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Abstract

Moral values are instrumental in understanding
people’s beliefs and behaviors. Estimating such
values from text would facilitate the interaction be-
tween humans and computers. To date, no com-
parison between NLP models for predicting moral
values from text exists. This paper addresses this
by comparing LSTM and more novel models such
as BERT and fastText to evaluate their capabilities
for predicting moral values. Twitter Corpus, a col-
lection of 35000 Tweets containing relevant recent
political and social events, is chosen for this pur-
pose. The results show that novel solutions outper-
form long-established ones. BERT is proven to be
the best model for this task, but long training times
hinder its practicality. By contrast, fastText offers
similar performance while being orders of magni-
tude faster.
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1 Introduction

Our culture, traditions, laws, and experiences led individuals
to create systems of values based on the standards of good and
bad. Moral values allow us to understand the distinction be-
tween desirable and undesirable actions, thoughts, opinions,
and behavior. Moral Foundation Theory (MFT) [1] narrows
down these abstract philosophical concepts into a subset that
can be evaluated for scientific and practical reasons. It pro-
poses five foundations, each consisting of two opposite la-
bels: care/harm, fairness/cheating, loyalty/betrayal, author-
ity/subversion, and purity/degradation [2]. Additionally, the
eleventh label, non-moral, is often added as a fallback, signi-
fying the open-ended nature of this modular classification.

The importance of injecting moral values into computers is
self-explanatory: it allows machines to determine and moti-
vate one’s behavior in relation to society. Possible future ad-
vancements can be seen in search engine recommendations,
social network filters, chatbots, personal assistants, and text-
based decision-making research [3].

Related work
Many recent works attempt to capture and model morality
from text. A prime example is Rezapour et al.’s work [4],
which captures morality and stance from Twitter posts to
measure social effects. It uses the Baltimore dataset [5], a
collection of Tweets from the violent 2015 protests. The same
dataset is used in Mooijman’s study [5] on moralization in so-
cial networks, which correlates the posts with the intensity of
the protestors’ violence.

Introduced by Hoover et al.[2], the Moral Foundation Twit-
ter Corpus (MFTC) aims to combat the shortage of anno-
tated datasets for moral value classification. It consists of
35.000 Tweets, spread equally among seven different hetero-
geneous domains that were relevant at the time of writing: All
Lives Matter (ALM), Black Lives Matter (BLM), the Balti-
more protests, the 2016 Presidential election, hate speech and
offensive language, Hurricane Sandy, and #MeToo [2]. La-
bels for the tweets represent the set of five universally agreed
moral values, which constitute the Moral Foundations The-
ory.

Problem statement
The previously-mentioned works have not treated novel mod-
els for classifying moral values. A complete comparison
study would include transformer language models [6] and
text classification libraries, which are shown to outperform
the ones present in Hoover et al.’s paper [7], although this re-
mains heavily dependent on the dataset, as Ezen-Can points
out [8]. One limitation of Hoover’s work is the poor per-
formance of the chosen models, which makes readers think
that moral value classification remains unfeasible. Long
Short Term Memory (LSTM), the best-performing model
presented, only achieves an F1 score of .41 (sd .02).

Contribution
Here we perform an extensive comparison of state-of-the-art
NLP models in estimating moral values from text. In par-
ticular, Google’s BERT [9] and Facebook’s fastText [10] are
used. A modified version of the LSTM model is included
in the final version for consistency purposes. It is used as a
benchmark for evaluating the classification between the three
models. This paper aims to critically examine the perfor-
mance and training time of moral value classifiers to deter-
mine which model is best suited for this task.
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Figure 1: Overview of methodological approach.

Structure
This paper is organized as follows: Section 2 presents in de-
tail the methodological approach: choice of the dataset, fair-
ness issues, data pre-processing, choice of word embeddings,
details about the three models used, and metrics used. Sec-
tion 3 highlights the experimental setup. Section 4 covers the
results of the experiments. Section 5 addresses the ethical
implications of performing such a comparison on user’s data.
Last but not least, Section 6 informs the reader about future
improvements and recommendations.

2 Methodology
The previous section introduces the reader to moral values
and illustrates the importance of moral value classification
from textual inputs. In this chapter, the research methodol-
ogy explains how the study is performed.

