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Abstract
Processing graphs on a large scale presents a range of difficulties, including irregular memory access
patterns, device memory limitations, and the need for effective partitioning in distributed systems,
all of which can lead to performance problems on traditional architectures such as CPUs and
GPUs. To address these challenges, recent research emphasizes the use of Field-Programmable Gate
Arrays (FPGAs) within distributed frameworks, harnessing the power of FPGAs in a distributed
environment for accelerated graph processing. This paper examines the effectiveness of a multi-FPGA
distributed architecture in combination with a partitioning system to improve data locality and
reduce inter-partition communication. Utilizing Hadoop at a higher level, the framework maps the
graph to the hardware, efficiently distributing pre-processed data to FPGAs. The FPGA processing
engine, integrated into a cluster framework, optimizes data transfers, using offline partitioning for
large-scale graph distribution. A first evaluation of the framework is based on the popular PageRank
algorithm, which assigns a value to each node in a graph based on its importance. In the realm of
large-scale graphs, the single FPGA solution outperformed the GPU solution that were restricted
by memory capacity and surpassing CPU speedup by 26x compared to 12x. Moreover, when a
single FPGA device was limited due to the size of the graph, our performance model showed that a
distributed system with multiple FPGAs could increase performance by around 12x. This highlights
the effectiveness of our solution for handling large datasets that surpass on-chip memory restrictions.
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1 Introduction

Graph computing is a specialized field within computer science dedicated to the analysis
and manipulation of data organized in a graph structure. This approach aims to reveal the
patterns, relationships, and insights inherent in interconnected data, particularly in domains
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such as social networks, biology, and transportation [22, 21]. The use of graph structures
improves the extraction of valuable information, contributing to better decision-making and
system improvement.

The emergence of big data has caused an increase in the size of models, datasets, and
graphs, which are known as large-scale graphs. The volume of data organized in graph
structures is expanding rapidly, necessitating efficient and scalable techniques for processing
these large-scale graphs [18]. The difficulties arise from dealing with the large amount of data
and the complex structure of the graphs. When dealing with large-scale graphs that contain
billions of nodes and edges, the demand extends beyond the raw computing power. A single
node is not capable of handling such large graphs, so distributed large-scale graph computing
is a beneficial solution. Furthermore, specialized methods, such as graph partitioning or
optimizing random memory access, are crucial for improving efficiency and scalability in
managing these complex datasets.

Field Programmable Gate Arrays (FPGAs) are becoming increasingly popular for graph
processing, offering an attractive alternative to conventional CPUs and GPUs [6, 9]. Indeed,
GPUs are optimized for massively parallel workloads, such as those seen in Deep Neural
Networks. However, their efficiency decreases when faced with applications that involve highly
memory-sparse operations and issues related to data races[17]. On the other hand, CPUs,
while more general-purpose, face limitations in large-scale graph processing due to their
intrinsic architecture, which is not inherently optimized for the intricate and parallel nature
of graph-related computations. Unlike conventional architectures, FPGAs are remarkable for
their high level of customization, providing optimized performance for specialized tasks [5,
12, 10, 11].

This work outlines the challenges and insights associated with large-scale graph processing
encountered during the evaluation of our framework presented in [19]. The main objective is
to evaluate and suggest improvements based on the initial examination of a structure that
uses large-scale graph processing with FPGAs in a distributed system based on Hadoop.

The rest of this paper is structured as follows: In Section 2 we present the motivation
and challenges in dealing with large-scale graph computing. In Section 2.1, we introduce our
framework for accelerating large-scale graph computing with FPGAs. In Sections 3 and 4
we discuss the methodology of design implementation and its evaluation. Finally, Section 5
presents our conclusion and provides a brief overview of potential future directions.

2 Motivation and Challenges

Recent research on graph processing using FPGAs [5] has been conducted mainly on medium-
sized data sets, rather than large-scale ones. Sakr et al. [20] have shown that these medium-
sized graphs can be managed by desktop CPUs. This could reduce the attractiveness of
using hardware accelerators such as FPGAs or GPUs, as they are more expensive and less
user-friendly than general-purpose CPUs.

