
 
 

Delft University of Technology

Statistically Distinct Plans for Multi-Objective Task Assignment

Wilde, Nils; Alonso-Mora, Javier

DOI
10.1109/TRO.2024.3359530
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Robotics

Citation (APA)
Wilde, N., & Alonso-Mora, J. (2024). Statistically Distinct Plans for Multi-Objective Task Assignment. IEEE
Transactions on Robotics, 40, 2217-2232. https://doi.org/10.1109/TRO.2024.3359530

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TRO.2024.3359530
https://doi.org/10.1109/TRO.2024.3359530


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024 2217

Statistically Distinct Plans for Multiobjective
Task Assignment

Nils Wilde , Member, IEEE, and Javier Alonso-Mora , Senior Member, IEEE

Abstract—We study the problem of finding statistically distinct
plans for stochastic task assignment problems such as online multi-
robot pickup and delivery (MRPD) when facing multiple competing
objectives. In many real-world settings, robot fleets do not only
need to fulfill delivery requests but also have to consider auxiliary
objectives such as energy efficiency or avoiding human-centered
work spaces. We pose MRPD as a multiobjective optimization
problem where the goal is to find MRPD policies that yield dif-
ferent tradeoffs between given objectives. There are two main
challenges: 1) MRPD is computationally hard, which limits the
number of tradeoffs that can reasonably be computed and 2) due
to the random task arrivals, one needs to consider the statistical
variance of the objective values in addition to the average. We
present an adaptive sampling algorithm that finds a set of policies
that 1) are approximately optimal, 2) approximate the set of all
optimal solutions, and 3) are statistically distinguishable. We prove
completeness and adapt a state-of-the-art MRPD solver to the
multiobjective setting for three example objectives. In a series of
simulation experiments, we demonstrate the advantages of the
proposed method compared to baseline approaches and show its
robustness in a sensitivity analysis. The approach is general and
could be adapted to other multiobjective task assignments and
planning problems under uncertainty.

Index Terms—Multiobjective optimization (MOO), multirobot
task assignment (MRTA), path planning for multiple mobile robots,
pickup and delivery.

I. INTRODUCTION

AUTONOMOUS robots are becoming increasingly capable
of solving complex tasks in challenging and dynamically

changing environments. These advancements will soon enable
the large-scale deployment of robot fleets in a wide range of
applications including transportation, on-site assistance service,
autonomous mobility on demand, environmental monitoring,
and inspection. For instance, the deployment of mobile robots
in hospitals and care homes for assistive tasks such as mate-
rial transport promises to reduce the workload of perpetually
overburdened skilled personnel [1], [2].

Many robot planning problems such as path planning,
multirobot task assignment (MRTA), multiagent path finding
(MAPF), or multirobot pickup and delivery (MRPD) need to
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Fig. 1. Schematic example of multiobjective MRPD. Two robots are required
to deliver two packages (dark and light orange) from a pickup location (triangle
up) to a delivery point (triangle down). The two objectives are total task wait
times and a social cost for traversing a lobby with high foot traffic. We com-
pare different system plans: (a) prioritize efficiency, (b) intermediate trade-off,
(d) prioritize social cost. (c) shows the Pareto front of the MOO problem, i.e.,
the values of the two objective functions attained by the different system plans.

consider multiple competing objectives simultaneously. Usually,
the primary goal is to provide the optimal quality of service
(QoS), captured by measures such as the average or maximum
wait times, delivery delays, system throughput, or the number
of on-time deliveries, among others. However, in practice, the
deployment of autonomous robots may require the consideration
of additional objectives. For instance, service robots might need
to balance between QoS and operation cost [3] or consider
sustainable costs [4]. Moreover, when navigating in human-
centered workspaces robot fleets need to consider established
social norms, such as avoiding areas of the environment with
high foot traffic [5] or social navigation objectives [6].

In this article, we study how we can compute statistically dis-
tinct system plans when optimizing for multiple objectives under
uncertainty. We specifically focus on multiobjective MRPD [7],
a special case of MRTA where a fleet of robots needs to service
dynamically appearing transportation requests. However, the
proposed solution technique could be extended to multiobjective
MAPF or other MRTA variants when considering stochastic task
arrivals or travel times.

Fig. 1 shows an example of MRPD with two competing ob-
jectives: 1) minimizing wait time for deliveries and 2) avoiding
a lobby area where robot traffic is undesired. The system plan

1941-0468 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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shown in Fig. 1(a) prioritizes QoS while Fig. 1(d) avoids robot
traffic in the lobby whenever possible. Arguably, both solutions
are not ideal. On one hand, only optimizing QoS completely
ignores the social aspects. On the other hand, when robots try to
avoid human-centered areas at all cost, the wait times become
very high, as illustrated in Fig. 1(c). When tasks have deadlines,
the fleet might then not be able to deliver all packages on time.
Thus, an important challenge for deploying MRPD systems is
balancing between different objectives, i.e., finding intermediate
tradeoffs. For instance, Fig. 1(b) shows a system where the lobby
is only traversed once, allowing the purple robot to still deliver
its delivery on time.

Which tradeoff is most appropriate often depends on various
stakeholders such as the system operator and the people present
in the environment. In this article, we study how we can find a set
of MRPD plans, i.e., policies, which lead to different tradeoffs
between such competing objectives. This gives the users of an
MRPD system a palette of options to choose a solution from that
fits their individual preferences.

We pose MRPD as a multiobjective optimization (MOO)
problem and seek to find policies with Pareto-optimal tradeoffs,
i.e., policies where neither objective can be improved without
impairing another objective.

This problem bears two unique challenges. 1) Due to compu-
tational hardness, it is usually not feasible to compute optimal
solutions for MRPD. Thus, the computed tradeoffs are not nec-
essarily Pareto-optimal but only heuristic solutions. Moreover,
even heuristic solutions are often computationally burdensome
to obtain. Therefore, the number of calls to an MRPD solver
should be minimized, making it impractical to generate a large
ground set of MRPD policies and then select a representative
subset based on the obtained tradeoffs. 2) In online MRPD, the
requests’ arrival times as well as pickup and delivery locations
are usually following a stochastic process. Thus, only exploring
tradeoffs for one specific sequence of requests is of limited
interest, since this would represent only a certain time window
(e.g., day) of the deployment of an MRPD system. Arguably, it is
more relevant to find tradeoffs between the different objectives
that lead to similar behavior across different time windows,
i.e., different realizations of the stochastic process. Thus, each
policy is associated with a distribution of cost tradeoffs.

We formulate the problem of finding a set of MRPD poli-
cies such that the expected values of their cost distributions
represent the Pareto front when optimizing for the expected
costs. However, the cost distributions should also remain sta-
tistically significantly different from one another such that each
policy retains unique characteristics, i.e., is a distinct option for
operating the MRPD system. We use the popular approach of
applying linear scalarization to convert the MOO problem into
a single-objective function constituted by a weighted sum of
the competing objectives. Each possible choice of scalarization
weights then corresponds to an MPRD policy. However, picking
weights that lead to a desirable set of policies is not trivial,
since the relationship between weights and MRPD costs is often
nonlinear [8], [9]. Picking regularly spaced weights can lead to
several policies having similar behaviors, i.e., tradeoffs while
other possible system behaviors are not covered by any policy.

Therefore, we propose an adaptive sampling algorithm to find
different scalarization weights. Our approach minimizes the
dispersion of means of the distribution of cost tradeoffs. Fur-
thermore, when adding new policies, we consider the variance of
the MRPD costs to avoid choosing policies that are statistically
indistinguishable.

A. Contributions

The main contributions of our work are as follows.
1) We pose the problem of stochastic multiobjective MRPD.

To reflect the stochastic nature of task arrivals, the formu-
lation considers the statistical variance of the objectives in
addition to their mean values.

2) We propose an adaptive sampling algorithm to find MRPD
policies that approximate the expected Pareto front and
ensure that MRPD plans are statistically distinguishable.

3) We establish the completeness of the proposed algorithm.
4) We provide example MRPD configurations for three dif-

ferent objective functions building on a state-of-the-art
algorithm for single-objective MRPD.

5) In simulation experiments, we showcase our approach for
two different MRPD scenarios with varying numbers of
tasks and robots and demonstrate its advantages compared
to several baseline approaches.

B. Related Work

Many robotic planning problems face the challenge of being
required to simultaneously optimize multiple objectives, for in-
stance, in path and trajectory planning [5], [8], [10], autonomous
driving [11], [12], [13], [14] transportation and mobility on
demand [3], and multirobot planning [15], [16], [17], [18], [19].

