the form generation segment collected the 500 
samples through the simulation software, this could then be internalized into a model coupled with the 
final surrogate model. The coupled model is composed of 3 main parts: The form generation, the 
surrogate model, and the optimization tools. The link between variables and the surrogate model could 
be activated and deactivated at will.  

The data from any of the simulated locations (Amsterdam, Bogota, and Dubai) could be read from the 
excel files and used to train the surrogate model. Once the model was trained, the variables could be 
entered manually, slider by slider, or could be read like a list set with the 16 independent variables x1..x16. 

This method thus incorporates the multi-objective optimization tool to accelerate the iteration process 
but also serves as an efficient design tool for decision-making in the early stages of design because of the 
possibilities it allows for quick design exploration. Moreover, although the surrogate model has shown 
advantage by incorporating it into a single and multi-objective optimization process, this tool can also be 
a very useful as a standalone tool that allows the designer to explore iteratively the consequences of 
changing one variable at a time.  



3.9 Discussion 
From a pure engineering standpoint, it could be argued that single and multi-objective optimizations are 

completely different problems therefore they should not be compared. Nonetheless, the comparison 

between the results from Optimus jEDE and Octopus SPEA2 served as a validation that indeed the minimal 

EUI was around 70 kW h /m2 yr. for Amsterdam. Differently than from the engineering realm, in the 

architectural optimization realm, it is useful to have various methods to solve a unique problem.  

Optimus jEDE proved to be by far the fastest optimization tool, therefore it is recommended as an initial 

step to run many quick simulations and get a general idea of the Minimal or Maximal values of an 

architectural solution. Likewise, its light software architecture never seemed to slow down the computer 

in which it was being run, lightening the computational load considerably. Even the script could be 

reviewed simultaneously, although not recommended. This makes Optimus jEDE an ideal tool for early-

stage design when time is of the essence and quick optimizations are critical. Although Galapagos GA and 

Opossum RBFOpt or MAES might be efficient tools in other optimization problems, for this one they 

proved slow and ineffective, taking up time and computational calculations, slowing the computer down 

considerably and eventually not being able to find a feasible solution to the fitness function. Although, 

the possibility still exists that after longer runs these SOO algorithms could eventually converge, but 

because the whole point of doing this thesis is to lighten the computational burden, extremely long 

computational optimization runs would be counterproductive.  

Therefore, my recommendation for SOO problems is to first try Optimus jEDE and later the other options. 

On the other hand, its nature to solve a single objective limits its applicability because most architectural 

solutions should hardly be reduced to a single objective but rather be reviewed with an overarching 

assessment in a range of options.    

For the reasons mentioned above, was deemed that using a Multi-Objective Optimization tool could be 

more useful in this multi-criteria scenario. For this exercise, being able to visualize the 3-Dimensional 

design space allowed not only to identify good solutions but also to understand better the compromises 

that had to be made. The Octopus Multi-Objective visual tool exposed more clearly that good energy 

efficiency (lower EUI) signified an inherent tradeoff to good daylight (lower UDI), therefore it was more 

useful to view the design space as a large set of possible solutions rather than one.  

Although the SPEA 2 algorithm was left to run for 20 minutes and produced the second-highest FES, 

(≈3200 rather than 5000 from jEDE) it is important to note that by using the MOO tool from Octopus, it 

was possible to get a general overview of the lowest and highest range values for each output. This 

meant that as soon as the optimization was started, the 3-Dimensional graph was aware of the general 

overview of ideal values. As more non-dominated solutions were found, the minimal fitness functions 

were further refined and decreased or increased slightly, yet the overall ranges were easily identified 

from the start.  



At a point during the research, modeFRONTIER (ESTECO, 2020)was used as the optimization tool to find 

good performing designs, and although it provides many optimization algorithms that could be 

extremely useful for many design problems, the process of reviewing the results and visualizing them 

proved to be someone time-consuming. For this, a segment of the custom-script was dedicated to 

reading properly the output data form ModeFrontier. This back and forth, exporting and importing was 

possible but not ideal. Valuable time was lost in creating this custom component and later identifying 

the design options that resulted in the optimal design solution. An alternative to this limitation could be 

for the software developer ESTECO, to develop a custom Grasshopper component that could read the 

choices of design options in real-time within the Grasshopper Environment, thus facilitating greatly the 

design exploration aspect.    

In conclusion, my recommendation for more complex architectural problems that manage multiple 

objectives is to use Octopus all within the Grasshopper environment. Currently, it is limited to the 

following optimization Algorthigms: SPEA 2, HypE Reduction, Polynomial Mutate, Alt Polyn. Mutate and 

HypE Mutation  (Vierlinger, 2018). Further optimization algorithms would ideally be added to the 

Octopus library, making it a powerful tool in architectural design optimization.  



Comfort Error Output 

During the process, by having performed a statistical significance F test, I was able to identify an error 

with one of the outputs. Initially, the value for F-significance of the comfort outputs was 0, meaning that 

the prediction was not statistically significant. This led to an investigation of the original simulation 

model. The solution was identified as a simple error in reading the list: rather than reading the simulated 

comfort for the floor plan, the script was mistakenly reading the comfort inside the core area, meaning 

that none of the inputs were significantly affecting the comfort output. This was corrected in the original 

simulation model and the samples were collected once more.   

Figure 55 Comfort Error Core vs Floorplate (source: own) 

Figure 56  Comfort Solution Core vs Floorplate (source: own) 



4.0 Showcase of a design solution 

4.4 Proposal 
Considering the wide spectrum of options that the optimization tools could generate, it was a daunting 

task to choose a single architectural solution. The final solution was solution 2 from Amsterdam vs 

Bogota Multi-Objective comparison study. It was chosen because even though it lay on the Pareto-

frontier line, was a very atypical architectural solution compared to the expected ones. It was chosen 

because of this nonconforming image while still showcasing that it was an efficient option in the three 

objectives searched on this thesis paper. This uncommon solution also exemplified the power of a 

computational methodology that could suggest uncharacteristic solutions that would have otherwise 

never have been explored by the human designer. 

Figure 57 Final solution to showcase the design (source: own) 



To double-check the accuracy of this option, a final simulation was performed with the original BPS 

simulation script in Grasshopper. Although it did not have the highest UDI as compared with other 

optimal solutions, it indeed showed that it was a valid option to develop into a complete architectural 

solution. Further refinements, like adding an Atrium in the center, or service-based program that does 

not require daylight, could counter the lower UDI towards the center of this proposal.  

Figure 58 PBS Simulation of the final design solution (source: own) 



Final Architectural Solution 

Inputs 

Analysis_Level 2 

Core_Type 0 

FFH 6 

Length 3 

Number_Of_Fins 0 

Orientation 7 

Overhang_Size 3 

SHGC 3 

Shape 0 

U_Value 1 

VLT 2 

WWR_East_North 3 

WWR_North_West 3 

WWR_South_East 1 

WWR_West_South 4 

Width 3 

EUI 85.97 

Comfort 56.41 

UDI 61.84 

Floor Area 1703.4 
Figure 59 Diagramatic planview of chosen design solution (source: own)



Figure 60 Top view of chosen design solution (source: own)



Figure 61 Axonometric diagram of chosen design solution (source: own) 



Figure 62Diagram "bridges" of chosen design solution (source: own)



Figure 63 Interior concept view of chosen design solution (source: own) 



5.0 Conclusions 

The initial research question of this paper was: 

“How can a computational method using surrogate modeling be used to quickly identify, and optimize 
the most influential factors and their combinations for context-based passive solutions of sustainable 
High-Rise office buildings during their initial design phase?” 

The main research question of this paper was to understand how a computational method could be used 

to review how shape and façade variables would affect building energy, daylight, and comfort 

performance on a high-building typology. For this, research was conducted on creating surrogate models 

using various machine learning methods. The methods used in this paper where Linear Regression, Non-

Linear Regression, and Artificial Neural Networks. Ultimately ANN-base surrogate model was developed 

for the three different locations, Amsterdam, Bogotá, and Dubai. Later, as a proof of concept, the 

Amsterdam based ANN surrogate model was used to review various optimization algorithms, including 

Evolutionary Algorithm, RBFOPT, CMAES, jEDE, and SPEA2. Using Surrogate model-based optimization, 

the speed of reviewing 500 samples was reduced from 8820 minutes (147 hrs / 6.125 days) down to 189 

seconds using jEDE, the fastest performing algorithm reviewed. This accounted for a time saving of up to 

99.96%.  

Likewise, this paper presented a new optimization workflow which considered the following steps in the 

architectural design process:  

1. Problem definition

2. Simulation of the Parametric Modeling (PM) / Form Generation

3. Building Performance Simulations (BPS) / Performance assessment

4. Validation of Simulation Model in Design Builder

5. Data Collection based on the sampling strategy

6. Training of the Surrogate model

7. Evaluation of Surrogate model

8. Computational Optimization (CO)

9. Surrogate model in Design Process

10. A showcase of a design Solution

The final steps 9 and 10 show how the early-stage design exploration phase can be coupled using a custom 

made a script that includes not only the surrogate model and the optimization algorithms but also the 

visualization components to allow for easy exploration of the design solutions and their individual EUI / 

Comfort / UDI and Floor area outputs.  