The research methodology in this work is mainly drawn
from Maslej et al.[7], who provide a clear framework for eval-
uating multi-label, multi-class NLP models. They establish
the importance of gathering the data, pre-processing it, split-
ting it into testing and training data, selecting the models, op-
timizing their performance by tuning hyperparameters. Fig-
ure 1 provides an overview of the methodological approach.
The remainder of this section provides an in-depth rationale
for each point.

2.1 Models
The three models used in this paper are chosen upon care-
ful consideration. While providing details about the models
themselves is outside the scope of the paper, a brief overview
is required to understand our reasoning.

LSTM
Long short-term memory (LSTM) [11] represents a type of
recurrent neural network (RNN). A more complex structure
aims to overcome the network’s internal memory loss for
long input data, also known as the vanishing gradient prob-
lem [12]. The simple addition of a Forget Gate, determin-
ing which information is relevant and adjusting its flow ac-
cordingly, makes it suitable for classifying sentences or para-
graphs. Figure 2, taken from [7], illustrates the improvement
of LSTM over a standard recurrent neural network by pre-
serving context information through the entirety of the net-
work.

The inclusion of LSTM in a state-of-the-art comparison
may come as a surprise. It is certainly not considered a state-
of-the-art model, being published in 1997 and researched in

Figure 2: Illustration of the vanishing gradient
problem in a standard recurrent network versus

long-short term network, from [7].

various scientific publications on the topic. Instead, it is in-
cluded for consistency purposes. Due to its wide use, it can
be used as a baseline for comparison with other models to
evaluate their relative increase in performance, rather than
the absolute value, as the latter is low due to the complex-
ity of the classification problem. Hoover et al.’s paper lists
LSTM as the best-performing model, achieving better results
than Support-vector machines.

Figure 3: Architecture of LSTM model for
multi-label classification.

fastText
FastText, an open-source library developed by Facebook AI
Research, is argued to be ”on part to deep learning classi-
fiers in terms of accuracy, and orders of magnitude faster for
training and evaluation” [10]. One can use it to learn word
representations and text classification, the latter being rele-
vant for this study. It combines state-of-the-art concepts em-
ployed by the NLP community. The ”bag of words” (BoW)
model of representation and n-gram decomposition of words
allows for the classification of words that infrequently appear
in the training data.



Yahoo Amazon Full Amazon polarity
Accuracy Time Accuracy Time Accuracy Time

char-CNN 71.2 1 day 59.5 5 days 94.5 5 days
VDCNN 73.4 2h 63 7h 95.7 7h
fastText 72.3 5s 60.2 9s 94.3 10s

Table 1: Comparison between fastText and deep-learning models,
from [13].

FastText is included in this paper due to its excellent trade-
off between accuracy and training times. Joulin [10] claims
that it achieves results just shy of the best deep learning mod-
els, but orders of magnitude faster training times. Table 1,
taken from an official blogpost [13], highlights the results.

BERT
BERT (Bidirectional Encoder Representation for Transform-
ers) [9] represents Google AI Language’s state-of-the-art
model at the time of writing. Its novelty consists of the atten-
tion mechanism, enabling it to process deep bi-directional re-
lations between words within a sentence rather than perform-
ing a simple left-to-right iteration. A single output layer is
then required in order to fine-tune the model. Previous works
acknowledge BERT’s potential as it turns out to be the best-
performing model within a series of comparisons with other
deep learning models. Malsej’s et al.’s experiments [7] only
shows a minor increase in overall F1 score, but this can be
attributed to the lack of complexity in data. It is interesting
to determine how this difference evolves given an objectively
more difficult dataset.

Numerous variations of BERT exist and are worth taking
into consideration. On the one hand, XLNet and RoBERTa
both represent retraining of BERT and are shown to be capa-
ble of significantly outperforming it in certain circumstances
[14]. On the other hand, DistilBERT [12] aims to speed up
the computation at the cost of accuracy. The decision was to
pursue BERT as it provides the most general, relevant, and
straightforward solution. It also allows reinforcing findings
of other relevant literature, such as [7].