Designing robotic systems that face multiple-objectives re-
quires representations of Pareto fronts, which is a well-known
problem in optimization [9], [20], [21], [22], [23] but also studied
for specific robotics applications [3], [8], [24], [25], [26], [27].
A common approach to MOO is linear scalarization, i.e., using
the weighted sum of the individual objective functions to pose
a single optimization problem [9]. The set of Pareto-optimal
solutions is then approximated by exploring different scalariza-
tion weights [5], [8], [28], [29], [30]. However, finding useful
weights is often challenging [8], [9], [31], [32].

1) Multiobjective Multirobot Problems: Finding tradeoffs
between objectives is relevant in many multirobot problems,
such as MRTA [33], [34], [35], [36], dynamic vehicle routing
(DVR) [37], [38], [39], [40], MRPD [7], [41], [42], automated
mobility-on-demand (AMoD) systems [43], [44], and MAPF,
among others.

Cáp and Alonso-Mora [3] proposed a method for exploring
different Pareto-optimal tradeoffs for customer service and op-
eration cost for AMoD systems. Our work considers a general
multiobjective MRPD formulation without being constrained to
specific objective functions. Similar to the work in [3], we also
explore different system plans by finding scalarization weights.
However, the work in [3] is based on uniform sampling and
average values while we propose an adaptive sampling method
for stochastic MOO problems and demonstrate its advantages
over uniform sampling. In the context of MRTA, Wei et al. [45]
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consider the problem of balancing the total team cost and
workload balance by simultaneously minimizing the average
and maximum cost of robot tours. Tolmidis and Petrou [46]
pose an MRTA problem that considers task completion times
in conjunction with the energy consumption of the individual
robots as well as task priorities. Multiobjective tradeoffs are
also considered in MAPF [15], [17]. In MAPF, the objective is
to find collision-free paths for a fleet of agents, i.e., agents are not
allowed to be at the same location at any given time. In contrast,
our MRPD formulation does not consider interagent collisions
but rather focuses on a pickup and delivery requests arriving
online. Moreover, multiobjective task specification in temporal
logic for multirobot systems was studied in [16] and [18].
Finally, a recurring problem in multirobot systems is finding the
optimal fleet for a given set of tasks [47] as well as fleet sizing [3],
[48], [49], [50]. Solutions to these problems also solve a MOO
problem as they balance between the capability of the fleet and
its acquisition and operational cost.

In summary, existing work on multiobjective multirobot sys-
tems usually focuses on specific objectives. In contrast, our
method is not tailored to certain objective functions and addition-
ally considers the statistical variance in costs due to stochastic
task arrivals.

2) User Preferences for Competing Objectives: Researchers
in human–robot interaction (HRI) study the problem of re-
ward learning, which seeks to interactively learn a reward or
cost function that best describes a user’s preference for robot
behavior [51]. Usually, this reward function is modeled as a
weighted sum of features [5], [19], [52], [53], [54], [55], which
is equivalent to the linear scalarization of a MOO problem.
Thus, learning a user’s reward function corresponds to finding
the Pareto-optimal tradeoff that best fits their preferences. Effec-
tively computing a representative set of Pareto-optimal solutions
improves how well system behavior can be adapted to user pref-
erences [8]. In earlier work, we studied the problem of learning
user preferences for material transport with consideration of task
efficiency and following social norms [5], [56]. However, these
works are considered a set of individual start-goal transportation
tasks. In contrast, this article focuses on online MRPD where we
take a fleet of robots and multiple trips per vehicle into account
with stochastic task arrivals.

3) Approximating Pareto Fronts: Given the wide-spread ap-
plications of MOO, several fundamental techniques for com-
puting Pareto fronts have been studied over the years [9], [20],
[21], [22], [23]. However, popular approaches such as gradi-
ent descent methods, evolutionary algorithms [9], or random
walks [25] assume that objective values can be easily obtained
and, thus, make use of frequently evaluating the objectives
for different parameters. Computing MRPD solutions is com-
putationally burdensome even when using heuristic solutions,
making such approaches impractical.

Closely related to our work, the work presented in [31] and
[32] considers MOO under uncertain parameters and poses a
Pareto-approximation problem where samples are required to
be statistically significantly different, focusing on applications
in chemical engineering. Similar to our work, this approach

iteratively places new samples on the Pareto front using a
divide-and-conquer (DC) approach to find new weights. Both al-
gorithms stop dividing when solutions are no longer significantly
different. However, a key difference is that the authors in [31] and
[32] choose new Pareto-samples by uniformly placing weights
(similar to a breadth-first-search). In our work, we place new
weights such that we greedily minimize dispersion, i.e., the
distance in the objective space. This makes our method more
sample efficient and results in a more homogeneous coverage
of the Pareto front when the number of samples is limited.
Moreover, we provide a theoretical analysis establishing the
completeness of our approach. We compare both methods in
simulations.

Tesch et al. [57] studied the MOO for robotics when objectives
are expensive to evaluate. Their method replaces fitness func-
tions used in GA with an expected improvement in hypervolume.
However, this requires a surrogate objective function but no
principal approach is given in [57]. In contrast, our work is based
on a greedy placement of new samples to reduce the dispersion, a
measure for the distance between points on the Pareto front. This
can be directly approximated from the objective values that have
been already sampled. Our earlier work [8] studies the problem
for finding a Pareto-approximation with bounded regret for gen-
eral multiobjective problems formulated as weighted sums. The
number of samples and, thus, computations of objective values
is budgeted; however, a limiting assumption is that an optimal
solution can be obtained for any given weight. This makes
the solution from the work in [8] unsuitable for multiobjective
MRPD since computing exact solutions for MRPD is compu-
tationally prohibitively expensive for most practically relevant
instances. Similar to our work, Kim and De Weck [58] propose
an adaptive weighted sum (AWS) method for finding weights
in order to approximate the Pareto front. The AWS method
iteratively identifies patches of the Pareto front that requires
additional samples. Each patch is subsequently refined by adding
constraints to the optimization problem and solving it again.
Unfortunately, such constraints cannot be directly incorporated
into an online MRPD formulation. Thus, our method does not
rely on constraints but adds new weights guided by dispersion,
a measure for the largest gaps in the current approximation of
the Pareto front. We iteratively add new sample solutions by
selecting new weights as the midpoint of existing weights where
difference in costs is largest and then optimizing for the new
weights.

Finally, in this article, we consider that the MOO problem has
stochastic objective values since some inputs might be random
variables, e.g., the transportation requests appear following a
stochastic process. Teich [22] studies uncertain objectives where
costs cannot be computed exactly. For the case that attainable
objective values fall into known bounds, they propose a notion of
probabilistic dominance. Unfortunately, tight bounds are usually
not available in MRPD a priori.

In summary, the unique challenges of the multiobjective
MRPD problem studied in this article are the computational
hardness and expense of obtaining individual sample solu-
tions, which makes most state-of-the-art Pareto-approximation
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techniques impractical, and the uncertainty in the problem in-
puts, requiring samples of the Pareto front to be selected such
that resulting solutions are statistically different.

II. PROBLEM FORMULATION

A. Preliminaries

Notation: Vectors are denoted with bold symbols (w) and
we use subscript indices to identify its elements (wi). Upper-
case letters denote sets (S), where we identify elements with a
superscript index (si or wi).

Multiobjective optimization: Consider a MOO problem
(MOOP) [9] where the domain is some vector space X . We
want to find a solution x ∈ X that simultaneously minimizes n
different functions, i.e., that solvesminx{f1(x), . . . , fn(x)}. In
general, the solution to a MOOP is not a unique element x but a
set of Pareto-optimal solutions. We briefly review the definitions
of dominated solutions and the Pareto front.

Definition 1 (Dominated solution): Given a MOOP and two
solutions x,x′ ∈ X , vector x dominates x′ when fi(x) ≤
fi(x

′) holds for all i = 1, . . . , n and there exists a j ∈
{1, . . . , n} where fj(x) < fj(x

′). This is denoted by x ≺ x′.
Definition 2 (Pareto Front): Given a MOOP, the set of Pareto-

optimal solutions is the subset of all solutions that are not
dominated by another solution. This set is referred to as the
Pareto front.

B. Online MRPD

We now revisit the standard MRPD problem where tasks
require robots to pick up items in some location in the workspace
and then transport them to a different location.