The main objective in terms of the building physics aspect of this research was to view the effects of 

orientation, shape, core, context, and façade parameters and their effects on Thermal Comfort, Energy 

Consumption, and Natural daylight of a building.  



The sub-question for this paper where: 

a. How do different locations/climates dictate the building’s ideal shape and orientation?

As expected from the initial literature review, when only seeking to lower the EUI, the ideal shape of the 

floorplan of a high-rise tended to be the ellipsoid, because a circle has the shortest perimeter related to 

its area. In contrast, when EUI / Comfort and UDI were simultaneously optimized, the other options for 

the building shape (triangle, square, and octagon) were also “optimal”, laying also on the Pareto-frontier, 

particularly when balanced correctly with the WWR for each of the building’s orientation. 

In the sensitivity analysis, the orientation seemed to have a very low effect on the outputs. This can be 

explained because the width and length can essentially change the “orientation” by 90° simply by 

changing the ratio of these two inputs; for example, (length 60 m x width 20 m) would essentially be same 

as (length 20 m width 60 m) with a 90° orientation. Likewise, the orientation was modeled in large steps 

of 45°; more subtle variations could show a more important role of this parameter. 

Although the Pareto front discovered optimal cylindrical floorplan solutions. The ideal Amsterdam 

orientation tended to converge to 0° from the center bearing in mind-independent WWR solutions were 

defined for the southern direct sunlight facade (low WWR) versus the northern façade (High WWR). On 

the contrary, the cylindrical floorplan was rotated 90° for the Bogota location to account for the vertical 

distribution of the sun path throughout the year (no seasons). These eastern/western facades, however, 

required low WWR to limit excessive energy gains from the sun. 

Finally, with the lateral core iterations, the orientation of the building was crucial. In some optimal 

solutions for Amsterdam, the core served as a shield or even a reflective element that improved the UDI 

considerably by allowing for higher than expected wall to window ratios. 

b. How does the volumetric context of surrounding buildings affect its shape and façade

parameters?

The context inputs were refined into a single variable that allowed to view the effect of high, low or 

medium context buildings related to the studied geometry, this input was labeled Analysis Level and noted 

the outputs depending on the level: Ground floor (N00), Central floor (N15) or Top Floor (N30). Further 

parameters of block size, block separation, and proximity of the blocks were created as parametric 

variables, yet they were not included in this research to simplify the number of variables. 

During the initial simulation runs using a non-optimized ANN-based surrogate model, the low ground 

analysis level seemed to be the optimal solution, meaning that indeed the urban context was helping 

improve the sought-after objectives of this paper. Nonetheless, when the ANN was improved and run 

through both jEDE and SPEA2 optimization algorithms with 10 runs each, it showed that the preferred 

solution for almost all Pareto-optimal designs was the topmost analysis level, meaning that context was 

playing a detrimental effect to the objectives. When the lowest analysis level was chosen, the urban 

context did indeed slightly lower the EUI (example: from 89.6 to 85.9 (kWh/m2 yr) but also reduced the 

Thermal comfort (from 68.2% to 56.4%) and the UDI (from 64.1 to 61.8). So, although the context plays a 

role in the outcome, its effects are negatively affecting the overall performance of the optimized 

Amsterdam Location.  



c. How does the position of its Core affect a building´s energy performance concerning its

location/climate?

Regarding the core, it was discovered that its position played a significant role in the Useful Daylight 

Illuminance of the building. Interestingly, the core gave rise to some unexpected Pareto optimal solutions 

such as a triangular floor plate in Amsterdam with the core being suspected to serve as a sort of daylight 

reflection element. Also, some solutions used the core as a shield from the most unwanted southern sun, 

allowing at the same time to increase the WWR on the southern façade. Moreover, on the central core 

variants with smaller areas, such as the control option, its location within the floorplate decreased the 

UDI by acting as a barrier within, therefore the core size concerning its usable floor plate should be 

carefully considered when designing a high-rise.  

d. What is the Pareto-optimality of these parameters when simultaneously seeking energy

consumption, thermal comfort, and natural daylight optimums?

The Pareto optimality was reviewed thoroughly in the MOO section of this paper. In conclusion, many 

design options with widely different architectural expressions all fall within this Pareto-optimality. It is 

therefore up to the designer to choose the one that best suits its intention and ideal Floorplate area. For 

that, the Octopus Tool is recommended because of its ease-of-use and efficiency of its SPEA 2 optimization 

algorithm.   

e. What are the key validation metrics and features necessary for obtaining suitable

surrogate models?

To create precise surrogate models, it was critical to understand the validation metrics that define any 

Machine Learning method. Once these metrics, such as R², P-Value, Standard Error (RMSE), or Mean 

Absolute Errors (MAE) could be efficiently calculated and reviewed, the definition of an ideal meta-

model was more easily attainable. Although this process still needed optimization or a manual iterative 

process to perfect, the procedure became much more streamlined once a general “feel” for improving 

the ML methods was developed.  To do this, each of the hyperparameters was tuned gradually until the 

validation metrics were within acceptable margins.  

The key validation metrics for obtaining a surrogate model were explained in the literature review section 

of this paper and later applied for the training of the surrogate model. The metrics are R2, Adjusted R2, 

MAE, RMSE (standard error), and the P-Values. To show the correlation between the input variables and 

the outputs a commonly used metric is the R2 and better yet, the adjusted R2; which accounts for the 

bias by considering the number of variables thus reducing slightly the R2 (Frost, 2020).  The MAE and 

RMSE are metrics to predict the deviation of the predictions from the results, they are used to validate 

the accuracy of the model.  Finally, the P-Values are used to review the statistical significance of the 

results, if they do not  

The examination of individual p-values of the inputs uncovered more subtleties in understanding how 

each parameter was affecting the dependent variables (outputs) based on the chosen geographic 

locations: Amsterdam, Bogotá, or Dubai. 



Conclusions On Validation 

To validate the collected samples from the simulations, a separate building physics software was utilized: 

DesignBuilder. (DesignBuilder, 2020) Through the comparison of the results from the original parametric 

simulation model with the results from DesignBuilder, a more global understanding of the variables that 

affected the Energy Balance was achieved. Likewise, it ensured that the collected samples were more 

trustworthy.  

Daylight parameters were carefully finetuned to find a proper balance between the long simulation time 

versus an acceptable daylight result. This, in turn, was reviewed in conjunction with the energy simulation 

to achieve results similar to those from the DesignBuilder software.  

It is also vital to note the importance of the occupancy and lighting schedules for the total energy 

performance of a building, this was an essential step in achieving similar results.  

Yet another important definition that was identified the simulation model validation was natural 

ventilation. The results from both models varied significantly when natural ventilation was introduced in 

the energy calculation, for this reason, this aspect was carefully fine-tuned to achieve congruent results 

between both models.   

On Envelope Parameters 

Firstly, by reviewing independent P-values, it is concluded that although the envelope parameters are 

important, the shape parameters play a much more important role on the optimized outputs, thus 

reinforcing the idea that good information for good initial design is critical in the design process; finetuning 

the envelope parameters only should come after a good general design is found. On that note, the most 

important parameter from the envelope perspective on energy performance and natural daylight was the 

WWR.  

The presented optimized options offer solutions that apply to the entirety of the building, ideally, though 

each façade orientation would have optimized characteristics to respond in the most precise manner for 

each orientation and building floor height. This would have to be modeled so that each façade parameter 

(and not only the WWR) responds independently from the other.  

The optimization presented here consists solely of passive design solutions, active solutions would always 

improve results as they can adapt to the ever-changing daylight or seasons, therefore these 

recommendations are the simple first step in initial design stages rather than finalized set of values.    



On Computational method 

Although the Honeybee/Ladybug  (Sadeghipour & Mackey, 2017-2020) components in Grasshopper 

(Rutten, 2015) using the EnergyPlus Engine (DOE, BTO, NREL, 2020) for daylight and energy simulation 

are extremely powerful tools for building analysis, the initial results from the runs must always be taken 

with a highly critical approach. Once the model was set up, the inputs and assumptions from the 

software were carefully fine-tuned with the DesignBuilder (DesignBuilder, 2020) software to achieve a 

model with more reliable results.  

Three independent Surrogate models were developed: one for Amsterdam, Bogotá, and Dubai. Although 

both models for Amsterdam and Bogotá have the same Köppen Classification of (Cfb) Marine West Coast 

Climate, results show that their optimal solutions are similar in some respects such as shape and FFH, yet 

different in others such as context (analysis level), orientation or WWR.   

Three independent models where trained because it made them easier to train. By trying to train 3 

simultaneous locations in a single ANN model, the data outputs would vary greatly from location to 

location, meaning that the ANN would have to be more complex. This complexity was deemed 

unnecessary although theoretically it could be done with enough time to train the model and samples to 

ensure that the R squared values and MAE, MSE is within acceptable margins. It is also worth noting that 

once trained, this location variable should not be optimized by any of the optimization algorithms, the 

variable would instead serve as a choice for the designer to review their building in a different location.  