2.2 Dataset
The comparisons between the models mentioned in the pre-
vious section were performed using MFTC, from [2].

The reasoning behind using MFTC is further detailed. Pri-
mary inclusion criteria represent the possibility to classify the
data into abstract moral values. Popular sentiment analysis
datasets have been taken into consideration ([14], [15]), but
fail to achieve this because they can be reduced to binary clas-
sifications due to the non-ambiguous labels, which defeats
the point of this work. Recent works, however, are promis-
ing. The Morality Machine [16] uses the same Moral Founda-
tion Theory [2] labels, but the consensus was that 18,959 en-
tries are insufficient for a fair comparison between the chosen
models. The benefit of using MFTC is that it contains more
entries than all related works while also being more complex:
it has seven categories that share little context between each
other. Therefore, it better reflects the ever-growing demands
of value classification.

Gathering the data proved to be a challenging methodolog-
ical obstacle. Only 49.9% of the original Tweets could be

fetched using the API provided by the authors [17]. The rest
had been either deleted by the creators or banned by Twitter,
which comes as no surprise considering the sensitive mes-
sages they carried. Figure 2 shows the distribution per cate-
gory. Missing half of the initial dataset, including the entirety
of two categories (Davidson and MeToo), would make the
comparison unfair. The remaining option was to contact the
authors of the paper, who were kind enough to provide the
entire dataset.

Figure 4: Tweets still available for retrieval using
the public API.

2.3 Pre-processing

A quick look at examples immediately reveals particularities
of text that harm the classification models: internet jargon,
emojis, overuse of punctuation symbols, a mixture of lower-
case and upper-case words, platform-specific symbols such as
’#’ or ’@’, phone numbers, or emails. Polamuri [18] estab-
lished common methods that can be applied: converting text
to lowercase, removal of personal identifiers (phone numbers,
usernames, email addresses), removal of # symbol, removal
of emojis, removal of stopwords, punctuation, or lemmati-
zation. With an overwhelming number of possible combi-
nations, the choices had to be reduced to a reasonable num-
ber for comparison. Four strategies, varying in complexity,
are considered in this work. Table 2 highlights techniques
employed by each of them. The averaged F1 score of seven
LSTM classification is used to determine the pre-processing
method used throughout this work.

Strategy 0 1 2 3
Only lowercase 8 4 4 4

No personal identity 8 4 4 4
Remove # symbol 8 4 4 4

No Emojis 8 8 4 4
No Stopwords 8 8 8 4
No punctuation 8 8 4 4
Lemmatization 8 4 4 4

Table 2: The four pre-processing strategies, varying in complexity.



2.4 Word Embeddings
LSTM is different from the other two models because it re-
quires pre-trained word vectors to learn textual associations
between words carrying similar meanings. Word Embed-
dings are vector representation of text, where each word maps
to a set of real valued vectors in a pre-defined N-dimensional
space. FastText uses its own pre-trained set word vectors, so
there is no need to cover it in this section explicitly. Similar
reasoning applies to BERT. Because of its attention mecha-
nism, it is capable of understanding word associations within
the text.

Glove [19] and Google word2vec [20] are suitable options
that apply different unsupervised learning techniques on a va-
riety of large datasets. On the one hand, Word2vec makes use
of two different architectures, combining the CBOW’s ability
to take into consideration infrequent phrases and Skip-gram’s
fast training time. The final result has a large dimension-
ality of 300. On the other hand, Glove combines window-
based methods, which also help to take into consideration
rare phrases, but optimizes training times by keeping track of
’how frequently words co-occur with one another in a given
corpus’ [19]. The outputs are vectors with different dimen-
sionalities of 50, 100, 200, and 300. Both methods have been
used in relevant deep-learning, especially [21].

2.5 Metrics
This work uses standard metrics to evaluate the quality of the
multi-label classifiers. Micro and macro F1 scores are re-
ported for each of the experiments. In addition, the training
time is measured for each experiment, as, in the case of in-
distinguishable gains, this will most likely be the determin-
ing factor in real-word applications. For completeness, this
section illustrates the mathematical formulas for each of the
scores, computed using the open-source library Scikit-learn
[22].

p n

p′ True
Positive

False
Negative

n′ False
Positive

True
Negative

Table 3: Confusion matrix.