The robot environment is encoded in a weighted graph
G = (V,E, d) where V and E are vertices and edges, and
weights d describe the duration of traversing an edge. Let
R = {r1, . . . , rm} be a fleet of m robots that have to serve a
set of n pickup and delivery tasks T = {T1, . . . , Tn}. Each task
is a tuple T = (s, g, tr, td) where s and g are vertices in V ,
representing a pickup and drop-off location, tr is the release
time when the task is requested, and td > tr is a deadline. Let
ta(r) be the time a robot r arrives at the pickup vertex s, and let
tf (r) be the time robot r arrives at the drop-off vertex g. A task is
serviced successfully when s is visited before g and tf (r) ≤ td.
Furthermore, let Lr be the set of tasks loaded by robot r. All
robots have a capacity κ, i.e., |Lr| ≤ κ must hold at all times.
Upon visiting a pickup vertex s, the respective task T is added
to Lr if |Lr| < κ, when visiting a drop-off g, it is removed.1 We
assume that tasks appear online following a stochastic process
Y , and their pickup and drop-off locations are sampled randomly
from a distribution over the vertices in the graph.

MRPD constitutes two subproblems: 1) Which robot serves
which task and 2) what route each robot takes.

1) Routing Problem: For some robot r, let v denote its cur-
rent location. To serve tasks T , the robot needs to find a tour

1Note: To avoid unintentional loading and unloading, we can design the graph
G such that s and g are copies of an existing vertex in V .

τ that starts at v and services all tasks in T . Thus, the routing
problem solves

min
τ

γ(T , τ) (1)

where γ(T , τ) is some nonnegative cost function. For instance,
this can evaluate if the tasks were delivered on time, or the
duration between request and delivery time.

2) Assignment Problem: An assignment is a set A ⊆
{(ri, Tj)|ri ∈ R, Tj ∈ T } such that for every Tj ∈ T , there
exists exactly one pair in A containing Tj , i.e., every task is
assigned to exactly one robot. However, a robot can be assigned
to multiple tasks; thus, each ri can appear in multiple pairs in A.
Finally, let Ti(A) be the set of tasks assigned to robot ri under
A. The goal is to find an assignment of tasks to robots, as well
as tours for each robot, such that the cost γ is minimized for all
tasks. The assignment problem is formulated as

min
A

∑
ri∈R

min
τi

γ(Ti(A), τi)

s.t. τi serves all tasks Ti(A)

T1(A) ∪ · · · ∪ Tm(A) = T . (2)

The nested optimization can be solved in a two-stage coupled
approach: First, optimal tours for potential pairing of groups of
tasks and robots are computed. Based on these tours, a group of
tasks is assigned to each robot [43].

In an offline problem, all tasks are known before robot deploy-
ment such that an assignment of tasks and routes for all robots
are computed offline and then executed. However, in many
practical problems, not all tasks are known initially: Further
tasks might be requested while other tasks are already being
serviced. Such online settings require frequently adding new
tasks to the current assignment and replanning routes to opti-
mally accommodate new requests. Furthermore, our formulation
does not consider interagent collision. Instead, we assume that
collisions are avoided by a low-level controller and the average
travel times are abstracted by the cost of edges on the graph. The
task arrival can be modeled with a random processY , making the
set of tasks T a partially observed random variable. An optimal
assignment A is found by a policy π that recomputes the current
assignment and routes periodically as new tasks arrive. Thus,
we redefine the cost over a policy π and tasks T , denoted by
c(π, T ).

C. Multiobjective MRPD

In practice, the performance of an MRPD system might
be evaluated by a user with different objectives in mind. For
instance, when operating in a human-centered workspace, users
might have preferences for robot navigation based on several,
potentially conflicting objectives.

Thus, we consider a MOO formulation for MRPD with
bounded, positive cost functions c1(π, T ), . . . , cn(π, T ) replac-
ing the objective of (2) with

min
π

{c1(π, T ), c2(π, T ), . . . , cn(π, T )}. (3)

Authorized licensed use limited to: TU Delft Library. Downloaded on March 25,2024 at 13:04:14 UTC from IEEE Xplore.  Restrictions apply. 



WILDE AND ALONSO-MORA: STATISTICALLY DISTINCT PLANS FOR MULTIOBJECTIVE TASK ASSIGNMENT 2221

Fig. 2. Illustration of cost distributions, mean cost, expected Pareto front, and
dispersion for four different policies π1, . . . , π4 solving a problem with two
objectives.

We refer to this problem as multiobjective MRPD, abbreviated
as MO-MRPD. In this article, we are interested in exploring
possible Pareto-optimal tradeoffs to help system operators effi-
ciently deploy robot fleets. Since the task arrivals are stochastic,
the costs c1(π, T ), . . . , cn(π, T ) are random variables, which
we collect in a vector c(π, T ) = [c1(π, T ) . . . cn(π, T )]. Fur-
thermore, let µ(π) be the vector containing the expected values
of c(π, T ), i.e., μi(π) = ET [ci(π, T )]. Using the mean costs,
we introduce the notion of an expected Pareto front.

Definition 3 (Expected Pareto Front): Given cost func-
tions c1(π, T ), . . . , cn(π, T ), the expected Pareto front P(T )
is the set of Pareto-optimal solutions to the MOOP
minπ{μ1(π, T ), μ2(π, T ), . . . , μn(π, T )}.

To formalize the goal of our problem, we define dispersion
as a measure of distance between points on the expected Pareto
front.

Definition 4 (Dispersion): Given an MO-MRPD instance
with cost functions c1(π, T ), . . . , cn(π, T ), let Π = {π1,
. . . , πk} be a collection of policies. The dispersion of D(Π)
is the maximum distance between a point p on the expected
Pareto front P(T ) and the closest mean cost vector µ(πi, T )
for any i = 1, . . . , k. In detail

D(Π) = max
p∈P(T )

min
π∈Π

||µ(π, T )− p||2. (4)

Finally, we consider two different policies πi and πj to be sta-
tistically distinct if their corresponding multivariate distributions
c(πi, T ) and c(πj , T ) are statistically significantly different.
This can be captured with common statistical measures such as
hypothesis tests [59]. The concepts mean cost, cost distribution,
expected Pareto front and dispersion are illustrated in Fig. 2.

D. Problem Statement

Building on the preliminary concepts, we formally state the
problem of approximating the set of optimal solutions to an
MO-MRPD problem.

Problem 1 (Approximating MO-MRPD): Given a graph G, a
fleet ofm robots, a stochastic processY to generate a sequence of
tasks T , some cost functions c1(π, T ), . . . , cn(π, T ), and some
integer K > 0, find a set of policies Π = {π1, . . . , πk} where
k ≤ K such that the following holds.

1) For any policyπ ∈ Π and a realization of the task sequence
T , the cost vector c(π, T ) is Pareto-optimal.

2) The dispersion D(Π) is minimized.
3) Any two policiesπi, πj ∈ Π represent different behaviors,

i.e., are statistically distinct.
Solving Problem 1 provides a system operator with sampled

options for fleet behavior, which are optimal, approximate any
optimal behavior that is not part of the samples, and are distin-
guishable from one another.

E. Generalization

Problem 1 can be generalized to include a broader range of
planning problems. Consider any robotic planning problem that
1) optimizes for multiple objective functions and 2) has one or
multiple random variables as its input, e.g., random task arrivals
or task locations, random service times, or random travel times
and random rewards. Exploring the solutions space for such
problems can then be formulated as in Problem 1, i.e., finding
solutions that are Pareto-optimal, represent the expected Pareto
front and are statistically distinct with respect to the randomness
of the inputs. Thus, our solution technique presented in the
following section can be adapted to problems such as DVR and
MRTA with stochastic task arrivals, single-robot path planning
or MAPF in dynamic environments, the stochastic Canadian
traveler problem, or orienteering and informative path planning
with stochastic travel times or rewards. For the remainder of this
article, we will focus on MO-MRPD.

III. APPROACH

We begin with characterizing the computational hardness of
Problem 1 and then present our approach to approximating
MO-MRPD solutions. In essence, we cast the multiobjective
problem into a scalarized single-objective optimization, where
the cost functions are traded off with weights. We then solve
Problem 1 by adaptively selecting scalarization weights and,
thus, MRPD policies that result in a set of Pareto-optimal
tradeoffs. The proposed method does not assume specific cost
functions c1(π, T ), . . . , cn(π, T ), it only requires them to be
bounded. For a case study, we show how three specific cost
functions relevant to MRPD problems can be incorporated into
an MRPD solver in Section IV.

A. Hardness Results

Problem 1 is related to the multiobjective shortest path
(MOSP) problem, which is known to be NP-hard [60]. In
general, single-objective MRPD is a variation of DVR and is
already NP-hard for commonly used cost functions such as min-
imizing delivery time. Yet, MO-MRPD is also computationally
intractable even for a single robot and only one task (in which
case single-objective MRPD would be trivial).

Lemma 1 (Hardness result): MO-MRPD with a single robot
and one task is NP-hard.