These surrogate models offer the advantage of a design space with which the designer can experiment 

with. Traditional simulation-based optimization usually relies on Genetic algorithms or other nature-

inspired algorithms to find more “ideal” or fitting solutions. Nonetheless, the nature of the problem is 

much more complex. By identifying the P-values and Correlations of the variables to the outputs the 

designer can see to which choices he should give more importance to.   By identifying the points that fall 

within the Pareto optimality of the design space the designer can also recognize patterns and their 

inherent tradeoffs by contradicting objectives. The response surface represents a more complete design 

space on which the designer can immediately experiment.   

Similarly, even though surrogate models can take many simulations to set up, once they are calculated 

and validated as more optimization experiments are required, they become gradually more attractive, 

especially when the entire design cycle is considered. (Eisenhower, et al., 2012) For this reason, an 

organized and easily modifiable original parametric model is key, so if a new surrogate model must be 

derived, quick changes or improvements could then open an easy way for a new batch of collected 

samples.  

The advantage of metamodeling is that once it is generated, many additional options can be explored, 

and single or multiple objective optimization algorithms can be utilized without spending time on new 

computationally expensive daylight or energy simulations. Moreover, some optimized solutions can 

broaden the spectrum of intelligent design possibilities by presenting options that would have otherwise 

never have been imagined by the designer; a perfect example being the triangular, lateral core showcase 

example for Amsterdam.  



Nevertheless, although surrogate models can serve as efficient tools for exploring either the design space 

or finding optimal design options, once these solutions have been identified and will be further developed, 

they should be verified to ensure that the surrogate model has indeed predicted the results correctly. For 

this reason, Validation metrics are crucial to use surrogate models with more confidence.  

The computational goal of the research: to develop surrogate models to aid the architect in understating 

their design choices, this objective was achieved by creating two custom surrogate models for Amsterdam 

and Bogota that reflect how a high-rise building would behave at these locations. These models can be 

interactively explored with virtually no waiting time when only the inputs and outputs are reviewed. When 

the model is intended for output review as well as for visualization, the waiting time increases to 

approximately 5-6 seconds which is the time it takes to generate the new parametric geometry.     



6.0 Reflection 
Background on Artificial Intelligence 

Artificial Intelligence (AI) is already permeating all levels of human organization: medicine, education, 
military, from artistic endeavors such as surrealist art to things as mundane as Netflix/Social media 
recommendations (Knight, 2019) 

Healthcare: 
Researches from Pennsylvania Healthcare provided AI with 1.77 million electrocardiograms (ECG) logs for 
it to detect patterns. AI predicted better than the existing techniques in which patients were at greater 
risk of premature death.  This means that “AI can potentially teach us things that we’ve been maybe 
misinterpreting for decades.” (Tangermann, 2019) 

Aviation: 
So far, Airbus has used generative design to develop a 3D-printed “bionic partition” for airplane cabins 
that is 45% lighter yet 8% stronger than anything it’s used to date.  (Wilson, 2019) Bionic Partition (Nagy, 
2016). Computational Intelligence can help us design unconventional and more efficient options. 

Design: 
Philip Stark partnered with Kartell to design the first commercial product with the help of an algorithm. 
They developed an experimental algorithm called Deep style that even seeks to mimic a company’s design 
ethos (Schwab, 2019) 

AI could reinforce our design ethos, although it should not replace human thinking but rather serve as a 
tool to aid our design process to make more conscious and informed decisions. There should always be a 
collaboration loop between the computational methods and the designer (Knight, 2019) 

Technology Transfer is the process of using techniques or material from one creative field or industry into 
another (Pawley, 1990) We need this technology transfer from the computational field and into 
architectural design. 

Therefore, as a general scope, we could use computational intelligence to eliminate our human bias, 
speed our comprehension and problem-solving skills, and enrichen our capabilities as architectural 
designers. 

Application to the built Environment 

Today, the evolution of High-Tech: Neo-futurism with examples such as Zaha Hadid Architects or 
UN Studio now deeply rely on computational modeling tools to achieve flowing shapes and aesthetically 
interesting morphologies. Yet simply complex computational shapes do not reflect the full potential of 
computational tools. 

The next step is to improve the parameters that constitute the shapes and characteristics to achieve 
solutions that minimize or maximized ideal criteria, such as: reduce energy performance, improve 
structural performance, daylight, wind flow, or increase thermal comfort for the building’s users. This 
opens a great field of study known as Parametric Optimization. 



Nonetheless, this exciting new field comes with limitations. First, the computationally heavy simulations 

require much time to achieve results, therefore these simulations usually are not used to understand the 

direct effects on the building’s performance. Secondly, the parametric models are usually project/site-

specific, therefore the results extracted from the optimization can only be applied to that case.   

The third application of the computational realm to the Built Environment in the field of Artificial 

intelligence or Computational Intelligence. Surrogate models represent a branch of this field, they intend 

to solve the first limitation of parametric optimization, which is to reduce the computational cost.  

6.1 Main topics 
The two main categories for research conducted were: Building Physics and Computational Methods, 

under these the subcategories are as follows:  

Building Physics 

• Climate Zones

• Energy Efficiency and Standards

• Energy Modeling

• Building Performance Parameters

• Comfort Metrics

• Daylight Analysis

Computational: 

• Grasshopper interface & Use

• Ladybug & Honeybee Software for Energy Modeling

• DesignBuilder Software for Energy Modeling

• ModeFrontier Software for data collection & Sensitivity Analysis

• Surrogate Modeling

6.2 Aim 
The general aim of this thesis is not solely to identify the best performing parameters but rather to help 

designers understand the effect of their choices on energy performance, daylight, and comfort results.  

Therefore, the specific aim is the development of a tool, in the form of a responsive surrogate model, for 

architects to play with and subsequently develop a better intuition of their choices. It is not intended to 

model closely a specific site, but rather to represent a generalizable surrogate model of a high-rise office 

building. This is an exploration of the possibilities of surrogate modeling applied to the built environment. 

Ideally, a generic surrogate model would fully replace building simulation tools for the most common 

types of building projects and locations.  



6.3 Limitations 
Energy simulation depends greatly not only on building-related variables but also on its use by its 

occupants, this simulation considers only building energy and would fall short in predicting this second 

human variable. Likewise, the HVAC system affects immensely the energy consumption of a building, the 

variables studied here focuses solely not the architectural element and choices and not those done by the 

MEP engineers.  

Simulating building energy, daylight and comfort is a widely used approach in parametric optimization is 

a widely used approach despite that it is not possible to guarantee the perfect representation of real-

world occurrences. Although these simulations provide a good indication of the underlying percentages 

of results and trends. The methodology, nevertheless, remains valid.  

This Parametric / Surrogate model is meant to be used as a broad tool by allowing a designer to “play” to 

understand the general effects of 16 parameters on the 4 objectives, it is not however meant to be used 

as a precise tool to predict the energy performance, daylight or comfort for a particular building in a 

particular location of either Amsterdam, Bogotá, and Dubai.   

Regarding the collected data for each location, it must be clarified that the validation of the simulation 

model between Ladybug/Honeybee and DesignBuilder was performed with 1 design option in 1 location 

(Amsterdam) It was then assumed that it would correctly simulate the other solutions in any of the two 

other locations: Bogotá and Dubai by using the EPW files from Ladybug tools. 

6.4 Further Steps 
A further step for this research could be to run similar MOO optimizations both for Bogotá and Dubai 

locations. Amsterdam and Bogotá solutions where compared yet further exploration amongst these 

three locations could show interesting conclusions from the Building Physics standpoint. Due to time 

limitations, only Amsterdam optimization was explored in depth. 

Additional steps could also be to collect more samples from other locations to be compared with the 

Amsterdam, Bogota, and Dubai models. Although through the development of this thesis, the 

predictability of the ANN-based surrogate model proved sufficiently good, on rare occasions, for 

predicting the UDI, the R squared value was slightly above 100%, making it unreliable. It is suggested 

that to improve this, more samples for each location could be collected since literature shows that more 

samples could lead to better accuracy of the surrogate model. 

Although the workflow for creating surrogate models was investigated, little research was done on the 

number of samples required to achieve a good model. This thesis used Uniform Latin Hypercube (ULH) 

static sampling method yet investigation on the adaptive sampling methods show potential from the 

literature review and could be an interesting point for further investigation.  