For mutli-label classification, each class ci is individually
taken into consideration. TPi, FPi, FPi and FNi are de-
fined similarly to binary classification, with the exception that
all cj where i 6= j are treated as a negative class (see Table
3). Therefore, the metrics can be calculated as such:

Precisionmicro =

∑‖C‖
i=1 TPi∑‖C‖

i=1 TPi + FPi

(1)

Recallmicro =

∑‖C‖
i=1 TPi∑‖C‖

i=1 TPi + FNi

(2)

F1 scoremicro = 2 ∗ Precisionmicro ∗Recallmicro

Precisionmicro +Recallmicro
(3)

Precisionmacro =

∑‖C‖
i=1 Precisioni

‖C‖
(4)

Recallmacro =

∑‖C‖
i=1 Recalli
‖C‖

(5)

F1 scoremacro = 2 ∗ Precisionmacro ∗Recallmacro

Precisionmacro +Recallmacro
(6)

While both micro and macro F1 scores provide valuable
insight into the classification performance, the latter is more
beneficial in our case, as it is insensitive to the imbalance of
the classes and treats them all as equal. Nevertheless, the two
should be correlated most of the time.

Finally, the training time is measured by training the mod-
els on a personal computer with the following configuration:
4.00Ghz Intel Xenon (8 CPUs), 32 GB RAM, Nvidia Quadro
P2200 5GB.

3 Experimental Setup
The setup for the experiments is presented in Tables 4 - 6.
The hyperparameters were chosen to prevent overfitting and
reduce the bias, which was presented in Subsection 4. Admit-
tedly, the hyperparameters have not been exhaustively tested,
as the number of combinations grows exponentially and the
research has been performed within a limited time window.
Further optimization can certainly be applied. Nevertheless,
the chosen set-up is considered to reflect the models’ capabil-
ities of predicting moral values accurately.

Additionally, fairness was further improved by using k-
fold cross-validation with random shuffling on both the pre-
processed dataset (see Subsection 2.3) and the ’Balanced
dataset’ ( from Subsection 4). The vast majority of data stud-
ies [23] show that the number k = 10 represents a suitable
parameter, and it is also used in both works on which this one
is based upon.

Hyper-Parameters Values
Epochs [3, 5, 10]

Activation [sigmoid , relu]
Batch size [32, 64, 128]
Optimizer [Adam]

Table 4: Hyper-parameters used for LSTM. Chosen values are bold.



Hyper-Parameters Values
Epochs [10, 50, 100]

Learning rate [0.01, 0.03, 0.05]

Table 5: Hyper-parameters used for fastText. Chosen values are
bold.

Hyper-Parameters Values
Epochs [2, 3, 5]

Batch size [16, 32, 64]
Optimizer [AdamW]
Dropout [0.05, 0.1, 0.02]

Table 6: Hyper-parameters used for BERT. Chosen values are bold.

4 Results
Dataset bias
In observational studies, there is a potential for bias caused by
discrepancy in data. Figure 5 hints at the presence of bias in
MFTC. As can be observed, 48% of the entire dataset is con-
sidered non-moral after applying majority vote. This leads
to better training for the non-moral subset, which, in turn,
harms the classification process. Table 7 further supports the
discrepancies in training for the different labels. By select-
ing a random fold out of the possible ten during the training
phase, the discrepancy in the F1 score of the classifiers on the
non-moral and other labels becomes striking.

Figure 5: Frequency of Tweets per Foundation
Calculated Based on Annotators’ Majority Vote.

Image provided at request.

Class BERT fastText LSTM
fairness 0.76 0.74 0.62

non-moral 0.73 0.81 0.76
purity 0.0 0.44 0.0

degradation 0.0 0.34 0.0
loyalty 0.94 0.48 0.24

care 0.71 0.53 0.41
cheating 0.72 0.53 0.39
betrayal 0.0 0.35 0.0

subversion 0.0 0.34 0.0
authority 0.0 0.45 0.0

harm 0.54 0.46 0.39

Table 7: F1 score of a randomly selected fold for each of the three
models. Illustrates the massive differences per category.

