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Preface
This report regards a master’s thesis in wind energy. The research for this thesis is
done at ECN part of TNO. The thesis itself is part of a master Aerospace Engineering
at Delft University of Technology. Prior to this thesis, a literature study has been done,
resulting in a literature report on the same topic.

The research topic regards the relationship between inflow conditions and wind tur-
bine fatigue loading. Basic knowledge of wind turbines and of the atmospheric bound-
ary layer is considered pre-knowledge for this report. Knowledge in machine learning
and unsupervised machine learning in particular is not required to read this report.
However, as it regards the most important parts of the research method, it can be of
use.

This report is divided into two parts. The first part can be used to determine a method-
ology for other projects with a similar research problem. In this case it can also be
advised to read through the third and fourth section of Chapter 9. For readers specif-
ically interested in wind turbine fatigue loading, the second part is most important.
However, in order to properly understand the used research methods especially Sec-
tion 3.2 is required reading. The second part can also be of interest for atmospheric
scientists. In this case, Chapter 5 is of most relevance.

I am thankful for the opportunity offered by ECN part of TNO. In particular, I would like
to thank Wouter Engels for his supervision of the research project. I am also grateful
to Simon Watson for being my responsible supervisor at the university.
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Summary
A proper prediction of the fatigue loads on a wind turbine is relevant for control pur-
poses, maintenance and end-of-life predictions. The general aim of this project is to
increase the knowledge on the relation between inflow conditions and wind turbine
fatigue loading. More specifically, the inflow conditions that result in atypical fatigue
loading are of interest. I.e., fatigue loading that does not comply with widely accepted
theory. The main research question is formulated as follows:

What inflow conditions result in atypical wind turbine fatigue loading?

The research objective is achieved by using experimental data obtained from a 2.5
MW wind turbine. The damage equivalent load of several bending moments are in-
vestigated. Depending on the wind direction, the inflow of the meteorological mast
and the wind turbine differ from each other. Based on the site layout, three undis-
turbed wind sectors and one disturbed wind sector are defined.

Firstly, differences between wind sectors are investigated in terms of inflow con-
ditions. In addition, an expected fatigue loading is defined based on the mean wind
speed and a linear relationship with turbulence intensity. This is done using regres-
sion with the experimental data.

Afterwards, two research methods are used to find an explanation for the differ-
ences between measured and expected fatigue loading. Continuous correlations are
investigated using stepwise regression and discrete correlations are investigated us-
ing Gaussian mixture models (clustering). In both cases, a selection on variables
representing the inflow conditions is made.

Lastly, data points with a very large deviation from the expected fatigue loading
are considered. Both highly underestimated and highly overestimated data is plotted
in the clustering space and in the space that is defined by the stepwise regression.

It is found that the correlation between turbulence intensity and fatigue is strongest for
the flapwise and side-to-side bending moment. For the in-plane and edgewise bend-
ing moment (dominated by gravitational forces) and for the fore-aft bending moment,
the correlation is weak.

The correlation between mean wind speed and turbulence intensity with fatigue
loading differs between inflow from land and inflow from a nearby lake. The differ-
ences are largest for the flapwise bending moment measured at the blade root and
the side-to-side bending moment measured at the tower bottom. They increase with
the mean wind speed. In case of the fore-aft bending moment, no differences be-
tween wind directions were found.

The stepwise regression is by itself useful for determining the most relevant variables.
Wind shear is found to be relevant for the out-of-plane bending moment, but less for
the other bending moments. Wind veer negatively correlates with the side-to-side
bending moment. This correlation however, is partly related to differences in wind
sectors and is likely not a causal relationship.

In general, the decrease in estimation error is found to be small. Considering the
bending moments measured at the blade root, the stepwise regression is still more
useful than the Gaussian mixture models. I.e., the relationship between inflow condi-
tions and atypical fatigue is mostly continuous.

Also the yaw and tilt bending moments were investigated. However, no solid conclu-
sions could be drawn, because the size of the corresponding dataset was too limited.
The dataset sizes of the other bending moments were larger. Also in these cases,
however, a larger dataset would considerably increase the certainty on the results
and conclusions.
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1 Introduction
A proper prediction of fatigue loads is relevant for the maintenance and end-of-life
predictions of wind turbines. In addition, a good prediction can be useful for the de-
sign of the control system. It can improve the decision making on the conflict between
maximising power output and minimising fatigue loading.

Wide support exist for the relevance of mean wind speed and turbulence intensity
for wind turbine loads. In addition to these variables, wind shear can also affect the
fatigue loading. A study based on simulation (Dimitrov et al., 2015), showed a differ-
ence in the importance of turbulence intensity and wind shear between different wind
turbine components. Also studies combining simulation with atmospheric data show
differences in the effect of atmospheric stability on different parts of wind turbines (e.g.
Sathe et al. (2013); Holtslag et al. (2014a, 2016)). Effects of wind veer on the yawing
moment in specific, were found by Park et al. (2015) and Gutierrez et al. (2016).

The research discussed in this report aims to improve the knowledge on wind turbine
fatigue loads by analysing experimental data. The obtained knowledge can be used
to make a better fatigue prediction. In view of this aim, the research question is de-
fined as follows:

What inflow conditions result in atypical wind turbine fatigue loading?

In order to make sure the objective is not open for interpretation, two parts are in
need of clarification. The word ”atypical” refers to wind turbine fatigue loads that do
not support theory that is widely accepted by engineers and scientists. What theory is
considered widely accepted is discussed in Chapter 3. Furthermore, the ”inflow con-
ditions” can be defined inside or outside a wind farm. Depending on the definition, the
answer to the research question will be different for wake situations. In this research
project, the inflow conditions are defined inside the wake/wind farm.

As stated, the research question will be answered using experimental data. This data
was retrieved from the ECNWind Turbine Test siteWieringermeer (EWTW) in another
project. Data from a meteorological mast (metmast) is used and data from a 2.5 MW
wind turbine. The fatigue loading (damage equivalent load) is determined at several
locations on the turbine. The bending moments investigated in this research regard
blade root bending moments, rotor bending moments, main shaft bending moments
and tower bottom bending moments. Only 10-minute averaged data is used.

The first part of this project regards the removal of meaningless and not useful
data. Several datasets are made such that the availability of measurement signals
are used efficiently.

After the proper data is selected, various variables are defined that can be used to
represent the inflow conditions. In this report, these variables will be referred to as
”inflow variables”. They are fully based on data from the metmast.

Based on, what is considered widely accepted theory, the mean wind speed and
the turbulence intensity are used to define an expected fatigue loading. This expected
fatigue loading is a regression model based on data from undisturbed wind directions.

The inflow variables are tested on whether they can explain the differences between
expected and measured fatigue loading. The continuous correlations are investigated
using stepwise linear regression and the discrete correlations using Gaussian mixture
models. The research focuses on the latter, because this method is new in the field
of research. An extensive analyses is done on the clustering results.

During both the continuous and discrete analysis, a selection is made on the most
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relevant inflow variables. It is this selection of inflow variables that will be referred to
as the relevant ”inflow conditions”. The usefulness of the different methods to predict
the fatigue loading is evaluated with the decrease in relative standard error of the es-
timate. I.e., the error in estimating the fatigue loading relative to the average fatigue
loading.

Before analysing the fatigue loading, however, the inflow conditions at the test site are
investigated in more detail. In order to draw proper conclusions on fatigue loading, dif-
ferences in inflow variables between the wind directions are investigated. Moreover,
the different clusters used to analyse discrete correlations with fatigue are defined
using solely inflow variables. They can therefore also include valuable information on
inflow conditions in general.

Figure 1 shows how the different parts of the project and the report are related to
each other. The report is set out into two parts. In the first part, the methodology is
discussed in more detail. The second part regards the results and the discussion of
the results.

More information on the test setup can be found in Chapter 2. This chapter also
regards the use of different datasets and the data filtering. In Chapter 3 the inflow
variables and the expected fatigue loading are discussed. This chapter is followed
by a chapter on the two used research methods (regression method and clustering
method) (Ch. 4). It concludes the part on methodology.

The second part, considering the results and discussion, is split into five chapters.
Firstly, the results of the data analysis on solely the inflow variables are shown and
discussed in Chapter 5. The chapter includes a discussion on differences between
wind sectors and an analysis on several clustering results with different combinations
of variables. This chapter is followed by a chapter on the discrete and continuous
effects on fatigue loading (Ch. 6). Eight bending moments are discussed. The results
of the different bending moments are compared in Chapter 7. Chapter 8 states the
most important conclusions and the last chapter in this report gives recommendations
for future work (not included in Figure 1).

Figure 1: Project and report structure
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Part I Methodology
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2 Test setup
In this chapter, the test setup is discussed. The first section gives information on the
test site. Based on the site layout, four different wind sectors are considered useful
for this project. The second section gives specific information on the atmospheric
measurements, fatigue load measurements and turbine signals. Not all signals are
available at all times and not all available data is useful. With the use of several con-
straints, the data is filtered from bad and not useful data (Section 2.3). In order to
make a proper selection of the data, several datasets are made. These datasets are
discussed in Section 2.4.

As stated in the introduction, this research project is based on experimental data. The
used data is not retrieved for this project in specific, but was already available from
the Lawine project (a collaboration with TUDelft and ECN part of TNO). It regards data
from the ECN Wind Turbine Test Site Wieringermeer (EWTW). The first data point in
time is measured at 1 June 2013 and the last data point at 31 December 2014.

The fatigue loading of the considered wind turbine components were computed
from sensor signals beforehand. This is also the case for the other pseudo signals.
Details of these computations are not discussed in this report. The data used, regards
variables from 10 minute measurement periods.

The same fatigue load measurements were used for a report focusing on wind
shear (Poodt and Wouters, 2017). In the corresponding project, the wind shear was
determined by LiDAR measurements. This report, however, is more elaborate and
does not make use of these LiDAR measurements.

2.1 Test site

As stated, the data is retrieved from EWTW. This is an onshore test site in the Nether-
lands. There are multiple wind turbines and metmasts at EWTW. For this research
project, only one of the turbines and one of the metmasts are used. The considered
wind turbine is a Nordex N80. The turbine has a hub height of 80 m and diameter of
80 m. It is pitch controlled and has a rated power of 2.5 MW.

Not all wind directions are useful in this project. In some cases, the inflow of the
metmast is different from the inflow of the turbine. It is therefore decided to define
several wind sectors. These wind sectors are based on the site layout.

2.1.1 Site layout

The layout of the test site EWTW is shown in Figures 2 and 3. A larger version of
Figure 2 can be found in Appendix A. The site has two lines of wind turbines and
a single turbine in between. The latter is not shown on the figures because it does
not regard a test turbine from EWTW. The turbines of the Northern row are identical.
The second turbine from the left is used in this project. The Southern row contains
different sizes of test turbines.

Figure 3 shows the distances between the most Northern five turbines of the first
figure together with the used metmast. In the figure, the used turbine is called N6
and the metmast MM3. The distance between the considered wind turbine and the
metmast is 201 m (2.5 rotor diameters).

The inflow conditions differ between wind directions. As can be seen from the two
figures, the five northern turbines (including N6) can cause the metmast to be in a
wake. This is also the case for the turbines in the South. A second aspect that is
relevant for this site is a nearby lake called IJsselmeer. This lake is 2 km East from
the metmast. When the wind is coming from this wind direction some aspects are
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similar to an offshore environment. A third relevant aspect is a row of trees West of
the turbine and metmast. Also this affects the inflow condition.

Figure 2: Layout EWTW

Figure 3: Detailed layout EWTW(from internal document)

2.1.2 Wind sectors

The wind directions can be divided into 12 different sectors. Each wind sector is de-
fined by having two neighbouring sectors with different terrain in front of the metmast
and or turbine. The disturbed and undisturbed wind sectors for the metmast and tur-
bine were determined separately for the Lawine project. Combining the two, gives
Table 1.

Three sectors have an undisturbed metmast and undisturbed turbine (sectors
starting with UMUT, Undisturbed Metmast Undisturbed Turbine). Apart from these
three sectors, there is a fourth sector where themetmast and turbine have comparable
inflow conditions. This is sector DMDT-S, which is directed to the South. The inflow
conditions are in this case comparable because the disturbing factors (the Southern
wind turbines) are relatively far away. The distance between the Southern turbines
and the metmast/turbine varies between 12.5 and 17.1 rotor diameters (rotor diame-
ter of the considered turbine in the South). Only data points from these four sectors
are used in this research project. In Figure 4 the sectors are shown with respect to the
metmast. The colours and names representing the wind sectors are used throughout
the report.
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Table 1: Wind sectors

sector name wind direction range (deg)

Undisturbed Metmast and Undisturbed Turbine
UMUT-N 345.92 - 353.75
UMUT-SE 125.76 - 132.52
UMUT-SW 241.84 - 244.63

Disturbed Metmast and Undisturbed Turbine
DMUT-N 353.75 - 32.67
DMUT-SE 132.52 - 138.40
DMUT-SW 239.85 - 241.84
DMUT-NW 305.14 - 345.92

Undisturbed Metmast and Disturbed Turbine
UMDT-E 102.35 - 125.76
UMDT-W 244.63 - 283.22

Disturbed Metmast and Disturbed Turbine
DMDT-NE 32.67 - 102.35
DMDT-S 138.40 - 239.85
DMDT-NW 283.22 - 305.14

Figure 4: Wind sectors with respect to metmast
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2.2 Measurement systems

Three types of measurements are used in this project: Atmospheric measurements,
turbine signals and fatigue load measurements. The atmospheric measurements all
come from the metmast. The other measurement systems were placed on the wind
turbine.

2.2.1 Atmospheric measurements

The used atmospheric measurements include wind speeds, wind directions and the
air density. The latter is not discussed in detail. It is derived from the temperature
and pressure measured at hub height (80 m).

The wind direction is measured from wind vanes at two different heights (52 and 80
m). These heights correspond to 0.7 R (rotor radius) below hub height and hub height
itself. Both cup and sonic anemometers are used for wind speed measurements. Cup
anemometers are also situated at 52 m and 80 m. The sonic anemometers are sit-
uated at three heights: At 52 m, 80 m and at 108 m (0.7 R above hub height). The
three sonic anemometers also provide wind directions.

The sonic anemometers at 52 and 80 m are situated on a boom directed to the North.
Being disturbed by the metmast itself, they are not useful for the wind sector in the
South (DMDT-S). The sonic anemometer at 108 m is free from disturbance as it is
situated on top of the metmast.

The wind vanes and the cup anemometers at both heights have replicates at two
booms. Booms directed to the Southeast at 120◦ (North = 0◦) and booms directed
to the Southwest at 240◦. Depending on the wind direction, the wind vane and cup
anemometer on one of the booms are used (at both heights):

UMUT-SE cup anemometer at 120◦, wind vane at 240◦

UMUT-SW cup anemometer at 240◦, wind vane at 120◦

UMUT-N average of two cup anemometers, wind vane at 240◦

UMUT-S partly cup anemometer at 120◦,
partly cup anemometer at 240◦,
partly an average of the two (depending on wind direction),
for most part wind vane at 120◦,
for a small part wind vane at 240◦

Because of the size of the Southern wind sector and the direction of the booms, the
use of sensors differ within this sector.

The availability of the sonic anemometer at 52 m is limited. Moreover it cannot be
said with certainty that, in case of wind sectors UMUT-SE and UMUT-SW, the sonic
anemometer at 80 m is in undisturbed flow. Fast changes in wind direction can
occur within the 10-minute averaging period. It is therefore possible that the sonic
anemometer is disturbed by beams or by a cup anemometer of the same metmast.
The relationship between sonic anemometer and the relevant cup anemometer is in-
vestigated in more detail.

It is found that the ratio (sonic/cup) and difference (sonic-cup) of the twomeanwind
speeds depends on the wind sectors. The highest ratio is found in sector UMUT-
SE and the lowest in UMUT-N. Apart from the natural spread within a wind sector,
additional outliers are found for all three undisturbed sectors (outliers that cannot be
explained by natural spread). It is assumed that this additional variation is caused by
a disturbed sonic anemometer.

These findings regard the mean wind speed. For the sonic anemometer however,
the standard deviation of the wind speed is more important. Because no other mea-
sure of standard deviation is available at 80 m, it is not possible to check whether
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this signal is influenced by the metmast. The sonic anemometer can therefore not
be used for sector DMDT-S (always disturbed by metmast) and for sectors UMUT-SE
and UMUT-SW.

2.2.2 Turbine signals

The turbine signals used in this report are mostly used for the removal of meaningless
or not useful data (Section 2.3). It regards 10-minute averages of the pitch angles,
power output and the rotational speed. In addition, the signals containing operational
mode, maximum pitch angles and minimum rotational speeds are used.

Signals of the pitch angle of all three blades exist. However, the availability of
these signals and the availability of the load measurements on the blades differ per
blade. In Section 2.3, only the maximums and minimums of two of the three pitch
angles are used. Moreover, only one of the average pitch angle is used to set other
limitations. This regard the pitch angle of the blade also used for the fatigue loading.

2.2.3 Fatigue load measurements

Three sets of strain gauges were placed on different places on the turbine. All sets are
discussed below, together with the used pseudo signals. For each bending moment,
10-minute fatigue data is used.

Fatigue loads are generally determined using the concept of damage equivalent
load/equivalent fatigue load (DEL) as in Equation 2.1 (notation of Sathe et al. (2013)).
Using this equation, the damage from different load ranges are linearly added to a total
fatigue damage (Palmgren-Miner linear damage rule). In this case the total fatigue
damage regards damage over the 10-minute periods.

DEL =


∑
i

(Di)mNi

NEQ


1
m

(2.1)

where Di are the fatigue load ranges and Ni the fatigue cycles. m is the Wöhler
exponent.

Holtslag et al. (2016) and Sathe et al. (2013) both used a number of equivalent cycles,
NEQ, of 107. However, because the absolute values are in this case not of interest
(Section 3.2), this also regards this equivalent number of cycles. In the research con-
sidered in this report, rainflow counting is used to estimate the fatigue load ranges
and fatigue cycles. The appropriate Wöhler exponent differs between materials and
structures. The fatigue loads used in this report are computed using a Wöhler expo-
nent of either 4 or 10 (see Table 2).
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Table 2: Wöhler exponents used for bending moments

bending moment Wöhler exponent

Rotor loading
out-of-plane 4
in-plane 4

Blade root loading
flapwise 10
edgewise 10

Tower bottom loading
fore-aft 4
side-to-side 4

Main shaft loading
yaw 4
tilt 4

Two strain gauge bridges located at one of the blade roots are used for the blade
root and rotor loading. These strain gauges give together with the pitch angle, four
pseudo-signals: the flapwise, edgewise, out-of-plane and in-plane moments. Use of
the data of all 3 blades is not considered useful. The used blade is selected based
on the availability of the fatigue data.

In terms of blade loading, the flapwise and edgewise moment are the most rele-
vant, because they are defined in the blade axis system. For fatigue loading on the
pitch bearing/on the hub (rotor loading), on the other hand, the out-of-plane and in-
plane moments are useful. The Wöhler exponent is selected based on the material
of the turbine components they affect (see Table 2).

The tower bottom loads (fore-aft and side-to-side bending moments) are measured at
a height of 8.41 m above ground level. Four strain gauges are located exactly at the
Northern, Eastern, Southern and Western side of the tower. Apart from the signals of
the strain gauges, also the yaw position signal is used for the pseudo-signals.

The tilt and yaw bending moments are derived from signals of strain gauges at the
main shaft. The azimuthal position is used to account for the rotation of the strain
gauges and therewith compute the two bending moments.

2.3 Data filtering

Several constraints are set to filter the data. The goal of this filtering is to remove
meaningless data and remove inflow conditions and operating conditions that do not
significantly contribute to fatigue loading. In addition, filter steps are included when
they are required for later analysis. Each step is discussed below. The steps are
sorted by differences in reasoning.

Section 2.4 discusses the use of several datasets. With the exception of one dataset,
all filtering steps are used. The exception considers a dataset solely including atmo-
spheric variables. In this case, only steps 1 (excluding requirement on fatigue data),
2, 4 and 7 are used.
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2.3.1 Removal of data points with unavailable and incorrect signals

First of all, data points are removed that contain unavailable or incorrect signals. The
status signal of the sonic anemometer is used to check if it is working correctly. Data
points with a status signal referring to an error are removed. Data points for which
not all required variables are available are removed as well.

An additional constraint is required regarding incorrect fatigue load data. Next to
fatigue data, statistic data of the bending moments (min,max,average,standard de-
viation) is also available. The availability of fatigue data and statistic data can differ
from each other. These differences are caused by not updating the database after
post-processing. Differences in availability therefore refer to incorrect measurements.
All data points for which either the fatigue data or the statistic data is not available are
removed.

1. all the required signals are available

2. the status signals of the sonic anemometers give the expected value

3. both fatigue data and load statistics are available of the considered bending
moment

2.3.2 Removal of data points with different inflow conditions for metmast and wind turbine

Secondly, measurements from the metmast and turbine are not meaningful when the
inflow conditions differ (see Section 2.1). As previously discussed, only four wind
sectors are used. Based on the average wind direction measured by the wind vane,
data points in other wind sectors are removed.

4. the average wind direction is inside one of the used wind sectors

2.3.3 Removal of undesired operating conditions

Thirdly, several operating conditions are not useful for analysis. It regards the use
of very low rotational speeds, parked situations, start-up situations, idling and pitch
control.

In normal operating conditions, the maximum 10-minute loading corresponds to a
specified azimuthal position. It is therefore problematic when the blades do not com-
plete a single round. This is the case when the average rotor speed is less than 0.1
rpm. Below or close to this number, the fatigue loading will be affected by differences
in the contribution of azimuthal positions to the 10-minute data. This is mainly relevant
for the edgewise and in-plane moment because at very low wind speeds, gravitational
forces dominate.

Additionally, idling situations and data points where the turbine is in parked po-
sition are not useful for analysis. Apart from the bending moments dominated by
gravitational forces, these situations have a limited effect on fatigue loading.

In addition to parked and idling situations, start-up conditions are removed. It is
not useful to analyse these data points because large differences in rotational speed
exist within the 10-minutes.

Operating conditions that rarely occur after the other filtering steps have to be re-
moved as well. This is necessary because the fatigue loading cannot be properly
compared with other data points. After investigation, it is found that this problem re-
lates to situations with an active pitch controller.

In order to remove the above stated situations, the 10-minute minimum of the rota-
tional speed is given a minimum of 11.4 rpm. In addition, a requirement of a maximum
10-minute maximum pitch angle of 0.2◦ is set in order to remove the parked, idling
and pitch control situations. These filtering steps are verified using a signal containing
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the operational mode. The resulting datasets only include data points during optimal
power tracking.

One should note that the thresholds in these filtering steps are turbine specific.
The most limiting factor for the threshold on the rotational speed is the removal of
start-up conditions. For the threshold on the pitch angle, the most limiting factor is the
removal of situations with an active pitch controller.