In the conclusions, it was mentioned that three independent metamodels were developed for each of 

the three locations. A further step could be to try to use the same dataset of 1500 samples to train a 

single ANN-based model.  
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8.0 Appendix 



Amsterdam EUI 

Regression Statistics 

Multiple R 0.912613798 

R Square 0.832863943 

Adjusted R Square 0.827315859 

Standard Error 12.40358111 

Observations 499 

ANOVA 

df SS MS F Significance F 

Regression 16 369526.1096 23095.38185 150.1173763 1.6908E-175 

Residual 482 74155.13331 153.8488243 

Total 498 443681.2429 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 83.00112601 5.734355313 14.4743605 1.09848E-39 71.73370341 94.26854861 

Analysis_Level 
-

5.151540588 0.682665018 
-

7.546220259 2.25415E-13 -6.492907635
-

3.810173541 

Core_Type 
-

20.40124715 1.116594105 
-

18.27096083 4.69909E-57 -22.59524054
-

18.20725376 

FFH 7.624224224 0.498231517 15.30257312 2.27374E-43 6.645250171 8.603198276 

Length 
-

11.03726107 0.496868448 
-

22.21364851 8.38762E-76 -12.01355683
-

10.06096531 

Number_Of_Fins 0.530092675 0.392882744 1.349238884 0.177893689 -0.241881796 1.302067147

Orientation 
-

0.341681141 0.242554461 
-

1.408678033 0.159575129 -0.818275887 0.134913605

Overhang_Size 0.896656559 0.498429318 1.798964319 0.072649745 -0.082706152 1.876019271

SHGC 
-

1.410926812 0.682665953 
-

2.066789483 0.039287429 -2.752295697
-

0.069557928 

Shape -7.51423599 0.496750367 
-

15.12678499 1.39564E-42 -8.490299733
-

6.538172247 

U_Value 5.817990039 0.278459064 20.89352003 1.69253E-69 5.270846414 6.365133665 

VLT 
-

2.082622714 0.681429487 
-

3.056255644 0.002365565 -3.421562068 -0.74368336

WWR_East_North 2.905349995 0.498767216 5.825062072 1.04459E-08 1.925323348 3.885376642 

WWR_North_West 3.326750141 0.49858351 6.672403063 6.92711E-11 2.347084458 4.306415824 

WWR_South_East 3.08149219 0.498685401 6.179230801 1.37211E-09 2.101626302 4.061358078 

WWR_West_South 3.662798118 0.497880659 7.356779288 8.1704E-13 2.684513466 4.641082769 

Width 
-

12.95817877 0.682355311 
-

18.99036845 1.8994E-60 -14.29893727
-

11.61742026 



Amsterdam Floor 
Area 

Regression Statistics 

Multiple R 0.922418729 

R Square 0.850856311 

Adjusted R Square 0.845905483 

Standard Error 377.9269054 

Observations 499 

ANOVA 

df SS MS F Significance F 

Regression 16 392748020 24546751 171.8614213 2.3529E-187 

Residual 482 68843455.47 142828.7 

Total 498 461591475.5 

Coefficients Standard Error t Stat P-value Lower 95% 
Upper 
95% 

Intercept -1939.46836 174.7210857 -11.1004 1.19103E-25 -2282.777451 -1596.16

Analysis_Level 
-

27.47484614 20.80024111 -1.32089 0.187164553 -68.34519581 13.3955 

Core_Type 27.34094818 34.02170315 0.803633 0.422005353 -39.50822425 94.19012

FFH 8.281998263 15.18070417 0.545561 0.585620203 -21.54653519 38.11053

Length 520.5483095 15.13917259 34.3842 8.5761E-132 490.8013813 550.2952 

Number_Of_Fins 
-

1.430045251 11.97081378 -0.11946 0.904959919 -24.95147189 22.09138

Orientation -8.40541081 7.390434745 -1.13734 0.255962729 -22.92686038 6.116039

Overhang_Size 6.474224444 15.18673101 0.426308 0.670073772 -23.36615114 36.3146 

SHGC 
-

13.12856821 20.8002696 -0.63117 0.528226611 -53.99897387 27.74184

Shape 373.154757 15.13557473 24.65415 1.98342E-87 343.4148982 402.8946 

U_Value 6.657934899 8.484418455 0.784725 0.433000354 -10.01308094 23.32895

VLT 
-

9.410443682 20.76259548 -0.45324 0.650579729 -50.20682355 31.38594

WWR_East_North 1.384381769 15.19702648 0.091096 0.927454498 -28.47622337 31.24499

WWR_North_West 
-

3.234253078 15.19142911 -0.2129 0.831495086 -33.08385994 26.61535

WWR_South_East 28.44479005 15.19453364 1.872041 0.06180625 -1.410916893 58.3005 

WWR_West_South 2.956937305 15.1700138 0.19492 0.845537802 -26.85059067 32.76447

Width 634.5651701 20.79080458 30.52143 1.094E-114 593.7133623 675.417



Amsterdam Comfort 

Regression Statistics 

Multiple R 0.901600646 

R Square 0.812883725 

Adjusted R Square 0.806672396 

Standard Error 5.249953174 

Observations 499 

ANOVA 

df SS MS F Significance F 

Regression 16 57713.14774 3607.071734 130.8711503 9.4106E-164 

Residual 482 13284.88802 27.56200833 

Total 498 70998.03576 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 65.20171225 2.427129441 26.86371446 7.65009E-98 60.43265076 69.97077375 

Analysis_Level 
-

4.807662163 0.288945535 
-

16.63864495 1.88414E-49 -5.375410633
-

4.239913694 

Core_Type 
-

0.585040019 0.47261083 
-

1.237889574 0.216359638 -1.513672038 0.343591999

FFH 
-

0.932576173 0.210882012 
-

4.422265159 1.20819E-05 -1.34693779
-

0.518214555 

Length 1.902422654 0.210305078 9.046013893 3.64528E-18 1.489194653 2.315650656 

Number_Of_Fins 
-

0.448303564 0.166291976 
-

2.695882118 0.007265774 -0.775050315
-

0.121556813 

Orientation 0.025625642 0.102663864 0.249607219 0.802997454 -0.176098367 0.22734965 

Overhang_Size 
-

0.947699221 0.210965733 
-

4.492195045 8.83361E-06 -1.362225343
-

0.533173099 

SHGC 4.854668839 0.288945931 16.80130544 3.34898E-50 4.286919592 5.422418086 

Shape 0.675915031 0.210255098 3.214737892 0.001393238 0.262785234 1.089044828 

U_Value 
-

4.135664799 0.117860885 
-

35.08937501 7.8387E-135 -4.367249403
-

3.904080196 

VLT 
-

0.427374955 0.288422583 
-

1.481766618 0.139055845 -0.994095876 0.139345967

WWR_East_North 
-

0.423331242 0.211108752 
-

2.005275657 0.045492142 -0.838138382
-

0.008524102 

WWR_North_West 
-

1.090778042 0.211030997 
-

5.168804865 3.45769E-07 -1.5054324
-

0.676123684 

WWR_South_East 
-

0.945477036 0.211074123 
-

4.479360247 9.35907E-06 -1.360216133
-

0.530737939 

WWR_West_South 
-

1.147249889 0.210733507 
-

5.444079141 8.30836E-08 -1.56131971
-

0.733180068 

Width 1.805474748 0.288814448 6.251331126 8.9697E-10 1.237983851 2.372965644 



Amsterdam UDI 

Regression Statistics 

Multiple R 0.610098731 

R Square 0.372220462 

Adjusted R Square 0.351381307 

Standard Error 10.84377036 

Observations 499 

ANOVA 

df SS MS F Significance F 

Regression 16 33604.7563 2100.297268 17.86159112 2.04321E-39 

Residual 482 56677.10544 117.5873557 

Total 498 90281.86173 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 53.59981554 5.013232199 10.69166825 4.36947E-24 43.74932622 63.45030486 

Analysis_Level 1.070135069 0.596816566 1.793071991 0.073588258 -0.102548538 2.242818676

Core_Type 
-

13.79053094 0.976176957 -14.127081 3.65082E-38 -15.70861897
-

11.87244291 

FFH 1.113110736 0.435576477 2.555488633 0.010909747 0.257247439 1.968974032 

Length 
-

2.465844269 0.434384821 
-

5.676635443 2.37542E-08 -3.319366083
-

1.612322455 

Number_Of_Fins 
-

0.344975188 0.343475825 
-

1.004365265 0.315706524 -1.019870109 0.329919733

Orientation 
-

0.205371408 0.212052056 
-

0.968495245 0.333282805 -0.622032043 0.211289227

Overhang_Size 0.435289153 0.435749404 0.998943773 0.318323153 -0.420913927 1.291492233

SHGC 
-

0.046218339 0.596817384 
-

0.077441341 0.93830459 -1.218903552 1.126466874

Shape 0.425895428 0.434281588 0.980689578 0.327237821 -0.427423545 1.2792144 

U_Value 
-

0.420005261 0.243441481 -1.72528223 0.085117591 -0.89834291 0.058332389

VLT 
-

1.297544435 0.595736409 
-

2.178051256 0.029886243 -2.468105643
-

0.126983226 

WWR_East_North 1.394643046 0.436044809 3.198393871 0.001472908 0.537859524 2.251426567 

WWR_North_West 0.390053288 0.435884205 0.894855292 0.371311082 -0.466414663 1.246521239

WWR_South_East 
-

0.387596305 0.435973283 
-

0.889036829 0.374426755 -1.244239284 0.469046674

WWR_West_South 0.584637404 0.435269741 1.343161146 0.179851877 -0.270623187 1.439897995

Width 
-

2.381905808 0.596545807 -3.99282969 7.54714E-05 -3.554057399
-

1.209754216 



Bogota EUI 

Regression Statistics 

Multiple R 0.855299342 

R Square 0.731536964 

Adjusted R Square 0.722625328 

Standard Error 6.535181004 

Observations 499 

ANOVA 

df SS MS F Significance F 

Regression 16 56093.69606 3505.856004 82.08784094 2.7357E-126 

Residual 482 20585.54074 42.70859075 

Total 498 76679.23681 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 54.0031786 3.020531321 17.87870174 3.25663E-55 48.06814301 59.9382142 

Analysis_Level 1.748643409 0.359740648 4.860844662 1.58408E-06 1.041789772 2.455497046 