Proof: This is shown by a reduction from MOSP to MO-
MRPD. A MOSP instance is constituted by a graph G =
(V,E), start and goal vertices s, g ∈ V and some cost functions
γ1, . . . , γn assigning costs to edges [60]. Its decision version
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answers if there exists a path P between a given start and goal
vertices s, g ∈ V such that

∑
e∈E(P ) γi(e) ≤ α for all i and

some constant α. We convert this into an input of an MO-MRPD
instance where a single robot is initially located at s, and one
task requires the robot to go from s to g before an arbitrarily
late deadline. The MRPD cost functions are then the MOSP
cost functions γ1, . . . , γn. For a sufficiently large budget K,
the solution to the MO-MRPD instance is a set of policies that
correspond to all Pareto-optimal paths from s to g. This trivially
answers the MOSP instance. �

In summary, Lemma 1 shows that MO-MRPD is hard even
if there is only a single task such that the assignment part of
the problem becomes trivial and the routing part is reduced to
finding a path between two vertices. Thus, the computational
challenge of MO-MRPD does not only stem from the complexity
of the underlying single-objective MRPD but finding a set of
policies that correspond to multiobjective solutions as described
in Problem 1 is itself another intractable problem.

B. Scalarization of MO-MRPD

A common approach to solving MOO problems such as (3)
is using scalarization to obtain a single-objective function. The
most common form is linear scalarization where the objectives
are combined in a weighted sum

min
π

w1c1(π(w), T ) + · · ·+ wncn(π(w), T )︸ ︷︷ ︸
w·c(π(w),T )

. (5)

The weight vector w = [w1, . . . , wn] describes a tradeoff be-
tween the different MRPD objectives and, thus, is an input to
the policyπ(w) for solving the routing and assignment problem.
Hence, using linear scalarization, Problem 1 becomes one of
finding a set of weights Ω = {w1, . . . ,wK}. Without loss of
generality, we assume that w lies in the set

W =

{
w ∈ R

n
≥0 |

∑
i

wi = 1

}
(6)

which we refer to as the weight space. Furthermore, we assume
that we have access to a policy π(w) that solves the MRPD
problem for the scalarized cost function in (5) for given weights
w. In Section IV, we will adapt a state-of-the-art MRPD solver
to obtain such a policy for three exemplary cost functions.

C. Pareto Approximation via Weight Sampling

We propose an algorithm that finds a set of scalarization
weights Ω = {w1, . . . ,wK} such that the corresponding poli-
cies π1, . . . , πK solve Problem 1.

A commonly used approach to find different tradeoffs of
cost functions is sampling weights uniformly. However, the
corresponding solutions are often not placed uniformly on the
Pareto front since the mapping from weights to the objective
values is nonlinear [8]. This can lead to several weights yielding
similar objective values. Thus, we propose an adaptive strategy
that greedily minimizes the dispersion.

1) Algorithm Description: Algorithm 1 provides a high-level
overview of the proposed approach. After a detailed descrip-
tion of its components, we discuss a biobjective example,

Algorithm 1: Adaptive Sampling of MOO-MRPD.

including an illustration in Fig. 4. We maintain a collection of
subsets—in particular simplexes—of the weight set W from
which we iteratively sample new weights and then partition
the simplexes further, similar to a bisection algorithm in higher
dimensions. The algorithm uses the subroutine MRPD(w, I) that
solves the scalarized problem from (5) for given weights w
and η different task sequences I = {T1, . . . , Tη}. The func-
tion MRPD(w, I) returns the set of cost vectors CI(w) =
{c(π(w), T1), . . . , c(π(w), Tη)}. That is, we compute η dif-
ferent cost vectors, each of dimension n to approximate the
n-dimensional distribution of c(w, T ).

In detail, the algorithm begins by sampling η different real-
izations of the task arrival process I = {T1, . . . , Tη} (line 1).
Let e1, . . . , en denote the vectors of the standard basis in R

n,
which correspond to solving only the single-objective MRPD
problems. First, we add these vectors to the set of sampled
solutions Ω and compute their costs (lines 2 and 3). The tuple
(e1, . . . , en) is saved in a list ofn-simplexes (line 4). In the main
loop, we iteratively find a new candidate samplew′ and compute
the cost distribution CI(w

′) (lines 6 and 7). We then update the
set of n-simplexes S using the new sample w′ (line 8), detailed
in Algorithm 2. Finally, the algorithm stops when K sample
solutions have been computed.

Next, we will provide details on the two core components of
the Algorithm, i.e., how we identify the most promising new
weight w′ (line 6), and how we update the simplexes (line 8).

2) Ensuring Statistical Difference: An important character-
istic of the Algorithm is that it does not add a new weight w′

when its cost distribution is too similar to the distribution of an
existing sample. Thus, functionsFind_New_Weight (line 6) and
Update (line 8, and Algorithm 2) conduct a test for statistical
significance.

To that end, let the function h(wi,wj) evaluate the probabil-
ity of error for a hypothesis test between sampled costs CI(w

i)
and CI(w

j) [59]. That is, we compute how likely it is that
a statistical test would wrongly conclude that the samples for
CI(w

i) correspond to the policy π(wj). Let KL(wi||wj) be
the Kullback–Leibler divergence between CI(w

i) and CI(w
j).

The probability of error is then derived from the Chernov–Stein
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Fig. 3. Illustration of multiple splits in Algorithm 2 over two iterations, green
indicates the new sample w′. (a) Initial simplex. (b) Iteration 1. (c) Iteration 2.

Lemma [59] as

h(wi,wj) = e−KL(w
i||wj). (7)

3) Finding the Next Sample: We now specify the function
Find_New_Weight from line 6. Let wi,wj belong to the same
simplex s; we refer to the unordered pair (wi,wj) as an edge of
s. The idea is to greedily reduce the dispersion between samples.
Without having access to the set of Pareto-optimal solutions
(which we are trying to approximate), we cannot directly evalu-
ate the dispersion as introduced in Definition 4. Thus, we use an
auxiliary measure: Given a simplex s = (w1, . . . ,wn) let µi

denote the mean cost of the policy optimizing for weight wi.
We define the pairwise dispersion as dij = ||µi − µj || for all
i, j = 1, . . . , k and i 	= j.

A strong candidate for a new weight is then the midpoint
of an edge (wi,wj) where the pairwise dispersion is largest.
However, the midpoint w′ of edge (wi,wj) might not yield
a new solution but instead result in the same costs as either
wi or wj , i.e., µ′ = µi might hold. To ensure convergence,
we introduce a discount factor α((wi,wj)). Given an edge
(wi,wj) with mean costs (µi,µj), the factor counts how often
Find_New_Weight previously returned a weight w′ that was
the midpoint of some edges (wl,wp) with the same mean costs,
i.e., where (µi,µj) = (µl,µp). Furthermore, let HΔ(w

i,wj)
be a binary variable describing the outcome of the statistics
test of distributions CI(w

i) and CI(w
j) with respect to some

threshold Δ. We use the convention that 1 describes the case
whenh(wi,wj) ≤ Δ, and thus, the distributions are sufficiently
different. The discounted pairwise dispersion is then defined as

D((wi,wj)) =
HΔ(w

i,wj)

2α((wi,wj))
||µi − µj ||. (8)

The function Find_New_Weight selects the edge e′ among all
simplexes s ∈ S that maximizes D(e′) and returns its midpoint
w′. In Section III-D, we further discuss the necessity of the
discount factor as part of our proof of convergence.

4) Update Function: Algorithm 2 updates the set of sim-
plexes as well as sampled weights and solutions. Since we
chose w′ to be the midpoint of weights of a simplex, it lies
on a simplex’s boundary and, thus, may be inside more than
one simplex. Thus, we split every simplex s containing w′ into
smaller simplexes.

To split a simplex s, we identify the weights wi and wj in s
for which the new weight w′ is the midpoint (line 3). We then
create two new simplexes by individually substituting w′ for wi

and wj (lines 4–6). The new sample w′ is only added to the set
of samples Ω (and its corresponding solution C ′

I to the set Γ)

Fig. 4. Illustration of Algorithm 1. Colored ellipses show the estimated cost
distributions CI(w) for iteratively sampled weights. (a) Basic weights w =
0 and w = 1. (b) Iteration 1, add w = 0.5. (c) Iteration 2, reject w = 0.25.
(d) Iteration 3, add w = 0.375.

Algorithm 2: Update Simplexes.

when it passes the statistics test with respect to all previously
sampled solution (lines 7–9). We illustrate the update function in
Fig. 3 for an example with three objectives. The initial simplex
is defined by the three basis weights (since all weights lie in W ,
i.e., their elements sum to 1, we can project the 3-D case into
2-D). In the first iteration, a new sample w′ is placed on the
bottom edge, and the simplex is split. In the second iteration,
Find_New_Weight(S,Γ) may decide to place a new sample on
the central edge. In that case, Algorithm 2 splits both simplexes
s2 and s3.