5. the 10-minute minimum rotational speed is larger than 11.4 rpm

6. the 10-minute maximum pitch angles are smaller than 0.20◦

2.3.4 Removal of too low and too high wind speeds

A wind speed range is set from 4 to 11 m/s. Data points with a mean wind speed out-
side this range are removed. The goal of this filtering step is not to remove meaning-
less data or data that does not significantly contribute to wind turbine fatigue loading.
This step, however, is required for later analysis (see Section 3.2). The specified wind
speed range is not specific to a wind turbine, but it depends on differences between
the mean wind speed probability distributions of the used wind sectors.

7. the mean wind speed is larger than 4 m/s and smaller than 11 m/s

2.4 Datasets

Not at every instant in time, all variables used in this project are available. However,
not all variables are needed for the same calculations. In order to use the available
data efficiently, different datasets are made.

Because each time, only one bending moment is used, it is possible to give each a
separate dataset. In addition, a dataset is made containing only parameters defining
the inflow conditions. This dataset contains the data points in the other datasets and
more. It is used for the analysis discussed in Section 5.1.

Not all bending moments, need a separate dataset because some are derived
from the same variables. This is the case for the tower bottom bending moments and
the main shaft bending moments. The situation for the rotor and blade loading is also
similar.

When only considering the availability of the bending moments, differences between
blade flap-wise/edgewise moments and blade out-of-plane/in-plane moments can ex-
ist. This is the case because, unlike the blade loads, the rotor loads also depend on
the pitch angle. However, because the pitch angle is used in the analysis, the avail-
ability of pitch data is always relevant. Blade and rotor loads can therefore be included
in the same dataset.

The sizes of the different datasets are stated in Table 3. It states the number of
data points after all filtering steps. In addition to the total number of data points in
undisturbed wind sectors, the number of data points in each of the four wind sectors
is given. The amount of data points in the Southern sector (DMDT-S) is larger than
the others because it includes a larger range of wind directions.

Table 3: Number of data points from different wind sectors in the datasets

dataset UMUT-N UMUT-SE UMUT-SW total DMDT-S
inflow conditions 1063 592 896 2551 23318

blade root &
rotor loading 785 458 442 1685 14224

tower bottom loading 848 461 484 1793 15010
main shaft loading 283 22 162 467 4430
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3 Inflow variables and expected fatigue loading
The research question and the used research methods did not allow for a direct use
of the data discussed in the previous chapter. Instead, several inflow variables and
an expected fatigue loading are defined. Both are discussed in this chapter.

The first section discusses the inflow variables that are used to represent the inflow
conditions. These inflow variables are solely based on the data from the metmast dis-
cussed in the previous chapter. Section 3.2 discusses the expected fatigue loading.
The expected fatigue relates to theory that is considered widely accepted by engi-
neers and scientists. It is based on both fatigue data and data from the metmast. The
third and last section of this chapter regards the regression models used in the first
two sections and the regression models used in Chapter 5.

3.1 Variables representing inflow conditions

This section regards inflow variables that are considered relevant for regression or
clustering. Relevant variables are potentially able to affect the fatigue loading directly.
This is not the case for, for example, the wind direction and the atmospheric stability.
These variables are expected to affect the fatigue loading indirectly via the turbulence
intensity and the wind shear.

Use of the wind direction or the atmospheric stability will partly take away the im-
portance of variables that directly affect the fatigue loading. Because this will make
it impossible to analyse the true effects of the variables directly affecting the loading,
variables like the wind direction and the atmospheric stability are not used for regres-
sion or clustering.

The variables considered useful for representing the inflow conditions are stated be-
low. All variables are measured in the rotor swept area. Variables defined above or
below the rotor swept area cannot directly affect the fatigue loading. Moreover, only
10-minute averages and 10-minute standard deviations are used when defining the
variables.

• mean wind speed U = U80

• turbulence intensity TI = f(U80,U108,σ108)
U80

≈ σU,80
U80

• wind direction change intensity wdci = σθ,108
T I108

• wind shear exponent α = f(U52, U80, U108)

α2 = log
(

U80
U52

)
/ log

( 80
52
)

• wind shear change ∆α = log
(

U108
U80

)
/ log

( 108
80
)

− α2

• wind veer ∆θ/∆z = θ80−θ52
80−52

(∆θ/∆z)2 = θ108−θ52
108−52

• air density ρ

To the right of the variables, their definition is shown. In these definitions, U is
the mean wind speed, z is the height from ground level and θ the wind direction. The
symbol σ refers to the use of a standard deviation. The numbers 52, 80 and 108 refer
to the heights in metres at which the variables are measured. 80 m is equal to the
hub height. 52 and 108 m are 0.7 R below and above hub height.



TNO report | TNO 2018 S11661 24 / 115

With exception of the air density, the considerations for all variables are discussed
below. The air density signal in the Lawine database is used as it is.

3.1.1 Mean wind speed

The mean wind speed strongly affects the other variables considered. Together with
the wind direction (effects of terrain) and atmospheric stability, the mean wind speed
largely determines the inflow conditions. Other variables determining the inflow con-
ditions such as turbulence intensity, wind shear and wind veer are largely dependent
on these three variables. From these three variables, only the mean wind speed is
considered to be useful for clustering and regression because it affects the fatigue
loading directly.

The mean wind speed is measured at three heights (see Ch. 2). At 52 m and 80
m, the signal of the cup anemometers are used and at 108 m, the signal of the
sonic anemometer. The sonic anemometer at 52 m is not used because of its limited
availability. The sonic anemometer at 80 m is not used either, because both sonic
anemometers are always disturbed by the metmast in the Southern sectors. More-
over, they can also be disturbed in two of the undisturbed sectors (see Ch. 2).

The mean of the wind speed aligned with the mean wind direction is approximated
by the mean wind speed (small angle approximation). In other words: The mean wind
speed is an average value of a wind speed that differs in wind direction within the 10
minute periods.

The use of an equivalent wind speed (e.g. taking into account wind shear) can also
be considered in the future (see Ch. 9). However, at this moment, the IEC standards
(International Electrotechnical Commission, (IEC, 2009)) and most research projects
related to fatigue (e.g. Holtslag et al. (2014b); Veldkamp (2006)) still make use of the
mean wind speed at hub height.

3.1.2 Turbulence intensity

Turbulence (σU ) is strongly correlated with the mean wind speed. When both param-
eters are used in a clustering problem, this correlation is problematic (see Section
4.2). In case only the turbulence is used, the effects on fatigue loading and the cor-
relation with other parameters might actually be caused by the mean wind speed. In
order to avoid this problem, the turbulence intensity (TI) is used. The correlation of
turbulence intensity with mean wind speed is lower, with exception of very low wind
speeds (Bot, 2014).

The turbulence intensity uses the standard deviation of the wind speed. Just like
the mean wind speed, the deviation of the mean is not aligned with the 10-minute
mean wind direction. Instead it is based on the wind direction at each time instance
within the 10-minute averaging periods. I.e., the direction used for σU can slightly
differ within the 10 minute periods.

Themost appropriate location of measuring turbulence intensity is at hub height. How-
ever, the sonic anemometer at 80 m can be disturbed by the metmast. It can only
be said with certainty for the Northern sector (UMUT-N) that the anemometer is not
disturbed. Alternatively using a turbulence intensity measured at a different height
would be problematic. It will be dependent on other differences in inflow conditions
such as wind shear and the difference in turbulence with height.

The turbulence intensity used in this report is an estimate of the turbulence inten-
sity at hub height. It is estimated using a function (f ) based on the mean wind speed
at 80 m (U80), the mean wind speed at 108 m (U108) and the turbulence at 108 m (σ108)
(see Eq. 3.1). Following this approach, differences in wind shear are accounted for.
Differences in turbulence with height (∆σ/∆z) however, will affect the estimation of
TI. In previous research at EWTW, a higher turbulence intensity was found at 80 m
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with respect to 52 m (Bot, 2014). ∆T I
∆z is therefore mostly positive.

TI = f(U80, U108, σ108)
U80

(3.1)

The function is defined by regression of the data of the Northern sector (UMUT-N).
The data is only filtered using filtering steps 1, 2 and 7: Availability of required signals,
the status signal of the sonic anemometers, the correct wind direction and the wind
speed range. The selection of the used regression method is discussed in Sector 3.3.

3.1.3 Wind direction change intensity

The wind direction change intensity (wdci) can be used as a variable to represent
a change in wind direction. Firstly, a wind direction change can be defined as the
standard deviation of the wind direction (σθ). This variable is strongly related to the
turbulence intensity. It can therefore not be used directly. The relationship is ap-
proximately linear. In order to solve this problem, the standard deviation of the wind
direction is divided by the turbulence intensity. The unit of the resulting parameter,
the wind direction change intensity, is still in degrees.

The standard deviation of the wind direction being almost linear with the turbulence
intensity can be explained by a small angle approximation. If expressed in radians,
a deviation from the mean wind direction is equal to V/U with V being the horizontal
lateral wind speed component. With a small angle approximation, wdci is therefore
proportional to the ratio of σV and σU . Because in this report, wdci is expressed in
degrees instead of radians, it is in a small angle approximation, proportional but not
equal to the ratio.

The wind direction change intensity does not only include information of a change in
wind direction, but also includes differences in the contribution of the different wind
speed components to the turbulence kinetic energy ( 1

2 (σ2
U + σ2

V + σ2
W ) with W being

the vertical wind speed component).
Using the standard deviation, only the absolute value of the change in wind di-

rection is included. It is therewith assumed that the effect on the fatigue loading is
independent on the direction of the change in wind direction (i.e. negative or positive
change in wind direction are considered equal). Because of the asymmetry of the
rotor, the potential effects on fatigue are expected to be different. Depending on how
much the differences are, the assumption can be a valid one.

The assumption is made because from the 10-minute values, the direction of the
change could not be retrieved for each point. Combining measurements of different
data points could solve this problem but will lead to a small loss of available data
points.

In this project, wdci is only measured with signals of the sonic anemometer at 108
m. This is done because, the turbulence intensity should be measured at the same
height as the wind direction change. The use of a TI estimation based on a sonic
anemometer at a different height is not considered useful. The property of wdci being
equal to σV

σU
in small angle approximation, would largely depend on differences in

turbulence with height.

3.1.4 Wind shear exponent

As previously stated, the wind speed is measured at 52 m, 80 m and 108 m. At 52
m and 80 m, the cup anemometers are used and at 108 m the sonic anemometer.
Differences in mean wind speed with height can be measured using the ratio of wind
speeds (wind shear). This can be done using 3 combinations of wind speed mea-
surements. Alternatively, an estimate of the wind shear exponent (α) can be made.
This can be done using the same combinations, or using all three measurements.
The power law stated in Equation 3.2 can be used to directly estimate α with two wind
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speeds. When the same combinations are used, the variables are directly dependent
on each other. However, stepwise linear regression or clustering with wind shear ex-
ponent instead of wind shear (i.e. dependent parameters) can lead to different results.

Ux

Uref
=
(

zx

zref

)α

(3.2)

with Ux and Uref being two wind speeds measured at heights zx and zref respec-
tively.

After clustering solely variables defining inflow conditions, it is decided to use the
different estimates of the wind shear exponent. The ratios of the mean wind speeds
are not used. This decision is made by weighing the final clustering results with the
computational effort. Testing both shear and shear exponent estimates would double
the computational effort. The final result on the other hand, is not expected to change.

Which of the three combinations of two measurement heights is best cannot be
said with certainty. A decreasing wind shear with height would favor the combination
of 52 - 80 m above the combination 80 - 108 m. The expected difference between the
two wind speed is larger and therefore less affected by measurement errors. In the
same view, the combination of 52 - 108 m would be better. The latter would also rep-
resent a better average wind shear across the rotor swept area. On the other hand,
two types of sensors are used (cup anemometer and sonic anemometer). Moreover,
a wind shear exponent based on all three signals could give an even better repre-
sentation of the wind shear across the rotor swept area. This is done by using Eq.
3.2 and taking the mean wind speed at 80 m as Uref . The value of α is optimised by
minimising the squared error on Ux = U52 and Ux = U108.

It is decided to test two estimates of the wind shear exponent to represent the wind
shear in the rotor swept area. The wind shear exponent based on measurements of
the cup anemometers at 52 and 80 m (α2) and the wind shear exponent based on all
three measurements (α).

3.1.5 Wind shear change

The power law might not be a good representation for all wind conditions. It is there-
fore decided to define a measure of how good the wind profile is represented by the
power law. Only differences from the power law within the rotor swept area could
affect the fatigue loading. For this reason, the difference in wind shear exponent
between 52 - 80 m and 80 - 108 m is used to define the wind shear change (∆α).

3.1.6 Wind veer

The wind direction is measured at 52m and 80m using wind vanes and at 108m using
a sonic anemometer. The wind veer (the difference in wind direction with height) can
be estimated using these measurements.

Wind veer is not expected to differ between heights. Park et al. (2015) found
that the wind veer profile is by approximation linear up to 160 m. Naturally, the best
combination of wind direction measurements should be far away from each other
((∆θ/∆z)2). However, this would require the use of two different sensors (wind vane
and sonic anemometer). The use of two wind vanes (∆θ/∆z) could give more accu-
rate results. Both combinations are therefore tested. The relative error introduced by
using different types of sensors would be largest between the wind vane at 80 m and
the sonic anemometer at 108 m. This combination is therefore not tested.

Use of both ∆θ/∆z and (∆θ/∆z)2 in the same clustering problem will result in an
unnecessary high dimensionality. The same holds for the use of α and α2. This is
not desired (see Section 4.2). Moreover, the variables correlate too strongly. These
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combination of variables are therefore not used in the clustering. For the stepwise
regression discussed in Section 4.1 these combinations can be used.

3.2 Expected fatigue loading

In the introduction (Ch. 1), ”atypical fatigue loading” was defined as fatigue loads
that do not support widely accepted theory. In order to define atypical fatigue loading
as a quantitative measure, one can first define ”typical fatigue loading” or ”expected
fatigue loading”. This is done in the first part of this section. The expected fatigue
loading is defined by two regression models. Because the regression models differ
from each other, they are not made at once, but optimised in an iteration. This iteration
is discussed in Subsection 3.2.2. The third subsection regards an issue on probabil-
ity distributions and the last subsection regards a measure for atypical fatigue loading.

Both the measured and expected fatigue are normalised with the average fatigue load
measured in the three undisturbed wind sectors (DEL with DEL being the damage
equivalent load). This is done for each bending moment separately. In this way, the
estimation errors of the bending moments can be compared with each other.

3.2.1 Defining expected fatigue loading

The expected fatigue loading is defined using the mean wind speed and the turbu-
lence intensity. The effects of these variables on fatigue loading can be considered
well known. They are part of widely accepted theory.

The expected loading should not include other differences in inflow conditions be-
sides the mean wind speed and turbulence intensity. These differences could un-
intentionally be included in the model when the probability distributions of different
inflow conditions depend on the mean wind speed and/or the turbulence intensity.
This issue is discussed in more detail in Subsection 3.2.3.

The mean wind speed increases the forces on the blade (lift and drag), and there-
with also the fatigue loading on a wind turbine. The relationship between mean wind
speed and fatigue loading largely depends on the type of turbine. A single model es-
timating the fatigue based on the mean wind speed does therefore not exist. Instead,
the expected fatigue is based on measured fatigue loading at the same wind turbine.
The appropriate regression model is selected using cross-validation (Section 3.3).

The research question (see Ch. 1) does not refer to turbine conditions. However, the
mean wind speed, affects the power output, the controller and therewith the rotational
speed. Because also the rotational speed affects the loading, the mean wind speed
directly and indirectly affects fatigue. In ”normal” operating conditions the rotational
speed only depends on the power output. However, given a mean wind speed, the
rotational speed does have a certain variation. This variation can have an effect on
the fatigue loading.

Part of this variation can be explained by the turbulence intensity. However, the
rotational speed could also be affected by other differences in inflow conditions. Not
only directly, but also indirectly. Differences in inflow conditions could have a small
effect on the power output, and therefore indirectly affect the torque and rotational
speed. Because of the potential effect of different inflow conditions on the rotational
speed (direct or indirect), the rotational speed is not included in the expected fatigue
loading.

In case of an active pitch controller, the pitch angle changes with the mean wind
speed (via the rotational speed). In addition, it could also be affected by other differ-
ences in inflow conditions. However, all situations with an active pitch controller are
removed from the data (see Section 2.3). The pitch angle is therefore not of major
concern in this project.
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Based on literature (e.g. Veldkamp (2006)), one can expect a linear relation between
turbulence intensity and fatigue. This linear relationship is related with the aerody-
namic forces, FA being proportional with the relative wind speed squared, (see Eq.
3.3).

FA ∝ V 2
rel = (Vrel + v′

rel)2 ≈ Vrel
2
(

1 + 2
v′

rel

Vrel

)
(3.3)

with Vrel being the relative wind speed and v′
rel the deviation of the mean of this

relative wind speed. The term v′
rel

Vrel
relates to the turbulence intensity and the devia-

tions in the speed of the blade.

When making an expectation for the fatigue loading, this linear relationship should
be used. Nonlinear models would not relate to widely accepted theory. However,
considering experimental data, this linear relationship is only valid if other variables
are not related to turbulence or do not affect the loading. This is not expected to be
the case. Wind shear for example might also affect fatigue loading (Dimitrov et al.,
2015), and it is connected to turbulence. Preferably, a model should be made using a
linear relationship with turbulence while accounting for other variables like wind shear.

In short, the relation with the mean wind speed is unknown and the relation with the
turbulence intensity is expected to be linear. In order to use the proper regression
models, an iteration is required between a mean wind speed model and a turbulence
intensity model. This iteration is discussed in the next subsection. Both the regression
models minimise the least squares error.

3.2.2 Iteration

Because the mean wind speed and the turbulence intensity require different regres-
sion models (model based on cross-validation and a linear fit), the regression is done
by iteration. In the first step of the iteration, the effect of the mean wind speed (E(U))
is estimated (Eq. 3.4 with E(TI) moved to the right hand side). In the second step of
the iteration, the effect of turbulence intensity (E(TI)) is estimated using a linear fit
and using the same equation. In this case E(U) is moved to the right hand side and
is given by the first step in the iteration.

The initial value of E(TI) is set to zero. Afterwards, E(TI) is equal to the slope of
the turbulence intensity fit multiplied by the turbulence intensity (E(TI) = TI dDEL

dT I ).
The resulting mean wind speed model can be considered a zero turbulence model.
The linear fit with turbulence intensity goes through the origin.

E(U) + E(TI) ≈ DEL

DEL
(3.4)

with E(U) and E(TI) being an estimate of DEL

DEL
based on the mean wind speed

and turbulence intensity respectively.

The iteration is finished after the change in slope of the linear fit with turbulence in-
tensity is small. At least 5 iterations are performed. In the fourth iteration, the model
of the mean wind speed is optimised by cross-validation (see Section 3.3). In the first
three iterations, an artificial neural network with 3 nodes is used.

3.2.3 Equalising contributions

As previously stated in Subsection 3.2.1, differences in probability distributions be-
tween inflow conditions are problematic when they regard themeanwind speed and/or
turbulence intensity. Differences are problematic because they affect the regression
models.
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In Figure 5 a sketch is shown for clarification. It shows what the meaning of the
expected fatigue loading would look like if two inflow conditions giving different fatigue
loading, have a different probability distribution. To simplify the situation, the proba-
bility distributions are assumed to be the same till half way the independent variable
(mean wind speed or turbulence intensity). The distribution of only one of the two
inflow conditions is assumed to continue afterwards.

In the first half, the expected fatigue loading (regression model) is an average of
the two inflow conditions. In the second half however, the expected fatigue is equal
to the fatigue of the upper inflow condition. As a result, the meaning of the expected
fatigue differs between the first half and the second half. This problem always exist
with differences in probability distributions. I.e., in order for the expected loading to
have the same meaning across the space defined by U and TI, the probability distri-
butions of the different inflow conditions should be the same.

Figure 5: Fatigue loading of inflow conditions
with different probability distributions

The objective of this project is to define inflow conditions based on differences in atyp-
ical fatigue loading. The inflow conditions are not defined beforehand. In order to be
able to account for differences in probability distributions of unknown inflow condi-
tions, the following assumption is made:

Probability distributions of inflow conditions are directly related to
probability distributions of wind sectors

The inflow conditions are expected to relate to the wind sectors because of differ-
ences in terrain (see Ch. 2). Using this assumption, the issue changes to a difference
in probability distributions of wind sectors. These differences are known, and can be
eliminated. Firstly, the mean wind speed is considered and afterwards the turbulence
intensity.

The mean wind speed probability distributions of the three undisturbed wind sectors
are shown in Figure 6.



TNO report | TNO 2018 S11661 30 / 115

Figure 6: Probability distributions of U

As can be seen from the figure, the probability distributions of the mean wind speed
are indeed different. The main difference concerns the higher wind speeds. These
are only measured in the Southwestern sector (UMUT-SW). From 11 m/s onwards,
the contribution of the Northern sector decreases and from 12 m/s this is also the case
for the Eastern sector. The results slightly differ for each bending moment because
of differences in data availability.

In order to confirm that these differences are problematic, three separate zero-
turbulence mean wind speed models are made for the undisturbed wind sectors. The
method used to select these regression models is stated in the next section (Section
3.3). The removed effect of turbulence intensity (E(TI)) is determined by the linear fit
based on all undisturbed wind sectors.

The result for the out-of-plane bending moment is shown in Figure 7. Results of
this and other bending moments can be seen in Chapter 6. Clearly, the regression
models differ from each other. The differences between the probability distributions
(PDFs) are therefore problematic and should be eliminated.

Figure 7: Regression with U

Also for the turbulence intensity, the differences in probability distribution are problem-
atic. Figures 8 and 9 give prove of this for the out-of-plane bending moment. Again,
Figure 9 of this and other bending moments are shown in Chapter 6. The first figure
is based on a single regression model estimating turbulence intensity based on the
mean wind speed (method of Section 3.3). The second figure shows the three linear
fits with turbulence intensity. In this case, the mean wind speed contribution (E(U)) is
determined by the model based on all undisturbed wind sectors.
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Figure 8: Probability distributions of TI

Figure 9: Linear regression with TI

The differences between PDFs are eliminated using the iterative algorithm stated be-
low. The threshold to stop the iteration is set to 0.8. The bin width for the mean wind
speed is set to 0.7 m/s and the bin width for the turbulence intensity is 0.025. Both the
bin widths and the threshold are determined by weighing the accuracy of the algorithm
and the resulting number of data points.

The bin widths resulted in ten bins for the mean wind speed and four bins for
the turbulence intensity. Because a linear fit is used for the turbulence intensity, the
regression is less sensitive to differences in probability distributions. The required
number of bins is therefore smaller.

Iterative algorithm equalising sector contributions:

1. The number of data points of the different wind sectors are counted in each bin.

2. The counts are normalised with the total number of data points in the bins (all
undisturbed wind sectors).

3. The resulting contributions are normalised by the contributions of the wind sector
across all bins. The result is a relative contribution for each bin and sector.