Core_Type 
-

7.243715247 0.588486851 
-

12.30905198 1.81689E-30 -8.400031814 -6.08739868

FFH 1.608893726 0.262075044 6.139057356 1.7358E-09 1.093943027 2.123844424 

Length 
-

4.435676381 0.261828451 
-

16.94115506 7.55847E-51 -4.950142549
-

3.921210213 

Number_Of_Fins 0.230676888 0.206995249 1.114406679 0.265660125 -0.176047638 0.637401415

Orientation 
-

0.251328922 0.128071025 
-

1.962418289 0.05028866 -0.502975408 0.000317564

Overhang_Size 0.755363433 0.26257245 2.876780995 0.004195674 0.239435383 1.271291483 

SHGC 
-

2.322381956 0.359050612 -6.46811863 2.4399E-10 -3.027879743
-

1.616884168 

Shape 
-

2.997564243 0.262167412 
-

11.43377897 5.95167E-27 -3.512696435 -2.48243205

U_Value 2.833474259 0.146563241 19.33277563 4.53831E-62 2.545492457 3.121456061 

VLT -0.89006372 0.359648186 
-

2.474817765 0.01367337 -1.596735679
-

0.183391762 

WWR_East_North 0.672120007 0.262709168 2.558418543 0.010819491 0.155923319 1.188316696 

WWR_North_West 1.120477004 0.262679753 4.265562877 2.40083E-05 0.604338114 1.636615895 

WWR_South_East 0.83561019 0.262715329 3.180667814 0.00156406 0.319401398 1.351818983 

WWR_West_South 0.75311329 0.261884521 2.875745723 0.004209222 0.23853695 1.267689629 

Width 
-

5.051054792 0.359636283 
-

14.04489767 8.3235E-38 -5.757703362
-

4.344406221 



Bogota Floor Area 

Regression Statistics 

Multiple R 0.922379606 

R Square 0.850784138 

Adjusted R Square 0.845830915 

Standard Error 378.0341565 

Observations 499 

ANOVA 

df SS MS F Significance F 

Regression 16 392747577 24546723.56 171.7637246 2.6423E-187 

Residual 482 68882534.91 142909.8235 

Total 498 461630111.9 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 
-

1942.286777 174.72569 
-

11.11620607 1.0342E-25 -2285.604915
-

1598.968639 

Analysis_Level 
-

26.99901078 20.80956172 
-

1.297432937 0.195102884 -67.88767451 13.88965295

Core_Type 28.34389967 34.04161727 0.832624944 0.405468641 -38.54440196 95.2322013 

FFH 8.740402794 15.15999604 0.576543871 0.564516761 -21.0474413 38.52824689

Length 520.3579703 15.14573161 34.35674049 1.1276E-131 490.5981544 550.1177863 

Number_Of_Fins 
-

1.594224257 11.97384961 
-

0.133142165 0.894136516 -25.12161597 21.93316746

Orientation -8.24535685 7.408398019 
-

1.112974334 0.266274199 -22.80210242 6.311388718

Overhang_Size 6.069713054 15.18876898 0.399618499 0.689614547 -23.77466692 35.91409303

SHGC 
-

12.46052244 20.76964591 
-

0.599939089 0.548828763 -53.27075568 28.3497108 

Shape 373.0839665 15.16533918 24.6010961 3.5408E-87 343.2856236 402.8823093 

U_Value 6.454184138 8.47809896 0.761277283 0.446863754 -10.20441454 23.11278282

VLT 
-

9.238768729 20.80421316 
-

0.444081622 0.657182874 -50.11692309 31.63938563

WWR_East_North 0.747658561 15.19667761 0.049198817 0.960781234 -29.11226107 30.60757819

WWR_North_West 
-

3.414260535 15.19497607 
-

0.224696671 0.822310477 -33.27083681 26.44231574

WWR_South_East 28.84285083 15.19703397 1.897926325 0.058302972 -1.017769005 58.70347067

WWR_West_South 3.424950161 15.14897503 0.226084613 0.82123145 -26.34123877 33.19113909

Width 634.1191952 20.80352462 30.48133462 1.6615E-114 593.2423937 674.9959966 



Bogota Comfort 

Regression Statistics 

Multiple R 0.906522641 

R Square 0.821783298 

Adjusted R Square 0.815867391 

Standard Error 7.292327764 

Observations 499 

ANOVA 

df SS MS F Significance F 

Regression 16 118192.0615 7387.003846 138.9107846 8.058E-169 

Residual 482 25631.81731 53.17804422 

Total 498 143823.8788 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 45.61585899 3.370481155 13.53393088 1.33628E-35 38.99320771 52.23851027 

Analysis_Level 
-

10.06091147 0.401419137 
-

25.06335786 2.28271E-89 -10.84965908
-

9.272163863 

Core_Type 1.254619356 0.656667199 1.910586302 0.056650793 -0.035664632 2.544903344

FFH 0.421393361 0.292438284 1.4409651 0.150243838 -0.153218003 0.996004726

Length 0.119850238 0.292163121 0.410216859 0.681829147 -0.45422046 0.693920936

Number_Of_Fins 
-

1.203026754 0.230977107 
-

5.208424193 2.82683E-07 -1.656873182
-

0.749180325 

Orientation 
-

0.060097301 0.142908956 
-

0.420528587 0.67428677 -0.340898806 0.220704203

Overhang_Size 
-

2.216569069 0.292993318 
-

7.565254684 1.97786E-13 -2.792271018 -1.64086712

SHGC 10.69458095 0.400649156 26.69313238 4.81077E-97 9.90734627 11.48181562 

Shape 
-

1.729294113 0.292541354 
-

5.911280886 6.43036E-09 -2.304107999
-

1.154480227 

U_Value 
-

4.376337093 0.163543625 
-

26.75944773 2.35316E-97 -4.697683616 -4.05499057

VLT 
-

0.857795548 0.401315962 
-

2.137456838 0.033063386 -1.646340432
-

0.069250664 

WWR_East_North 1.112290597 0.293145876 3.794324557 0.000166888 0.536288886 1.688292308 

WWR_North_West 0.218174829 0.293113053 0.744336789 0.457035475 -0.357762388 0.794112046

WWR_South_East 0.322675397 0.29315275 1.100707384 0.271573419 -0.253339821 0.898690615

WWR_West_South 0.363787955 0.292225687 1.244886985 0.213778212 -0.210405679 0.937981589

Width 0.948804327 0.40130268 2.364310965 0.018459126 0.160285541 1.737323113 



Bogota UDI 

Regression Statistics 

Multiple R 0.627443542 

R Square 0.393685398 

Adjusted R Square 0.373558773 

Standard Error 13.3738573 

Observations 499 

ANOVA 

df SS MS F Significance F 

Regression 16 55977.26668 3498.579168 19.56042721 6.87948E-43 

Residual 482 86210.5485 178.8600591 

Total 498 142187.8152 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 69.00950231 6.181336806 11.16417119 6.7391E-26 56.86380671 81.1551979 

Analysis_Level 1.183684727 0.736187734 1.60785717 0.108521266 -0.262848992 2.630218445

Core_Type -18.0903395 1.204303166 
-

15.02141654 4.12675E-42 -20.45667224
-

15.72400676 

FFH 0.060482813 0.536320912 0.11277355 0.910257041 -0.993333011 1.114298638

Length 
-

0.702144987 0.535816274 
-

1.310421167 0.190677483 -1.754969249 0.350679274

Number_Of_Fins 0.210636869 0.423603405 0.49725018 0.619239382 -0.621700564 1.042974303

Orientation 
-

0.284442548 0.262089698 
-

1.085287022 0.278337056 -0.79942204 0.230536945

Overhang_Size 1.244776517 0.537338824 2.316557938 0.020946257 0.188960601 2.300592433 

SHGC 
-

0.204473854 0.734775617 
-

0.278280674 0.780916247 -1.648232907 1.2392852 

Shape 2.506976091 0.536509939 4.67274865 3.86147E-06 1.45278885 3.561163333 

U_Value 
-

0.492436917 0.299932913 -1.64182354 0.101278832 -1.081774461 0.096900628

VLT -4.69721873 0.735998516 
-

6.382103534 4.10729E-10 -6.143380654
-

3.251056805 

WWR_East_North 0.86794143 0.53761861 1.614418499 0.107091086 -0.188424238 1.924307098

WWR_North_West 
-

0.684129764 0.537558414 
-

1.272661252 0.203751817 -1.740377153 0.372117624

WWR_South_East 
-

1.261275039 0.537631217 
-

2.345985498 0.019381133 -2.317665478
-

0.204884599 

WWR_West_South 
-

0.365482246 0.535931018 
-

0.681957628 0.495593305 -1.418531968 0.687567475

Width 
-

1.087256664 0.735974157 
-

1.477302774 0.14024757 -2.533370725 0.358857397



Dubai EUI 

Regression Statistics 

Multiple R 0.894235035 

R Square 0.799656297 

Adjusted R Square 0.792992058 

Standard Error 1300.224527 

Observations 498 

ANOVA 

df SS MS F Significance F 

Regression 16 3245708031 2.03E+08 119.9921291 2.6059E-156 

Residual 481 813170817.3 1690584 

Total 497 4058878849 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 1852.381805 601.9104099 3.077504 0.002206539 669.6831267 3035.080483 