Motivations

The emergence of big data technologies has changed the landscape, making it easier to collect,
store, and process large amounts of data. This has led to an abundance of data, often in the
form of graphs, which have grown to the point of reaching PetaBytes [20], surpassing the
memory capacity of current CPUs or GPUs. For instance, when the graph size exceeds GPU
memory limits, unified memory becomes essential. This requires frequent data transfers
between host memory and GPU on-chip memory, incurring additional overhead and leading
to performance degradation [16].
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Our second motivation is to integrate a high-level interface for the deployment of a
distributed platform on the underlying hardware. Hadoop is a valuable solution for large-
scale graph processing, providing powerful tools for storing, processing, and analyzing
extensive graph datasets in a distributed manner. The Hadoop Distributed File System
(HDFS) allows for the storage of large datasets across a cluster of machines, making it possible
to process graphs that are too large for a single machine. Hadoop’s scalability allows for the
flexible adaptation of the cluster by adding or removing machines, making it cost-effective to
process large graphs. Using the map-reduce programming model inherent in Hadoop enables
distributed computing, significantly improving the efficiency of graph processing algorithms.

Challenges

When designing large-scale graph processing on FPGAs, it is essential to make critical
design decisions. To begin with, it is necessary to divide the graph into small, equal-sized
parts due to the limited on-chip memory in modern FPGAs. This partitioning technique
is essential since FPGAs do not have the capability to do dynamic memory allocations. It
is of utmost importance to reduce external memory accesses, as data transfers can cause
considerable overhead and have a negative effect on performance. The design of a processing
kernel is critical as it should have a memory access pattern that is compatible with the
partitioning scheme mentioned above. This decision is made to reduce communication
overhead, particularly when reading host computer memory from the accelerator or between
different accelerators. The processing kernel should be as efficient as possible, taking advantage
of the parallelism that can be achieved on FPGAs. Multiple instances of computational units
can be created to increase parallelism and improve performance.

2.1 Proposed Solution
In this section, we will delve into the structure of the framework, exploring the partitioning
techniques employed, the single-FPGA architecture and its adaptation for the multi-FPGA
distributed system.

Graph Partitioning

Graph partitioning is a well-discussed challenge in the graph computing literature, with
numerous works proposing innovative techniques and algorithms [23].

This framework utilizes the GridGraph partitioning technique to divide the edges of a
graph into smaller, self-contained chunks, each of which is assigned to a particular vertex.
These chunks, along with the associated vertex data, are stored on the host computer’s
file system. This design ensures that the chunks are independent and compatible with the
Block RAM (BRAM) size of the target FPGA. During the processing, the kernel reads the
chunks in sequence from the host memory, updating the values, which are then written back.
GridGraph is a partitioning technique that is selected for FPGA acceleration due to its
advantageous tradeoffs. It is especially beneficial for large-scale graph processing scenarios,
as it divides the graph into smaller grids for independent processing, resulting in high data
locality and avoiding data conflicts [23]. Furthermore, the ability to map grids onto on-chip
FPGA resources increases performance scalability. An illustration of graph partitioning with
GridGraph is shown in Fig. 1, which divides the vertex set into grid subsets. Each partition
represents outgoing edges for a specific range of vertices, facilitating an efficient iterative
processing sequence. The process loads and processes edges from each partition in sequence,
computing vertex values until a specific termination condition for the algorithm is met.

PARMA-DITAM 2024
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Figure 1 (a) A given sample graph. (b) Produced edge blocks using GridGraph partitioning.
The number of partitions is P=2, producing P 2 edge blocks.
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Figure 2 An overview block diagram of the proposed hardware design [19].

FPGA Architecture

In a single FPGA process, the graph data is pre-processed using the partitioning technique
described in Section 2.1. The resulting edge blocks are then stored on the host file system.
Given that the overall size of these graph blocks may reach terabytes, the host memory
must be large enough to accommodate the reading of all edge blocks from the file system.
Subsequently, the data is loaded into the FPGA on-chip memory before processing. Fig. 2
provides an overview of the single FPGA graph processing unit. In this representation, the
on-chip memory is configured to optimize the memory bandwidth while maintaining the
system frequency at its peak. Dedicated FPGA kernels are responsible for reading the data
from the stream input provided by the host and directing them to the computational units
within the FPGA. The units execute the graph algorithm, such as PageRank, afterwards.
Upon completion of the computation, the aggregated results are written back to the host
memory and stored in its file system.
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Distributed Architecture