4. In the bin and wind sector corresponding to the highest normalised contribution,
a randomly chosen data point is removed.
→ iteration between steps 1-4

5. The iteration is stopped with a threshold for the ratio of smallest and largest
normalised contribution ( min(contributions)

max(contributions) > thr).
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At the end, the contribution of each wind sector to the dataset is largely indepen-
dent on wind speed or turbulence intensity bin. In other words, the major differences
between the probability distributions are removed. The overall contribution of wind
sectors are different than before the situation. It is possible that in one wind sector, all
points are removed. Although, a high amount of data points are preferred for regres-
sion, this is in itself not problematic. The removal of the data points only regards the
training set of the regression model. The data points can still be used to evaluate the
dataset. One should keep in mind that the result is partly dependent on the definition
of the wind speed bins.

The overall algorithm computing the expected fatigue and load residuals is used
for every bending moment separately. Because at step four a point is removed at ran-
dom, small differences exist between identical datasets. This regards the blade root
and rotor bending moments, the tower bottom moments and the main shaft loading.

Using this method, a problem arises for the higher wind speeds. Because only the
Western sector gives higher wind speeds, the algorithm will remove all the points in
the other sectors. In essence, this is not problematic. However, it does decrease the
amount of data points, and therewith the accuracy on the lower wind speed bins.

Moreover, it is known from previous research that the higher wind speeds can be
considered as a different class of inflow conditions. They have a particularly neutrally
stable atmospheric conditions (Holtslag et al., 2014a). Considering that these higher
wind speeds can likely be considered a single inflow condition, it is decided not to use
them in this project. Based on Figure 6, only data points with wind speeds lower than
11 m/s are used.

At the very low wind speed bins, a similar problem arises. It is therefore also
decided to only use data points above 4 m/s. The resulting wind speed range of 4-11
m/s regard all data. In the case of the mean wind speed it does not make sense to
evaluate the regression model with a data point out of this range.

In the first dataset with wind speeds below 11 m/s, only a few data points (amount
depending on bending moment) have a pitch angle pointing towards an active pitch
controller. For all the other points, the pitch angle is approximately the same. It
makes sense to remove the few points with a different pitch angle, because the lack
of more data will give poor results on the effect of pitch angle on fatigue. The remain-
ing dataset only contains data points during optimal power tracking.

For the same reason as using a wind speed range of 4-11 m/s, a turbulence intensity
range of 0.03-0.13 is set. In this case however, it only regards the dataset used for
regression and not for evaluation. Because it regards a linear fit, it still makes sense
to evaluate data points out of this turbulence intensity range.

3.2.4 Defining atypical fatigue loading

The atypical fatigue loading is defined in a quantitative way using a load residual
(LR). This load residual is the difference between the expected fatigue and the mea-
sured fatigue (Eq. 3.5). The load residual is positive for a measured load higher than
expected and negative for a measured load lower than expected. Because of the
normalisation with the mean fatigue load (DEL), the load residual is a dimensionless
quantity.

LR = measured fatigue - expected fatigue
mean fatigue

= DEL

DEL
− E(U) − E(TI) (3.5)

The use of residuals instead of the actual fatigue loading is beneficial for the cluster-
ing method. The strong relations between turbulence intensity and mean wind speed
with the fatigue data are removed. As a result, the influence of other variables are
retrieved more easily. An approach using residuals of a model based on the mean
wind speed and the turbulence is also used by Nelson et al. (2003). They, however,
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used a single regression model with both the mean wind speed and the turbulence
intensity. Moreover, the analysis on the residuals is different from the research meth-
ods used in this project (Ch. 4).

The residuals of the combined mean wind speed and turbulence intensity model are
used for further analysis. Data points in the disturbed wind sector are also evaluated
using the model.

3.3 Regression models

Regression models are used in several parts of this project. This section regards the
regression models used to estimate the expected fatigue loading with the mean wind
speed. In addition, it is used for estimation of TI at hub height (Section 3.1) and for
regression of solely inflow variables (Section 5.1).

3.3.1 Choice of regression method

Regression models can bemade with several methods. It is not evident which method
is best. Multiple methods are therefore tested. Considered regression methods are
Gaussian process regression (GPR) and regression with artificial neural networks
(ANN).

The results of the two different methods depend on different settings defining the
model. In case of Gaussian process regression this is the form of the covariance
function (kernel) and in case of neural networks, this is the number of hidden layers
and number of nodes in these layers. Proper settingsmake sure themodel is accurate
enough, but also assures that no over-fitting occurs. The effect of these different
settings should therefore also be tested.

The two tested regression methods are stated below, along with their tested set-
tings. The best model with optimal settings is selected using 2 layer cross-validation.
After testing the required number of nodes for a neural network with 1 hidden layer, it
was not considered useful to add more layers.

Gaussian process regression exponential, squared exponential,
(kernels) matern with parameter 3/2,

matern with parameter 5/2

neural network 1 hidden layer with 1-8 nodes

3.3.2 Cross-validation

In order to compare the performance of different models, 2-layer cross-validation is
used. The nested layer regards a 20-fold cross-validation and contains 80% of the
data. The remaining 20% is used as a test set. The best model gives the lowest
average Generalised Error (GE) in the nested layer.

The data points in the nested layer are selected randomly from the dataset. The
dataset in the nested layer is split into the 20 parts (folds). Each time, one part is
used as validation set and the other parts together as training set (cross-validation).
The validation set, is used to estimate the GE for the different models. The final
estimate of the GE is the average error of the 20 folds.

The resulting estimate of the GE is biased as one selects a maximum of several
models. The test set is used to evaluate the best model and get an unbiased estimate
of the GE. In this case, the best model is trained with a new and randomly selected
dataset containing 95% of the data previously used in the nested layer. In case the
unbiased estimate of the GE is close to the biased estimate, the model selection is
accepted.
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However, in general it is found that the GE is not close to the biased GE. Moreover,
the GE is strongly dependent on what data is in the test set. The main source of this
problem is considered the size of the test set and the datasets in general. The GE
dependents on whether none, one or a few outliers are included. In order for the
model selection to be independent of which data points are in the validation set and
training set, the same data sets are used for testing each model.

3.3.3 Model evaluation

The best method based on the cross-validation is used to evaluate the data and obtain
the residuals. The fastest way to obtain residuals is to train a regression model using
all points. However, the result will be biased, because the model is based on the data
points considered. The actual residuals are a little larger than this biased residuals.

An unbiased residual can be obtained by using a model based on data excluding
the data point that is to be evaluated. Ideally, all residuals should be estimated with
a training dataset containing all the other points. However, this was found computa-
tionally too expensive. Alternatively, the dataset is separated into 50 subsets. Just
like in k-fold cross-validation, each subset is evaluated using a model based on all the
other subsets. With enough subsets, the expected loading is still accurate for each
data point.

Residuals are also computed for data points from the disturbed sector, and data points
removed by the algorithm equalising the PDFs. This is done with a model based on
all data points used in the cross-validation. All residuals are therewith unbiased.
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4 Research methods
In the previous chapter, the differences betweenmeasured and expected fatigue load-
ing (the load residuals) were set as the quantitative measure for atypical fatigue.
Moreover, variables were defined that can potentially be used to represent inflow
conditions.

The two research methods used to select the most relevant variables for each
bending moment in specific are discussed in this chapter. The related inflow condi-
tions are based on these inflow variables. One of the research methods defines inflow
conditions based on continuous correlations and the other research method defines
inflow conditions based on discrete correlations. As stated in the introduction, this
report focuses on the latter, because it regards a new method in the field of research.

The first section of this chapter regards the continuous correlations. These are anal-
ysed by creating a linear model with stepwise regression. The second section regards
the research method used for analysing discrete correlations (clustering). It discusses
the properties of the clustering problem, the choice of the clustering method and the
used clustering algorithm. The third, fourth, fifth and sixth section all state the meth-
ods used to analyse the clustering results in more detail. Section 4.3 regards the
analysis on a single clustering result and Section 4.4 a comparison of two clustering
results. The fifth section discusses the appropriate number of clusters and the sixth
section discusses the best combination of variables used for the clustering space.

The optimal number of clusters depends on the clustering space. Several approaches
can be used to combine the best combination of variables with the optimum number of
clusters. However, because of difficulties in selecting the optimal number of clusters
(Section 4.5), it is decided not to combine this selection with the selection of variables.
Recommendations for combining the two, in case a proper selection on the number
of clusters is possible, are stated in Chapter 9. There are two important limitations
introduced here:

• The selected combination of variables and number of clusters is not guaranteed
to be a local optimum.

• The number of clusters is not guaranteed to be optimal for the selected combi-
nation of variables.

4.1 Regression method

The continuous correlations between the inflow variables and the load residuals are
investigated using stepwise regression. The stepwise regression itself is useful to se-
lect the most relevant variables for each bending moment. The linear model resulting
from the stepwise regression can be used to compute a new estimation error. This
estimation error is relevant when comparing the two research methods (continuous
and discrete) in Chapter 7.

In order to include a verification on the strong correlation between turbulence and
fatigue loading it is decided to use the load residuals (LR) from solely the zero-
turbulence mean wind speed model. I.e., the load residual is, in case of the stepwise
regression, derived from an expected fatigue that is only based on the mean wind
speed (not the turbulence intensity). In case the correlation between turbulence and
the load residual is indeed the strongest of the tested variables, this is confirmed by
the stepwise regression.

All the parameters defining the inflow conditions as stated in Section 3.1 can be used
for stepwise regression. In addition, it is decided to include the pitch angle (β), tip
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speed ratio (λ) and yaw misalignment (γ). These variables include information on
the turbine. They affect the fatigue loading, but are not useful for clustering. For
the stepwise regression however, they can improve the model and explain a certain
amount of uncertainty in fatigue loading.

The pitch angle is based on a single turbine signal. The tip speed ratio is computed
with the radius of the rotor swept area, the rotational speed (Ω) and the mean wind
speed measured at 80 m (λ = RΩ

U ). The yaw misalignment is derived from the wind
vanes at 80 m and the yaw position of the turbine.

4.1.1 Linear regression model

As stated, the stepwise regression results in a linear model. Themaximum polynomial
degree of this model is set at 4 and the distribution is assumed to be Gaussian. More-
over, it is decided not to allowmultiplication of different variables within themodel. I.e.,
X2

1 is allowed, but X1X2 is not. This constraint is set in order to improve the inter-
pretation of the results and to limit the computational effort. Terms combining two or
more variables make an interpretation increasingly difficult. The interpretation is most
problematic when the range of a variable includes positive and negative values. In-
creasing the other variable(s) will either give a negative or positive effect, depending
on the first value being positive or negative.

An example of what the regression models can look like is shown in Equation 4.1. The
terms are ordered from left to right in order of importance (see stepwise regression).
The model does not necessarily contain terms of the maximum degree that is set.
Moreover, higher order terms are only included in the model if the lower terms of the
same variable are also included.

LR ≈ c0 + c1X3 + c2X1 − c3X2
3 + c4X2 (4.1)

with cx being the positive coefficients of the model and Xx the used variables.

Similar to the load residuals based on a combined mean wind speed and turbulence
intensity model, load residuals can be computed from the linear regression model.
Again, PDFs of the load residuals are plotted for the different wind sectors.

The meaning of the residuals of the resulting model are not obvious. The same
problem as the mean wind speed and turbulence models applies here. Different prob-
ability distributions of different inflow conditions will affect the regressionmodel. In this
case however, this is not problematic. The goal of the regression method used in this
chapter is to remove all continuous correlation between variables defining the inflow
conditions and fatigue loading. If the PDFs of the residuals are different for differ-
ent inflow conditions/wind sectors, the research problem is at least partly discrete.
Discrete changes in correlation with variables defining inflow conditions and fatigue
loading cannot fully be accounted for in the linear regression model.

As with all regression models, the model regards correlation and not causality. The
correlation between the inflow variables and the fatigue loading is not necessarily the
direct relation between them. Potential hidden factors influencing the loading directly,
can also influence inflow variables. The correlation between the inflow variables and
fatigue are not investigated in more detail.

Because the regression model is based on least-squares, the relative estimation error
is lower with respect to the relative error after using the combined mean wind speed
and turbulence model. The decrease in relative error is shown in Chapter 7.

4.1.2 Stepwise regression

There is wide spread consensus on the fact that there are several issues with stepwise
regression. The use of hypothesis tests one after the other, for example, increases
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the Type 1 errors (terms are included when they should not be included) (Whitting-
ham et al., 2006). This problem also regards other stepwise techniques. However,
in this project, the selected variables are analysed in a second way as well (see Ch.
6). Moreover, the issues are recognised as such and the results are not considered
to represent the indisputable truth. Considerable improvements on the regression
method can be made (see Ch. 9), but the used approach is still useful for the scope
of this project.

There exist two approaches for using stepwise regression. One can start with a con-
stant (c0) and add terms one by one, or one can start with all terms and remove terms
one by one. The two approaches often give different results. Moreover, they both
result in a local optimum.

Terms are added or removed based on the p-value of the chi-squared test. This p-
value is estimated for each possible model with a term added or removed. In case of
the approach adding terms, the first term is added based on the p-value of the F-test.
The second approach, starting with all the terms, is found to be problematic because
of the number of allowed terms.

It is possible that terms depend on each other. In this case one term will only be
added/removed if the other is also added/removed. These terms are less likely to be
to added/removed from the model than terms that are not dependent on others. This
property, is the main source of the two approaches being different from each other
(Whittingham et al., 2006).

The used approach combines the two approaches. Firstly thirty terms are added. No
threshold value is used while doing so. The model with 30 terms is likely to contain
terms that do not significantly improve the model. In the second step, terms are there-
fore removed using the desired threshold. This results in a model containing between
0 and 30 terms. Depending on the threshold, all thirty terms are included. This would
make the approach questionable. Taking this issue into account, the threshold (maxi-
mum p-value) was set to 10−13 (dimensionless quantity). This is a relatively low value.
Terms giving only a small improvement to the linear model are therefore also included.

As with all regression techniques, over-fitting can occur. However, given the low
amount of terms with respect to the number of data points, over-fitting is not likely.
In addition, the threshold for adding or removing a term, contains a correction on
the degrees of freedom. The threshold therewith prevents over-fitting. The model is
therefore evaluated without cross-validation.

4.2 Clustering method

In this project, clustering is used to find discrete changes in fatigue loading. First,
some statements about clustering problems in general and this clustering problem in
specific are made. Afterwards, the choice for Gaussian Mixtures as clustering method
is explained. The clustering algorithm itself is discussed in the last subsection.

4.2.1 Properties of clustering problems

The choice of using this research method is based on two assumptions that are
strongly related to the research question. The conclusions stated in Chapter 8 show
whether these assumptions hold or if they need to be reconsidered.

Clustering algorithms define groups of data points that belong to each other (clus-
ters). Between the groups, discrete differences exist. They can therefore not be rep-
resented by a single (multivariate) probability distribution. The existence of multiple
probability distributions (PDFs) can lead to multiple peaks in the (multidimensional)
frequency distribution. In addition, there can a discontinuity in the relationship be-
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tween two variables or a discontinuity in the variance of a variable.

In this project, clustering is useful if it can be assumed that all inflow conditions to-
gether cannot be represented by a single probability distribution. In other words:

Assumption 1

There is a need of multiple probability distributions in order to represent
all inflow conditions.

The clustering problem in this project meets this requirement as follows: Variables
or relations between variables differ between wind directions (Section 3.2). Because
the undisturbed wind sectors are not located next to each other (disturbed wind sec-
tors are in between undisturbed sectors), these differences appear as a discontinu-
ity/discrete step in the data. Although the research problem as a whole is not strictly
discontinuous or discrete, the data cannot be represented by a single multivariate
distribution.

The effect of the inflow variables used in this report, can also be found by the linear
models discussed in Section 4.1. However, these variables are not the main reason
for using a clustering method. The main reason regards differences in variables that
are not directly measured. This includes, for example, the turbulence time and length
scales.

The turbulence length scale is known to be smaller in the wake of a turbine than
in undisturbed flow (Højstrup, 1999; Jimenez et al., 2008). Some research (e.g.
(Dimitrov et al., 2017)) suggest that these factors can have an influence on fatigue.
Other research (Rinker, 2016), however, point towards a negligible effect. The clus-
tering method does not specifically investigate these turbulence characteristics, but
searches for discrete differences in general.

Clusters are defined based on the location of the data points in the clustering space.
However, the first assumption does not state whether the PDFs can be defined by the
variables used to define the inflow conditions (see Section 3.1) or used in the cluster-
ing algorithm in general. In order for the research method to be useful, the following
assumption should also be valid:

Assumption 2

The relevant probability distributions exist in the space defined by the
variables used for the clustering algorithm.

For this assumption to be true, it is essential to select the proper variables used in
the clustering algorithm. However, because of the ”curse of high dimensionality”, the
performance of all clustering algorithms is limited for a high number of input variables.
This ”curse of high dimensionality” relates to the distances between data points. Beyer
et al. (1999) proved that the distances between data points all approach to the same
value when the dimensionality is increased. It is therefore not possible to cluster with
all variables defined in Section 3.1 at the same time. The used variable selection
method is stated in Section 4.6.

4.2.2 Choice of clustering method

The expected shape of clusters is crucial for selecting the best clustering method.
Different clustering methods either assume spherical clusters, ellipsoidal clusters or
arbitrarily shaped clusters.

In arbitrarily shaped clusters, the correlations between different variables can be non-
linear within a cluster. Discrete steps in the relationships between variables are al-
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lowed within clusters. The appropriate clustering methods are in this case based on
different densities in the data. In the case of this project, no clear transition in density
is expected. Variation in inflow variables can be relatively large within the desired
clusters compared to differences between clusters. I.e., the probability distributions
of the desired clusters are expected to largely overlap with each other. If this is indeed
the case, density based clustering algorithms will result in a single arbitrarily shaped
cluster (Wang and Huang, 2009). These methods are therefore not useful for this
project.

Because the desired clusters should allow for different correlations between vari-
ables, the clusters cannot solely be spherical. This rules out the use of k-means, one
of the best known clustering algorithms.

The relationships between variables in these sub-clusters are not expected to be
exactly linear. However, when considering them as arbitrary shaped clusters instead,
density based clustering algorithms are expected to solely find the single large cluster.
In short, the ellipsoidal cluster, is the most useful clustering shape. It will, however,
introduce restrictions to the relationships within clusters.

In this project, a Gaussian Mixture Model (GMM) using the Expectation-Maximisation
(EM) algorithm is used as clustering algorithm. Gaussian mixture models are based
on the assumption that the clusters can be represented by a multivariate normal dis-
tribution. They result in ellipsoidal shaped clusters.

4.2.3 GMM algorithm

The proximity measure/distance measure of a GMM is the Mahalanobis distance. In
a 1-D space, the Mahalanobis distance is equal to the distance to the cluster centroid
(mean µ) divided by the standard deviation of the considered cluster. In a multidimen-
sional space, the Mahalanobis distance is defined as in Eq. 4.2, using the inverse of
the covariance matrix Σ.

d(x, µ)2 = (x − µ)Σ−1(x − µ)T (4.2)

with d(x, µ) being the Mahalanobis distance from point x to cluster centroid µ.

The covariance matrix is directly related to the shape of the clusters. In case the
covariance matrix is a diagonal matrix, no correlations between variables exist. In this
case, the clusters can still be ellipsoidal. When all the diagonal elements (variances)
are also all equal to each other, the clusters are spherical. In this case, the size of the
spherical clusters can still differ from each other. The clusters are of equal size if the
all covariance matrices are the same.

Because correlations between variables within clusters are expected, the covari-
ance matrices are allowed to be full matrices. The size of the clusters can also differ
from each other.

The number of clusters is an input parameter for the clustering algorithm. At the
start of the algorithm, the initial centroid locations and covariance matrices are set
(initialisation). Afterwards, an iteration is used to optimise those centroid locations
and covariance matrices. The goal of the optimisation is to maximise the likelihood of
all points belonging to their cluster. The iteration consists of an Expectation step and
a Maximisation step (EM-algorithm). It is stopped using a threshold on the increase
in likelihood.

A schematic diagram of the GMM with the Expectation-Maximisation algorithm is
shown in Figure 10. The three main parts (initialisation, expectation and maximisa-
tion) are discussed below in more detail.
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Figure 10: GMM algorithm

A known property of GMM is that it might assign a cluster to the outliers (data points
with low probability belonging to any of the clusters) (Fraley and Raftery, 2002). In this
case, the ellipsoid of the cluster is large, as it includes outliers in the entire domain.

4.2.4 Initialisation

There are multiple algorithms that can be used for initialisation. In this case, the
initialisation of the k-means++ algorithm is used. This algorithm is often used for
initialising the centroids of a GMM (Blömer and Bujna, 2013).

K-means++ initialisation chooses the first cluster centroid randomly from all the
data points with uniform probability. The other centroids are defined one after the
other. Using the Mahalanobis distance, the probability of points being selected as the
next centroid (pj) is computed by Equation 4.3. Using this equation, new centroids
are chosen away from the already defined centroids.

pj = min∀µ(d2(xj , µ))∑N
i=1 min∀µ(d2(xi, µ))

(4.3)

The initial covariance matrices of all clusters are defined as the diagonal matrix with
the variances of the whole dataset on the diagonal.

The clustering result depends on the initial centroid locations. It regards a local opti-
mum. Because the initial centroids are chosen at random, the result will differ when
the algorithm is repeated. Because of this sensitivity to the initial centroid locations,
it is common to generate multiple replicates (Blömer and Bujna, 2013). The replicate
giving the highest likelihood is taken as final result. This replicate however, is still
not guaranteed to be the global optimum because it depends on the initial centroid
locations set in the different replicates.

In this project, this sensitivity can be problematic. The sensitivity on the initial
centroids is therefore investigated in more detail. A short analysis and a method to
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deal with the problems are discussed in Subection 4.3.1. In the same subsection, the
used number of replicates is discussed.

4.2.5 Expectation

In the expectation step of GMM, the probabilities of points belonging to the different
clusters are computed. This is done by first multiplying the probability of the multi-
variate normal distribution at the location of the data point with the probability of a
random point belonging to that cluster (Eq. 4.4). I.e., the prior is weighted with the
cluster probability. This intermediate result is the likelihood (L) or prior probability.
The sum of all the likelihoods or log-likelihoods (Eq. 4.5) is maximised in GMM by the
iteration.

p(xi, c) = P (c)√
(2π)D det(Σc)

exp(−1
2

(xi − µc)Σ−1
c (xi − µc)T ) (4.4)

log L(xi, c) = ln P (c) − 1
2
(
D ln(2π) + ln det(Σc) + (xi − µc)Σ−1

c (xi − µc)T
)

(4.5)

where P (c) is the probability of a random point belonging to cluster c. In this case
Σc refers to the covariance matrix of that considered cluster computed in the max-
imisation step. In the first iteration, P (c) is equal for all clusters (P (c) = 1/k) and
the covariance matrix is the diagonal covariance matrix used during initialisation (see
previous section). D is the dimensionality of the clustering problem.