Analysis_Level 
-

1923.719593 71.69948636 -26.8303 1.28424E-97 -2064.602499
-

1782.836687 

Core_Type 112.4775524 117.211247 0.959614 0.337731635 -117.8317837 342.7868885 

FFH 640.9934661 52.35381974 12.24349 3.42577E-30 538.1230183 743.863914 

Length 
-

866.6696836 52.10279134 -16.6338 2.07367E-49 -969.0468837
-

764.2924835 

Number_Of_Fins 84.74920825 41.21479962 2.056281 0.040294417 3.765911997 165.7325045 

Orientation 0.924877916 25.5029548 0.036266 0.971085688 -49.18608618 51.03584201 

Overhang_Size 138.61488 52.17591883 2.656683 0.008153647 36.09399112 241.1357688 

SHGC 49.00255446 71.54618423 0.684908 0.493731876 -91.57912702 189.5842359 

Shape 
-

739.1487055 52.17786148 -14.1659 2.53948E-38 -841.6734115
-

636.6239995 

U_Value 73.07476586 29.19694486 2.502822 0.012651347 15.70545055 130.4440812 

VLT 
-

90.60131096 71.80044866 -1.26185 0.207614734 -231.6825987 50.47997678 

WWR_East_North 381.6181481 52.44957301 7.275906 1.40887E-12 278.5595539 484.6767423 

WWR_North_West 362.5399202 52.35819081 6.924226 1.40949E-11 259.6608836 465.4189568 

WWR_South_East 420.1167738 52.37710098 8.021001 8.06001E-15 317.2005805 523.0329671 

WWR_West_South 517.9836288 52.21712521 9.919804 3.16557E-21 415.3817732 620.5854845 

Width 
-

1198.055797 71.7396235 -16.7001 1.02764E-49 -1339.017569
-

1057.094025 



Dubai Floor Area 

Regression Statistics 

Multiple R 0.922117627 

R Square 0.850300917 

Adjusted R Square 0.845321322 

Standard Error 378.4754367 

Observations 498 

ANOVA 

df SS MS F Significance F 

Regression 16 391357790 24459861.88 170.757034 1.4617E-186 

Residual 481 68900198.63 143243.6562 

Total 497 460257988.6 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept -1942.98299 175.2068974 
-

11.08964897 1.32647E-25 -2287.248453
-

1598.717527 

Analysis_Level 
-

26.68434151 20.87062185 
-

1.278559964 0.201668617 -67.69319677 14.32451375

Core_Type 29.69580263 34.11839799 0.870375058 0.384529629 -37.34371613 96.73532138

FFH 8.243623017 15.23939472 0.54094163 0.588798236 -21.70038809 38.18763412

Length 520.6634087 15.1663242 34.33023069 1.9137E-131 490.8629744 550.4638429 

Number_Of_Fins 
-

0.770370977 11.99699665 
-

0.064213653 0.948826784 -24.34336763 22.80262568

Orientation 
-

7.599990933 7.423519369 
-

1.023771954 0.306457598 -22.18652475 6.986542879

Overhang_Size 5.400550967 15.18761049 0.355589246 0.722304086 -24.44170888 35.24281081

SHGC 
-

12.19964074 20.82599794 
-

0.585789011 0.558292057 -53.12081413 28.72153264

Shape 373.9682372 15.18817597 24.62232713 3.19574E-87 344.1248663 403.8116082 

U_Value 6.163642698 8.498783272 0.725238249 0.468658555 -10.53568594 22.86297133

VLT 
-

9.705110443 20.90001042 -0.46435912 0.642600576 -50.77171155 31.36149067

WWR_East_North 1.514025022 15.26726703 0.099168045 0.921046161 -28.48475261 31.51280265

WWR_North_West -4.13564896 15.24066707 
-

0.271356164 0.786233532 -34.08216011 25.81086219

WWR_South_East 29.02489191 15.24617154 1.903749531 0.057539337 -0.932435009 58.98221883

WWR_West_South 2.894435655 15.19960504 0.190428347 0.849053829 -26.97139238 32.76026369

Width 634.3220388 20.88230515 30.37605447 6.1285E-114 593.2902269 675.3538507 



Dubai Comfort 

Regression Statistics 

Multiple R 0.897308758 

R Square 0.805163007 

Adjusted R Square 0.798681943 

Standard Error 1.886196471 

Observations 498 

ANOVA 

df SS MS F Significance F 

Regression 16 7071.822102 441.9888814 124.2331475 3.3546E-159 

Residual 481 1711.271558 3.557737128 

Total 497 8783.093661 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 87.3033705 0.873173262 99.98401728 0 85.58766523 89.01907577 

Analysis_Level 
-

3.043764873 0.10401228 
-

29.26351445 7.0897E-109 -3.248139452
-

2.839390294 

Core_Type 1.077027608 0.170034818 6.334159216 5.48641E-10 0.742924806 1.411130409 

FFH 0.492579046 0.075948106 6.485731809 2.19551E-10 0.343347993 0.6418101 

Length 
-

0.249354453 0.075583947 
-

3.299039866 0.001042119 -0.397869967
-

0.100838939 

Number_Of_Fins 
-

0.255382663 0.059789066 
-

4.271394111 2.34202E-05 -0.372862686 -0.13790264

Orientation 0.008956478 0.036996367 0.24209075 0.808813027 -0.063737985 0.081650941

Overhang_Size 
-

0.494542903 0.07569003 
-

6.533791833 1.63626E-10 -0.643266861
-

0.345818944 

SHGC 2.257907785 0.10378989 21.75460242 1.43801E-73 2.053970184 2.461845387 

Shape 
-

1.148948778 0.075692849 
-

15.17909288 8.42153E-43 -1.297678274
-

1.000219282 

U_Value 
-

0.416346836 0.042355127 
-

9.829904186 6.67141E-21 -0.49957077
-

0.333122902 

VLT 
-

0.216220825 0.104158743 
-

2.075877813 0.038435927 -0.42088319
-

0.011558459 

WWR_East_North 0.375285591 0.076087012 4.932321299 1.12115E-06 0.2257816 0.524789583 

WWR_North_West 0.186285616 0.075954447 2.452596576 0.014537062 0.037042104 0.335529129 

WWR_South_East 0.17393184 0.075981879 2.289122643 0.022504725 0.024634425 0.323229255 

WWR_West_South 0.220360041 0.075749807 2.909050843 0.003793116 0.071518626 0.369201455 

Width 
-

1.098269217 0.104070506 -10.5531265 1.46989E-23 -1.302758204 -0.89378023



Dubai UDI 

Regression Statistics 

Multiple R 0.627799343 

R Square 0.394132015 

Adjusted R Square 0.373978403 

Standard Error 14.07329865 

Observations 498 

ANOVA 

df SS MS F Significance F 

Regression 16 61972.72523 3873.295327 19.55639514 7.35327E-43 

Residual 481 95265.77054 198.057735 

Total 497 157238.4958 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 72.19736354 6.514924759 11.0818415 1.42192E-25 59.3961347 84.99859239 

Analysis_Level 1.263623293 0.776056953 1.628261029 0.104124323 -0.26125735 2.788503937

Core_Type 
-

19.00169314 1.268664642 
-

14.97771161 6.67947E-42 -21.49450266
-

16.50888363 

FFH 
-

0.056119314 0.566664392 
-

0.099034481 0.921152152 -1.169562804 1.057324176

Length 
-

0.484022671 0.563947325 
-

0.858276385 0.391167342 -1.592127373 0.624082031

Number_Of_Fins 0.195509947 0.446098479 0.438266337 0.661389985 -0.681032597 1.07205249 

Orientation 
-

0.329706939 0.276037478 
-

1.194428165 0.232899187 -0.872095233 0.212681356

Overhang_Size 1.412896081 0.564738838 2.501857471 0.012685422 0.303236127 2.522556034 

SHGC 
-

0.123368411 0.77439765 
-

0.159308865 0.873492407 -1.644988676 1.398251854

Shape 2.637580038 0.564759865 4.670268203 3.9084E-06 1.52787877 3.747281307 

U_Value -0.46219315 0.316020284 
-

1.462542667 0.144245629 -1.083143987 0.158757687

VLT 
-

4.979836813 0.777149744 
-

6.407821471 3.52309E-10 -6.506864689
-

3.452808937 

WWR_East_North 0.548174104 0.567700801 0.965603894 0.33472765 -0.567305834 1.663654043

