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Abstract 

During the first months, the 2014 outbreak of the Ebola Virus in West Africa was 

characterized by inadequate intervention capacities. In this paper, we investigate (i) the 

influence of limited but dynamic intervention capacities and their effect on the effective 

reproduction number, and (ii) the effects of proactive versus reactive intervention approaches. 

We use a transmission model extended with dynamical intervention capacities.  Taking into 

account a bandwidth for potential over- and underreporting in reported Ebola Virus Disease 

cases, the model is used to generate ensembles of plausible scenarios. Next, it is used for testing 

the effectiveness of more proactive approaches in extending intervention capacities across these 

scenarios. We show that reactive approaches in extending intervention capacities can lead to 

continued under-capacity, and, consequently, to an increase of the effective reproduction 

number and to accelerated EBOV transmission. Proactive approaches, which take deployment 

delays, doubling times of diseases, and potential underreporting of the number of cases into 

account, help in limiting the total number of cases and deaths if the effective reproduction 

number in isolation is lower than the effective reproduction number outside of isolation. If the 

effective reproduction number in isolation is higher, proactive intervention policies still 

outperform reactive intervention policies. 

 

Keywords: Ebola Virus Disease, Intervention capacity, Reproduction number, System 

Dynamics, Scenario Discovery 

  



1. Introduction 

The 2014 outbreak of Ebola Virus (EBOV) and, consequently, Ebola Virus Disease (EVD) 

in Liberia, Sierra Leone, Guinea, Senegal, Mali, Nigeria, Spain, and the United States of America 

(CDC, 2014; Gire et al., 2014) was by far the largest observed to date (WHO Ebola Response 

Team, 2014). The number of cases and deaths outnumbered the sum of all previous outbreaks. 

Where earlier outbreaks took place in rural or otherwise sparsely populated areas (Amblard et 

al., 1997; Borchert et al., 2011; Bwaka et al., 1999; WHO, 1978a,b; Okware et al., 2002; Pattyn, 

1977; Roddy et al., 2012; Shoemaker et al., 2012), the 2014 outbreak distinguished itself by 

occurring in densely populated urban areas (WHO Ebola Response Team, 2014). 

Dynamic transmission models can be used for intervention capacity planning for 

epidemics like the 2014 EVD outbreak. During the 2014 outbreak, dynamic transmission models 

have been used for estimating the basic reproduction number of Ebola, and for projecting the 

future development of the epidemic (Chowell, Hengartner, Castillo-Chavez, Fenimore, & Hyman, 

2004; Lekone & Finkenstädt, 2006; WHO Ebola Response Team, 2014). However, projecting the 

dynamics of EBOV was, especially during the first few months, complicated by uncertainty about 

many input factors (Butler, 2014). Examples of uncertain factors include the case fatality ratio 

(Kucharski & Edmunds, 2014), and the basic reproduction number R0 (Althaus, 2014; Fisman, 

Khoo, & Tuite, 2014; WHO Ebola Response Team, 2014). Further, the actual number of cases 

during the outbreak in West Africa was believed to be considerably higher than the reported 

number of cases (Meltzer et al., 2014), since the infrastructure to diagnose new cases and 

identify contamination epicenters was insufficient.  The insufficiency of the infrastructure to 

identify new cases and epicenters of contamination, and the resulting underestimation of the 

problem, contributed to the continued spreading of the disease (WHO Ebola Response Team, 

2014). 

With the continued EBOV spreading, capacities like medical staff, hospitals, isolation 

facilities, and tracing officers were being scaled up dynamically to curb the outbreak. 



Simultaneously, efforts were initiated to speed up the development and provision of Ebola 

medication and vaccines. That is, the extent of these capabilities in the region changed 

significantly over time. These intervention capacities, and their dynamics, therefore need to be 

incorporated inside transmission models aimed at projecting the future development of the 

epidemic. This is not new. For example, Bachinsky and Nizolenko (2013) combined a SEIR  

model (i.e., a model with separate compartments for Susceptible (S), Exposed (E), Infectious (I), 

and Recovered (R) populations) with constant isolation bed capacities. Studies on influenza also 

often include the influence of anti-viral medication and vaccination programs (Kenah, Chao, 

Matrajt, Halloran, & Longini, 2011; Klepac, Bjørnstad, Metcalf, & Grenfell, 2012; Luz, Vanni, 

Medlock, & Galvani, 2011; McCaw & McVernon, 2007; Moss, McCaw, & McVernon, 2011). 

However, none of the early Ebola studies made use of detailed dynamic sub-models of 

endogenous intervention capacity development for a broad range of intervention capacities. 