After computing the prior probabilities, the probabilities are standardised such that the
probability of each point belonging to the individual clusters sums up to 1 (

∑k
c=1 p(xi, c) =

1). The result is called the posterior probabilities.
The probability of a random point belonging to cluster c, P (c), can be computed

by adding the individual posterior probabilities of points belonging to this cluster.

During the expectation step, an estimate of the inverse covariancematrix is computed.
However, in order to do so, the covariance matrix should not be ill-conditioned. An
ill-conditioned covariance matrix would make a proper estimation impossible and will
therefore break the algorithm.

Amongst other factors, the probability of ending up with an ill-conditioned covari-
ance matrix depends on the initial centroid locations and on the clustering space
(Fraley and Raftery, 1998). Using multiple replicates could solve the first problem.
Increasing the number of replicates, it is more likely that at least a few replicates can
finish the iteration.

Regarding the clustering space, it is useful to look at the combinations of variables
that are used. Variables with too high correlation (within a cluster) will result in an ill-
conditioned covariance matrix. They are therefore avoided (see Chapter 3).

4.2.6 Maximisation

In the maximisation step, the new cluster centroids and covariance matrices are com-
puted. Both the centroids and covariance matrices are computed using the poste-
rior probabilities as weights. The centroid location of a cluster is the weighted mean
in each dimension. The covariance matrix consist of the weighted variances and
weighted covariances.

4.3 Analysis of a single clustering result

Not all clustering results are analysed in detail. The first subsection on sensitivity,
however, does relate to all clustering results.

The clustering results of the best combinations of variables (Section 4.6) are anal-
ysed in more detail. Firstly, it is checked which wind sectors contribute most to which



TNO report | TNO 2018 S11661 42 / 115

clusters. Afterwards, the multivariate distributions defining each cluster are investi-
gated. This analysis includes the fatigue loading.

Both the PDFs in the clustering space and the dependence on wind sectors solely
dependent on the inflow variables. They are therefore not discussed in the chapter
regarding the atypical fatigue loading but in the chapter on inflow conditions (Ch. 5).

4.3.1 Sensitivity

The used clustering method finds a local optimum. Which local optimum is found de-
pends on the initial location of the centroids. It is therefore necessary to investigate
their sensitivity.

There are four relevant factors that affect the sensitivity of the clustering results:

• clustering space

• number of clusters

• convergence tolerance

• number of replicates

Firstly, the clustering space affects the number of local optimums. A clustering space
with clusters that largely overlap each other will be more sensitive to the initial condi-
tions than a clustering space with clusters that do not overlap each other. Secondly,
the sensitivity depends on the number of clusters that are used and the appropriate
number of clusters. Both the clustering space and the number of clusters are opti-
mised in Subsections 4.6 and 4.5. Although these factors do affect the sensitivity,
they are less relevant for tackling the sensitivity problem.

Thirdly, the sensitivity of the initialisation depend on the convergence tolerance.
I.e., the threshold on the increase in total likelihood. However, this sensitivity can be
assumed negligible if the tolerance is set small enough.

Lastly, the sensitivity of the results depend on the number of replicates. In order to
explain, one can make a difference between the sensitivity of the initialisation algo-
rithm (results based on 1 replicate) and the sensitivity of the actual results (based on
multiple replicates). The latter is the most relevant one in this study. The sensitivity
of the initialisation algorithm will mostly be higher than the sensitivity of the actual
results. With more replicates, it is more likely to find the global optimum.

However, when the probability of finding the global optimum is low but the proba-
bility of finding e.g. the second global optimum is high, the situation is different. This
can happen with relatively small clusters near the borders of the clustering space. In
this case, the probability of a point in this cluster being selected as initial position of
a centroid is small. Also the probability of a centroid ending up in this cluster after
convergence is small. As a result, it becomes unlikely that the global optimum will
be found. A clustering with less replicates will often find the second global optimum
while with more replicates, the differences between the results will increase as the
probabilities of finding the global or the second global optimum are more in balance.

In order to check whether sensitivity could be an issue, the GMM algorithm is used
multiple times with the same inputs and number of replicates, but with different initial
centroid locations in these replicates. For multiple combinations of variables and dif-
ferent numbers of clusters, it is found that sensitivity is indeed an issue.

In order to limit the effects of this sensitivity, 10 results each based on 10 replicates are
generated. The results are compared using the average F1 score stated in Section
4.4. The result with the highest similarity to the other results (average of average F1
scores) is used for further analysis. This result can be considered similar to a median
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result. It is the result, which is closest related to the other results. Other results could
have a higher likelihood. However, eliminating the sensitivity of the initial centroid
locations is considered more important when comparing results based on different
inputs (different combination of variables or different number of clusters).

4.3.2 Wind sectors

In order to visualise what themain wind directions are in the different clusters, weighted
and normalised bar plots are made. Each bar represents a wind sector and each
group of bars a cluster. The counts in the bar plots are based on a soft clustering
assignment referring to the ”weighted” part.

The overall wind rose (including all clusters) is not of direct interest when analysing
the results. The bar plots of the individual clusters are therefore normalised with the
wind rose. In this way, only the relative portion of points within a cluster are visualised
in the bar plots.

In addition to the bar plot, a parameter called the sector dependence (SD) is defined.
It is a measure of how many data points in the clusters are part of a single wind
sector. Soft clustering assignment is used (Eq. 4.6). The maximum value of the
sector dependence is 1. In this case each cluster only contains data points from a
single wind sector. The minimum value is equal to 1/Ns with Ns being the number of
wind sectors. In this report, the minimum value is always 1/3.

SD = 1
N

k∑
c=1

max

(
s∑

i∈s

wi,c

)
(4.6)

with wi,c being the soft clustering assignment of data point i and cluster c. The
maximisation considers the wind sector s. I.e., the wind sector with the maximum
value is used.

4.3.3 Probability distributions

Firstly, the PDFs of the inflow variables used in the clustering space are investigated
on their Gaussianity. In case of more than two dimensions, the probability distribu-
tions cannot be visualised. Multivariate variants of the kurtosis and the skewness are
therefore not used. However, both the univariate kurtosis and univariate skewness
are also relevant.

Recall that the data points can be assigned to a cluster using hard and soft assignment
(Section 4.2). Considering Gaussianity, it is not useful to look at a hard assignment.
If two clusters are close enough to each other, the tails on sides between the clusters
will be cut off. As a result, both clusters would have a high skewness. Instead, a soft
assignment is used. Points being only partly assigned to a cluster, weighted versions
of the kurtosis and skewness are needed.

The weighted skewness or weighted Fisher-Pearson coefficient is stated in Eq.
4.7 and the weighted excess kurtosis in Eq. 4.8. For clarity reasons, nw is defined as
follows: nw =

∑N
i=1 wi. With wi being the soft clustering assignment of data point i

to the considered cluster.

skewness =
∑N

i=1 wi(xi − X)3

nwσ3 (4.7)

kurtosis =
∑N

i=1 wi(xi − X)4

nwσ4 − 3 (4.8)

Both the skewness and excess kurtosis regard sampled forms. These forms are bi-
ased estimators of the true skewness and excess kurtosis. That is, they are depen-
dent on the number of data points. Several corrections exist to account for this bias.
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In this case, the correction of Dubnov et al. (1996) is used for the weighted skewness
and the correction of Moors (1988) is used for the weighted kurtosis. Both corrections
are also approved by Zar et al. (1999) and Sheskin (2003). The latter, describing the
kurtosis form as the ”most precise method of estimating kurtosis” (Sheskin, 2003).

skewnesscorr =
√

nw(nw − 1)
nw − 2

skewness (4.9)

kurtosiscorr = nw − 1
(nw − 2)(nw − 3)

(nw(nw + 1)(kurtosis + 3) − 3(nw − 1)) (4.10)

The probability distributions of the clusters are investigated using histograms. On top
of the histograms, a fit of a normal distribution is shown, based on the same data.
Moreover, arrows are used to visualise the skewness and kurtosis. An arrow to the
left represents a positive skewness and to the right a negative skewness. Two ar-
rows pointing away from each other represents a negative kurtosis (heavy tails) and
arrows pointing towards each other a positive kurtosis (light tails). It is chosen to only
show histograms of the distributions having an absolute value of either skewness or
kurtosis larger than 0.25.

In addition to the variables used for clustering, also the probability distributions of the
load residuals are relevant. They are shown for each cluster in the chapter concerning
the results with fatigue loading (Ch. 6). Because the clusters could represent different
types of probability distributions (e.g. Gaussian or Weibull distribution), it is decided
not to use a fit to visualise the distributions. Instead, the distributions are based on
a histogram. Lines are drawn based on the height of the histogram bars (y-axis) and
the middle of the bins (x-axis). The counts used for the histogram are based on a
soft-clustering assignment. The different clusters are plotted together in the same
figure. To improve the interpretation, the distributions are normalised with the number
of data points in the different clusters.

4.4 Comparison of two clustering results

This section regards a measure of how similar two clustering results are to each other.
This measure is used in both the previous and next section of this chapter. Two clus-
tering results can be considered similar/comparable if data points that belong to the
same cluster in the first result, also belong to the same cluster in the second result.

For this purpose, the F1 score is used (Eq. 4.11). There are two properties that make
especially the F1 score useful. Firstly, with normalising by the cluster size, each clus-
ter is equally important. Secondly, the measure is symmetric in the sense that the
similarity of A and B is the same as the similarity of B and A.

F1 = 2 precision ∗ recall
precision + recall

= 2 ∗ true positives
2 ∗ true positives + false positives + false negatives

= 2
∑N

i∈A∩B∑N
i∈A +

∑N
i∈B

(4.11)

with A and B being clusters from different clustering results and N again the num-
ber of data points.
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Before one is able to compare the clusters, one should assign each cluster of result
A with a cluster of result B. When the comparison of two clustering results is part of
a comparison of more than two clustering results, this can be done in two ways: One
can compare two clustering results at the time or one can compare all the clustering
results at the same time. If the latter option is used the following statement holds:

if cluster ”a” from result A is coupled with cluster ”b” from result B
and cluster ”a” from result A is coupled with cluster ”c” from result C,
than cluster ”b” from result B is also coupled with cluster ”c” from result C

This statement does not necessarily hold when cluster results are compared one at
the time.

Because of the way the similarity between results is used and because of the na-
ture of the clustering problem, the statement should not always hold. A cluster not
found in result A should not affect how similar results B and C are. The cluster results
will therefore be compared one to one when coupling the clusters of multiple results.

For each comparison of different results, k! options exist for coupling the clusters
(with k being the number of clusters). Selection of the best option will be based
on maximising the average F1 score of the different clusters (Eq. 4.12). Using the
average F1 score of all clusters and not the F1 score based on all results (F1 =∑k

q=1
∑N

i∈Aq∩Bq
/N ), the clusters are equally important. They are not weighted based

on the number of points in the clusters.

max

{
1
k

k∑
c=1

F1(Ac, Bc)

}
= max

{
2
k

k∑
c=1

∑N
i∈Ac∩Bc∑N

i∈Ac
+
∑N

i∈Bc

}
(4.12)

When comparing two clustering results, four cases can be considered. These cases
are important for interpreting the average of the average F1 score used in Section 4.6.
The cases relate to what information about the true/appropriate clusters is included in
the clustering and how this information relates to the information in the second clus-
tering result. The four cases that can be considered are:

1. both results contain no information

2. both results contain the same information

3. the results contain different information

4. one of the two results contains information

In case of the sensitivity analysis, only the first and second case are relevant. When
results based on a different combination of variables are compared, all four cases are
relevant. In practice, all pairs of results are a combination of the four cases. However,
it makes sense to discuss them separately.

It is clear that results with the same information will have a higher average F1 score
than results with different information. In addition, the F1 score will also be higher
than when only one of the results contains information on the true clusters or when
both results contain no information.

However, it is not clear whether the first case will result in a higher average F1
score than the third or fourth case. This is most relevant, when considering that the
actual situation is a combination of the four cases. It is worth reasoning what happens
to the average F1 score when part of the information is the same and the other part
relates to case 1,3 or 4. This is the case when for example three variables are the
same, but the fourth variable is different.
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Different or more information in the fourth variable would have a real effect on how
the clusters are defined. It will therefore lower the average F1 score. This is not the
case when the second part (fourth variables) contains no information in both results.
In this case, both the fourth variables will only increase the scatter in the clustering.
This will also lower the F1 scores. However, it will give a higher average F1 score
than when the fourth variable is really different.

4.5 Optimal number of clusters

As previously stated, the number of clusters is an input for the clustering algorithm. In
order to select the most optimal number of clusters, the results should be compared
to each other. When clusters are clearly separated, evaluation indices exist to select
the best clustering result. Most indices, however, have difficulty selecting the best
result in case results with a different amount of clusters are compared. An example
of such a measure is the average Silhouette value (Wang et al., 2017). Another in-
dex, the SDbw index (Halkidi and Vazirgiannis, 2001), was defined to solve this issue.
However, it was found that when clusters are not clearly enough separated, also this
index is not useful.

Alternatively, weighted digraphs are made in order to visualise differences in cluster
results with a different number of clusters. An example of a weighted digraph is shown
in Figure 11. The weighted digraph is based on a hard clustering assignment.

Figure 11: Weighted digraph (example)

The weighted digraph has the following four properties:

• nodes above each other correspond to different clusters from the same cluster-
ing result

• the size of the nodes (area) are related to the number of points in the different
clusters

• the width of the lines are related to the number of points belonging to both the
left and the right node, normalised with the number of points in the left node

• the colours of the lines connecting the nodes are related to the number of points
belonging to both the left and the right node, normalised with the number of
points in the right node

• the numbers in red are the cluster numbers of the used clustering result

In order to ease the interpretation of the digraph, the nodes are arranged based on
the width of the lines. Clusters that are strongly connected, lie closer to each other
than those that are not. It is not obvious from each digraph which number of clusters
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is most appropriate. They can however be useful to relate clusters to each other and
therewith derive the most likely amount of truly different inflow conditions.

It is decided to test 2, 3, 4 and 5 numbers of clusters. A higher amount of clusters
increase the likelihood for an ill-conditioned covariance matrix. Moreover, it makes it
difficult to interpret the results.

In addition to the digraph, the Gaussianity of the PDFs of the clusters (see Subsection
4.3.1) can give information on the appropriate number of clusters. However, also this
will not give a solid answer to the problem. It is therewith decided to only use the
results with four clusters. The number of clusters are therefore not necessarily optimal
for the given clustering space.

4.6 Optimal combination of variables

Because of high dimensionality problems it is not possible to cluster with all available
variables (see Section 4.2). A combination of inflow variables has to be selected that
contributes most to answering the research question. This is discussed first. In case
of this report, the optimal combination of variables contains themost information about
the bending moment. It can be selected based on the relative estimation error of the
fatigue loading. In order to analyse the variable selection in more detail, evaluation
tables are made that include the decrease in estimation error, the sector dependence
(SD) and a measure on variable dissimilarity.

4.6.1 Relevant clusters

Before defining a utility for the optimal combination of variables, one should recall the
second assumption made for using clustering as a research method:

Assumption 2

The relevant probability distributions exist in the space defined by the
variables used for the clustering algorithm.

Both assumptions are essential to interpret the clustering results. However, this sec-
ond assumption could give a major limitation to the results. Considering that the
research focus is on atypical fatigue loading, mainly probability distributions with dif-
ferent fatigue are important. Next to the use of inflow variables, the load residuals
themselves can be used in the clustering space. This can result in different, but also
relevant clusters. Two expectations are made on this regard:

1. Most clusters can be solely defined by inflow variables.

2. Not all clusters can be solely defined by inflow variables. I.e., they need the
load residuals.

Both types of clusters are equally important to answer the research question. How-
ever, depending on the input space, the first or second type of clusters, will be found
more easily. Especially, if the difference in residuals is small compared to differences
in inflow parameters, it is difficult to find the second type.

More variables defining inflow conditions will make sure more clusters can be
found with solely these variables. I.e., less clusters need the load residuals. High
dimensionality, however, will give problems for too many variables.

In this case the load residuals become less important for assigning points to clus-
ters. As a result, it becomes less likely that the clustering algorithm will find clusters
not already determined by the variables defining the inflow conditions (the clusters of
expectation 2).

It is decided to focus on the first type of clusters. Only by using solely inflow
variables, a proper estimation error can be determined.
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4.6.2 Dimensionality

As stated, not all variables can be used at the same time. The high dimensionality
problem depends on the clustering problem. It is therefore not clear what the optimal
dimensionality is. It can differ between bending moments. It is decided to cluster with
2, 3 and 4 inflow variables. In addition, all combination of variables are also clustered
together with the load residual.

The utilities discussed below are independent on the number of variables. Combina-
tions of 2 variables can therefore be compared with combinations of 3 or 4 variables.

In case three variables are better than two variables, one can check which of the
three variables contribute the most to the high utility. The three best variables are also
clustered in three pairs of two variables. Using the utilities of below, one can compare
which combination gives the best result and therefore which variable of the three is
least important.

4.6.3 Utilities

Two utilities are considered to define how good a combination of inflow variables is.
Firstly, the clusters resulting from parameters defining inflow conditions should have
different load residuals. If there is a large difference in fatigue between clusters of
one result, this means that the variables contain a lot of information about the bend-
ing moment. In this case, the variance of the load residual within the clusters is small
with respect to the overall variance of the load residual. The utility DRE (Decrease
in Relative Error) is defined as in Equation 4.13. It is equal to the decrease in the
relative estimation error which is minimised in this project.

DRE = 1 −

√
1

N−1
∑k

c=1
∑nc

i=1(LRi,c − µc)2

σ(LR)
(4.13)

with LR being the load residuals, k the number of clusters and N the total number
of data points. LRi, c are the load residuals of data points i in cluster c (hard clustering
assignment) and µc is the mean load residual in the considered cluster. nc represents
the number of data points in cluster c.

This parameter has a range between 0 and 1. In case all points in the clusters have
equal load residual (zero variance), the value of the parameter is 1 (provided that the
total variance of the load residual is nonzero). In case no differences exist between
the clusters, the variance within the clusters are equal to the overall variance. This
gives a value of 0. In practice, the value is always larger than 0 because the size of the
dataset is limited. Uncertainty in the mean load residual within the clusters depend
on the number of data points in the cluster. The expected minimum value is therefore
dependent on the ratio of the total number of data points and the number of clusters
(N/k).

Using this parameter, the importance of the clusters is equal to their size. I.e., the
variance of clusters with a large number of data points are more important than the
variance of small clusters.

Secondly, cluster results are compared with cluster results based on the same vari-
ables and the load residual. In case the load residual does not add any information,
the results are similar. This means that the information of the load residual is already
included in the other variables. In order to check how similar the two results are, the
method of Section 4.4 is used. Also the average F1 score ranges from 0 to 1, with 1
being the most optimal case.

The four cases of comparing two clustering results (see Section 4.4) make this
utility less useful. Comparing a large number of cluster results based on solely this
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utility, would make the interpretation difficult. Moreover, this utility does not directly
minimise the relative estimation error. It is therefore not used in this report.

4.6.4 Evaluation tables

In Chapter 6, the comparison between different combinations of variables is shown
with ”evaluation tables”. An example is shown in Figure 4. In the table, the rows
represent different combinations of variables. The used variables are determined
by the black circle. To the right, the value of three parameters are shown for each
combination in percentages.

Table 4: Evaluation table with three variables

Tables are made with the best 3 combinations of 2 variables and 3 variables. More-
over, tables are made with the best combination with 3 variables comparing the 3
combinations based on 2 of the 3 best variables. A fourth type of table shows the
best combination of variables in comparison with clustering results adding a fourth
variable. Depending on the most appropriate number of variables, different tables
are shown in this report.

In addition to the used utility DRE, two other utilities are shown in the tables. These
regard the sector dependence of the clusters (SD) and the similarity between the used
variables (V D).

The third measure represents the dissimilarity between the used variables (V D =
Variable Dissimilarity). It is computed by comparing results of different combinations
of variables. The minimum and maximum values of V D are 0 and 1. A high variable
dissimilarity means that the information included in the variables are different from
each other.

All different combinations of variables are compared to each other one-to-one
when a variable is exchanged for another variable (e.g. two variables in common
and 1 variable different). This can be done multiple times for each combination of
two exchanged variables. The wind shear exponent and the wind veer can for exam-
ple be exchanged with clustering results having different combinations of variables in
common.

The third measure considers an average of the average F1 scores of all these com-
binations exchanging two variables. In case more than two variables are used for the
considered clustering result, all combinations of two variables are tested. Afterwards,
the average of the average of the average F1 scores is computed (Eq. 4.14).

V D = 1 − 1
Ncomb

Ncomb∑
k=1

1
Nexc,k

Nexc,k∑
j=1

1
N

N∑
i=1

F1(xi) (4.14)

with Ncomb the number of combinations with two variables (k) that can be made
with the variables used. Nexc,k is the number of pairs of clustering results that ex-
change the variable combination k. N is again the number of data points (xi) in the
dataset.
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Recap

This concludes the part on methodology. Firstly, the origin of the used data was dis-
cussed. The site layout resulted in three undisturbed and one disturbed wind sector.
Afterwards, variables were defined that can be used to represent inflow conditions.
In addition, combined mean wind speed and turbulence regression models defined
the expected fatigue loading. The load residuals from these models were used as the
quantitative measure for atypical fatigue.

In the last chapter on methodology, two research methods were discussed that
can relate inflow variables to the load residuals. Stepwise regression was selected
as research method for continuous correlations and Gaussian mixtures as the clus-
tering method for discrete correlations.

The next part of the report regards the results and the discussion of the results. Firstly,
the four wind sectors defined in Chapter 2 are compared in terms of the inflow vari-
ables. The relevant methodology are the regression models discussed in Section 3.3.
In the same chapter, the part of the clustering results related to inflow conditions are
shown and discussed.

Chapter 6 shows all the results related to fatigue. It includes regression models for
each undisturbed wind sector and each bending moment, the results of the stepwise
regression and the part of the clustering results related to fatigue.

The two researchmethods (stepwise regression andGaussianmixtures) discussed
in the fourth chapter both result in a selection of inflow variables for each bending mo-
ment. These variables will be used to plot the extreme load residuals and therewith
get to the core of this project. Moreover, the estimation error resulting from the two
methods can point towards either a largely continuous problem or a largely discrete
problem.

At the end of the second part, results are compared with each other and the most
important conclusions are stated. The last chapter of the report regards recommen-
dations for future work.
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Part II Results and discussion
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5 Inflow conditions
This chapter regards solely the inflow conditions. Before analysing fatigue loading,
a proper analysis on the inflow conditions is required. This is done by analysing the
relationships between inflow variables in relation to the different wind sectors (Section
5.1). The second section states the clustering results of the different combinations of
variables used for each bending moment. Also this section solely regards inflow vari-
ables. The atypical fatigue (load residuals) corresponding to these clustering results
are not discussed in this chapter, but in Chapter 6. The third and last section of this
chapter compares the inflow conditions of the disturbed wind sector with those of the
undisturbed wind sectors.