WWR_North_West 
-

0.809771995 0.566711703 
-

1.428895839 0.153683242 -1.923308447 0.303764458

WWR_South_East 
-

1.464534792 0.566916382 
-

2.583334753 0.010079071 -2.57847342
-

0.350596165 

WWR_West_South 
-

0.584846194 0.565184845 
-

1.034787467 0.30128814 -1.695382511 0.525690122

Width 
-

0.570372622 0.776491388 
-

0.734551125 0.462970855 -2.096106889 0.955361644



Galapagos – Evolutionary Algorithm 

Galapagos 1 Galapagos 2 Galapagos 3 Galapagos 4 Galapagos 5 

EUI EUI EUI EUI EUI 
F(x)_min 
AVG 

F(x)_min 1.65E+07 1.70E+08 1.57E+08 9.20E+07 1.72E+08 1.21E+08 

1.99E+07 3.93E+06 3.93E+06 3.93E+06 3.93E+06 

1.65E+07 1.22E+08 2.12E+08 1.20E+08 1.48E+08 

2.06E+07 1.16E+08 2.14E+08 3.01E+08 1.95E+08 

1.81E+07 3.33E+08 7.76E+07 2.49E+08 1.06E+08 

1.79E+07 1.08E+08 1.25E+08 1.71E+08 7.86E+07 

1.92E+07 1.51E+08 1.33E+08 7.40E+07 2.48E+08 

2.14E+07 2.77E+08 7.63E+07 1.14E+08 1.39E+08 

2.11E+07 1.86E+08 3.12E+08 1.53E+08 1.17E+08 

2.31E+07 5.75E+07 3.64E+08 1.87E+08 1.45E+08 

2.53E+07 9.36E+07 1.21E+08 1.41E+08 1.73E+08 

2.20E+07 9.76E+07 2.04E+08 2.34E+07 1.83E+08 

2.64E+07 3.20E+08 1.06E+08 1.61E+08 7.49E+07 

4.68E+06 3.53E+07 2.34E+08 3.67E+07 4.20E+07 

4.95E+07 1.36E+08 1.05E+08 3.91E+08 3.19E+08 

1.88E+07 7.08E+07 2.34E+08 2.10E+08 1.15E+08 

2.40E+07 4.26E+07 1.61E+08 3.81E+07 2.05E+08 

2.27E+07 1.54E+08 1.78E+08 9.41E+07 1.67E+08 

2.29E+07 1.56E+08 1.40E+08 3.69E+07 7.98E+07 

1.28E+07 7.13E+07 1.09E+08 1.55E+08 1.21E+08 

2.10E+07 1.74E+08 2.94E+08 1.80E+08 1.33E+08 

1.73E+07 9.03E+07 5.27E+07 6.50E+07 5.04E+07 

1.50E+07 3.48E+08 1.16E+08 4.81E+07 1.58E+08 

1.69E+07 2.55E+07 3.37E+08 1.84E+08 1.26E+08 

2.15E+07 1.16E+08 1.86E+08 2.94E+07 1.24E+08 

1.60E+07 8.14E+07 1.99E+08 3.01E+08 1.06E+08 

… … … … … 



Galapagos - Inputs 

1200 Seconds 2602 generations 1 Population Size 

2605 FES 

Galapagos 1 Galapagos 2 Galapagos 3 Galapagos 4 Galapagos 5 

Inputs Inputs Inputs Inputs Inputs 

Analysis_Level 1 0 0 1 1 

Core_Type 0 1 1 0 0 

FFH 8 6 6 8 8 

Length 1 4 2 1 1 

Number_Of_Fins 0 0 1 0 0 

Orientation 4 7 7 4 4 

Overhang_Size 4 2 3 4 4 

SHGC 1 3 3 1 1 

Shape 0 1 2 0 0 

U_Value 7 1 1 7 7 

VLT 3 3 3 3 3 

WWR_East_North 4 1 1 4 4 

WWR_North_West 4 4 4 4 4 

WWR_South_East 4 1 1 4 4 

WWR_West_South 1 1 1 1 1 

Width 1 3 3 1 1 

EUI 1.65E+07 1.70E+08 1.57E+08 9.20E+07 1.72E+08 



Opossum - RBFOpt 

Opossum 
1 

Opossum 
2 

Opossum 
3 

Opossum 
4 

Opossum 
5 

Results Results Results Results Results 

EUI EUI EUI EUI EUI 
F(x)_min 
AVG 

F(x)_min 4.71E+06 6.34E+06 4.97E+06 5.31E+06 5.07E+06 5.28E+06 

4.71E+06 1.19E+08 1.05E+09 3.39E+08 1.48E+08 

2.21E+08 3.65E+08 2.65E+08 7.11E+08 3.43E+08 

4.34E+08 1.96E+08 5.99E+08 4.18E+07 9.10E+07 

7.74E+07 2.26E+08 9.47E+07 9.37E+07 1.56E+08 

1.81E+08 2.14E+08 7.68E+07 1.07E+08 8.39E+07 

4.52E+08 2.29E+08 1.00E+08 2.99E+08 2.29E+08 

3.94E+07 2.28E+08 5.30E+08 1.37E+08 4.01E+08 

1.46E+08 1.60E+08 2.50E+08 1.18E+08 2.68E+08 

3.51E+08 4.05E+08 4.05E+08 4.05E+08 4.05E+08 

4.05E+08 2.81E+07 3.88E+07 2.62E+07 2.97E+07 

3.03E+07 1.26E+07 8.62E+07 6.72E+08 2.43E+07 

3.34E+07 3.16E+08 3.45E+08 1.95E+08 7.06E+07 

1.04E+08 5.70E+07 6.15E+07 1.45E+08 1.11E+07 

3.23E+07 1.00E+08 5.22E+07 4.64E+07 5.53E+07 

5.76E+07 4.76E+07 1.91E+08 5.54E+08 1.73E+08 

5.93E+07 1.32E+07 3.96E+07 6.98E+07 7.50E+07 

3.83E+08 3.02E+07 4.05E+07 2.51E+07 5.55E+06 

3.13E+07 5.63E+07 1.92E+08 2.77E+07 4.24E+08 

1.13E+08 1.12E+07 3.20E+07 1.45E+07 8.64E+06 

1.57E+07 6.34E+06 2.81E+07 1.41E+07 5.69E+06 

9.98E+06 1.04E+07 2.33E+07 1.38E+07 8.86E+06 

1.00E+07 1.05E+07 1.37E+07 1.79E+07 1.11E+07 

5.41E+07 1.10E+07 9.89E+06 3.74E+07 4.63E+07 

1.52E+07 9.14E+06 9.12E+06 3.27E+07 1.94E+07 

2.64E+07 1.49E+07 7.99E+06 1.24E+07 7.60E+06 

8.88E+06 9.75E+06 5.07E+06 1.04E+07 5.52E+06 

1.29E+07 6.42E+06 5.34E+06 1.12E+07 5.53E+06 

5.78E+06 3.26E+07 2.33E+07 2.49E+07 1.83E+07 

7.72E+07 5.49E+07 1.34E+07 6.64E+07 8.39E+06 

1.27E+08 3.23E+07 1.43E+07 1.71E+07 1.56E+07 

1.38E+08 3.21E+07 1.92E+07 1.57E+07 1.44E+07 

3.62E+07 2.81E+07 2.95E+07 1.11E+07 1.63E+07 

3.60E+07 1.66E+07 2.98E+07 1.60E+07 7.43E+06 

1.03E+07 1.09E+07 1.49E+07 1.03E+07 5.76E+06 

1.96E+07 9.13E+06 5.11E+06 9.92E+06 5.57E+06 

… … … … … 



Opossum RBFOpt - Inputs 

1200 Seconds 140 Generations 
1 Population 
Size 

FES 136 

Opossum 1 Opossum 2 Opossum 3 Opossum 4 Opossum 5 

Inputs Inputs Inputs Inputs  Inputs 

Analysis_Level 0 2 2 2 0 

Core_Type 1 1 1 1 1 

FFH 6 6 6 7 6 

Length 4 1 1 1 1 

Number_Of_Fins 0 4 0 0 4 

Orientation 7 0 7 4 6 

Overhang_Size 4 2 4 4 4 

SHGC 3 1 1 2 1 

Shape 3 0 0 0 0 

U_Value 1 7 7 7 2 

VLT 3 1 1 3 3 

WWR_East_North 1 3 4 2 1 

WWR_North_West 4 4 4 4 4 

WWR_South_East 1 3 4 4 1 

WWR_West_South 2 3 2 1 4 

Width 1 1 1 1 1 

EUI 4.71E+06 6.34E+06 4.97E+06 5.31E+06 5.07E+06 



Opossum – CMAES 

Opossum 1 Opossum 2 Opossum 3 Opossum 4 Opossum 5 

Results Results Results Results Results 

EUI EUI EUI EUI EUI 
F(x)_min 
AVG 

F(x)_min 1.01E+07 1.30E+07 1.72E+07 1.46E+07 1.57E+07 1.41E+07 

6.47E+08 7.59E+07 3.47E+08 5.21E+07 4.14E+08 

8.34E+07 2.95E+08 9.89E+07 4.51E+07 2.12E+08 

4.36E+08 1.83E+08 7.42E+07 1.34E+08 9.56E+07 

3.24E+08 8.49E+08 4.33E+07 7.87E+07 1.70E+08 