Graph datasets that are too large to be processed on a single machine can be handled in
distributed computing. This involves distributing the data across multiple machines, allowing
for the processing of graphs that would be too large for a single machine to handle. A
distributed system is made up of multiple machines that work together as one virtual system.
Each machine or node is responsible for processing a portion of the data. These systems
can be managed manually with custom software, such as popular message passing interfaces
(MPI). This manual management allows for precise application optimization, leading to high
performance. However, this approach requires a lot of engineering effort and knowledge,
especially in the field of distributed computing. Various distributed computing frameworks
are available that automate and tackle many of the issues discussed earlier. Hadoop, a
popular open source framework created by the Apache Software Foundation in 2005, is a
widely used technology for large-scale data processing in machine clusters [2]. It is based
on the map-reduce programming model and enables parallel processing of large amounts
of data across a distributed platform, due to the integration of the Hadoop Distributed
File System (HDFS). Data are usually stored in a distributed file system, such as HDFS or
ZFS, and processed through a distributed computing framework, such as Apache Hadoop.
Graph algorithms, including PageRank, can be implemented in these frameworks for graph
processing and analysis [8]. Recently, the integration of FPGAs with Hadoop for large
graph processing has gained attention [3]. This combination allows one to take advantage
of Hadoop’s scalability and fault tolerance while taking advantage of the high performance
of FPGAs for graph processing tasks. Although the use of FPGAs with Hadoop is still in
its early stages, further research is needed to evaluate the feasibility of using FPGAs in
combination with Hadoop to speed up graph processing and optimize system performance.

Data processing within the map-reduce architecture involves two main phases. In the
initial “Map” phase, the data are divided into smaller chunks known as input splits. Each
split is processed by a separate node in the cluster, utilizing user-defined functions called
Mappers to transform the input data into intermediate key-value pairs. The subsequent
“Reduce” phase processes these intermediate key-value pairs using user-defined functions
called Reducers, which merge the input data into the final output. In a map-reduce system,
a user application initiates a root controller and a set of mappers and reducers distributed
across various compute nodes. The root node coordinates the generation of mappers and
reducers and monitors their progress. The overall system overview of the Hadoop map-reduce
design is depicted in Fig. 3.

In our scenario, nodes with multiple FPGA accelerators are configured to appear as
multiple nodes with a single FPGA to Hadoop. For instance, a node with four FPGAs executes
four distinct instances of Hadoop, each FPGA being mapped one-to-one to an instance. This
design simplifies the distribution of workload across multiple FPGAs, eliminating the need
for manual splitting. Moreover, it allows for the use of Hadoop scheduling for load balancing
and fault tolerance. The Hadoop scheduler can handle single FPGA failures without taking
the entire node offline. The framework for large-scale graph processing involves three primary
phases (see Fig. 3). During the initial stage, the graph is divided into smaller sections,
named edge-blocks, using the GridGraph partitioning technique. This initial step serves as
pre-processing, enabling the parallel processing of sub-graphs through a single scan. The
second phase constitutes the core processing stage, where a customized Map function executes
the graph processing algorithm on the previously computed subgraphs (e.g., PageRank). The
third and final phase involves the integration of partial results generated by different workers
using a custom Reduce function. This step is optional and can be utilized to merge results

PARMA-DITAM 2024
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Figure 3 The Hadoop framework for distributed graph processing [19].

saved in different files by Mappers. However, the necessity of consolidating results into a
single monolithic file may vary depending on the specific use case. For iterative algorithms,
such as PageRank, it is necessary to repeat phases 2 and 3 until the algorithm converges.