In figure captions of figures that refer to a specific bending moment, abbreviations of
the bending moments are used. The first part of the abbreviations refer to the location
on the turbine at which the bending moment is measured. The second part refers to
the bending moment itself. The out-of-plane bending moment measured at the blade
root is, for example, referred to as ”BladeOut”. All abbreviations are stated in the list
of symbols and abbreviations. They are used in this chapter and in Chapter 6.

5.1 Differences between wind sectors

The dependencies of inflow variables on wind sectors are explored using regression.
The variables can be directly or indirectly related to the wind direction. An example of
a direct relation can be terrain effects like a row of trees in front of the turbine/metmast.
Indirect dependencies can be dependencies on a certain wind condition (e.g. a low-
level jet) which occurs more frequently in one of the wind sectors. Because the terrain
in the three undisturbed wind sectors are different from each other (see Ch. 2), at least
direct dependencies are expected.

Regression models are made for different inflow variables based on other inflow vari-
ables. Separate probability distributions (PDFs) of the residuals are made for each of
the four used wind sectors. This gives an idea how much the inflow variables differ
per sector. The y-axis of the figures with the PDFs, gives the probability given that a
data point comes from a certain sector, p(s).

Following the approach of the fatigue load regression models, the mean wind
speed and turbulence intensity are used as independent variables. However, first
the mean wind speed and the turbulence intensity are investigated themselves.

5.1.1 Mean wind speed and turbulence intensity

The probability distributions of the mean wind speed are shown in Figure 12. High
wind speeds mainly come from the Southwestern wind sector (UMUT-SW). Because
the PDFs of the different sectors, mainly differ for wind speeds larger than 11 m/s,
higher wind speeds are not used for analysis (see Section 3.2).
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Figure 12: Probability distributions of mean wind speed

The PDFs of the turbulence intensity are shown in Figure 13. The disturbed sector
gives the highest TI and the Southeastern sector gives the lowest TI.

Figure 13: Probability distributions of turbulence intensity

It is known that for low wind speeds, TI decreases with U and for higher wind speeds,
TI is about constant with U (Bot, 2014). When looking for differences in turbulence
between wind sectors it makes sense to estimate the turbulence intensity given the
mean wind speed. This is done using a regression model.

Doing so it is again important to keep the contribution of data points coming from
each sector constant with mean wind speed. If this is not the case, the expected
turbulence intensity will be biased towards a wind sector occurring relatively frequently
in that wind speed range. More details on this problem is previously stated in Section
3.2. The problem is solved in the same way.

The PDFs of the residuals of the turbulence intensity fit are shown in Figure 14.
In the label of the x-axis, E(U) represents the expected turbulence intensity based on
the mean wind speed.
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Figure 14: Probability distributions of turbulence intensity

While the distributions of the Southwestern, Northern (UMUT-N) and Southern (DMDT-
S) sector are similar to each other, the distribution of the Southeastern sector (UMUT-
SE) is quite different. Directed from the nearby lake, the sector generally gives a lower
turbulence intensity for a given mean wind speed.

The inflow being disturbed by the turbines in the South, the Southern sector gives
a higher turbulence intensity than expected compared to UMUT-SE and UMUT-N.
However, compared to the differences in PDF with the Southeastern sector, the in-
creased turbulence intensity is limited. Before drawing conclusions, it should be noted
that the wake situations differ between data points in the disturbed wind sector. The
shown PDF can be seen as a combination of PDFs of these different wake situations.
It gives an overall view of the situation in the sector. In case only full wake situations
are used, the PDF is expected to shift to the right having a higher average turbulence
intensity.

5.1.2 Regression based on U and TI

As stated, the regression models estimating the other variables are based on the
mean wind speed and turbulence intensity. It regards models for the two wind shear
exponents, the wind shear change, the two wind veer variables, the wind direction
change intensity and the air density.

In this case, the multivariate probability distribution of mean wind speed and tur-
bulence should be the same for all wind sectors. If this is not the case, the resulting
model will again be biased by the different wind sectors.

In this project, the use of the same method as done for the load residuals is
favoured over the accuracy. Equal multivariate probability distributions are therefore
approximated using the same approach as stated in Section 3.2. I.e., the uni-variate
PDFs of the mean wind speed and the turbulence intensity are considered instead of
the multivariate PDF.

5.1.3 Wind shear exponent

Figures 15 and 16 show the PDFs of the two wind shear exponents. In the figures,
E(U,TI) is the expected value of the considered variable based on the mean wind
speed and the turbulence intensity.
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Figure 15: Probability distributions of wind shear exponent, given U
and TI

Figure 16: Probability distributions of second wind shear exponent,
given U and TI

The two wind shear exponents give different results. However, both figures show that
given U and TI, the wind shear in the Southeastern sector (coming from the lake) is
lower than expected. In addition, the disturbed Southern sector gives higher wind
shear. Bending moments that are affected by wind shear would therefore also differ
between wind sectors.

The found differences in wind shear with a given turbulence intensity are not exten-
sively discussed in existing literature. The sources of these differences are therefore
investigated further.

In the wake of a wind turbine, the mean wind speed is lower than the free stream
wind speed (i.e. the wind speed above the wake). The wind shear can therefore
be relatively high. In addition, the contact with the upstream turbine increases the
amount of turbulence. As a result, the wind shear in the Southern sector is higher for
a given turbulence intensity.

The relatively low wind shear in the Southeastern wind sector can be caused by
inflow conditions such as low-level jets. Although low-level jets generally occur above
height of the metmast, they can influence the wind profile and turbulence intensity
below. Gutierrez et al. (2016), for example, found a relatively small scale turbulence
during a low-level jet.
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5.1.4 Wind shear change

Only small differences in the PDFs of ∆α are found between the undisturbed wind
sectors (Fig. 17). Most notable is the large spread in the PDF of the Southern sec-
tor. This large spread could confirm that large differences exist within this sector.
Moreover, differences within this wind sector affect the relationship between the wind
profile and the turbulence intensity.

Figure 17: Probability distributions of wind shear change, given U
and TI

5.1.5 Wind veer

The PDFs of the first wind veer variable (Fig. 18) show a difference between the wind
sectors with an inflow from land with the wind sector with inflow from the lake (lower
wind veer). Compared to the spread within the wind sectors, however, the difference
is small.

Figure 18: Probability distributions of wind veer, given U and TI

The PDFs of the second wind veer variable shows different results (Fig. 19). In this
case, the Northern sector gives higher wind veer than the Southwestern sector. The
PDFs of the disturbed wind sector is in approximation equal to that of the Southeastern
sector. Both give higher wind veer than the other two sectors.
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Figure 19: Probability distributions of the second wind veer, given
U and TI

The differences in PDFs of the wind veer point towards differences in wind veer pro-
files. Because such strong differences between the two wind veer variables, are not
expected. They should be investigated in more detail (see Ch. 9). The differences in
wind veer do not seem to be related to the differences in wind shear. This suggests
that clustering with one variable or the other would give different results. I.e., inflow
conditions cannot be defined by just wind shear or just wind veer.

In case the Southeastern sector contains a significant amount of low-level jets,
the wind veer results support the findings of Gutierrez et al. (2016). Gutierrez et al.
(2016) found a wind veer in opposite direction below a low-level jet nose. Also in this
project, differences with the other undisturbed wind sectors are found. Moreover, the
existence of data points with low wind shear and high wind veer point towards the
existence of low-level jets (see Section 6.1). However, with the current test setup,
low-level jets cannot be recognised as such.

5.1.6 Wind direction change intensity

The PDFs of the wind direction change intensity do not result in large differences
between wind sectors (Fig. 20). In case differences exist between sectors in terms
of bending moments (see Ch. 6), these differences cannot be explained by wdci.
This also holds for the other way around. Correlation with wdci and the load residual
cannot be related to the wind sectors.

Figure 20: Probability distributions of wind direction change
intensity, given U and TI

5.1.7 Air density

The use of a regression model estimating air density with U and TI could seem inap-
propriate. However, consistency in the research methods (compare with other inflow
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variables and fatigue loading) is considered more important. Moreover, the differ-
ences between the PDFs are more clear and therewith worth discussing.

Figure 21 shows the PDFs of the air density. The PDFs of the undisturbed South-
western and disturbed Southern sector are comparable. Moreover, the Northern sec-
tor gives a little higher air density. This is expected because the temperature is gen-
erally lower with the wind coming from the direction of the North Pole.

The PDF of the Southeastern sector has two maximums. This points towards a sum-
mation of two different PDFs with different mean and variance. I.e., the Southeastern
wind sector contains at least two different types of inflow conditions. Moreover, in-
flow conditions with a higher air density occur more often than those with a lower air
density.

The air density from this sector is investigated in more detail. It is found that the
two maximums are caused by a seasonal variation. The variation is strongest in this
wind sector because of the continental inflow. The lake in front of the wind sector
does not have such a strong affect on the temperature and therewith the air density.

Figure 21: Probability distributions of wind direction change
intensity, given U and TI

Because the differences in air density are relatively small compared to the average air
density, no major differences in fatigue loads are expected. However, the differences
can help to cluster the inflow conditions and therewith indirectly contribute to a better
load expectation (see Section 6.2 and 6.7).

5.2 Clustering different combinations of inflow variables

In this section, the clustering of different combinations of variables is discussed. Each
subsection indirectly regards a different bending moment. The selection of the vari-
ables used for the clustering results are based on the variation of the different load
residuals. However, the clustering results themselves are not based on fatigue data.

The in-plane bending moment and the edgewise bending moment are discussed
in the same subsection. The same variables are used and the results are based on
the same dataset.

The variable combination of the fore-aft bending moment measured at the tower
bottom is not discussed in this chapter. The reason not to discuss this bending mo-
ment is the low decrease in estimation error (see 6.4).

The results of different combinations of variables are compared in Chapter 7. De-
pending on the used variables, a different number of clusters seems appropriate.
Moreover, the different combinations result in different relations between clusters and
wind sectors.

The last section of this chapter discusses the clustering results based on all wind
sectors (including the disturbed Southern sector).
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In each subsection the Gaussianity of the clusters is discussed. Only variables of
clusters having a skewness or kurtosis with an absolute value higher than 0.25 are
shown. Moreover, they all have at least 200 data points (soft clustering assignment)
such that the worst estimates of skewness and kurtosis are not included. A more
detailed explanation on the shown figures with histograms is stated in Subsection
4.3.3 in Chapter 4.

Clusters based on the mean wind speed regularly have a rather low kurtosis. This
is expected because the cut-offs at 4 and 11 m/s are not natural boundaries. They are
therefore not shown in this report. The kurtosis of the mean wind speed is generally
higher if the cluster does not regard the whole wind speed range.

The amount of data points in each cluster of each bending moment is stated in Table
5. The cluster numbers are related to the size of the cluster such that cluster 1 is
largest and cluster 4 is smallest. The cluster names of different bending moments
are not related to each other. I.e., cluster 1 of the out-of-plane bending moment is not
necessarily related to cluster 1 of the flapwise bending moment.

Table 5: Number of data points in clusters of undisturbed wind sectors

bending moment cluster 1 cluster 2 cluster 3 cluster 4 total

out-of-plane 612 587 316 169 1685
flapwise 909 285 282 210 1685

in-plane 536 469 388 291 1685
edgewise 534 464 392 296 1685

side-to-side 730 466 334 263 1793

yaw 255 141 51 21 467
tilt 204 185 73 5 467

5.2.1 Out-of-plane bending moment

The best combinations of variables for the out-of-plane bending moment is found to
be the wind shear exponent (α2) the wind shear change (∆α) and the wind direction
change intensity (wdci). The two largest clusters are about equal in size (see Table 5).

The wind shear exponent in cluster 3 has a rather low kurtosis of -0.33 (Fig. 22). The
probability distribution seems to have two peaks resulting in a heavily tailed distribu-
tion. These peaks could correspond to stable atmospheric conditions (right peak) and
unstable atmospheric conditions (left peak). Details on how this and similar figures
are obtained can be found in Subsection 4.3.3 in Chapter 4.

Finding two peaks in a PDF, it seems better to add a fifth cluster to the algorithm.
However, looking at the digraph (Fig. 23), the points in cluster 3 are moved to three
separate clusters if 5 instead of 4 clusters are used. I.e., it will not result in a clean
separation of the two peaks. Moreover, the connections between the clusters of the
two clustering results are weak.

Following the digraph, it makes more sense to use three clusters. Going from
three to four clusters, parts of two inflow conditions are used to make the new cluster
(cluster 3). The two inflow conditions found in cluster 3 also have a separate cluster
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for themselves (cluster 2 and 4). A part of cluster 3 is connected to cluster 2 and a
part to cluster 4.

The two peaks do support the first assumption in Section 4.2.1. Multiple probability
distributions are required to represent the inflow conditions.

Figure 22: Gaussianity cluster 3 of Blade-
Out

Figure 23: Digraph of BladeOut

The bar chart containing the contribution of different wind sectors to the four clusters
is shown in Figure 24. Information on how this and the other bar charts in this chap-
ter are made can be found in Chapter 4 Subsection 4.3.2. For the first cluster, the
Southwestern sector is relatively important. Cluster 3 shows the opposite situation
and cluster 2 shows a relatively large contribution of the Northern sector. Cluster 4
contains a relatively small amount of data points. A large proportion is measured with
wind from the Southeast.

Based on the bar chart, it is indeed possible that a part of cluster 3 is connected
to cluster 2 and a part to cluster 4. A summation of the wind sector contributions of
cluster 2 and 4 could result in the relatively low contribution from the Southwestern
sector in cluster 3.
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Figure 24: Wind sectors of clusters of BladeOut

5.2.2 In-plane and edgewise bending moment

This subsection regards the combination of variables used for the in-plane and edge-
wise bending moment. Results of the in-plane bending moment are shown. However,
the same variables (α2 and ρ) are used for the edgewise bending moment. Moreover,
they are based on the same dataset. Equal values for SD and VD support the finding
that the two clustering results are the same. This means that in this case the sensi-
tivity is successfully eliminated (see Subsection 4.3.1 in Ch. 4).

The Gaussian approximation for the air density of cluster 1 is found to be poor (Fig.
25). Multiple peaks are visible. They result in a low kurtosis. An explanation of
the large number of peaks is a direct dependency between consecutive data points.
Air temperature and therewith air density can be stable for a longer period. I.e., the
spectral gap at 10minutes for the turbulence intensity, does not hold for the air density.
Notable is that the air density is high in cluster 1 and that the range in air density is
relatively small. The high air density relates to a low temperature and therewith mostly
stable atmospheric conditions (night temperature lower than temperature during the
day).

Alternatively, one could speak of four or five inflow conditions within this sector.
Given the amount of data points however, this would result in inflow conditions that
individually rarely occur. A division in more clusters is therefore not favourable.

Figure 25: Gaussianity cluster 1 of BladeIn

The air density PDF of the fourth cluster has a relatively high kurtosis. In this case,
only one large peak is visible. However, large differences between two neighbour-
ing histogram bins, do point towards a direct dependency between consecutive data
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points. The cluster contains less data points and considers a larger range of air den-
sities.

The high kurtosis in the wind shear exponent of cluster 4 might relate to two in-
flow conditions with centroids near each other. However, the wind shear variation
within these potentially different inflow conditions would be very large compared to
the difference between the inflow conditions. Their existence is therefore far from
certain.

(a) Wind shear exponent (b) Air density

Figure 26: Gaussianity cluster 4 of BladeIn

The digraph of the in-plane bending moment is shown in Figure 27. Having a high
air density, cluster 1 is the most constant cluster. It contains the same data points
independently on the number of clusters used (2-5) in the algorithm. Representing
about a third of all the data points, the clear difference between the first cluster and
the other clusters confirms the need for multiple probability distributions.

Similar to the variable combination used for the out-of-plane bending moment, the
use of three clusters seems more appropriate from the digraph. Part of cluster 4 could
be connected to cluster 3 and the other part to cluster 2.

Figure 27: Digraph of BladeIn

The bar chart containing the contribution of different wind sectors to the four clusters
is shown in Figure 28. The contributions of cluster 1 can be related to the expected
temperature/air density in the different wind sectors. The Northern sector gives high-
est density, followed by the Southeastern sector. The lowest air density is found in
the Southwestern sector.

The same explanation cannot be used for the other wind sectors. Moreover, a
summation of the second an third cluster would not result in the contributions of the
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fourth cluster. The bar chart does therefore not support the supposed existence of
three inflow conditions.

Figure 28: Wind sectors of clusters of BladeIn

5.2.3 Side-to-side bending moment

The combination of variables that give the based clusters for the side-to-side bending
moment are the mean wind speed (U ) and the second wind veer variable (∆θ/∆z)2.
The data points are divided relatively equally amongst the clusters (Table 5).

Figures 29 and 30 show the PDFs of the second wind veer variable for clusters 1 and
3. The second figure shows a small skewness and includes a large range of wind
veer values. The skewness is likely caused by the fact that the other three clusters
only contain low wind veer.

More interestingly, the first cluster contains two peaks causing a low kurtosis. It
could therefore include two inflow conditions. The digraph (not shown), showed that
adding a cluster will not give strongly different results. The new cluster is rather small.
Because the peaks are relatively close to each other, the clustering algorithm does
not find it useful enough to split cluster 1 into two clusters. However, the existence of
multiple peaks does again supports the need for multiple PDFs. Investigating the use
of 6 or 7 clusters might give better results, but will make the analysis more complex.
The same digraph showed that the fourth cluster is least related to the other clusters.
Cluster 1 and 3 are most similar to each other.

Figure 29: Gaussianity cluster 1 of Tow-
erSide

Figure 30: Gaussianity cluster 3 of Tow-
erSide

Figure 31 shows the contribution of the wind sectors for each cluster. Large differ-
ences exist between the clusters. The sector dependence (SD) of 57.6% is a bit
higher than the previously discussed load components, but far from 1.
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Based on the bar graph, the relation between cluster 3 and 4 should be close.
However, different conclusions could be drawn from the digraph. A direct relation
between the two clusters is therewith not likely. Possibly, one cluster represents stable
atmospheric conditions and one cluster unstable conditions.

Figure 31: Wind sectors of clusters of TowerSide

Data points from the Southwestern sector are most equally distributed over the three
sectors. Large differences exist between the contributions of the Northern and South-
eastern sector.

The larger clusters 1 and 2 are dominated by points from UMUT-N and clusters 3
and 4 by points from UMUT-SE. The clear distinction between the two wind sectors
was not found in the previously discussed combinations of variables and is therefore
worth investigating in more detail.

The PDFs of the mean wind speed of the two wind sectors are by approximation
equal (Fig. 12 in Section 5.1). The source of the clear difference in contributions is
therefore likely the second wind veer variable. In this case, clear differences in PDF
do exist between the wind sectors (Fig. 19 in Section 5.1). Moreover, the PDF of the
Southwestern sector is situated in between the two.

As stated in Section 5.1, large differences between the two wind veer variables
exist. Because these differences should be investigated further, no solid conclusions
can be drawn on the importance of wind veer.

5.2.4 Yaw bending moment

Inflow variables used for the yaw bending moment are the wind shear exponent, the
turbulence intensity and the second wind veer variable. Because the size of the con-
sidered dataset is limited, the clusters are small (Table 5). Moreover, the differences
in cluster size are large.

The first cluster is found to have a high kurtosis for the wind shear exponent (Fig. 32).
It takes a central position in the clustering space (no particularly low or high α). Other
clusters have included data points with low or high α. They therewith took away the
tails of the first cluster, resulting in the high kurtosis.

The Gaussianity of the other clusters are not considered because of their size.
Having a limited amount of data points, no accurate representation of the PDFs can
be made.
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Figure 32: Gaussianity cluster 1 of
ShaftYaw

The digraph (not shown) showed that cluster 4 is most different from the other clus-
ters. However, being a cluster with only 21 data points, no solid conclusions can
be drawn on this regard. When a fifth cluster is added, the other three clusters stay
largely the same. The use of four clusters can therefore be considered appropriate.

The largest cluster contains data points of all three wind sectors (Fig. 24). This is not
the case for the other clusters. The Southeastern wind sector does not contribute to
cluster 2. Points of this sector can be found more often in the third and fourth cluster.
The separation between the wind sectors is likely related to the second wind veer
exponent. A similar separation was also found for the side-to-side bending moment
(Subection 5.2.3). In this case, the sector dependence (SD) is found to be 63.3%.

Figure 33: Wind sectors of clusters of ShaftYaw

5.2.5 Tilt bending moment

The best combination of variables for the tilt bending moment is TI, ρ and ∆θ/∆z.
Being based on the same dataset as the yaw bending moment, the dataset is small.
In this case the smallest cluster contains only 5 data points (Table 5).

The Gaussianity of solely the first cluster is considered. The other clusters contain
too few data points to give a reliable probability distribution.

The PDF of the wind veer has a high skewness and kurtosis. The PDF has two
peaks at each side and close to the main peak. However, with the limited amount of
data points, it cannot be said with certainty if these peaks represent three different
inflow conditions.
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As found previously for clusters with high air density, the air density PDF for cluster
1 contains multiple peaks and has a low kurtosis. The peaks could represent multiple
inflow conditions.

(a) Wind veer (b) Air density

Figure 34: Gaussianity cluster 1 of ShaftTilt

The digraph of the tilt bending moment is shown in Figure 35. One can derive from the
digraph that cluster 1 and 2 are most closely related. Because of the limited amount
of points, it is not possible to draw solid conclusions for cluster 4.

Going from three to four clusters, one of the clusters is removed, one new cluster
(cluster 4) is added and a cluster is divided into cluster 1 and 2. The appearance and
removal of a cluster while adding more clusters to the algorithm can point towards a
sensitivity on the initial centroid locations. This is most likely if cluster centroids are
located near each other. The appearance of two peaks close to the main peak in the
wind veer PDF of cluster 1 supports this statement.

Figure 35: Digraph of ShaftTilt

The bar chart showing the contributions of the undisturbed wind sectors to the four
clusters is shown in Figure 36. With an SD of 62.3%, the sector dependence is similar
to the previous subsection and relatively high.
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Figure 36: Wind sectors of clusters of ShaftTilt

5.3 Clustering with the disturbed wind sector

This section regards a comparison between the clustering results based on only undis-
turbed wind sectors and the clustering results based on all wind sectors.

The amount of data points in each cluster of each bending moment is stated in
Table 6. Also in this case the cluster numbers are related to the size of the cluster
such that cluster 1 is largest and cluster 4 is smallest. The cluster names of different
bending moments are not related to each other. Moreover, they are not related to the
cluster names of the clustering results with only undisturbed wind sectors.