5) Example Illustration: To conclude the description of
the approach, Fig. 4 provides an illustration of the Pareto-
approximation constructed by Algorithm 1 for two cost func-
tions. Since we assumed the sum of scalarization weights to
be one, we can simplify the notation and represent each weight
vectorw simply by its first entryw. Initially, we compute the two
basis solutions w = 0 and w = 1 to get their cost distributions
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CI(0) and CI(1). The algorithm picks w = 0.5 as the mid-
point of the only simplex {0, 1}, computes the cost distribution
CI(0.5), and subsequently adds w = 0.5 to Ω. In the second
iteration, there are two simplexes {0, 0.5} and {0.5, 1} where
the former has a larger dispersion (as illustrated in Fig. 4).
Thus, the midpoint w = 0.25 is chosen. However, the resulting
distribution CI(0.25) overlaps with CI(0), resulting in a high
probability of failing a hypothesis test. Thus, w = 0.25 is not
added toΩ and future calls of Find_New_Weightwill not return
the midpoint of the simplex {0, 0.25}. Finally, in iteration 3,
the midpoint w = 0.375 of simplex {0.25, 0.5} is selected. The
resulting distribution CI(0.375) passes the selection criterion
and, thus, is added to the sample set Ω.

D. Theoretical Results

In this section, we establish several theoretical properties of
Algorithm 1. We begin with characterizing the runtime. Let
tπ(m,n) be the runtime of the MRPD-solver π for a problem
with m robots and n tasks. Algorithm 1 requires exactly K calls
of the MRPD solver for each of the η training instances, yielding
a runtime of O(Kηtπ(m,n)). Thus, given a polynomial time
approximation or heuristic for MRPD, the runtime remains in
polynomial time.

Next, we show that the proposed algorithm satisfies all
three conditions formulated in Problem 1. Thus, let Π =
{π1, . . . , πk} be the policies that correspond to the weights
Ω = {w1, . . . ,wk} returned by Algorithm 1.

1) Optimal Solutions: The first condition is that the poli-
cies yield approximately Pareto-optimal system behavior. This
strongly depends on the chosen MRPD policy. In Section IV,
we show the implementation of different MRPD cost functions
to solve (5) using a state-of-the-art algorithm [43], which finds
optimal solutions given a sufficient computational budget.

2) Minimal Dispersion: Second, the solution Π should min-
imize dispersion. To that end, we establish the completeness of
Algorithm 1, i.e., for a sufficiently large budget K, the solution
found by the algorithm has the minimal attainable dispersion.
We begin with a supporting lemma.

Lemma 2 (Piecewise constant): The function c(π(w), T ) is
piecewise constant over w for a fixed and finite sequence of
tasks T .

Proof: The solution space for a policy π(w) is the set of finite
sequences of vertices on the graph G for each robot, which itself
is finite in size. Thus, the cost must be piecewise constant. �

Lemma 2 implies that, given a fixed MRPD policy π(w),
there exists a finite-sized set of weights Ω∗ = {w1,w2, . . . }
such that every c(π(w), T ) is attained by a policy π(w) for
exactly one element in Ω∗. Let Π∗ be the corresponding set
of policies, which by definition achieves the smallest possible
dispersion D(Π∗). Despite Lemma 2, there can exist solutions
that are only attained for a singleton w, making any sampling-
based method only asymptotically complete. This motivates the
following assumption.

Assumption 1 (Nonsingleton solution weights): Let Γ∗ be the
set of optimal solutions to (5). We assume that each solution ci

in Γ∗ is optimal for some set of weights Wi ⊆ W , inscribing a
ball in R

n−1 of radius ri > 0.

Thus, each solution can be found by any weight wi lying in
Wi. The dimension n− 1 of the ball comes from the weight
space W being a subset of R

n, constrained by one equality.
We can now establish the second key result for the proposed
algorithm.

Theorem 1 (Completeness): Under Assumption 1, Algorithm
1 is complete, i.e., finds all solutionsΓ∗ given a sufficiently large
but finite budget K.

Proof: To prove the theorem, we first establish two claims.
Claim 1: Find_New_Weight will expand any edge (wi,wj)

where µi 	= µj within finite iterations.
Claim 2: Any simplex s is not split further (i.e., disregarded)

only if all solutions corresponding to a weight w in s have
already been sampled.

Let the input Δ of Algorithm 1 be 1 such that HΔ(w
i,wj) =

1 always holds and the H-test never prevents a new weight from
being added to Ω. As a shorthand, let Dij denote the pairwise
dispersion D((wi,wj)).

Subproof of Claim 1: To show the first claim, consider some
simplex S with an edge (wi,wj). Since µi 	= µj , we have
Dij ≥ δ > 0. We now prove that this edge will eventually be
expanded. At some iteration k, let Dlp be the current maximum
discounted pairwise dispersion, attained for edge (wl,wp) in
simplex s′. Thus, Find_New_Weight will return the weight
wq that is the midpoint of (wl,wp). This leads to two cases:
1) The solution for wq is a new solution and 2) the solution
is identical to either the solution corresponding to wl or wp.
In the first case, the algorithm explores a new element of the
expected Pareto front. Since the set of all solutions is finite,
this can only happen for a finite number of iterations. However,
no immediate progress is made in the second case when µq

is not a new solution. Without loss of generality, we order wl

and wp such that µq = µp holds. We now show that edges
of the new simplexes created by Algorithm 2 have a smaller
discounted pairwise dispersion than the old edge (wl,wp). The
new edges are (wl,wq), (wq,wp), and (wq,wr) for any wr in
s′ where wr 	= wl and wr 	= wp. First, Dqp = 0 trivially holds
since µq = µp. Furthermore, the discount factor for the new
edge (wl,wq) equals α(wl,wp) + 1. Hence, Dlq = 1/2Dlp.
Finally, there are n− 4 other edges (wq,wr). However, since
µq = µp, the discounted pairwise dispersion Dqr is equal to the
existing edge (wp,wr). Finally, any future iteration returning
the midpoint of either (wp,wr) or (wq,wr) will increment the
discount factor of both edges and, thus, update their discounted
pairwise dispersion.

Thus, each iteration removes a current maximizer of the
discounted pairwise dispersion and introduces 1) two new edges
with Dqp = 0 and Dlq = 1/2Dlp, 2) n− 4 new edges that are
coupled to existing edges, i.e., share the same discount factor
α. Hence, letting N be the total number of edges among all
simplexes, it takes at most (N − 1) log2 Dlp/δ iterations until
the edge (wi,wj) becomes the maximizer and its midpoint is
returned by Find_New_Weight. �

Subproof of Claim 2: The second claim ensures that no solu-
tion is missed by not expanding a simplex further. Following the
first claim, a simplex s is not expanded only if Dij = 0 for all
edges (wi,wj) of s. Since we set Δ = 1, it must always hold
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that HΔ(w
i,wj) = 1. Hence, we have Dij = 0 if and only if

µi = µj , following the definition in (8). If this holds for all
edges in s, all vertices of the simplex must have equal solutions
CI . Since the set of weights Wi yielding the same solution is
convex [56], all weights in the interior of s must also correspond
to the same solution CI . Thus, expanding s further cannot yield
any solution that has not been sampled yet. �

In conclusion, Claim 1 ensures that every edge with nonequal
solutions is expanded within a finite number of iterations and
Claim 2 guarantees we only disregard parts of the weight space
when they cannot lead to finding a new solution. Finally, we
need to establish that it is sufficient to only add new samples on
the midpoint of edges. We notice that by adding new weights as
the midpoint of some edges in simplex s, the newly created sim-
plexes si and sj have edges that pass through the circumcenter of
s. By Assumption 1, there will eventually be an edge (wi,wj)
passing through each set Wi corresponding to a solution. Thus,
by searching over midpoints of edges, a sample will be placed
in each set Wi after finite iterations.

To summarize, Theorem 1 ensures that Algorithm 1 achieves
minimum dispersion for a sufficiently large but finite K.