3.05E+08 4.17E+08 1.50E+08 2.77E+08 7.19E+08 

3.65E+08 6.18E+08 3.42E+07 3.00E+08 6.65E+07 

3.31E+08 1.59E+08 9.11E+07 1.14E+08 5.83E+08 

5.87E+08 9.65E+07 1.06E+08 2.46E+08 1.04E+08 

6.62E+08 3.88E+08 7.66E+07 1.71E+08 6.35E+08 

2.34E+08 8.14E+07 1.28E+08 3.72E+07 3.57E+08 

4.52E+08 7.24E+08 5.20E+07 3.24E+07 1.31E+08 

4.40E+08 4.78E+08 1.20E+08 2.22E+08 5.94E+07 

4.78E+08 7.13E+07 3.74E+08 6.66E+07 2.51E+08 

5.46E+08 2.90E+08 2.44E+08 2.46E+07 4.04E+07 

5.48E+08 2.73E+08 1.00E+08 1.84E+08 1.00E+08 

5.68E+08 1.88E+08 5.62E+07 6.78E+07 1.67E+08 

2.30E+08 1.55E+08 8.78E+07 1.05E+08 3.60E+07 

1.59E+07 5.04E+08 4.17E+07 3.84E+08 1.57E+07 

4.18E+08 1.60E+08 7.28E+07 1.31E+08 5.87E+07 

1.71E+08 7.37E+08 1.26E+08 4.20E+07 1.03E+08 

3.87E+07 1.41E+08 5.89E+07 2.33E+08 1.67E+08 

3.26E+08 2.02E+08 2.33E+07 2.25E+08 5.30E+07 

2.01E+08 4.23E+08 1.70E+08 1.82E+08 2.25E+08 

4.17E+08 2.70E+08 3.13E+07 7.53E+07 1.51E+08 

1.86E+08 3.06E+07 3.16E+08 5.36E+07 7.55E+07 

3.78E+07 2.47E+08 4.05E+07 6.79E+07 3.18E+07 

… … … … … 



Opossum – CMAES Inputs 

1200 Seconds 140 Generations 1 Population Size 

FES 71 

Opossum 1 Opossum 2 Opossum 3 Opossum 4 Opossum 5 

Inputs Inputs Inputs Inputs Inputs 

Analysis_Level 1 2 1 1 1 

Core_Type 1 1 1 0 0 

FFH 7 6 8 7 7 

Length 1 1 2 1 1 

Number_Of_Fins 1 2 2 1 3 

Orientation 5 6 3 2 0 

Overhang_Size 3 1 2 3 2 

SHGC 2 2 2 1 1 

Shape 0 0 0 0 0 

U_Value 5 6 6 7 7 

VLT 3 3 2 3 3 

WWR_East_North 3 4 1 1 4 

WWR_North_West 3 3 1 3 2 

WWR_South_East 4 1 2 2 4 

WWR_West_South 3 1 4 3 2 

Width 1 1 1 1 1 

EUI 1.01E+07 1.30E+07 1.72E+07 1.46E+07 1.57E+07 



Optimus jEDE 

Opti 1 Opti 2 Opti 3 Opti 4 Opti 5 Opti 6 Opti 7 Opti 8 Opti 9 Opti 10 

EUI EUI EUI EUI EUI EUI EUI EUI EUI EUI 

72.34 73.23 73.19 73.65 74.80 74.20 1.22E+06 73.77906 1.60E+06 72.56512 

1.05E+08 2.42E+07 1.72E+07 1.67E+07 2.37E+07 8.88E+06 8.46E+06 1.39E+07 7.73E+06 2.51E+07 

8.41E+07 2.30E+07 1.59E+07 1.43E+07 1.57E+07 8.63E+06 6.90E+06 1.25E+07 6.42E+06 2.35E+07 

7.62E+07 1.22E+07 1.46E+07 1.36E+07 1.52E+07 7.70E+06 6.10E+06 1.08E+07 6.32E+06 1.69E+07 

7.31E+07 1.20E+07 1.25E+07 1.28E+07 1.46E+07 7.29E+06 5.35E+06 9.16E+06 6.23E+06 1.56E+07 

6.98E+07 1.12E+07 1.21E+07 1.28E+07 1.46E+07 7.13E+06 5.17E+06 8.88E+06 6.00E+06 1.26E+07 

6.89E+07 1.10E+07 1.13E+07 1.14E+07 1.37E+07 7.06E+06 4.63E+06 8.60E+06 5.70E+06 1.22E+07 

6.44E+07 1.07E+07 1.13E+07 1.09E+07 1.26E+07 7.02E+06 4.24E+06 8.09E+06 5.63E+06 1.18E+07 

6.25E+07 1.01E+07 1.03E+07 1.06E+07 1.22E+07 6.95E+06 4.08E+06 6.57E+06 5.59E+06 1.16E+07 

6.19E+07 9.95E+06 1.02E+07 1.04E+07 1.12E+07 6.58E+06 3.66E+06 6.48E+06 5.50E+06 1.11E+07 

5.80E+07 9.68E+06 9.74E+06 9.81E+06 1.10E+07 6.44E+06 3.46E+06 6.15E+06 5.49E+06 1.07E+07 

5.67E+07 9.16E+06 9.57E+06 8.30E+06 1.10E+07 6.43E+06 3.42E+06 6.06E+06 5.30E+06 1.04E+07 

5.35E+07 8.78E+06 9.49E+06 8.22E+06 1.09E+07 6.39E+06 3.32E+06 5.72E+06 4.85E+06 1.02E+07 

4.78E+07 8.70E+06 9.27E+06 8.16E+06 1.09E+07 6.31E+06 3.14E+06 5.68E+06 4.70E+06 9.60E+06 

4.76E+07 7.91E+06 9.02E+06 8.08E+06 1.03E+07 6.19E+06 3.07E+06 5.16E+06 4.67E+06 9.51E+06 

4.61E+07 7.86E+06 8.24E+06 7.97E+06 1.00E+07 6.05E+06 3.06E+06 4.88E+06 4.65E+06 9.47E+06 

4.55E+07 7.64E+06 8.14E+06 7.83E+06 9.91E+06 6.05E+06 2.99E+06 4.74E+06 4.59E+06 9.13E+06 

4.52E+07 7.14E+06 7.46E+06 7.74E+06 9.11E+06 6.03E+06 2.96E+06 4.46E+06 3.88E+06 7.89E+06 

4.03E+07 7.13E+06 7.44E+06 7.71E+06 8.80E+06 5.95E+06 2.85E+06 3.77E+06 3.80E+06 7.74E+06 

4.00E+07 7.01E+06 7.43E+06 7.54E+06 8.31E+06 5.93E+06 2.85E+06 3.40E+06 3.65E+06 7.71E+06 

3.73E+07 6.80E+06 7.31E+06 7.40E+06 8.17E+06 5.79E+06 2.80E+06 3.06E+06 3.65E+06 7.71E+06 

3.24E+07 6.65E+06 7.15E+06 7.30E+06 8.04E+06 5.76E+06 2.74E+06 2.64E+06 3.62E+06 7.63E+06 

3.21E+07 6.54E+06 7.10E+06 7.20E+06 8.01E+06 5.70E+06 2.73E+06 125.219 3.27E+06 7.49E+06 

2.76E+07 6.51E+06 6.78E+06 7.18E+06 7.97E+06 5.67E+06 2.72E+06 100.1253 3.25E+06 7.41E+06 

2.48E+07 6.40E+06 6.72E+06 7.08E+06 7.84E+06 5.57E+06 2.71E+06 99.99893 3.15E+06 7.22E+06 

2.36E+07 6.12E+06 6.39E+06 6.99E+06 7.76E+06 5.51E+06 2.62E+06 85.30208 3.10E+06 7.12E+06 

101.31 6.00E+06 6.39E+06 6.95E+06 7.51E+06 5.44E+06 2.50E+06 84.09726 3.09E+06 6.99E+06 

91.91 5.93E+06 6.37E+06 6.86E+06 7.31E+06 5.44E+06 2.44E+06 84.03083 3.08E+06 6.94E+06 

91.63 5.91E+06 6.31E+06 6.83E+06 7.26E+06 5.35E+06 2.35E+06 83.86598 3.08E+06 6.88E+06 

91.25 5.85E+06 6.22E+06 6.66E+06 6.82E+06 5.19E+06 2.31E+06 83.55425 3.05E+06 6.81E+06 

90.47 5.84E+06 6.16E+06 6.47E+06 6.68E+06 5.09E+06 2.29E+06 82.39751 3.04E+06 6.73E+06 

88.93 5.76E+06 6.14E+06 6.15E+06 6.67E+06 5.05E+06 2.29E+06 81.16791 3.04E+06 6.63E+06 

87.75 5.69E+06 6.11E+06 6.13E+06 6.59E+06 5.00E+06 2.21E+06 80.99669 3.04E+06 6.58E+06 

86.85 5.66E+06 5.93E+06 6.04E+06 6.35E+06 4.94E+06 2.06E+06 80.78383 3.02E+06 6.48E+06 

86.40 5.56E+06 5.90E+06 5.90E+06 6.05E+06 4.84E+06 2.06E+06 80.30609 3.02E+06 6.35E+06 

85.99 5.35E+06 5.67E+06 5.88E+06 6.04E+06 4.77E+06 2.06E+06 80.29975 2.99E+06 6.34E+06 

85.39 5.14E+06 5.57E+06 5.82E+06 5.93E+06 4.46E+06 2.06E+06 79.45138 2.98E+06 6.24E+06 

84.16 5.09E+06 5.57E+06 5.30E+06 5.77E+06 4.33E+06 2.04E+06 79.44355 2.94E+06 5.78E+06 

… … … … … … … … … … 
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