Table 6: Number of data points in clusters of all wind sectors

bending moment cluster 1 cluster 2 cluster 3 cluster 4 total

out-of-plane 8028 5680 1630 572 15909
flapwise 5684 5001 3189 2035 15909

in-plane 6749 4117 3189 1854 15909
edgewise 6259 4844 3105 1701 15909

side-to-side 8266 3962 2655 1920 16803

yaw 1927 1714 828 428 4897
tilt 2167 1815 497 417 4897

Depending on the occurrence of the different inflow conditions, the algorithm gives
different results. If an inflow condition occurs relatively often (e.g. wake situation),
other inflow conditions are less likely to be found.

The location and orientation of the clusters resulting from the out-of-plane bending
moment are shown in Figure 37. The ellipses in this figure and in similar figures in this
section represent contours with equal probability. The inside of the ellipses represent
a total probability of 80%. I.e., on average 80% of the data points belonging in this
cluster would fall inside the ellipses.

Most noticeable is a cluster with relatively low wdci and ∆α and relatively high α2.
It is found in the result based on all wind sectors. The low wdci might be related to
the relatively high turbulence intensity. For equal U and TI, no differences in wdci
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were expected (Section 5.1). High α2 and low ∆α, were expected from the analysis
discussed in Section 5.1.

(a) Wind shear exponent and wind direction
change intensity

(b) Wind shear change and wind direction
change intensity

Figure 37: Compare clusters of BladeOut

Clusters in the clustering space of the flapwise bending moment with U , TI and α
are shown in Figure 38. Most noticeable is the removal of the cluster with low turbu-
lence intensity if the disturbed sector is added. The Southern sector includes wake
situations and therefore has a relatively high turbulence intensity (Section 5.1).

Figure 38: Compare clusters of BladeFlap

Figure 39 shows the clusters for the in-plane bending moment. The clusters based on
all wind sectors are relatively close to each other. The two clusters which equal prob-
ability contours overlap each other, might be better represented as a single cluster.
This is not investigated in detail.
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Figure 39: Compare clusters of BladeIn Figure 40: Compare clusters of Tower-
Side

Figure 40 shows the clustering space of the side-to-side bending moment. The first
cluster for the result of all wind sectors contains about half the data points. The sec-
ond wind veer variable of the disturbed sector was found to be comparable with the
Southeastern sector but higher than the other two (Section 5.1). As a result, the lo-
cation of three of the four clusters are shifted upwards when the disturbed sector is
added to the dataset.

Figure 41, regards the clustering space of the yaw bending moment. It is similar to
that of the tilt bending moment (Fig. 42). Different from the flapwise bending mo-
ment, a cluster with low turbulence intensity is found when clustering all sectors. The
cluster result based on all four wind sectors gives one cluster with low TI and three
clusters with high TI. It points towards the existence of undisturbed situations within
the Southern wind sector. A full or partial wake situation could not result in such low
turbulence intensities. Most logical explanation for the difference with the flapwise
moment, would be that the yaw and tilt bending moments regards different datasets.
However, as shown in Table 3 the Southeastern sector giving mostly low turbulence
is relatively small compared to the other datasets. One should therewith expect the
reversed situation. Alternatively, the use of other variables in the clustering space
should cause the differences.

Also relevant is the cluster based on all wind sectors having a relatively high wind
veer and turbulence intensity. The existence of strong wind veer with a relatively high
turbulence intensity is not expected. Mixing the atmospheric boundary layer, a high
turbulence would result in low wind veer.

Figure 41: Compare clusters of ShaftYaw Figure 42: Compare clusters of ShaftTilt
The cluster of the tilt bending moment with high TI and high wind veer based on the
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undisturbed sectors is the small cluster with 5 data points. It is therewith not very
relevant in this project.

In general one can conclude that the clusters from the undisturbed sectors cannot
be used to represent inflow conditions of the disturbed wind sector. The main differ-
ences are caused by the turbulence intensity. However, also the second wind shear
exponent, the second wind veer variable and the wind direction change intensity are
different.
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6 Atypical fatigue loading
This chapter discusses the results regarding atypical fatigue loading. The eight bend-
ingmoments are discussed one by one starting with the out-of-plane bendingmoment.
With exception of the two blade root bending moments (edgewise and flapwise), each
bendingmoment is given a separate section. The edgewise and flapwise bendingmo-
ment are not discussed in detail because they are dependent on the out-of-plane and
in-plane moments via the pitch angle.

The methodology used to obtain the results stated in this chapter is discussed in the
first part of this report. This also regards information on how the figures are obtained.

The regression models and linear fits used to define the expected fatigue loading
are shown in Appendix C. This appendix also includes the number of data points used
to make the fatigue load expectation. The size of the dataset containing the yaw and
tilt bending moments measured on the main shaft is limited (see Table 3 in Ch. 2).
This resulted in considerable uncertainty on the results and conclusions.

For several bending moments, the variation in load residual of the disturbed sector is
found to be higher compared to the other sectors. This was expected, because the
sector includes different wakes of different turbines. The metmast and turbine can
also be in full wake or in partial wake.

6.1 Out-of-plane bending moment

This section regards the out-of-plane bending moment. First, the expected fatigue
loading is discussed together with differences between wind sectors. Afterwards, the
results of the stepwise regression are stated. In the last subsection the clustering
results are discussed.

6.1.1 Wind sectors and expected fatigue loading

The three regression models for the out-of-plane bending moment are shown in Fig-
ure 43. The model of the Southeastern sector (UMUT-SE) shows some unexpected
behaviour (multiple curvatures). Cause of this behavior can be the limited number of
data points. These data points might not all be independent of each other. Because
the three models are not used in further analysis, the behaviour is not discussed in
detail.

While the regression models of the two sectors with inflow from land are mostly
parallel to each other, the Southeastern sector is not. In this case, the fatigue loading
seems to be less affected by the mean wind speed. It is not necessarily a causal re-
lationship, but only regards correlation. The model mainly deviates from the others in
the higher wind speeds. As a result, the standard deviation based on all wind sectors
is largest for the higher wind speeds.

Only the slope of the turbulence intensity fit is included in E(TI). One can therefore
derive from the three regression models that the damage in the out-of-plane bending
moment tends to zero for decreasing mean wind speed.
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Figure 43: Wind speed regression models of BladeOut

The linear fits used to include the effect of the turbulence intensity are shown in Figure
44. Similar to the mean wind speed, the regression models of UMUT-N and UMUT-
SW are, in approximation, parallel. The slope of the Southeastern sector is lower.
I.e., the turbulence intensity correlates less with the out-of-plane bending moment.

Figure 44: Turbulence intensity fits of BladeOut

From Figures 43 and 44 one can conclude that the turbulence intensity and the mean
wind speed cannot explain all differences in the out-of-plane bending moment be-
tween the three undisturbed wind sectors. The moment of the Northern wind sector
is higher than expected and the moment on the Southeastern sector gives lower load-
ing. However, there is also a lot of overlap between the moving standard deviation
bounds of the linear fits. The deviation within each sector is relatively large compared
to the deviations between sectors.

As stated, the slopes of the linear fits with turbulence intensity are approximately
equal for UMUT-N and UMUT-SW. Factors that cause the difference in fatigue load-
ing, can therefore not be correlated to the turbulence intensity. However, multiple
factors that are related to TI can have an affect on the fatigue loading if the effects
cancel each other out.

Probability distributions of the residuals are shown in Figure 45. Data points in this
figure are not restricted to a turbulence intensity range, and the distribution of the
fourth sector with a disturbed metmast and turbine is also shown.
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Figure 45: Residuals after turbulence intensity fit of BladeOut

Both the highest and the lowest load residual belong the the disturbed sector (outside
of figure boundaries). Because this sector includes multiple wake situations and more
data points, this is not unexpected. As previously stated, the Southeastern sector
gives a little lower fatigue than expected and the Northern sector a little higher.

Given the mean load residuals of the wind sectors, a new load expectation can
be made. In this case the decrease in relative error (DRE, see Section 4.6) is 2.2%.
If different inflow conditions result in larger differences in fatigue, these inflow condi-
tions cannot be strongly related to wind sectors.

Assuming that the distribution functions of the individual wind sectors are Gaussian
and independent on the mean wind speed, the distribution containing all sectors is
likely not. The distribution changes with wind speed because the regression model of
UMUT-SE is not parallel to the others. Moreover, the final distribution is not Gaussian
because the mean of the different wind sectors differ from each other (Figure 44 and
45).

The differences between the wind sectors with inflow from land and the sectors
with inflow from the lake (UMUT-SE) support the need for multiple PDFs. Because of
differences in regression models, the fatigue loading cannot be properly represented
by a single Gaussian process.

6.1.2 Stepwise regression

The linear model resulting from the stepwise regression (Section 4.1) is shown in
Equation 6.1. Sorted from most important to least important terms, the model proves
that the turbulence intensity is most important after the wind speed is considered.
Higher order terms of the turbulence intensity are not included in the model. I.e., the
correlation between fatigue and TI is linear by approximation.

LR ≈ −c0 + c1TI − c2α + c3α2 − c4
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(6.1)

The second and third term includes the wind shear exponent (α). From the different
signs in front of the coefficients, it is not directly clear if wind shear gives a positive
or negative effect on fatigue. The squared term does imply that the correlation is not
linear. The fact that these and other terms are included in the linear model does not
necessarily mean that they are all important in a wider point of view. However, the
relevance of wind shear was also found by Dimitrov et al. (2015).
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The PDFs of the residuals are shown in Figure 46. The PDFs are different from
those in Figure 45. The difference between the Northern sector and the other two
undisturbed wind sectors is eliminated. The disturbed wind sector however, gives a
higher load residual than the others. I.e., the increased precision in fatigue estimation
of the undisturbed wind sectors uncovers the differences from the disturbed sector.
The variables used in the regression model cannot explain these differences.

Figure 46: Residuals after stepwise regression of BladeOut

The decrease in relative estimation error caused by the linear model is 13.1%. Part
of this increased precision can be explained by differences between the undisturbed
wind sectors (DRE = 2.2%). By using an improved model (see Ch. 9), the relative
estimation error can be decreased further. However, although the linear model does
improve the fatigue estimation, it cannot be said with certainty that the wind shear and
wind veer relate to the main source of error.

Figure 47 shows the extremes of the load residual in the most important space for
stepwise regression (α and (∆θ/∆z)2). Data points with LR lower or higher than two
times the standard deviation of the load residual are shown. On the background, the
density of data points in the whole dataset is shown. A dark area represents a lot of
data points (high density).

Two groups of data points with high LR can be determined. The first and largest
group has low wind veer and high wind shear. The second group has high wind veer
and low wind shear. In general, data points with high LR have either a strong wind
veer or a strong wind shear. The data points with low LR are close to the area with
highest density.

Figure 47: LR extremes of BladeOut in a
part of the stepwise regression space
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6.1.3 Clustering

As explained in Section 4.6, a variable selection has been done based on cluster-
ing different combinations of inflow variables. The best three combinations of three
variables are shown in Table 7.

Clustering with three variables gives the best results. The used variables are the
second wind shear exponent (α2), the change in wind shear (∆α) and the wind di-
rection change intensity (wdci). The clustering result is able to decrease the relative
error by 4.1% (DRE = 4.1%). The second best combination of variables includes the
first wind shear exponent instead of the second. The third best includes the wind veer
(∆θ/∆z) instead of the wind shear change.

Comparing to the stepwise regression, the wind shear exponent is again impor-
tant. The wind shear change on the other hand, was not included by the stepwise
regression and wdci only at the end. The groups of data points determined from
Figure 47 are not found.

Table 7: Clustering with 3 variables for BladeOut

The best result with 3 variables can be compared with the results of two variables
both also used in the best result (Table 8). All three combinations of two variables
result in a considerably smaller decrease in error. The first two (α2-wdci and α2-∆α)
are also the best two combinations considering only results based on two variables.
From the table, one can conclude that the wind shear exponent is most essential to
the clustering problem.

Given the use of alpha in the linear model, a large part of the 4.1% is caused by
differences in wind shear. The decrease in relative error is therewith mainly caused
by a continuous effect of wind shear rather than discrete differences between inflow
conditions. I.e., no significant discrete differences are found.

Table 8: Clustering with best variables for BladeOut

Adding a fourth variable in the clustering problem is not found to be useful. Adding for
example the wind veer gives worse results in terms of decrease in relative error (DRE).

The PDFs of the load residual (LR) are shown in Figure 48. It regards the clustering
result based on the undisturbed wind sectors. The first, third and fourth cluster show
similar distributions.

The second cluster however, gives lower load residuals. In this cluster, the North-
ern wind sector is more important than the other undisturbed sectors (Fig. 24). How-
ever, the load residuals of the Northern sector in general, are higher than the other
sectors. This fact points towards a situation with large differences in load residual
within this sector. Containing more than a 1/3 of the data points, the differences in
load residual between this and other clusters can be important for load expectation.
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(a) Boxplots (b) Probability distributions

Figure 48: Residuals clustering of BladeOut

Data points with extremely low or high LR are shown in Figure 49 in the clustering
space. The same data points as in Figure 47 are shown. Most data points away from
the high density area are included in the cluster with largest variance. A cluster with
small variance in a specific part of a low density area would not efficiently increase
the total likelihood.

As expected, most data points with high LR have a high second wind shear expo-
nent α2 (just like α in Fig. 47). The subfigure with wdci and ∆α, shows no separation
between extremely low and extremely high LR in the high density area. Data points
with low LR and out of the high density area are still relatively close to this area. Data
points with high LR are generally further away given that they are not in this area.

With the very low load residuals occurring in between two groups of high load
residuals, they might refer to neutral atmospheric conditions. More convincing proof
on this regard is found by analysing the extremes of the flapwise bending moment
(see Sec. 6.3).

(a) Wind shear exponent and wind direction
change intensity

(b) Wind shear change and wind direction
change intensity

Figure 49: LR extremes of BladeOut in clustering space
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6.2 In-plane bending moment

In this section, the results for the in-plane bending moment are discussed. The first
subsection regards the expected fatigue loading in relation with the wind sectors.
Afterwards, results of the stepwise regression and clustering are discussed.

6.2.1 Wind sectors and expected fatigue loading

The regression models of the in-plane bending moment and the mean wind speed
are shown in Figure 50. Before discussion, one should note that the y-axis does not
start at zero. The in-plane bending is dominated by gravitational forces. The model
of the Northern sector behaves poorly for higher wind speeds.

Figure 50: Wind speed regression models of BladeIn

Just like the out-of-plane bending moment, the Southeastern sector (coming from the
lake) gives lower correlation between U and the fatigue loading, compared to the
other undisturbed sectors. In this case however, the correlation between turbulence
intensity and fatigue is stronger for this sector. The variation in fatigue within sectors
is relatively large compared to the variation between sectors. This is caused by the
limited amount of data points in this region.

Figure 51: Turbulence intensity fits of BladeIn

The PDFs of the residuals are shown in Figure 52. Differences between the undis-
turbed wind sectors are small. Including the wind sector in the fatigue load estimation
decreases the relative estimation error with 0.9%.

Also in this case, the disturbed sector gives the highest load residual. Different
from the out-of-plane bending moment, the load residual is in general higher than in
the other sectors.
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Figure 52: Residuals after turbulence intensity fit of BladeIn

6.2.2 Stepwise regression

The linear model for the fatigue by the in-plane bending moment is shown Equation
6.2.

LR ≈ c0 + c1TI − c2ρ − c3λ + c4U + c5λ2

− c6λ3 + c7α
(6.2)

Again, the first term considers the turbulence intensity. The other less important terms
however, are different. Although the wind shear exponent is included in the model,
it has a minor role (last term). Instead of the wind shear exponent, TI is followed by
the air density (ρ). The air density negatively correlates with the load residual. This
is counter intuitive. However, it only regards correlation. Being related to other inflow
variables that are not measured (e.g. atmospheric stability), a causal relationship is
far from certain.

Also included in the model is the tip speed ratio (λ) and the mean wind speed. Be-
cause higher terms are included, it cannot be said that the tip speed ratio increases or
decreases fatigue. However, based on the extremes, an increase in fatigue is most
likely (Fig. 53). Being mainly dependent on gravitational forces, a small difference in
λ can give a different in-plane bending moment.

Tip speed ratios can be high if the power output is larger than expected based
on the mean wind speed. The in-plane bending moment is likely dominated by the
rotational speed instead of the mean wind speed. The mean wind speed affects the
power output and therewith the rotational speed. Most of the effect of rotational speed
on the in-plane bending moment is therefore accounted for by the mean wind speed
model. Because the effect of turbulence on the power output is relatively small, the
effect of turbulence intensity on the in-plane bending moment is limited. This results
in the low correlation with turbulence intensity.

Figure 53 shows a relatively equal spread of data points with very low and very high
LR. A high tip ratio seems to give a higher probability for a very high LR. However,
compared to the density of points in the whole dataset, this ”high” tip speed ratio is
not exceptional.

Most notably is the group of data points with low air density and high tip speed
ratio. This group largely consist of data points from the Southeastern wind sector and
is mainly measured in the summer (see Section 5.1). It contains an unexpectedly
high amount of data points with a load residual higher than 2σLR. Moreover, the tip
speed ratio is relatively high for these points. This is likely part of the source of the
high fatigue loading. However, given the negative correlation between air density and
the load residual, other factors are expected to play a role as well.



TNO report | TNO 2018 S11661 80 / 115

Figure 53: LR extremes of BladeIn in a
part of the stepwise regression space

The total decrease in relative estimation error by the model is 14.2 %. The PDFs of
the residuals of the linear model are shown in Figure 54. They are similar to those
based on solely the turbulence intensity and mean wind speed. Differences between
the disturbed and undisturbed sectors cannot be explained by the linear model.

Figure 54: Residuals after stepwise regression of BladeIn

6.2.3 Clustering

The air density and the second wind shear exponent (α2) give the best clustering
results. The relative error is decreased by 4.3% (Table 9). Clustering with three
results gives at best a decrease of 3.5% with the combination α, (∆θ/∆z)2 and ρ.

Compared to the relative error decrease of 14.2% by the stepwise regression, the
clustering method performs poorly. The difference can be connected to the fact that
the tip speed ratio is not considered for the clustering space. Because the tip speed
ratio is not considered for clustering, the used combination of variables agrees well
with the stepwise regression.

Table 9: Clustering with 2 variables for BladeIn
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The PDFs of the residuals of the four clusters are shown in Figure 55. The PDF of
cluster 3 is almost an exact copy of that of cluster 2. Moreover, cluster 1 gives the
lowest load residuals and cluster 4 the highest. This fact supports the assumption
that at least four clusters are needed. This is relevant, because the Gaussianity of
the clusters pointed towards a better result with three clusters.

(a) Boxplots (b) Probability distributions

Figure 55: Residuals clustering of BladeIn

In Figure 56, the data points with very high and very low LR are shown in the clus-
tering space. The clusters cannot properly differentiate between the two extremes.
Moreover, multiple groups can be identified. Firstly, as already noted, a group of high
LR was found for low air density. Secondly, the points with very high LR are located
to the right (higher wind shear) and points with low LR are located to the left. In case
of an about average air density, very low load residuals are also found at other wind
shear values.

Figure 56: LR extremes of BladeIn in clus-
tering space

6.3 Flapwise & edgewise bending moments

The flapwise and edgewise bending moments are related to the out-of-plane and in-
plane bending moments. They are therefore not discussed in detail, but the results
are compared with those of the rotor loading.
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6.3.1 Wind sectors and expected fatigue loading

The importance of the mean wind speed is found to be lowest for the flapwise bending
moment and the importance of turbulence intensity highest. The importance of U and
TI for the edgewise moment is similar to that for the in-plane bending moment. The
small differences can be explained by the influence of the out-of-plane component
being part of the edgewise moment.

From the bending moments measured at the blade root, the load residual of the
flapwise bending moment is most dependent on wind sectors. The relative error is
decreased by 3.3%.

6.3.2 Stepwise regression

The linear model of the flapwise moment produced by stepwise regression (Eq. 6.3)
differs from that of the out-of-plane bending moment. Two terms of the wind veer
variables are included after the turbulence intensity. The model does not include the
two terms of the wind shear exponent. However, this does not necessarily mean that
it is not affected by wind shear at all. The main correlation can be included by the
other terms (e.g. wind veer). It does points towards the fact that wind veer is more
important than wind shear. The linear model decreases the relative error by 10.1%.
This is lower than the 13.1% for the out-of-plane.

LR ≈ c0 + c1TI − c2

(
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∆z

)
2

+ c3

(
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2

(6.3)

A clear distinction between very high and very low load residuals is found in the two
dimensional space with wind veer and wind direction change intensity (Fig. 57). Five
outliers with very highLR have highwdci and high wind veer. In amore general sense,
the wind direction change intensity is relatively high for very high load residuals. The
extremes are discussed in more detail when considering the clustering space.

Figure 57: LR extremes of BladeFlap in a
part of the stepwise regression space

As expected, the terms used for the edgewise bendingmoment (Eq. 6.4) are similar to
those of the in-plane bending moment. In this case, the tip speed ratio and the mean
wind speed are not included. The usefulness of stepwise regression for the edgewise
bending moment is relatively low with a decrease of 6.1% in relative estimation error.

LR ≈ c0 + c1TI − c2ρ + c3α (6.4)
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6.3.3 Clustering

A major difference between the flapwise bending moment and the out-of-plane bend-
ing moment are the variables used for clustering. The flapwise bending moment uses
three different variables, namely U , TI and α (see Table 10). The values of DRE are
comparable. This combination of variables only gives a slightly smaller DRE (3.8%)
for the flapwise bending moment compared to the the out-of-plane bending moment.
As stated in Appendix B, the GMM algorithm did not produce well defined clusters.

Table 10: Clustering with 3 variables for BladeFlap

A smaller bound of wind shear exponents is found for the very low load residuals
compared to the very high load residuals (Fig. 58). This corresponds to neutrally
stable atmospheric conditions. Holtslag et al. (2014a, 2016) also found that blade
root and rotor loading are lowest in neutral conditions. In Figure 57, the low load
residuals correspond to medium wind veer. This fact also points towards neutrally
stable atmospheric conditions.

Moreover, very high load residuals have either a medium turbulence intensity or a
very low turbulence intensity. Neutrally stable conditions are therewith not included.
These two groups can be related to the groups found in Figure 57. For very stable
conditions, the wind veer is, as expected, relatively high. The very unstable conditions
result in the low wind veer.

(a) Mean wind speed and wind shear exponent (b) Turbulence intensity and wind shear exponent

Figure 58: LR extremes of BladeFlap in clustering space

The best variables for the edgewise bending moment are found to be the same as the
best variables for the in-plane bendingmoment (α2 and ρ). The DRE for the edgewise-
moment is a little lower with 3.9% compared to 4.3% for the in-plane bendingmoment.
The values of SD and VD are related to the used variables and are therefore also the
same.
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6.4 Fore-aft bending moment

This section regards the fore-aft bendingmoment measured at the tower bottom. Only
the expected fatigue loading is discussed in relation with the undisturbed wind sectors.
The linear model produced by stepwise regression included the wind direction change
intensity after the turbulence intensity. Because the decrease in estimation error is as
low as 1.2%, the results are not discussed further. The performance of the clustering
result is with a DRE of 2% also poor. The best variable combination is found to be U ,
ρ and α. Also these results are not discussed in more detail.