In this paper, we present an extended SEIR model for EBOV propagation that includes 

intervention capacities endogenously. The model was developed and used early September 2014 

to assess capability deployment needs in West Africa. The model presented here is 

parameterized for Liberia only. The uncertainty by which the EVD outbreak in West Africa was 

characterized is incorporated by means of large uncertainty ranges. This enables us to evaluate 

the influence of dynamic limits on EVD interventions on the effective reproduction number. That 

is, the effective reproduction number is modeled as the result of a SEIR model extended with 

endogenous intervention capacities. The effective reproduction number, as it is used here, 

therefore relates to the average number of infections per single infection given the dynamics of 

the population immunity level and the dynamics of the intervention level. 

We explore the dynamics of the model under uncertainty in order to explain how 

epidemic risk and intervention capacities interact, what the consequences may be of their 

interaction, and how the use of dynamic transmission models with integrated dynamic 

intervention capacities can inform planning of intervention capacities during future outbreaks. 



The setup of this paper is as follows. First, we present the SEIR model extended with 

model structures with limiting intervention capacities (i.e., isolation, health workers, tracing 

officers, and eventually vaccines), and the experimental setup. Second, we discuss the results of 

our analysis for the cumulative number of cases, the effective reproduction number, and 

doubling time. Third, we discuss our findings and provide concluding remarks. 

2. Methods 

We developed a model combining a SEIR core with possible interventions aimed at 

curbing the Ebola epidemic in West Africa. The model was developed using the System 

Dynamics (SD) method (Forrester, 1961; Pruyt, 2013; Sterman, 2000) and was used for 

exploratory purposes (Bryant & Lempert, 2010). SD is a method for modeling and simulating 

dynamically complex systems or issues characterized by causal relations, feedback loops, 

accumulations, and delays. SD models are essentially systems of differential equations or 

integral equations (Lane, 2000). Simulating the dynamic behavior of the modeled system 

through numeric integration of these equations results in a simulation run displaying the 

behavior of the modeled system over time. Simulation runs can be used to analyze problems 

related to the system, and to evaluate the effects of policy interventions in these systems. SD is 

regularly used to study disease dynamics and health policy (Sterman, 2000; Thompson & 

Duintjer Tebbens, 2009). In this particular case, we used it to explore the consequences of the 

different combinations of uncertainties on the dynamics of the epidemic, and test the effects of 

different intervention strategies. 

2.1 Model description 

We started with the traditional SEIR model. The central structure of the model contains 

state variables, aka stock variables, for the susceptible, exposed, infectious, and recovered sub-

populations (Fig. 1). Mathematically speaking, these stock variables are integral equations. We 

made several changes to this basic SEIR structure. We divided the infectious population in a 



critical phase (infectious population) and a recovery phase for survivors of the critical phase, 

where patients may either recover or die. The recovering patients are still infectious. Therefore, 

they were modeled using a second stock variable, the infectious survived population, who are 

recovering and will survive. We applied this subdivision to both the infectious population in 

isolation (isolated infectious population and isolated survived population in Fig. 1) and the 

infectious population outside of isolation and treatment centers (infectious population and 

infectious survived population). 

Further, we subdivided (i.e., vectorized or subscripted) these population stocks in order 

to take potential self-quarantining behavior of the population into account. The S, E, and I stocks 

outside isolation (i.e., Susceptible population, Exposed population, Infectious population, and 

Infectious survived population), and the flows between these stocks, contain this subdivision. In 

Fig. 1, these stock variables have a bold border. Introducing this structure is important, as a 

succesful societal response to an outbreak leads to a significant decrease in the necessary 

intervention capacities like treatment and isolation capacity (Pruyt, Auping, & Kwakkel, 2015). 

Treatment and isolation capacity refers here to Ebola Treatment Centres (ETCs) and to 

Community Care Centres (CCCs). ETCs provide care to suspected and confirmed cases while 

attempting to prevent infection of healthcare workers and members of the community. Small 

CCCs ensure that patients are isolated in areas with insufficient ETC bed capacity or in remote 

areas without access to ETCs. 

 

[INCLUDE FIGURE 1 ABOUT HERE] 

Fig. 1 Stock-flow structure of the extended (other factors and causal relations are not shown) SEIR model 

containing isolated population stocks, and the immune population due to vaccination. SEIR elements are 

indicated with their respective letters as well. Subscripted stocks have a bold border, infectious stocks are 

red, and the exposed population is blue. 