Remark (Necessity of discount factor): An intuitive simplifi-
cation of the proposed method could be to only consider the
edge with maximum pairwise dispersion without a discount
factor. However, such an approach is not complete, as we will
illustrate in a simple counterexample. Consider an instance of
Problem 1 with only one task and a single robot located at the
task’s pickup location. For three given cost functions, let there
be only four unique solutions on how the robot can move from
the pickup location to the goal, attaining the following mean
cost vectors: µ1 = [0 5 2], µ2 = [5 0 2], µ3 = [10 10 1], and
µ4 = [6 6 1.1] (taking the mean here is trivial since the task
arrival is fixed to be deterministic). We notice that all four vectors
are Pareto-optimal since they are not dominated by any other
vector. Algorithm 1 begins with the basis weights w1 = [1 0 0],
w2 = [0 1 0], w3 = [0 0 1] and computes the corresponding
solutions, which in this case will beµ1,µ2, andµ3, respectively.
Among these three solutions, the maximum pairwise dispersion
is found between w1 and w2. However, observe that the optimal
solution for any convex combination w′ = [λ 1− λ 0] of w1

and w2 is either µ1 or µ2. Hence, placing a sample on the edge
between these two weights does not discover a new solution.
Thus, without the discount factor, the algorithm will perpetually
place new weights on the line between w1 and w2 without ever
finding the fourth solution µ4 and, therefore, does not converge.

3) Statistically Different Solutions: Finally, we consider the
third property that cost distributions of different policies are
statistically distinguishable.

Lemma 3 (Distinguishable solutions): The policies Π =
{π1, . . . , πk} have statistically significantly different cost dis-
tributions c(π, T ).

Proof: Algorithm 2, ensure that only weights w′ are added
to the solution set when the sampled costs CI(w

′) passes an
H-test against all already sampled solutions w with threshold
Δ. For a sufficiently large η, the sampled cost vectors CI(w)
approximate the distributions c(π(w), T ) for all w. Thus, the

choice of Δ provides an upper bound on how likely it is that two
solutions are not statistically significantly different.

In conclusion, we have shown that Algorithm 1 satisfies all
three requirements posed in Problem 1. Next, we will show
example configurations for different MRPD objectives.

IV. EXEMPLARY MO-MRPD CONFIGURATION

In this section, we show an approach to solving the scalarized
MO-MRPD, i.e., the weighted cost function in (5) for three
objectives.

A. Cost Functions

We consider the following three MRPD objectives:
1) the QoS, capturing how timely deliveries are;
2) a social cost for traversing human-centered spaces similar

to [5];
3) the total travel distance, representing the overall robot

traffic and energy consumption.
The QoS cQ(π, T ) measures the time between each task T ∈

T being announced and being completed—also called the system
time of all tasks. Let τ be the tour a robot takes following policy
π. We defined tf (T, τ(π)) as the time tour τ visits the destination
vertex of task T and tr(T ) as the release time of the task. Given
a task’s deadline td(T ) and some large constant M , the QoS of
a task is then given by

q(T, τ(π)) =

{
tf (T, τ(π))− tr(T ) if tf (T, τ(π)) ≤ td(T )

M, otherwise.
(9)

The QoS for all tasks then is

cQ(π, T ) =
∑
T∈T

q(T, τ(π)). (10)

The second cost is the social cost, capturing the intrusiveness
of a robot tour into human-centered parts of the environment.
To this end, a subset E′ of the edges on the graph is labeled as
“avoid robot traffic,” which we encapsulate in a binary indicator
function φ(e). The social cost cS(τ) then counts how many such
labeled edges are visited by a tour, i.e., appear in the tour edge
sequence E(τ)

cS(τ) =
∑

e∈E(τ)

φ(e). (11)

Finally, the total distance cT (τ) is simply the length of a robot’s
tour τ , defined as the sum of all edge lengths:

cT (τ) =
∑

e∈E(τ)

d(e). (12)

B. Solving Linearly Scalarized MO-MRPD for Fixed Weights

We now specify a policy for solving (5) given fixed weightsw.
We begin by showing how we compute tours for a single robot
and its assigned tasks, before describing the task assignment
procedure.
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1) Routing Problem: Given a set of tasks T that are assigned
to a robot, we need to find a tour starting at the robot’s current
location v that visits all pickup and drop-off locations sj and gj
for all Tj ∈ T , and minimizes

w1c
Q(T , τ) + w2c

S(τ) + w3c
T (τ) (13)

subject to ordering and capacity constraints.
The complexity of ordering and capacity constraints prevents

us from using a TSP-approximation algorithm. Instead, we
construct a new graph Gw = (V,E, d′) with the same vertices
and edges as the given graph G. However, edge costs are defined
as d′(e) = w1d(e) + w2φ(e) + w3d(e), i.e., capture the differ-
ent costs. We notice that when only traveling from some start
location to a drop-off location, optimizing QoS and total time
is equivalent. However, a minimum-cost tour on Gw does not
necessarily minimize (13). We compute tours using a two-step
heuristic: First, we find an initial tour using a min-cost insertion
approach, with respect to the cost in (13). Paths connecting the
robot’s location and the pickup and drop-off locations are then
the shortest paths on graph Gw, yet the ordering of locations
is picked such that (13) is minimized to a local optimum.
Afterward, we improve the tour using a large neighborhood
search [61] with random deletion and insertion.

2) Assignment Problem: Let Q be a set of newly arrived
tasks. The assignment problem decides which robot services
which task in Q. In general, our framework is agnostic to the
assignment algorithm. A popular state-of-the-art method is the
group assignment algorithm from the work in [43], which we em-
ploy in the simulation experiments. Unlike greedy methods, this
framework actively combines different tasks. After collecting
newly arrived tasks for a fixed time period, the algorithm forms
groups of tasks that could be serviced by a single robot while
satisfying all deadlines are grouped together. Then, a disjoint
subset of these groups is assigned to the robots using an integer
linear program.

3) Optimality Considerations: The presented routing and
assignment approach is a heuristic that finds locally optimal
solutions. Yet, the approach can easily be modified to be optimal
for each individual time instance by 1) computing tours using
exhaustive search over all possible orderings of pickup and
drop-off locations, and 2) running the group assignment with
groups sizes up to the number of currently outstanding tasks.
Then, we would compute Pareto-optimal solutions at the current
time of planning for newly arrived tasks. However, the practical
benefits are limited due to the poor scalability of exhaustive
search. Moreover, the heuristic implementation of the group
assignment framework was shown to be effective in finding
high-quality solutions for large-scale problems [43].

V. EVALUATION

We evaluate our proposed method for finding a set of MO-
MRPD policies in a set of simulation experiments. We con-
sider instances of MO-MRPD with two and three objectives,
namely the QoS, social cost, and total length cost described in
Section IV.

Fig. 5. Simulation environments for the experiments. Free space is shown
in white and static obstacles are in black. The red area indicates parts of the
environment where robot traffic is undesired (the upper floor and the main lobby,
respectively). The dashed lines show a robot routes for an example MO-MRPD
solution: In (a), QoS is of high priority, such that there is a lot of robot traffic
in the social space while in (b), the robots avoid the lobby as much as possible.
(a) Office environment. (b) Lobby environment.

A. Experiment Setup

1) Environment and MRPD Settings: We consider two dif-
ferent environments: 1) a real-world office floorplan as well as
2) an artificial map with a central lobby where robot traffic is
undesired, both are shown in Fig. 5. In both maps, the task
sequences are generated using a Poisson process while pickup
and drop-off locations are sampled uniformly random from a set
of predetermined locations. Task deadlines are manually chosen
such that all tasks can be serviced on time when only optimizing
for QoS but deadlines might be missed when considering the
other two costs. Throughout the experiment, we vary the MRPD
system to feature between 2 and 8 robots with each a capacity
of κ = 4 for servicing 100–200 tasks.

2) Algorithm Settings: Algorithm 1 uses varying computa-
tion budgets K, the threshold for the H-test is set to Δ = 0.1,
and the number of instances is η = 20.

3) Baseline Comparison: We compare the proposed adaptive
sampling method (adaptive sampling—AS) against several base-
lines. We consider two variants of finding policies by placing
scalarization weights uniformly. The first places K weights
uniformly (Uni− A), where K is the budget given to AS. Since
our algorithm has an early-stopping mechanism such that no
samples are added when they fail the H-test, it might use fewer
than K samples. Thus, we additionally compare with uniform
sampling (Uni) placing as many samples as were returned
by AS.

The third baseline, proposed in [31] and [32], is closely related
to our work. Using a DC approach, it divides the set of weights
into regular simplexes and places samples on its vertices. We
denote this algorithm as DC. Similar to our approach, they stop
dividing a simplex further when the associated solutions are
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statistically too similar, evaluated by the overlap of confidence
ellipsoids. We slightly modify their approach to use our H-test as
the stopping criterion for a better comparison. A key difference
is that their method does not use a greedy objective to select the
next simplex to explore and keeps exploring until every branch of
computation reaches the stopping criterion. We limit the number
of computations for DC to the same budget K given to AS, and
let it explore branches in a breath-first-search manner.