6.4.1 Wind sectors and expected fatigue loading

The wind speed regression models of the undisturbed wind sectors are shown in Fig-
ure 59. A comparable increase in fatigue is found for all three wind sectors. Different
from other bending moments, the variation in fatigue loading increases with mean
wind speed within the three wind sectors. Being the most damaging conditions, high
uncertainty for high wind speeds is undesired.

Figure 59: Wind speed regression models of TowerFore

Also the linear fits with turbulence intensity (not shown) showed only very small dif-
ferences between the three sectors. Moreover, the variance is strong compared to
the slopes of the fits.

The found increase in fatigue for turbulence intensity is consistent with research of
Holtslag et al. (2016) and Sathe et al. (2013). Both found higher fore-aft bending mo-
ments for unstable conditions. However, with a DRE of 8.9%, this bending moment
is, after the in-plane bending moment, the least correlated with turbulence intensity.

Sathe et al. (2013) states that the rotor filters small eddies. One could therefore expect
that the disturbed sector, resulting in larger eddies, will give a higher load residual.
This is not found in this research project. The PDFs of the load residuals for the four
wind sectors are all equal by approximation. They are therefore not shown in this
report.

6.5 Side-to-side bending moment

In this section, the results of the side-to-side bending moment are discussed. Similar
to other bending moments, the expected fatigue loading is discussed first in relation
with the wind sectors.

The side-to-side bendingmoment is known to have little damping (e.g. Bir and Jonkman
(2007)). The effect of inflow conditions on fatigue loading can therefore differ from
other bending moments.
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6.5.1 Wind sectors and expected fatigue loading

The mean wind speed models for the three undisturbed wind sectors are shown in
Figure 60. Similar to the out-of-plane and in-plane bending moment, the model of the
Southeastern sector shows weaker correlation with fatigue.

Differences between the Northern and Southwestern sector are visible for wind
speeds higher than 7 m/s. Just like the out-of-plane bending moment, the fatigue for
the Northern sector is a bit higher than expected in this wind speed range.

Figure 60: Wind speed regression models of TowerSide

With a DRE of 32.3%, the correlation with wind speed and fatigue loading is lowest
for the side-to-side moment. The importance of the turbulence intensity is relatively
large (DRE = 42.3%).

The linear fits with TI of the three different sectors are shown in Figure 61. The
slope of the models are approximately equal. In other words, the correlation between
TI and fatigue loading does not differ between the wind sectors. The slightly more
gentle slope of the Southeastern sector does agree with the correlation of turbulence
intensity with the out-of-plane bending moment.

Figure 61: Turbulence intensity fits of TowerSide

The PDFs of load residuals are shown in Figure 62 for all four sectors. The regression
models used for these residuals are based on all three undisturbed sectors and shown
in Figure 90 in the appendix.

The disturbed Southern sector gives the lowest load residuals. As discussed
above, the Southeastern sector also gives lower LR than the other sectors and the
Norther sector gives the highest LR. The four PDFs seem to be the opposite of the
PDFs of the second wind veer variable (Fig. 19). Below, more proof is shown that
the two are related.
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Figure 62: Residuals after turbulence intensity fit of TowerSide

6.5.2 Stepwise regression

The turbulence intensity is lastly removed from the linear model, after terms of the
two wind veer variables (Eq. 6.5).

LR ≈ c0 + c1TI − c2

(
∆θ

∆z

)
2

+ c3
∆θ

∆z
− c4α2 (6.5)

Being dependent on each other, the use of two wind veer variables is not expected.
However, small differences between the two variables were found previously (Section
5.1).

The linear regression model is able to decrease the relative estimation error with
9.2%. The resulting residuals are shown in Figure 63. The differences between the
PDFs of the different wind sectors are for a large part eliminated. This is caused by
including the second wind veer variable, which PDFs are opposite to that of the load
residual. It therewith also confirms the importance of wind veer for the side-to-side
bending moment.

Figure 63: Residuals after stepwise regression of TowerSide

Despite being slightly different, the wind veer variables are dependent on each other.
It is therefore decided not to plot the extremes on the space with wind veer variables
but to include the wind shear (Fig. 64).

The figure clearly show that most data points with very high LR have both low
wind veer and low wind shear. The opposite is the case for data points with very low
LR. Considering atmospheric stability, the low load residuals likely relate to stable
conditions and the high residuals to unstable conditions. Exceptions are the three
data points with low LR and low wind veer.
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Figure 64: LR extremes of TowerSide in a
part of the stepwise regression space

6.5.3 Clustering

The best combination with two variables (U and (∆θ/∆z)2) gives a DRE of 10.6%
(see Table 11). The best three combinations with three variables do not include wind
veer and result in a lower decrease in relative estimation error.

With 10.6% the DRE of the clustering result is slightly higher than that of the step-
wise regression and more than twice as high as the clustering DRE of other bending
moments. Moreover, it is three times higher than the DRE based on the undisturbed
sectors. This is especially important because of the issues with the wind veer vari-
ables. Given that the differences across clusters are larger than the differences be-
tween clusters, issues with measurement cannot depend on wind sector.

Table 11: Clustering with 2 variables for TowerSide

PDFs of the load residual of the four clusters are shown in Figure 65. The PDFs of
cluster 1, 2 and 3 are similar to each other. The third cluster, however, gives much
lower loading than the other sectors. In this cluster, consisting of 334 of the 1793 data
points, the Southeastern wind sector is most important (about half the data points)
(see Subsection 5.2.3). Based on the large contribution of this sector, the lower load
residual is expected. However, with a DRE of 10.6%, the fatigue estimation is better
than if the wind sectors were used instead of clusters (3.6%). One can conclude
that the inflow condition represented by this cluster lowers the average LR in the
Southeastern sector instead of the other way around.
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(a) Boxplots (b) Probability distributions

Figure 65: Residuals clustering of TowerSide

The data points with either extremely low or extremely high LR are shown in Figure
66. Three groups of extremes can be determined. The group with very high LR is
found for higher wind speeds and low wind veer. As previously stated, these data
points relate to unstable atmospheric conditions. The first group with very low LR
has low wind speed and various values for wind veer.

The second group with low LR has the highest wind speeds in the wind range
considered, and high wind veer. Given the little amount of data points in this area,
the low load residuals can relatively easily been separated from other conditions.
Moreover, given the low correlation with wind speed for the Southeastern sector, this
group of very low load residuals likely correspond to this sector. More proof on this
statement can be found in Section 5.1. The Southeastern sector has a relatively high
second wind veer variable compared to the other undisturbed sectors.

Figure 66: LR extremes of TowerSide in
clustering space

6.6 Yaw bending moment

This section regards the yaw bending moment measured at the main shaft. First, the
expected fatigue loading is discussed in relation with the different wind sectors.

6.6.1 Wind sectors and expected fatigue loading

As shown in Table 19, there are only 22 data points for sector UMUT-SE. This is not
enough to make a proper fit. However, the data is used to evaluate the regression
models. Based on the mean wind speed, regression models are made for two of
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the three undisturbed wind sectors. The result can be seen in Fig. 67. No large
differences between the two sectors are found.

Figure 67: Wind speed regression models
of ShaftYaw

Figure 68: Turbulence intensity fits of
ShaftYaw

In Figure 68, the two linear fits with turbulence intensity are shown. The slope of the
Southwestern sector is steeper than that of the Northern sector. In case the mod-
els would be perfectly aligned, the difference in fatigue between the different sectors,
can be fully explained by a difference in turbulence intensity. Because this is not the
case, other parameters that differ from sector to sector, should also affect the fatigue
loading. However, because the difference is fairly small, and the dataset size of es-
pecially the Southwestern sector is also limited, no solid conclusions can be drawn
on this regard.

The PDFs of the residuals of all four sectors are shown in Figure 69. The load residual
of the disturbed sector (UMUT-S) is found to be comparable with that of the Northern
sector. The residuals of the Southeastern sector are highest and the Southwestern
sector lowest. However, because of the limited data, the PDF of the Southeastern
sector is not reliable.

Figure 69: Residuals after turbulence intensity fit of ShaftYaw

6.6.2 Stepwise regression

The linear model resulting from stepwise regression only includes two terms of the
turbulence intensity (Eq. 6.6). The model is able to decrease the estimation error
with 4.7%. The main differences between the wind sectors are eliminated (PDFs not
shown).

The squared term with turbulence intensity does not support widely accepted the-
ory (see Section 3.2). Because the decrease in estimation error is not so large, and
the dataset size is small, no solid conclusions can be drawn on this regard. More-
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over, the not linear relation can be caused by the difference in dataset used for the
expected loading and the stepwise regression. With a relatively high number of data
points from the Northern sector used for the expected loading (see App. C), differ-
ences between sector contributions can affect the linear model. For future research,
it is therefore advised to investigate this relationship in more detail, when the sector
contributions are equal at all times.

LR ≈ −c0 + c1TI − c2TI2 (6.6)

Because of the limited dataset size, it is also difficult to analyse extremes for the yaw
and tilt bending moments. Nevertheless, the extremes in LR of the yaw moment are
shown in Figure 70. No clear pattern can be recognised. However, the data points
with very high LR seem to be located in high density areas (area with a lot of other
data points), whereas data points with very lowLR are located away from these areas.

Figure 70: LR extremes of ShaftYaw in a
part of the stepwise regression space

6.6.3 Clustering

Clustering with three variables gives the strongest decrease in error. The combination
with TI, α and (∆θ/∆z)2 gives the best result with a DRE of 4.5%. From these three
variables, the wind shear exponent is most important (Table 12). The combination of
α and wind veer give the best results if only two variables are used.

Park et al. (2015) and Gutierrez et al. (2016) both found that the wind veer has
an affect on the tower torsion/tower-top yawing moment. Because these moments
directly relate to the yawingmoment of the shaft, the same results should be expected.
Although the second wind veer variable is included in the clustering space, it does not
continuously affect the yaw bending moment (see linear model).

Table 12: Clustering with best variables for ShaftYaw

The probability distributions of LR in the clusters are shown in Figure 71. Cluster 1
contains more than half the data points and gives the highest load residuals. The



TNO report | TNO 2018 S11661 91 / 115

wind sectors are all about equally important for this cluster. The average LR of the
other clusters are more or less the same. The decrease in load residual is therefore
mainly caused by the difference between cluster 1 and the other clusters. Variance
within clusters is much larger than variance between clusters. The clustering result
itself is therefore not useful for load prediction.

(a) Boxplots (b) Probability distributions

Figure 71: Residuals clustering of ShaftYaw

Data points with very low or high load residual are shown in Figure 72 in the clustering
space. Two groups of extremes can be determined. Very low load residuals are found
for low wind shear and wind veer (high atmospheric stability), and very high load
residuals for higher wind shear and wind veer (low atmospheric stability). Similar to
Figure 70 the very high LR are located in high density areas. However, because of
the small amount of data points, no proper analysis can be done.

(a) Turbulence intensity and wind shear expo-
nent

(b) Wind shear exponent and wind veer

Figure 72: LR extremes of ShaftYaw in clustering space

6.7 Tilt bending moment

This section discusses the results of the tilt bending moment. Both the load expecta-
tion, stepwise regression and clustering results are discussed.

6.7.1 Wind sectors and expected fatigue loading

Similar to the shaft bending moment, no wind speed model of the Southeastern sector
could be made. The wind speed models of the other two undisturbed sectors are
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shown in Figure 73.
The fatigue loading at the higher wind speeds is a bit lower for the Southwestern

sector than the Northern sector. Because the out-of-plane, side-to-side and the yaw
bending moment also showed a small difference in higher wind speeds, the difference
is not unexpected. However, because of the limited amount of data points, a more
accurate model is preferred.

Figure 73: Wind speed regression models
of ShaftTilt

Figure 74: Turbulence intensity fits of
ShaftTilt

The slope of the turbulence intensity model of the Southwestern sector is found to
be steeper than the Northern sector (similar to yaw bending moment). Because the
amount of data is limited one should be careful with drawing conclusions. Because
the fits in the yaw bending moment are based on the same data, it cannot give a valid
confirmation on the existence of different slopes.

The PDFs of the residuals based on the mean wind speed and turbulence intensity
regression are shown in Figure 75. Small differences between the sectors are found.
Based on the sectors, the estimation error can be decreased by 2%.

Figure 75: Residuals after turbulence intensity fit of ShaftTilt

6.7.2 Stepwise regression

After the turbulence intensity, the second term included in the linear model is the
second wind veer variable. This term, is able to decrease the estimation error by
4.3%. Moreover, differences between the wind sectors are more clear compared to
Figure 75. The disturbed wind sector DMDT-S gives slightly higher load residuals
than the undisturbed wind sectors (Fig. 76). This relates to the higher second wind
veer variable (Section 5.1) in this sector. The expected load is decreased with the
wind veer term, and the load residuals are therefore higher. In future research, it is
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worth investigating what happens if the stepwise regression is used in combination
with the clustering results (see Ch. 9). This could clear the way for analysing the
differences between the disturbed sector and the undisturbed sectors.

The distribution shape of the Southeastern wind sector is different from the others.
However, because of the low amount of data points, this PDF is not reliable.

LR ≈ c0 + c1TI − c2

(
∆θ

∆z

)
2

(6.7)

Figure 76: Residuals after stepwise regression of ShaftTilt

The data points with either very low or very high load residual are shown in Figure
77. Similar to the yaw moment, the extremes with high LR are located at high density
areas and extremes with low LR away from these areas. Apart from this, no pattern
can be recognised. A larger dataset might give more information on this regard.

Figure 77: LR extremes of ShaftTilt in a
part of the stepwise regression space

6.7.3 Clustering

The best clustering result for the tilt bending moment is found with the turbulence
intensity, the first wind veer variable and the air density (Table 13). A decrease in
estimation error of 5.1% is achieved. The performance of the stepwise regression
and the clustering results are therewith comparable.
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Table 13: Clustering with 2 variables for ShaftTilt

The PDFs of the residuals in the three largest clusters (cluster 1-3) showed small
differences. Moreover, the PDF of the fourth cluster is not reliable as it is based on
only 5 data points. This cluster does however include 2 data points with very low LR.
In casemore data is available, these data points are worth investigating in more detail.

The extremes in the clustering space (not shown) gave no new relevant information
compared to Figure 77. Extremes with high LR are located at high density areas and
extremes with low LR away from these areas. The result is therewith similar to that
of the yaw bending moment.
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7 Comparison between research methods and bending
moments
In the previous chapter, the results of the eight bending moments were discussed
one by one. However, it is also useful to compare the results with each other. The
inflow conditions that result in atypical fatigue differ between bending moments and
between research methods.

This chapter discusses two types of comparisons: Comparisons between bending
moments and comparisons between fatigue load expectation methods (e.g. regres-
sion and clustering). Differences in variable selection between the bending moments
are discussed in the first section. The second section concerns the variables and
number of clusters selected by clustering. Also in this case, the different bending
moments are compared with each other. The two methods for variable selection are
compared in the third section. Section 7.4 discusses the accuracy of the different re-
search methods. It compares the importance of different research methods for each
bending moment and the importance across bending moments. The fifth and last
section regards the data points with very low and very high load residuals. Their lo-
cation in the clustering space and in the space defined by the regression models is
discussed. In addition, it compares the extremes of the different bending moments.

7.1 Variables selected by stepwise regression

The selected variables by stepwise regression differ between the discussed bending
moments. Table 14, presents a summary of the differences. The numbers refer to
the importance in the regression model. A variable with a ”1” is the most important
variable. Higher numbers refer to decreasing importance. In case for, for example the
out-of-plane bending moment, the turbulence intensity is most important followed by
the wind shear exponent, the second wind veer variable, the first wind veer variable
and the wind direction change intensity. The higher order terms in the models are
ignored.

Table 14: Inflow variables used for stepwise regression

bending moment U TI α α2 λ ∆θ/∆z (∆θ/∆z)2 ρ wdci

out-of-plane 1 2 4 3 5
flapwise 1 3 2 4

in-plane 4 1 5 3 2
edgewise 1 3 2

side-to-side 1 4 3 2

yaw 1
tilt 1 2

In case of the stepwise regression, the predicted variable is a load residual based on
solely the mean wind speed model. The fact that the turbulence intensity is the most
important other variable, supports the assumptions made in Section 3.2. The use of
the mean wind speed for the in-plane bending moment can be related to the tip speed
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ratio also being in the model. It is therewith not of great concern.

The wind shear exponents are found relevant for four bending moments. However,
considering the in-plane and side-to-side bending moment, the correlation with wind
shear is weak.

Having a component in the out-of-plane direction, the edgewise bending moment
is related to the out-of-plane bending moment. A small influence of wind shear could
therefore be expected. However, in case wind shear is related to the out-of-plane
component, the flapwise bending moment should have been affected more. Instead,
the importance of the wind shear could have its peak between the out-of-plane and
edgewise bending moment. This would explain why the flapwise bending moment
does not include wind shear in the linear model but the edgewise bending moment
does.

With exception of the in-plane and edgewise bending moment, at least the second
wind veer variable is included. The use of wind veer could refer to a causal rela-
tionship. However, based on previous research (Robertson et al., 2018), no signifi-
cant causal relationships were expected with the bending moments analysed in this
project. Moreover, considering the second wind veer variable, it could also refer to
differences between wind sectors in general. As shown in Section 5.1, the second
wind veer variable is strongly sector dependent.

The air density is only found to be relevant for the related in-plane and edgewise bend-
ing moments. Included after the turbulence intensity the variable is most important to
decrease the relative estimation error of both bending moments. However, having a
low estimation error beforehand (see Section 7.4), it is not considered important in a
wider point of view.

The wind direction change intensity (wdci) is used in the linear model of the related
out-of-plane and flapwise bending moments. However, its importance in the linear
models show that the correlation with fatigue loading is weak. It is therefore not con-
sidered to be a truly relevant variable.

7.2 Variables and number of clusters selected by clustering

In Chapter 5, the clustering results of five different combinations of variables are dis-
cussed. These can be compared to each other in terms of the appropriate number of
clusters and the dependence on wind sectors.

An overview of the variables used for the clustering results of the different bending
moments is shown in Table 15. For four bending moments, a combination of three
variables are used. The other three bending moments use a combination of two vari-
ables. Because of the limited decrease in relative error, the fore-aft bending moment
is not shown (see Section 6.4). The in-plane and edgewise bending moments pro-
duced the same clustering results, and are therefore discussed together.
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Table 15: Inflow variables used for clustering

bending moment U TI α α2 ∆α ∆θ/∆z (∆θ/∆z)2 ρ wdci

out-of-plane X X X
flapwise X X X

in-plane X X
edgewise X X

side-to-side X X

yaw X X X
tilt X X X

The variable dissimilarity (V D, see Section 4.6) cannot be compared between combi-
nations with a different number of variables. Moreover, it is found that no large differ-
ences exist when the same number of variables are used. The values are therefore
not discussed in detail. In general it is found that the variable selection is independent
on the variable dissimilarity. New information in the clustering space can result in a
better decrease in relative error, but can also increase the noise.

The combination with the highest sector dependence (SD = 66.5%) is α2, (∆θ/∆z)2
and ρ. This combination did not give the optimal decrease in estimation error for any
of the discussed bending moments. This fact points towards a larger variation in fa-
tigue within sectors than variation between sectors.

The clustering algorithm was not able to define proper clusters for the flapwise bend-
ing moment (see Appendix B). The results of the other five different combinations of
variables can be divided into two groups. The first group pointed towards 3 inflow
conditions and relatively low sector dependence. The second group pointed towards
more than 4 inflow conditions and has a higher dependence on the wind sectors.

Use of the mean wind speed in the clustering space can, but does not necessarily
point towards differences between wind sectors. The use of the mean wind speed
models imply that the average load residual is constant with mean wind speed. How-
ever, this is not the case, because the mean wind speed model is based on a different
and smaller dataset. The points that are removed were selected based on the wind
sector. Dependencies between LR and U are caused by a difference in LR between
wind sectors.

The same analysis does not hold for the turbulence intensity. Because it is forced
in a linear fit, dependencies between LR and TI already exist in the smaller datasets.
The use of turbulence intensity in the clustering space does therefore not point to-
wards differences between sectors.

3 inflow conditions with low sector dependence

In two cases, the appropriate number of clusters is found to be three. It regards the
combination for the out-of-plane bending moment with α2, ∆α and wdci and the in-
plane or edgewise bending moment with α2 and ρ.

It is not investigated how similar the clustering results are. However, the num-
ber of points in the clusters do differ. I.e., in the second combination the points are
better distributed over the clusters than in the first combination. Moreover, the contri-
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butions of the different wind sectors largely differ between the two clustering results.
One can therewith conclude that the results give different clusters. Inflow conditions
that are important for the out-of-plane bending moment are not relevant for the in-
plane/edgewise bending moment and vice versa.

4+ inflow conditions with high sector dependence

Discussion can exist for the appropriate number of clusters for the combination U and
(∆θ/∆z)2 (used for side-to-side bendingmoment). Two peaks are found in the largest
cluster. However, adding a fifth cluster divides a different cluster into two. Possibly,
a sixth cluster is needed. The contributions of the different wind sectors to the clus-
ters is clearly different from the two previously discussed combinations of variables.
Moreover, it gives a higher sector dependence (57.6% compared to 48.8 and 47.9%).

The sector dependence is highest for the combinations used for the yaw bending mo-
ment (TI, α and (∆θ/∆z)2 ) and tilt bending moment (TI, ρ and ∆θ/∆z). Moreover,
the bar charts containing the sector contributions for the clusters are both similar to
the bar chart for the side-to-side bending moment combination. The use of a wind
veer variable can explain the relatively large sector dependence for the three variable
combinations. The analysis discussed in Section 5.1, resulted in an especially strong
dependence on wind sector for the second wind veer variable (∆θ/∆z)2.

Because of the limited dataset size, no solid conclusions could be drawn on the
appropriate amount of clusters. The Gaussianity of the first cluster of the tilt bending
moment does point towards the existence of more than four inflow conditions.

7.3 Comparison between variable selection methods

Depending on the bending moment, the variables used in the clustering space are
also used in the linear model resulting from stepwise regression. The use of the
same variables can point towards the importance of continuous relations over discrete
relations. In this case, the differences in the average value of the considered variable
between clusters result in a decrease in estimation error.

In Chapter 9, recommendations for future work are discussed that combine the
advantages of the two research methods. The potential of a combination of the two
methods depends on the differences in variable selection. This section therefore also
touches upon this recommendation.

Considering the out-of-plane bending moment, the second wind shear exponent used
in the clustering space is represented by the first wind shear exponent in the linear
model. Moreover, the two both use the wind direction change intensity. The wind veer
variables are only used in the regression model. A combination of the two research
methods is therewith expected to result in a better fatigue estimation.