A possible solution to this problem is to balance the dataset
by downsampling the Tweets labeled as non-moral. This has

been achieved by reducing the number of non-moral Tweets
to match the closest category. We will hereafter refer to this as
’Balanced dataset’, and it will be used in the final comparison
between models, alongside the dataset obtained from Subsec-
tion 2.3, which we will refer to as ”unbalanced dataset”.

Pre-processing Strategy

No significant differences were found between the four strate-
gies in terms of F1 score when applied to LSTM and fastText.
Tables 8 and 9 reveals this by illustrating the micro and macro
F1 scores trained using the four different strategies. Despite
the small differences, a slight increase in F1 score can be ob-
served as complexity increases. Several factors play a role in
determining the effects of this trend. One reason is the re-
moval of the excessive amount of meaningless data that is fed
into the model, which is generally seen as a factor strongly re-
lated to poor performance. Optimizing the models, in particu-
lar increasing the number of epochs to the point of overfitting,
may also explain the small differences. The intrinsic benefits
of using a certain strategy are balanced by overtraining. Ta-
ble 10 is a good illustration of how overtraining decreases the
differences in dataset. Using five epochs has a best-worst dif-
ference of 0.3, whereas ten epochs display a marginal 0.1.

Strategy 0 1 2 3
micro F1 0.62 0.63 0.63 0.62
macro F1 0.44 0.42 0.42 0.43

Table 8: Averaged ’micro’ and ’macro’ F1 score of LSTM afer
applying the four different strategies. Model trained in 10 ephocs

using Glove[19] word embedding.

Strategy 0 1 2 3
micro F1 0.64 0.66 0.65 0.66
macro F1 0.52 0.51 0.52 0.51

Table 9: Averaged ’micro’ and ’macro’ F1 score of fastText afer
applying the four different strategies.

Strategy 0 1 2 3
micro F1 0.57 0.59 0.6 0.58
macro F1 0.27 0.3 0.32 0.28

Table 10: Averaged ’micro’ and ’macro’ F1 score of LSTM afer
applying the four different strategies. Model trained in 5 ephocs

using Glove[19] word embedding.

The F1 score of BERT is expected to mimic the slight in-
crease of the other two models. The experiments have not
been performed due to time constraints. Overall, Strategy 3
gives the best results and is used for all experiments presented
in this paper. The fact that the experiments are unable to
demonstrate a correlation between pre-processing complexity
and F1 score further provides confidence in using this strat-
egy.



Word Embeddings
Figure 6 displays the averaged ’micro’ and ’macro’ F1 scores
using the five different word embeddings considered. This
figure is quite revealing in several ways. First, the directly
proportional relation between dimensionality and accuracy
seems to hold for the vectors of norm 200, 100, and 50. How-
ever, Glove-300 fails to deliver improved results compared
to Google’s word2vec, scoring an average micro F1 score of
0.62 whereas Google 0.64.

Figure 6: Averaged ’micro’ and ’macro’ F1 score of
LSTM with the five different word embeddings. All

experiments were trained in 10 ephocs.

However, one major limitation of Google word2vec repre-
sents the training time. It decelerates the training process by a
factor of 4 because of the 10GB of space required, almost ten
times larger compared to its Glove-300 counterpart. Figure
7 shows the accuracy per time unit of the two word embed-
dings, justifying the discrepancy in accuracy per time unit.
Since training time does not represent a strict requirement in
our case, Google word2vec is selected as the word embed-
ding for LSTM in the rest of the experiments. The reader
should be aware of this tradeoff, as, in most circumstances
where training time is more critical than obtaining the abso-
lute best results, it is possible to select Glove-300 as the word
embedding of choice.

Figure 7: Glove-300 and Google’s word2vec
accuracy per time unit.

Balanced dataset
The results obtained from evaluating the three models on the
unbalanced dataset are shown in Figure Figure 9. This fig-

ure is quite revealing in several ways. First, we can see that
LSTM resulted in the highest value of micro F1 score, 0.64.
However, the macro F1 score of 0.47 hints towards the un-
desired result of artificially increasing this score by overfit-
ting. In contrast to LSTM, BERT has a more negligible dif-
ference between the two scores. While its micro F1 score is
0.05 smaller compared to LSTM’s, the macro F1 score is 0.09
higher. Fasttext falls short compared to both models, achiev-
ing 0.46 micro and 0.39 macro F1 score.