3 Methodology

In this section, our aim is to provide insight into the methodology employed in developing
the graph processing framework. This framework is implemented using the Vivado HLS
toolchain (version 2022.2) on the Xilinx Alveo U250 board, featuring the Xilinx VU13P
FPGA. Xilinx Alveo boards serve as Data Center accelerator cards tailored for diverse tasks
such as machine learning inference, video transcoding, and database search and analytics.
The design utilizes the Vivado design suite (Vitis version 2022.2) and is divided into two
parts: implementation of the kernel and host program. The host program, executed on
the CPU, comprises two main stages. The initial stage involves receiving and preparing
pre-processed graph data (see Section 2.1) and parameters, while the subsequent step creates
buffers for optimal memory alignment to enhance performance. The bridge between the host
and the kernels is established through runtime buffers and commands to program the FPGA
device with the bitstream. Data exchange between host memory and kernel local memory,
like BRAM, is facilitated by using OpenCL functions and specific FPGA kernels.

On the contrary, the kernel implementation, executed on the FPGA, is written in HLS
and structured to optimally utilize accelerator resources. Efficient FPGA implementation
is influenced by structures such as local arrays, which require careful resource allocation in
terms of Lookup Tables (LUTs), Block RAM (BRAM), and registers. Strategies such as
partitioning and streaming data through small and fast FIFOs are employed to minimize
resource utilization and accommodate large local arrays on FPGAs. To enhance performance,
the proposed design incorporates tuning at the kernel link stage, allowing a single kernel to
instantiate multiple hardware compute units (CUs). The host program initiates overlapping
kernel calls, executing kernels concurrently by running independent CUs.

In this paper, we present the performance evaluation of our framework in the single FPGA
configuration, extracting the execution time of the FPGA kernel. For distributed execution,
since there is no access to a Hadoop cluster, we employed a mathematical model to estimate
performance. The map-reduce programming model has been extensively explored in the
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Table 1 The XACC server is used to evaluate the real implementation.

Instance Name CPU CPU Freq Cores Memory FPGA
board

alveo1.ethz.ch 2× Intel Xeon Gold
6234

3.30 GHz 16 376 GiB Alveo
U250

literature, allowing for predictable performance modeling [7, 13]. Consequently, this study
relies on performance forecasts drawn from previous analyses of algorithm efficiency in map-
reduce implementations. Before delving into the analysis, it is crucial to underline specific
assumptions. First, the graph is stored in the Hadoop Distributed File System (HDFS), and
second, graph partitioning occurs in parallel through a MapReduce job or custom partitioner.
The first assumption remains valid, given the focus on large-scale graphs, which are too
extensive for a single node, making it likely that they are stored in a distributed file system.
The second assumption is valid as long as the first holds. Once the graph is situated in the file
system, any necessary pre-processing can be directly executed in MapReduce. Given these
assumptions, the graph scale necessitates analysis in a distributed system, as attempting
such an analysis on a single parallel node would require an impractical amount of time. In
the distributed framework, FPGA accelerators are exclusive to mappers for computing a
partial state. The Eq. (1) provided is essential for assessing how a faster mapper would
impact the overall computation time.

T = Tsplit−input + Toverhead + N(Tscatter + max(Tmap) + Ttransfer + Treduce) (1)

where:
Tsplit−input time needed to partition the graph in sub-graphs;
N is the number of iterations of the iterative algorithm;
Toverhead is the overhead introduced by map-reduce;
Tscatter is the time needed to distribute the state vector to all the workers;
max(Tmap) is the time needed by the slowest mapper;
Ttransfer is the time needed to transfer the state vector to the reducers (account for
shuffle and sort);
Treduce is the time needed to aggregate the partial state vectors.

4 Evaluation

This section presents the first evaluation of the framework using an optimized version of the
PageRank algorithm. PageRank is often used as a standard for evaluating the performance
of large graph processing. It is one of the most computationally intensive graph algorithms
and requires the processing of a large number of vertices and edges. This algorithm is used
to assess the importance of each node in a graph, which was initially used by search engines
to rank webpages based on their relevance. PageRank assigns a score, referred to as the
PageRank score, to each vertex, based on the number and importance of the vertices pointing
to it. Vertices with higher PageRank scores are considered more significant than those with
lower scores. Using PageRank as a measure allows for the assessment of the proposed model’s
effectiveness in dealing with large graph data efficiently.

PARMA-DITAM 2024
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Table 2 The datasets for evaluating our proposed study. We choose them based on the size and
the structure of the datasets to be comparable with other works.