The variables used in the clustering space of the flapwise bending moment are not
included in the linear model (disregarding TI). This could point towards a proper clus-
tering result with significant differences in load residual between clusters. However,
as stated in Appendix B, this is not the case. Clustering also result in a lower DRE. The
variables selected by stepwise regression are therefore considered more meaningful.

The variable selection of the in-plane and edgewise bending moments for the two
research methods largely agree with each other. In both cases, the air density and
a wind shear exponent is included. The importance of the tip speed ratio in the step-
wise regression for the in-plane moment is not tested in the clustering space and can
therefore not be compared. However, because this variable relates to a turbine state
and not to an inflow condition, it is save to assume it would not initiate discrete differ-
ences between the clusters.
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Also the two variable selections of the side-to-side bending moment partly agree with
each other. In both cases the second wind veer variable is relevant.

Disregarding the turbulence intensity, the stepwise regression only includes the sec-
ond wind veer variable for the tilt bending moment. In the clustering space, the first
wind veer variable is included instead. In this case however, also the air density is
used.

Stepwise regression for the yaw moment does not include other variables in ad-
dition to TI. However, it does include a second term −c2TI2. Use of the turbulence
intensity in the clustering space therewith agrees with the stepwise regression, that
the linear approximation with turbulence intensity is relatively poor. One should how-
ever, keep in mind that the used datasets includes differences in the turbulence PDF
of the wind sectors. The regression fits are therewith biased towards sectors with
relatively low and high turbulence. The linear fit shown in Figure 91 in Appendix C,
does not support a higher order relationship. Moreover, the size of the dataset is too
limited to draw solid conclusions on this regard.

7.4 Accuracy of research methods

In this section the accuracy/usefulness of different research methods are discussed.
Large differences exist between the bending moments.

The bar graph in Figure 78 gives an overview on the usefulness of the mean wind
speed and the turbulence intensity. The top of each part of the bars represent the
standard deviation of the load residual (relative estimate of error) before the regres-
sion step is used. The bottom of each part of the bars represent the standard deviation
after the regression step. In this way, the accuracy of the fatigue load prediction is vi-
sualised from top to bottom by increasing the precision of the fatigue load expectation
and therewith decreasing the error.

Figure 78: Relative estimation error

Table 16 also states the decrease in relative error by the other research methods.
As given in the table, the reference estimation error differs between the research
methods.
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Table 16: Decrease in relative error by different research methods

U TI stepwise regression clustering sectors
variables used for
reference estimation error - U U, TI U, TI U, TI

bending moment DRE (%)

out-of-plane 50.1 30.3 13.1 4.1 2.2
flapwise 39.3 41.6 10.1 3.8 3.3

in-plane 75 8.1 14.2 4.3 0.9
edgewise 67.2 11.3 6.1 3.9 1

fore-aft 55.9 8.9 1.2 2 0.4
side-to-side 32.2 41.3 9.2 10.6 3.6

yaw 56.1 31.7 4.7 4.5 1.4
tilt 55.6 32.8 4.3 5.1 2

7.4.1 Blade root & rotor loading

The most stand out information in the figure is the low estimation error for the in-plane
and edgewise bending moments. As stated in Chapter 6, the in-plane and edgewise
bending moments are dominated by gravitational forces. The relative error is there-
fore low before the mean wind speed is used to estimate the fatigue loading. In both
cases, the mean wind speed decreases the error further. However, as discussed in
Section 6.2, this only partly refers to a causal relationship. Being dominated by grav-
itational forces, the rotor speed is expected to be the main contribution.

The importance of turbulence largely differs between the four bending moments. For
the in-plane and edgewise moments, the decrease in error after the turbulence inten-
sity fit, is not large enough to be visible in the bar graph. The performance of stepwise
regression of the edgewise bending moment is relatively poor with 6.1% with respect
to other bending moments measured at the blade root (above 10.1%).

In case of the flapwise moment, the importance of the turbulence intensity is rel-
atively large. Comparing the importance of turbulence for all four bending moments
at the blade root, the maximum importance could be close to the flapwise bending
moment.

In all cases, the stepwise regression is more effective than the clustering method
and the clustering method is more effective than the differences between sectors.
Compared to the turbulence intensity and the mean wind speed, all three methods
are less useful considering the out-of-plane and flapwise bending moments.

7.4.2 Tower bottom loading

The fore-aft bending moment of the tower is largely dominated by the mean wind
speed. The effect of the turbulence intensity is relatively small. However, the remain-
ing error is still significant. It is highest compared to the other bending moments.

In case of the side-to-side bending moment, the importance of TI is comparable to
that of the mean wind speed. Moreover, the decrease in relative error by the stepwise
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regression is largest of all bending moments. Also the dependence on wind sector is
highest. The result is therewith most comparable with the flapwise bending moment.
Moreover, in both cases the mean wind speed is included in the clustering space.

The accuracy of the linear model resulting from stepwise regression and the clustering
results are comparable for both the fore-aft and side-to-side moments. The results of
the side-to-side moments are most promising. However, given that the second wind
veer variable is used for both regression and clustering, a combination of the two
methods (see Ch. 9) is not expected to significantly decrease the error further.

7.4.3 Main shaft loading

By analysing the clustering space, it was found that the yaw and tilt moment are partly
related. Both pointed towards more than four inflow conditions and a strong relation
with the wind sectors. In Figure 78 it is also shown, that the importance of mean wind
speed and turbulence intensities are comparable. Being related to the same inflow
conditions, the damage on the shaft as a whole and the damage of other nacelle
components can be predicted at once.

In both cases, the results of stepwise regression and clustering barely decrease
the relative error. Because the amount of clusters used might not be appropriate,
significant improvements can be made for the clustering method. Because the step-
wise regression did not include new variables with respect to the clustering spaces,
a major improvement by combining the two methods is not expected.

7.5 Extreme load residuals of different bending moments

In the research discussed in Chapter 6, it is found that differences exist between the
occurrence of extreme load residuals of different bending moments. In this regard,
the bending moments can be divided into three groups. The first group has very low
load residuals with rarely occurring inflow conditions. The second group has very
high load residuals at these occasions. The third group of bending moments can also
show a distinction between very low and very high load residuals. However, neither
of the two are clearly related to areas with a high number of data points.

One should note that the variables investigated for extreme load residuals are re-
lated to the variables used in the linear model and the clustering result. The extremes
of different bending moments are therefore investigated in different two-dimensional
spaces.

Bending moments that belong to the first group are the side-to-side bending moment,
the yaw bending moment and the tilt bending moment.

In case of the side-to-side bending moment, very low load residuals are found for
a high second wind shear exponent,high second wind veer variable and a relatively
high mean wind speed. Also with low wind speeds (uncertainty lower for low wind
speeds).

Because of the limited number of data points with extreme low or high load resid-
uals, no solid conclusions could be drawn for the yaw and tilt bending moments.

Given the wind shear exponent and the turbulence intensity, most data points with
high LR for the yaw moment are in areas with a lot of data points. Points with very low
LR are further away from these dense areas. A relatively low wind shear increases
the probability of a very low LR.

The results for the tilt bending moment are similar. Points with high LR are also
found in areas with a lot of other points. In this case other two dimensional spaces
were investigated such as air density and wind veer/turbulence intensity. It is found
that very low LR likely occur with low air density and high turbulence.

The out-of-plane and flapwise bending moment belong to the second group. In the
first case, two groups of high load residuals are found. The best separation of these
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groups is visible in the linear model space with α and (∆θ/∆z)2. Very low load resid-
uals occur with low wind shear and low wind veer.

The result of the flapwise moment is similar. In this case the wind direction change
intensity has the same role as the wind shear exponent for the out-of-plane bending
moment. I.e., the separation is most clear with wdci and (∆θ/∆z)2. Very low load
residuals occur with low wind direction change intensity and low wind veer. Moreover,
the low load residuals likely occur during neutrally stable conditions. Conditions with
high LR have either a medium or a very low turbulence intensity.

The in-plane and edgewise bending moments belong to the third group. The area
with a high amount of data points (medium air density) does not relate to very low or
very high load residuals. The most distinctive group of points has a low air density, is
measured in the summer and relates to an Southeastern wind. This group contains a
relatively large amount of very high load residuals. In a more general sense, the high
load residuals occur more often with a high tip speed ratio and very low load residuals
with a lower λ.

The first group contains the same three bending moments that have a high sector de-
pendence and high number of distinct inflow conditions. Despite that the importance
of turbulence intensity is clearly higher for the side-to-side bending moment, the three
bending moments are likely related. A part of the fatigue of the three bending mo-
ments could result from the same aeroelastic mode. Being dependent on the wind
sectors, the relevant stiffness of the tower might not be fully radial symmetric.
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8 Conclusions
The research question of this report regards the search for inflow conditions that result
in atypical fatigue loading (Ch. 1). The fatigue resulting from eight different bending
moments were investigated. The out-of-plane, flapwise, in-plane and edgewise bend-
ing moment were measured at the blade root. The fore-aft and side-to-side bending
moment were measured at the tower bottom and the yaw and tilt moment at the main
shaft. In Chapter 3, a quantitative measure for atypical fatigue was defined as the dif-
ference between measured fatigue and a combined regression model based on the
mean wind speed and the turbulence intensity.

Two research methods (stepwise regression and Gaussian mixtures) were used to
define relevant inflow conditions for atypical fatigue (Ch. 4). Depending on the con-
sidered bending moment and research method, different variables are found to be
useful to define the inflow conditions. In all cases, however, the variance in atypical
fatigue within the defined inflow conditions was large compared to the differences be-
tween inflow conditions.

In general, but especially for the yaw and tilt bendingmoments, the limited dataset size
gave considerable uncertainty on the results and conclusions. Nevertheless, the most
important and most solid conclusions following from the two used research methods
are stated below. The in-plane and edgewise bending moments are dominated by
gravitational forces and are therefore not of great interest.

• The estimation error for bending moments measured at the blade root or the
tower bottom increases with mean wind speed.

• Differences in fatigue loading between wind directions are largest for the flap-
wise bending moment and side-to-side bending moment.

• The relation between fatigue and turbulence intensity is strongest for the flap-
wise and side-to-side bending moment. Correlation with fatigue by the in-plane,
edgewise and fore-aft bending moment is limited.

• In general (with exception of the fore-aft bending moment), the correlation be-
tween mean wind speed and turbulence intensity with fatigue loading differs
between wind from land and wind from a nearby lake. The differences between
wind directions are largest for higher wind speeds.

• For the side-to-side bending moment, different atmospheric variables can be
used to separate data points with highly overestimated fatigue loading from
other data points. Likely, this is also the case for the yaw and tilt bending mo-
ment. However, more measurement data is needed for solid conclusions.

• For the out-of-plane and flapwise bending moments different atmospheric vari-
ables can be used to separate data points with highly underestimated fatigue
loading from other data points. The most overestimated fatigue loading relate
to neutral atmospheric conditions.

Multiple peaks in the frequency distribution of inflow variables are found. This could
prove the need for multiple probability distributions in order to represent all inflow
conditions. However, the used research methods did not allow for a strict distinction
between continuous and discrete correlations. It is therefore not certain whether these
separate probability distributions result in different fatigue loading.

Because of this issue, because of the limited amount of data and because of the
relatively large variance in fatigue within the defined inflow conditions, the research
question is only partly answered. In the next chapter, some recommendations are
stated on finding a more accurate answer to the research question. This includes
recommendations on separating continuous and discrete correlations.
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9 Recommendations for future work
This chapter states and discusses recommendations for future work. The first section
regards the test setup and the variables representing inflow conditions. The second
section of this chapter discusses possible improvements on the used the research
methods. Section 9.4 states a recommendation on how to use a new researchmethod
in order to improve the fatigue load expectation.

9.1 Test setup and variables representing inflow conditions

With the increasing size of wind turbines, different factors in inflow conditions can
be of importance for fatigue loading. It is therefore desirable to have measurements
available at higher altitudes. Use of a LiDAR could be considered. Given new and
possibly more variables that could represent inflow conditions, the research project
can be repeated for larger turbines.

Variables used in this report are measured at a meteorological mast. This has a major
disadvantage for implementation. Metmasts are generally not available at wind farms,
and can therefore not be used for control or end-of-life prediction. Instead, variables
that can be measured at wind turbines should be used. E.g., mean wind speed, wind
direction, power output, temperature, time of day and season.

The differences between the two wind veer variables could not all be explained. It is
therefore necessary to investigate this factor in more detail and get a better view on the
wind veer profile. Use of different measurement systems (wind vanes at two heights
or wind vane at one height and sonic anemometer at other height) could potentially
explain part of the differences.

Moreover, the differences in turbulence with height could not be measured be-
cause only one turbulence measurement is available. In a different test setup, a
measure for differences in turbulence (intensity) profiles could also be used as a vari-
able representing inflow conditions.

The estimation of the wind shear exponent can be improved by using measure-
ments at more heights. In this case it would also be possible to define a better mea-
sure for the wind shear change. The used test setup did not allow for these improve-
ments.

9.2 Expected fatigue loading

An equivalent wind speed could be used to estimate the fatigue loading. However,
one should be careful by doing so, because the appropriate definition would most cer-
tainly differ between bending moments. For example, the importance of turbulence
intensity is relatively large for the side-to-side bending moment but small for the fore-
aft moment.

The accuracy of the regression models for fatigue load expectation is dependent on
the dataset size. Parts of the datasets were not included in order to equalise the con-
tributions of the three undisturbed sectors. By giving data points a weighting based
on the sector contributions instead of randomly removing data points, more certainty
on the models can be obtained.

At the considered test site, the used research methods could not be used for wind
speeds above 11 m/s. One can consider a similar research method for wind speeds
above 11 m/s (below 11 m/s excluded) and only include situations with an active pitch
controller. In this case one would only include the Western wind sector when defin-
ing the expected fatigue loading. The availability of these situations in the Lawine
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database is too limited for this purpose. However, in case a new test setup is being
built, this option should be reconsidered.

9.3 Used research methods

Stepwise regression was used to select the most relevant variables. A limited order
polynomial is used. It is therewith expected that the resulting model is underfit. In or-
der to improve this method, higher order polynomials should be investigated. Limiting
the computational effort, this can be done in two steps. The first step limits the used
variables and is based on a low order polynomial. The second step allows for higher
order terms, but does not allow for new variables in the linear model.

A number of more advanced clustering methods were considered for this project.
These methods include different types of subspace clustering. They are expected to
result in a larger computational effort. Moreover, the implementation of an advanced
clustering method was considered out of the scope of this project. Kriegel et al. (2009)
defined three types of subspace clustering. Themethods are restricted to axis-parallel
subspaces, have arbitrarily oriented subspaces or use a hybrid approach. In principle,
an arbitrarily oriented approach has the highest potential. However, having a large
overlap between the clusters, this method could result in significant problems. The
use of a more advanced clustering method should only be reconsidered after other
improvements are implemented.

As stated in Chapter 4, the number of clusters used is not necessarily optimal. There
are several approaches possible to select a combination of inflow variables and the
number of clusters. First of all one can test all combinations in search for a global op-
timum. Testing all possible combinations with different numbers of clusters, however,
will come at a large computational cost.

Alternatively, one can find the most optimal combination of inflow variables for a
fixed number of clusters first. Based on this combination, one can find the number of
clusters. Afterwards one can check with this number of clusters if the optimal combi-
nation of inflow variables is still the same. This iterative approach does not guarantee
to find to global optimum. Which local optimum is found, depends on the initial number
of clusters.

The iterative approach also contains a major issue regarding computational costs.
The computations for comparing two clustering results rapidly increases with the num-
ber of clusters (see subsection 4.4). For this reason, a high number of clusters limits
the ability to find the optimal combination of variables.

Considering the new research method discussed below, the optimal number of
clusters and clustering space might get independent on bending moment. The com-
putational effort can therewith be limited by only using an iterative approach for one
of the bending moments.

9.4 New research method

The clustering method is used by assuming no direct relationship between inflow vari-
ables and the fatigue loading exist. This direct relations are investigated by stepwise
regression. However, if both direct and indirect relationships exist, both methods are
relevant. The use of only one of the two methods would not result in an optimal fatigue
estimation.

An iteration between the two clustering methods could solve this problem. This
iteration is similar to the iteration used for the mean wind speed regression model and
the linear fit with turbulence intensity (see Section 3.2). In an ideal situation, all four
parts should be included in a single iteration. The variable estimated by each step is
defined as the fatigue loading minus the contributions of the other steps. An example
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for the turbulence intensity is shown in Equation 9.1.

E(TI) = DEL − E(U) − E(α) − E(clusters) (9.1)

with E(α) being the contribution of the wind shear exponent based on the step-
wise regression. E(clusters) includes the differences in fatigue loading between the
defined clusters.

Each iteration would improve the values for E(U), E(TI), E(α) and E(clusters). Be-
cause differences between inflow conditions are already included, it would no longer
be necessary to equalise contributions of wind sectors when making the regression
models. One should, however, stay careful with this approach because the method
assumes a summation of the contributions. I.e., it does not include the possible de-
pendence between E(clusters) and U .

With this method, the direct relations with fatigue are removed before the clustering
method is used. As a result, it is more likely that the clusters of the different bending
moments are the same. I.e., the same clustering space is used. This would be a
major advantage for future research, control strategies and lifetime prediction.
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A Test site layout

Figure 79: Layout ECN Wind Turbine Test Site Wieringermeer
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B Clustering result for the flapwise bending moment
This appendix regards the clustering results of the flapwise bending moment. In the
figure captions, the bending moment is abbreviated as ”BladeFlap”.

Variables used in the clustering space of the flapwise bending moment are the turbu-
lence intensity, the wind shear exponent and the mean wind speed. The data points
based on the undisturbed wind sectors are not equally divided amongst the four clus-
ters (Table 5). The largest cluster contains more than half the data points.

The first and by far largest cluster has a low kurtosis for both the turbulence intensity
and the wind shear exponent (Fig. 80). Heavy tails usually refer to the existence of
multiple inflow conditions within a cluster. In this case however, no clear additional
peaks are visible in the PDFs.

(a) Turbulence intensity (b) Wind shear exponent

Figure 80: Gaussianity cluster 1 of BladeFlap

The PDF of α of cluster 2 has a low kurtosis, high skewness and multiple peaks. It is
therefore likely that it contains multiple inflow conditions. On the other hand, the kur-
tosis of the wind shear exponent of cluster 4 is exceptionally high (1.12). Combining
the two clusters would give a more average kurtosis and combine two of the peaks of
cluster 2. Moreover, the clusters mainly differ in mean wind speed (Fig. 38). Because
no true clustering is expected in this variable, this division in clusters is not desired.

The digraph shown in Figure 84, show that the two clusters can be related. More-
over, there is a lot of weak connections in general between clustering results with 3-5
clusters. In this clustering space, the algorithm is likely sensitive to the initial condi-
tions, and therewith finds ”weak” clusters. I.e., clusters that are difficult to differentiate
from each other.



TNO report | TNO 2018 S11661 111 / 115

Figure 81: Gaussianity cluster 2 of Blade-
Flap

Figure 82: Gaussianity cluster 4 of Blade-
Flap

The turbulence intensity PDF of the third cluster, show a low kurtosis and multiple
peaks. Combining all the above stated aspects, one can conclude that the clustering
algorithm is not able to produce well defined clusters in this clustering space.

Figure 83: Gaussianity cluster 3 of Blade-
Flap

Figure 84: Digraph of BladeFlap

The dependence of clusters on the different wind sectors is not discussed in detail.
The contribution of the Southeastern sector to the second cluster is small. If the
contributions of clusters 2 and 4 are added to each other, the resulting cluster would
still depend on wind sectors.
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C Regression models
This appendix contains figures with the mean wind speed (U ) regression models and
the linear fits with turbulence intensity (TI) for each bending moment. On the y-axis
of the first subfigures (a), the difference between the turbulence contribution (E(TI))
and the normalised design equivalent load (DEL) is plotted. In addition, it is stated
whether an artificial neural network (ANN) is used or a Gaussian process regression
model (GPR). On the second subfigures (b), the difference between the mean wind
speed contribution (E(U)) and the normalised DEL is plotted on the y-axis.

C.1 Blade root & rotor loading

The number of points used to make the load expectation for the out-of-plane bending
moment is stated in Table 17. Compared to the overall dataset (other cases), the con-
tribution of sector UMUT-SE is relatively small. Mostly data points with low turbulence
intensity are removed in this sector. Because it regards the same dataset, the table
is similar to that of the in-plane bending moment, the edgewise bending moment and
the flapwise bending moment.

Table 17: Number of data points for the out-of-plane bending moment

UMUT-N UMUT-SE UMUT-SW total DMDT-S
expected loading 513 120 312 945 0

other cases 785 458 442 1685 14224

The four figures for the bending moments measured at the blade root are shown be-
low. Correlation with the mean wind speed is strongest for the in-plane and edgewise
moments. Correlation with turbulence intensity is relatively large for the out-of-plane
and flapwise bending moments.

(a) Regression model with U (b) Linear fit with TI

Figure 85: Regression models for the out-of-plane bending moment
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(a) Regression model with U (b) Linear fit with TI

Figure 86: Regression models for the flapwise bending moment

(a) Regression model with U (b) Linear fit with TI

Figure 87: Regression models for the in-plane bending moment

(a) Regression model with U (b) Linear fit with TI

Figure 88: Regression models for the edgewise bending moment
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C.2 Tower bottom loading

The number of points used for the side-to-side moment are stated in Table 18. It is
almost exactly the same for the fore-aft moment (one data point more from UMUT-
SW and one less for UMUT-SE used for expected loading). Below the table, the
regression models of the two bending moments are shown.

Table 18: Number of data points for the side-to-side bending moment

UMUT-N UMUT-SE UMUT-SW total DMDT-S
expected loading 528 106 361 995 0

other cases 848 461 484 1793 15010

(a) Regression model with U (b) Linear fit with TI

Figure 89: Regression models for the fore-aft bending moment

(a) Regression model with U (b) Linear fit with TI

Figure 90: Regression models for the side-to-side bending moment
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C.3 Main shaft loading

As stated in Section 2.4, the size of the datasets for the main shaft loading is lim-
ited. The issue of limited data availability is largest for the Southeastern wind sector
UMUT-SE. For both the yaw and the tilt bending moment, the algorithm equalising the
distributions removed all data points of this sector. The expected loading is therefore
based on two undisturbed sectors instead of three. The corresponding table for the
yaw bending moment is shown in Table 19. The table for the tilt bending moment is
similar, because they are based on the same dataset.

Table 19: Number of data points for the yaw bending moment

UMUT-N UMUT-SE UMUT-SW total DMDT-S
expected loading 237 0 57 294 0

other cases 283 22 162 467 4430

Figures 91 and 92 show the regression models for the yaw and tilt bending moments
respectively.

(a) Regression model with U (b) Linear fit with TI

Figure 91: Regression models for the yaw bending moment

(a) Regression model with U (b) Linear fit with TI

Figure 92: Regression models for the tilt bending moment
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