Figure 8: Averaged ’micro’ and ’macro’ F1 score of
LSTM, BERT and FastText on balanced data.

Unbalanced dataset
The results of evaluating the unbalanced dataset are summa-
rized in Figure 9. LSTM achieves a micro F1 score of 0.64,
with a macro score of 0.47. BERT manages a 0.7 micro F1
score, and 0.6 macro F1 score. FastText accomplishes a 0.65/
0.51 score.

Figure 9: Averaged ’micro’ and ’macro’ F1 score of
LSTM, BERT and FastText on unbalanced data.

The most surprising aspect of these results is the de-
crease of BERT and FastText when evaluated on the balanced
dataset. While LSTM remains virtually unchanged on the two
datasets, BERT has a 16% increase, while FastText achieves
a substantial 30% improvement.



Training time
As can be observed from Figure 10, the difference in train-
ing times is considerable between the three models. FastText
remains faithful to its name, delivering results orders of mag-
nitude faster compared to BERT or LSTM. Whereas fastText
completes the classification process in 85 seconds, the other
models take considerably longer. LSTM, running on CPU
takes 2583 seconds, and BERT requires 8740 seconds when
using a powerfull GPU.

Figure 10: Training time (seconds) for the three
models.

Moral foundations
Figures 11 and 12 provide the breakdown of the three mod-
els when classifying the five moral foundations, rather than
all eleven moral values. The single most striking observation
to emerge from this is the clear dominance of BERT, which
achieves an 0.17 increase over LSTM on the balanced dataset,
and 0.07 on the unbalanced one. This is a rather surprising
outcome. It shows that BERT ’s attention mechanism is ca-
pable of determining contextual meaning, but falls short of
determining whether the moral value is a virtue or vice. No
significant increase in LSTM and fastText was found com-
pared with the previous experiments.

5 Responsible Research
The research described in this paper is conducted following
responsible values and principles in order to ensure high aca-
demic standards. To the best of our knowledge, all results
have been transparently and objectively reported, without any
human intervention that could fabricate, falsify or misrepre-
sent data. In exceptional cases where the results do not co-
incide with the expectations, multiple tests are performed to
verify the genuineness of the experiments. An explanation
for the difference between expectations and reality is included
whenever necessary.

The legality of this work is upheld by the Twitter Developer
authorization received. Twitter users have been granted ac-
cess to all intellectual property present in this paper. Despite
this, strict measures are used to ensure that no individual can
be mentally or physically harmed as a result of any direct or

Figure 11: Averaged ’micro’ and ’macro’ F1 score
of LSTM, BERT and FastText on balanced data,

classification performed on moral fundations.

Figure 12: Averaged ’micro’ and ’macro’ F1 score
of LSTM, BERT and FastText on unbalanced data,

classification performed on moral fundations.

indirect action resulting from performing this research. Con-
fidentiality and anonymity have been achieved by removing
any identifiers (username, email) that can reveal information
about a specific person. No Tweet’s content is included in the
paper.

The decision not to publish the dataset, which has been
obtained at request from the authors of the Twitter Corpus
dataset, has an adverse impact on the reproducibility of the
work. While the source code is available on GitHub 1, un-
der an MIT license, the interested reader is requested to con-
tact the authors to acquire the dataset. Detailed information
is provided to run the experiments presented in this paper.
The reader should also be aware that all models are non-
deterministic, which implies that no two simultaneous exper-
iments will result in the same output. However, slight varia-
tions are presented within the paper.

Automating the understanding of moral values from text
by creating better models for moral value classification repre-

1https://github.com/enricoliscio/
nlp-for-values-CSE3000

https://github.com/enricoliscio/nlp-for-values-CSE3000
https://github.com/enricoliscio/nlp-for-values-CSE3000


sents a delicate ethical consideration that has both advantages
and disadvantages. On the one hand, improvements in this
area can benefit numerous people by enabling them to better
interact with their devices and filter unwanted content from
the internet. On the other hand, authoritarian governments or
injurious entities can take advantage of the novel discoveries
to censor, ban or hide content that may harm an individual’s
freedom of speech. While this paper is written hoping that
the discoveries aid individuals, the dangers should not be ne-
glected.