Graph dataset Vertices Edges Size (GB) Type

LiveJournal [15] 4.8M 0.069 B 1.1 Social Web

Web-UK-2005 [4] 39M 0.994 B 16 Web Graph

Twitter [14] 41.6 M 1.47 B 23 Web Graph

Friendster [15] 68.3M 2.58 B 43 Social Web

The implementation of the framework described in section 2.1 has been evaluated against
CPU, GPU, and FPGA architectures. The hardware implementation was carried out on a
Xilinx Alveo U250, which was integrated into Xilinx Adaptive Compute Clusters (XACC) [1].
The XACC servers distributed resources evenly across multiple Virtual Machines (VMs),
guaranteeing that each VM had access to its own FPGA card. The software environment
within the VM is based on Ubuntu 20.04 and incorporates FPGA accelerator deployment
frameworks such as Vitis and Vivado HLS. Table 1 provides detailed specifications for the
server and the hardware accelerator.

In the context of PageRank comparisons with the CPU, we used both a sequential
version, an OpenMP multicore version, and the GridGraph library, recognized as one of the
most efficient graph processing frameworks for CPUs. The OpenMP version used in this
assessment is version 4.0.3, and the software is compiled using GCC version 9.4.0. In the
case of GPU implementation, we used the cuGraph library for comparison, using the CUDA
toolkit version 11.7. “cuGraph” is an open source GPU graph analysis library integrated into
the RAPIDS ecosystem, offering a high-performance, user-friendly, and extensible framework
for GPU-based graph analysis. Our experiments used the NVIDIA V100 GPU, renowned for
its high performance based on the Volta architecture. The cugraph library was chosen not
only for its capabilities in single-GPU execution, but also for its potential in running multi-
GPU executions to facilitate a comprehensive comparison with our distributed execution.
Nevertheless, it is important to mention that our attempts to execute the multi-GPU function
with our extensive dataset were unsuccessful, indicating the need for additional effort to
resolve the issue. To evaluate our optimized PageRank algorithm, we selected graphs of
various sizes from the datasets listed in Table 2, ranging from a small graph (LiveJournal) to
a large graph (Friendster). These datasets were intentionally chosen to assess performance
as the graph size exceeds the memory capacities of the CPU or GPU devices.

Fig. 4 shows that the FPGA-based PageRank implementation outperforms sequential
and OpenMP execution on a CPU for all datasets. The speedup achieved ranges from
approximately 9.7x for the smallest dataset to about 26x for the Twitter dataset. Compared
to the GridGraph library, which employs a grid partition schema similar to ours and uses
OpenMP for parallel execution, the framework shows a performance improvement with a
speedup up to 1.5x (Twitter). Our FPGA implementation not only overcomes CPU solutions
but also achieved a speedup of up to 4.5x compared to the cuGraph library (Web-UK-2005).
In particular, the Web-UK-2005 data set, exceeding GPU on-chip memory, requires the use
of Unified Memory, incurring additional overhead and degrading performance due to data
transfers between host memory and GPU on-chip memory. Larger datasets (Twitter and
Friendster) cause GPU experiments to fail due to insufficient memory on the GPU board.
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Table 3 Alveo U250 platform experimental results in comparison to a software baseline and
state-of-the-art FPGA works. Reported numbers are all in Seconds.

Dataset Sequential
CPU1)

OpenMP
CPU1)

GridGraph
CPU1)

cuGraph
GPU2)

Vitis Library
FPGA

Our work
FPGA

LiveJournal 27.01 5.49 3.54 5.28 79.79 2.78

Web-UK-2005 275.44 185.4 34.9 90.73 N/A3) 20.6

Twitter 1443 658.5 88.5 Failed 4) N/A3) 55.6

Friendster 2258 950 141 Failed 4) N/A3) 95.4

1) CPU details are described in Table 1.
2) The GPU used for the experiments is a NVIDIA Volta V100.
3) N/A indicates that the aforementioned study did not report this dataset evaluation.
4) The experiment hit the GPU memory limit.

These results underscore the advantages of employing FPGA for graph processing tasks,
especially with large datasets. Furthermore, the framework surpasses the PageRank algorithm
available in the Vitis Library, achieving a speedup of about 28x. This emphasizes the benefits
of custom FPGA implementations for graph processing tasks, particularly with large datasets
that surpass on-chip memory capacity. The findings position our FPGA implementation as a
suitable solution for accelerating graph processing tasks.