4) Separation of Training and Testing Instances: The pro-
posed algorithm as well as the DC baseline uses several problem
instances to estimate the statistical variance of the objectives.
In Algorithm 1, this is denoted by the parameter η. For the
main simulation results, we use η = 20 random instances to
run the algorithms. For evaluation, we use ηtest = 20 different
randomly generated instances. At the end of the evaluation
section, we show that our method and evaluation are robust
toward changes in η and ηtest.

5) Evaluation Measures: We now introduce our perfor-
mance measure to evaluate how well a set of sampled poli-
cies Ω = {w1, . . . ,wk} with corresponding cost distributions
CI(w

1), . . . ,CI(w
k) solves Problem 1. First, we normalize

the cost vectors. Given the meansµ1, . . . ,µk, letμmin
i andμmax

i

be the minimum and maximum mean values for cost function
i. We then normalize each cost cji for all j = 1, . . . , k using the
minimum and maximum means, i.e.,

c̄ji =
(cji − μmin

i )

(μmax
i − μmin

i )
. (14)

Given these normalized costs, we denote their distributions
as C̄I(w

1), . . . , C̄I(w
k) with means µ̄1, . . . , µ̄k. Algorithm

performance is then captured by the following four measures.
1) Hypothesis_Error. The hypothesis error characterizes

how statistically distinguishable the behavior produced
by the different policies is. Thus, we let h(wi,wj) be the
probability of failing a type-1 hypothesis error between
distributions C̄I(w

i) and C̄I(w
j).

2) Dispersion. The dispersion captures how well the ex-
pected Pareto front is sampled, i.e., the size of gaps be-
tween sampled points on the Pareto front. Implementing
Definition 4 is impractical since the set of Pareto-optimal
solutions is not available. Thus, we consider the following
approximation: Given a set of policies and their mean cost
vectors µ̄1, . . . , µ̄k, the approximated dispersion is the
radius of the largest ball such that a) the center p of the
ball is located on a line connecting two points µ̄i and
µ̄j , b) p is not dominated by any other point µ̄q , and c)
the ball does not contain any mean cost vector µ̄q for all
i, j, q = 1, . . . , k.

3) Variance. Variance captures how homogenous the mean
cost vectors µ̄1, . . . , µ̄k are placed, i.e., how uniformly
we cover the expected Pareto front. We approximate this
measure by computing a minimum spanning tree (MST)
where µ̄1, . . . , µ̄k correspond to vertices and edge lengths
to the Euclidean pairwise distances. The variance is then
the variance of the edge lengths in the MST.

4) Coverage. Coverage [20] captures how dominant the
computed solutions are. Thus, we computes the volume
of the subset [0, 1]n that is not dominated by the vectors

µ̄1, . . . , µ̄k. We approximate the measure by sampling
points in [0, 1]n and checking if they are dominated by
any µ̄i for i = 1, . . . , k.

For all measures, a smaller value indicates better performance.
To ensure meaningful comparison between different experiment
setups, we need to normalize the coverage measure. The best
achievable coverage can vary greatly between problem setups
since the expected Pareto front may take different shapes, despite
the normalized cost vectors. Hence, we use the variance achieved
by Uni− A as a normalizing constant for each experiment. The
other measures do not require normalization: The hypothesis
error is an absolute measure. Dispersion and variance are com-
parable given the normalization of cost vectors in (14).

B. Qualitative Analysis

1) Two Objectives: First, we consider an example experi-
ment in the office environment with two objectives (QoS and
social cost). Fig. 6 shows an exemplary comparison of the
policies generated by the different approaches for a budget
of K = 10. We plot the distributions C̄(w) for each sampled
weight w ∈ Ω, together with ellipses showing two standard
deviations around the distribution means µ̄. The black line shows
the linear interpolation between the means.

We observe that the proposed method places samples most
homogeneously covering large parts of the expected Pareto front
(dispersion 0.25) and with only marginal overlap between the
distributions (mean H-test 0.05). In contrast,Uni exhibits several
gaps between the distributions (dispersion 0.37) while other dis-
tributions overlap substantially (mean H-test 0.28). The baseline
DC achieves a small overlap between solutions (mean H-test
0.01), yet shows the largest gaps between samples (dispersion
0.38). Moreover, despite having the same budget asAS,DC places
fewer samples (7 compared to 9), indicating a lower efficiency
in finding statistically different solutions. We recall that we can
only generate system plans for sampled weights w. Thus, while
the interpolation between samples (gray line) is similar between
DC and AS, only AS results in more nuanced system plans.

The plot also shows the order samples are placed using AS,
indicated by the color gradient. Starting with the basis solutions
that yield the endpoints of the Pareto fronts,AS adds new samples
placed in the largest current gaps, greedily reducing dispersion.

2) Three Objectives: In a second example, we show results
for the lobby environment considering all three objectives (QoS,
social cost, and total distance), illustrated in Fig. 7.

Overall, the result is similar to the 2-D case: The proposed
method exhibits smaller gaps between the solutions (dispersion
0.24) while avoiding substantial overlap (mean H-test < 0.01).
In contrast, Uni and DC oversample solutions with low QoS
and low total distance but high transit count, leading to high
overlap (mean H-test 0.14 and 0.08, respectively), and larger
gaps (dispersion 0.32 and 0.37, respectively). In contrast, AS
produces more evenly spaced solutions over the entire expected
Pareto front, yielding a better approximation.

C. Quantitative Analysis

Next, we will provide a more in-depth analysis with several
quantitative measures for various MRPD problem settings. We
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Fig. 6. Example of Pareto approximations with budget k = 10 for 4 robots, 100 tasks, operating in the lobby environment for a time horizon of t = 3000.
Each point cloud shows a cost vector c(w, T ) for a policy π(w), ellipses illustrate two standard deviations of the sampling distribution CI(w). The gray line
interpolating cost means shows an approximation of the expected Pareto front. The ordering in the legends corresponds to the order in which samples were placed.
(a) Uniform sampling (Uni). (b) Baseline (DC). (c) Proposed AS.

Fig. 7. Example of Pareto approximations with budget k = 30 for 8 robots, 200 tasks, operating in the office environment for a time horizon of t = 3000. Points
show the mean cost vectors µ(w) and the 3-D surface the Delaunay triangulation between vectors. Surface colors only support the 3-D illustration. (a) Uniform
sampling (Uni). (b) Baseline (DC). (c) Proposed AS.

compare our method with all three baselines under different
MRPD settings with varying fleet sizes and task loads for both
environments.

1) Results for Two Objectives: We conduct further experi-
ments considering two objectives, 1) QoS and 2) transit count.
We employ fleets of 2, 4, and 8 robots to service 100 tasks in
the lobby, and 200 tasks in the office environments, yielding 6
different problem settings. The sampling budget K takes values
5, 10, and 15.

We illustrate the quantitative measures in Fig. 8. We observe
large differences between methods for the Hypothesis_Error:
While all approaches achieve a small error for K = 5, values
increase drastically for both uniform approaches. In contrast,
DC and the proposed method AS keep the probability of failing
an H-test under the threshold Δ = 0.1.

For the Dispersion measure, AS achieves the lowest values
for K = 5 and is second best after Uni− A for larger K.
However, we recall that Uni− A always uses the full budget
K while AS often uses fewer samples. Indeed, AS shows clear
advantages over Uni, which uses the same number of samples.
Furthermore, AS also outperforms DC with respect to dispersion,
yet with a smaller margin than compared to Uni.

The Variance shows additional insights into how the sam-
pled solutions are spaced along the Pareto front. Here, the
proposed method shows the best performance among all ap-
proaches, i.e., it places samples most evenly, yet the margin to
DC is relatively small.

The Coverage omits the result for Uni− A since we nor-
malize its values. We observe that AS outperforms Uni and DC

for all budgets; however, the difference decreases for larger K.
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Fig. 8. Results for MRPD with two objectives. Coverage is normalized with
respect to Uni− A.

We observe that the normalized coverage values increase with
larger K for Uni, DC, and AS. While coverage itself decreases
monotonically with larger K, the normalized value, i.e., the
relative value compared to Uni− A, becomes poorer. Finally,
we notice that for K = 5, the coverage of AS lies below 1.0,
indicating a better value than obtained by Uni− A

In summary, the proposed method outperforms Uni− A and
DC on all measures. Only DC and AS are able to produce poli-
cies that are statistically significantly different. Moreover, the
cost distributions of AS are spaced more evenly with smaller
dispersion and yield a tighter approximation of the expected
Pareto front. This indicates the effectiveness of using dispersion
to guide the sample placement in AS. In DC, new samples are
placed without such guidance, resulting in more unsuccessful
samples, i.e., samples that end up being rejected as they are too
similar to existing samples. These results highlight thatAS is able
to find better sets of MO-MRPD policies for different problem
setups.