6 Discussion
The results will doubtless be scrutinized, but some immedi-
ately reliable conclusions can be drawn. Firstly, Ezen-Can’s
claim [8] proved to hold: a general-purpose model for moral
value classification cannot be established, as all three models
presented in this paper are heavily dependent on the training
set. It was hypothesized that BERT would outperform LSTM,
which, in turn, would result in comparable results to fastText.
This is indeed the case for the majority of experiments, but
not on the all of them.

One unanticipated finding was the effect of balancing the
dataset. Balancing the dataset proved a major factor, if not the
only one, causing the different levels of performance. LSTM
outperforms all other models when evaluated on the balanced
dataset, while BERT is the clear winner on the unbalanced
one. It is difficult to explain why LSTM benefits significantly
more from this bias compared to the other two models. Re-
gardless, the comparison between the two datasets highlights
the importance of adequately pre-processing the data, and en-
courages the reader to think twice about the circumstances in
which the models are run.

These findings have important implications for moral value
classification. Overall, the results help us to understand that,
in majority of cases, BERT and fastText are believed to be the
better solutions for classifying moral values. This statement
is in accordance with the results by [7], and [10], both using
balanced datasets. However, it may be the case that the re-
verse implication does not hold: if the dataset is unbalanced,
then LSTM is the chosen solution. In that case, further in-
vestigations should be made in order to determine the most
suitable model.

7 Conclusion
Moral values represent the systems of values based on the
standards of good and bad. Moral value classification from
text provides a better understanding of human sentiments,
emotions and thoughts. This work presents a comprehensive
comparison between state-of-the-art models for moral value
classification. LSTM, BERT and fastText are evaluated on
Twitter Corpus, a collection of 35000 Tweets specifially an-
notated for this task. A clear winner cannot be identified be-
cause of the high variations in performance on different train-
ing sets. On balanced datasets, BERT achieves the best per-
formance, but the same is generally no true for unbalanced
ones.

Then, the question remains when to use a model over an-
other, considering that the dataset is balanced, such as we

have in the first experiments. If training time is the main re-
quirement, fastText is the most suitable option. It achieves
decent results given the extremely short training time on the
CPU. It is in part with the other two models, even outper-
forming LSTM in the first comparison. BERT and LSTM,
on the other hand, are extremely slow for any real-time appli-
cation. BERT is trained in roughly 3 hours using an expen-
sive, professional-grade setup that costs in excess of 1000 $
at the time of writing. LSTM is no better either in this regard.
While the training in this paper has been performed on CPU
rather than GPU, it is expected that the 40 mins reported in
the previous section can be reduced to about 10-15 minutes, a
significant amount nevertheless. The decision to use one over
the other then comes down to the expectations of the study. If
spending two additional hours for a 0.06 increase in F1 score
is an objective, then BERT should undoubtedly be taken into
consideration.

8 Future Work
While this research has achieved its objective, it has also
thrown up many questions in need of further investigation.
For instance, it is not within the scope of this paper to ex-
amine the significant variations in F1 score between the two
datasets, despite the fact that it offers a better understanding
of the model’s capabilities. Constantinescu’s and Dondera’s
papers [24] [25] cover explainability and transferability of the
same models considered here, using the same dataset. The
reader is suggested to consult these papers for a more in-
depth understanding of these experiments. Another question
that remains unanswered has to do with four pre-processing
strategies considered in this paper (see Table 8). Once again,
no reasoning is provided for the insignificant difference be-
tween the strategies, as the results does not seem to coincide
with the expectations.

Possibly the most significant limitation of this study repre-
sents the small number of deep learning models considered.
For LSTM, possible extensions that can be adressed in future
studies include the addition of backwards propagation phase,
or using a hybrid architecture with a convolutionary neural
network in order to better reflect word context. For BERT, the
alternatives mentioned in Subsection 2.1 are certainly worth
taking into consideration. One cannot deny that the inclusion
of these models would make the comparison more exciting
but, due to practical constraints, this paper cannot provide
such ample comparison.
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