It is noteworthy that the framework’s speedup nearly doubles from Web-UK-2005 to
Twitter, despite Twitter’s size being approximately 1.5 times larger than Web-UK-2005 (see
Table 2). However, the performance boost diminishes with the larger Friendster dataset,
prompting an exploration of whether a multi-FPGA solution in a distributed system, like
Hadoop, could enhance FPGA usage for large-scale graph processing.

Graphs larger than Friendster exceed the computing capabilities of contemporary machines.
To address this, a potential solution involves distributing these large graphs across multiple
machines through distributed computing. Fig. 5 presents forecasts for the integration of
FPGA acceleration in a Hadoop-distributed cluster for large-scale graph processing. Profiling
the code and using the results to evaluate Eq. (1) indicates that FPGA utilization is most
effective when a significant amount of time is spent in the mapping phase. In the forecasts, it
is assumed that the majority of time (51% of the total time) is spent in the mapping phase.
Under these conditions and considering a worst-case scenario in which FPGA-accelerated
nodes achieve only a 20x speedup compared to CPU-only nodes, the forecasts show a potential
54% reduction in total time. In a more realistic scenario where 80% of the time is spent in
the mapping phase (a common assumption with partition methods such as GridGraph to
minimize data transfer), the time reduction achieved by a hybrid CPU-FPGA Hadoop cluster
can increase to 84% compared to a CPU-only cluster. Fig. 5 summarizes these forecasts and
illustrates the best-case scenario (although unlikely) where 90% of the total execution time
is spent in the mapping phase, showing a potential over 90% time reduction under optimal
conditions.

This initial evaluation has revealed the current performance of the framework, as well
as providing useful knowledge that can be used to improve it. Examining the results has
exposed areas where the framework can be improved and optimized. We investigated the
graph partitioning technique and discovered that the first possible enhancements can be
achieved by refining the graph partitioning approach described in Section 2.1. As observed
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Figure 4 Speedup evaluation on the sequential execution of the proposed FPGA PageRank
algorithm (our work) with the CPU, GPU, and FPGA solutions for the LiveJournal, Web-UK-2005,
Twitter, and Friendstser datasets [19].
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Figure 5 Reduced processing time when employing FPGAs for accelerated graph processing in
contrast to utilizing a Hadoop cluster without FPGA integration [19].
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Figure 6 Edge block partitioning of the LiveJournal dataset with P=4 partitions using the
GridGraph method.

in Fig. 1, the partitions are unevenly balanced in the grid, with partition 4 being larger than
the others. Our investigation extended to the LiveJournal dataset, where the execution of
the grid graph partitioning exhibited a similar imbalance, as illustrated in Fig. 6. The output
of the grid graph resulted in one substantial partition (block 0) and several smaller partitions.
This lack of balance in workload could lead to notable performance declines. Addressing this
issue requires the development of an improved version of the graph partitioning method to
ensure a more balanced workload, which can significantly improve overall performance.

5 Conclusions

The field of large graph processing is growing in importance as the amount of data generated
by applications such as social networks, web graphs, and biological networks continues to
increase. To handle this increase in graph sizes, efficient and scalable processing methods
must be developed. The integration of Field Programmable Gate Arrays (FPGAs) with
the open source Hadoop framework is becoming increasingly popular for the purpose of
managing large graph datasets. FPGAs, which are integrated circuits designed for specific
tasks, are highly efficient when it comes to executing graph processing algorithms. Hadoop,
on the other hand, is a widely used platform for distributed processing of large datasets.
The first evaluation of our framework has been shown to be more effective than existing
implementations for the PageRank algorithm. This highlights the usefulness of FPGA-based
solutions for large datasets. Additionally, the combination of FPGAs and Hadoop can
potentially improve performance when dealing with large datasets. This initial evaluation
highlights the potential improvements of the framework, stressing the importance of taking
into account factors such as graph partitioning. Further research is needed to broaden the
benchmark set for a more comprehensive evaluation and to look into other essential aspects
such as the host-FPGA communication and the FPGA memory usage.
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