2) Results for Three Objectives: We rerun the experiment
with the total distance as a third objective and increase the
sampling budget to K ∈ {10, 20, 30}. The quantitative results
are shown in Fig. 9.

The outcome of the Hypothesis_Error is mostly compa-
rable to the experiment with the two objectives. The uniform
approaches still show an increase for larger K—albeit smaller
compared to two objectives—such that their mean values still
approach 0.2 while the upper end of the distributions exceed
0.8 and 0.6, respectively. In contrast, AS and the baseline DC

show only a small increase in error for larger K, with a minor
advantage for AS.

Fig. 9. Results for MRPD with three objectives. Coverage is normalized with
respect to Uni− A.

With respect to Dispersion, our proposed method AS ex-
hibits a strong advantage over all baselines as K increases, even
outperforming Uni− A, which uses more samples. In particular,
Uni− A and DC show only a minor to no improvement when
increasing the budget from K = 20 to K = 30. In contrast, AS
is able to further reduce dispersion significantly. Similarly, on the
Variance measure AS achieves the lowest value for all K, with
a continued improvement as K increases. Finally, the results for
Coverage show a strong advantage of AS: For all budgets K,
the normalized variance has a mean of close to 1, indicating that
it is similar to Uni− A. In contrast, the values for Uni and DC

increase for larger K.
In conclusion, the proposed method AS shows a strong perfor-

mance on all measures. Indeed, the difference to the baselines is
substantially larger than for the experiments with two objectives.
Thus, the proposed approach is able to place samples efficiently
in higher dimensions, allowing it to produce better sets of
MO-MRPD policies.

3) Runtime: We briefly report average runtimes for the
MRPD computation. Solving a single instance takes ≈ 3.9 s
for two objectives and ≈ 5.0 s for three objectives. Thus, ap-
proximating a Pareto front with K = 10 samples using η = 20
training instances takes approximately 780 to 1000 s. Yet, for
larger instances such as city-scale ride-pooling [43], the runtime
of a single instance can be much larger, e.g., up to one day.
The computation of the different training instances could be
improved using parallelization.

4) Sensitivity to the Number Instances: To generate statisti-
cally different policies, our method considers multiple η ran-
domly generated MRPD instances. To verify that the proposed
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TABLE I
SENSITIVITY OF RESULTS FOR AS TO THE NUMBER OF INSTANCES FOR

DIFFERENT EXPERIMENTS

algorithm performs well for different values of η, we investigate
the sensitivity of the numerical results to the number of MRPD
instances η. Furthermore, we validate that the number of test in-
stances ηtest used in the evaluation yields representative results.
In the main experiments used η = ηtest = 20, we now let η and
ηtest take values in {10, 20, 30}. We highlight the results for two
experiment settings and run each with two and three features.
The first setting is the lobby environment with m = 2 robots
and a sampling budget of K = 10 and K = 20 for two and
three objectives, respectively. Under this setting, we observed
the largest deviations from the results reported in the previous
sections. The second setting is the lobby environment with
m = 8 robots and a sampling budget of K = 15 and K = 30
for two and three objectives, respectively. Under this setting, the
H-test results of the proposed method (AS) are among the highest
values in the previous experiments (upper end of the boxplots
in Figs. 8 and 9).

The results are summarized in Table I. First, we consider
changes in the number of training instances η, i.e., compar-
ing columns in both tables. We observe a difference between
η = 10 and η = 20. Using too few training instances can lead
to underestimating the variance of costs. Yet, our method still
outperforms Uni− A and Uni (see Fig. 8), and it can be expected
that the results for DC would be similarly affected by η = 10.
Additionally, there is no significant difference between η = 20
and η = 30. The impact of η is generally smaller in experiments
with three objectives where all results remain under the tuning
parameter Δ = 0.1

Next, we consider the effect of varying the number of test
instances ηtest used in evaluation. Between the rows in both
tables, we observe an increase in the H-test between ηtest = 10
and ηtest = 20. A larger number of test instances yields a larger
statistical variance, which leads to a higher chance of failing the
H-test. Thus, a result for ηtest = 10 suggests a low H-test result
while the error can be higher when considering a larger statistic.

However, there is no significant increase between ηtest = 20
and ηtest = 30. Therefore, we conclude that previously reported
results for ηtest = 20 are reliable.

Finally, we also consider the sensitivity toward the random
sampling of tasks for a fixed η. That is, we use our main settings
η = 20 and ηtest = 20 and repeat experiments with 10 different
random seeds. Overall, we found that the randomization of the
seeds has only very little impact on the results: Of all four
measures reported in Figs. 8 and 9, the standard deviation over
different seeds is ≈ 0.01, and below 0.001 for the Variance

measure. Thus, the reported results are robust to statistical
differences when sampling task sequences in Algorithm 1.

Overall, the sensitivity analysis shows that the proposed
algorithm performs well under different settings for η: For a
lower value of η = 10, AS still outperforms the baselines while
increasing η to 30 does not affect the results reported in the main
experiments. Moreover, the evaluation results for ηtest = 20 are
reliable, i.e., a larger number of test instances does not change
the outcome. Finally, the sampling of training instances has only
a minimal impact on the algorithm performance.

5) Summary: In conclusion, the numerical results show that
the proposed algorithm AS computes sets of MRPD policies that
outperform the baselines on several metrics for different MRPD
settings and sampling budgets. The H-test shows that policies
found by the proposed method are statistically more distinguish-
able than policies found by uniform sampling. While the baseline
DC is also able to produce statistically distinguishable policies,
the dispersion, variance, and coverage measures show that AS
produces policies that better approximate the expected Pareto
front. Finally, we verified that the algorithm is robust to changes
in the number of training instances η, and the quantitative results
are reliable.

VI. DISCUSSION AND FUTURE WORK

We studied the problem of multiobjective MRPD where we
want to find a set of policies that lead to different optimal trade-
offs between given objectives. A key feature of the problem is
considering the statistics of the different objective values, caused
by the stochastic nature of online task arrivals. Our problem
formulation does not only seek to find different MRPD policies
that approximate the expected Pareto front but also requires the
policies to attain statistically different objective values.

By means of linear scalarization, we converted the prob-
lem into one of finding a set of weights that balance the cost
functions. We proposed an adaptive sampling method (AS) and
proved its completeness. Furthermore, we presented how a
state-of-the-art MRPD algorithm can be adapted to optimize for
weighted cost functions for commonly used objective functions.
In simulation experiments, we demonstrated that AS is able to
produce sets of high-quality MRPD plans, outperforming several
baseline approaches. Thus, the proposed framework provides
system operators with a variety of options for configuring the
robot behavior to their preferences.

While we specifically focused on MO-MRPD, the proposed
algorithm in Section III can be applied to multiobjective formu-
lations of a wider range of problems, such as MRTA and MAPF.
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Indeed, our approach does not make restrictive assumptions
about the underlying MRPD solver. Furthermore, the challenge
of optimizing for competing objectives as well as stochastic
problem inputs (e.g., requests or goals) is prevalent in many
applications.

One limitation of the proposed method is that it relies on
linear scalarization of the multiobjective problem. The main
shortcoming of linear scalarization is that it is not Pareto-
complete: While every solution to the linear scalarization of
the multiobjective problem is Pareto-optimal, there might exist
Pareto-optimal solutions that are not a solution to (5). Thus,
future work should consider other forms of scalarization to
approach the MO-MRPD. One such method is using a weighted
maximum instead of a weighted sum, also referred to as a
Chebyshev scalarization. However, this poses major challenges
for solving the MRPD problem given a choice of scalarization
weights, since existing MRPD solvers are not able to optimize
for such cost functions.

Future work should also consider HRI frameworks that help
users select the policy that best fits their preferences. One ap-
proach could be choice-based learning where the user iteratively
chooses between two presented options [5], [19], [54], [55].
Adapting this to MO-MRPD should explore how the variance
of MRPD policies affect human choices, i.e., how humans can
choose between different policies when their cost distributions
are similar. Such a framework would complement the presented
theoretical work on exploring different MO-MRPD policies and,
thus, further help system operators adapt MRPD systems to their
specific requirements.

Finally, our work focused specifically on online MRPD.
However, the problem of finding tradeoffs between competing
objectives under stochastic demands is relevant in other variants
of MRTA and DVR. Thus, future work could study how the pro-
posed framework could be applied to a broader range of planning
problems: This could include considering interagent collisions
as formalized in MAPF or other deployment problems such as
multirobot informative path planning and team orienteering.
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