 



The basic SEIR model was further extended with treatment and isolation capacity, not 

distinguishing between ETCs and CCCs. In our model, this extension consists of two stock 

variables: one for the critical Infectious population and one for the Infectious survived 

population. We further included a stock variable for the Unburied deceased population. Finally, 

we included a stock variable for the Immune population, which contains the population that 

would be vaccinated after vaccines would have become available. This Immune population, and 

the Recovered population, are assumed to be no longer susceptible to EBOV. 

In our model, intervention capacities are restricted and, unless specified differently, 

reactive. That is, we included the endogenous dynamic development of the availability of beds in 

treatment and isolation capacity, health workers, tracing officers, and vaccines. They are adapted 

to the needs, albeit delayed. This way, the numbers of health workers, tracing officers, and 

available vaccines increase in response to the dynamics of the epidemic. Scaling up of 

intervention capacities is delayed. That is why we added stocks for the preparation of 

intervention capacity and the available intervention capacity, and time delays between these 

stocks that slow the response to the epidemic (Fraser, Riley, Anderson, & Ferguson, 2004).  

For health workers, the possibility of getting infected by EBOV and consequentially dying 

of EVD (Hewlett & Hewlett, 2005) is taken into consideration, thus reducing their availability. 

We assume that fully recovered healthcare workers will try to continue their efforts after an 

extensive recovery time. Further, healthcare workers may be recruited domestically or from 

outside the region. All additional physicians needed are nevertheless assumed to be foreign for it 

was assumed that the very small group of domestic physicians were already working full timei. 

Only a small portion of the susceptible population in West Africa is considered suitable for 

nursing since they are not trained to protect themselves properly, but a larger part of the 

recovered population is suitable for nursing, since they are immune. If the medical staff capacity 

is not sufficient to provide for the necessary isolation capacity, the isolation capacity is limited by 

the available staff. This corresponds to closing down EVD treatment centers due to lack of staff. 



Finally, the effective reproduction number is also included endogenously in the model 

(i.e., the effective reproduction number is dynamic). The effective reproduction number is 

calculated here as the daily rate of infections caused by the total infectious population in and 

outside isolation, multiplied by the average period during which infectious individuals are 

infectious. The effective reproduction number is thus the weighted average of the basic 

reproduction numbers in and outside isolation, calculated at each moment in time. It can go 

down if measures are sufficient, but it can also go up if, over time, intervention measures prove 

to be insufficient. The effective reproduction number is approximated the model by the 

‘reproduction ratio’ which is calculated as the product of the sum of all infections and the sum of 

the average recovery time of survivors and the average period critical condition, divided by the 

sum of all infectious patients. The doubling time of the number of cases is approximated by ln2 

divided by the fractional growth rate of the number of cumulative cases. The latter variable is 

calculated as the increase in the number of cases divided by the total cumulative exposed cases. 

The increase in the number of cases is calculated as the exposed population divided by the 

incubation period. 

 

2.2 Experimental setup 

The model was implemented in the Vensim modeling software (Ventana, 2010) and was 

parameterized for the Liberian situation. The model contains 161 variables, of which 20 were 

subdivided for hygienic and normal behaving population, and 35 parameters were considered 

uncertain. We simulated the model for 400 days, with a time step of 0.25 days using the Runge-

Kutta 4 auto numerical integration method. For the 35 uncertain parameters, we used a Latin 

Hypercube sampling approach, based on uniform distributions with the ranges displayed in 

Table 1. The parameter ranges are specified in function of the model structure and in relation to 

other parameter ranges. In this model, the variable ‘vaccinations’ depends, for example, on six 

variables, one of which is the ‘Vaccination speed’. A vaccination speed of 240 vaccines per person 



per day then means that, if vaccines are available, 240 people can be vaccinated per medical 

worker per day.  

Some ‘soft’ variables and parameters are included to account for uncertain but plausible 

effects. For example, the ‘effect of self-quarantining behavior’ represents the effect through 

which more hygienic behavior causes the infectivity to decrease.   

We generated 10,000 samples simulating this model using the open source EMA 

workbench (EMA Group, 2011) from https://github.com/quaquel/EMAworkbench. The model 

documentation and model are available as online supplementary materials on 

https://github.com/ep77/Ebola-Model-with-Endogenous-Response. The model equations are 

also available as online supplementary material. Visualizations and analyses are provided in an 

IPython notebook on http://nbviewer.ipython.org/gist/ep77/796491369b0e6fe84b4d. 

 

 [Include Table 1 about here] 

Table 1. Model inputs considered to be uncertain. Factors for which no references exist, are indicated as 

assumptions. 

 

3. Results 

3.1 Scenario selection 

The initial ensemble of 10,000 simulations contained a wide range of plausible evolutions 

of the epidemic. Only a subset of these evolutions was consistent with the outbreak observed in 

Liberia, as SEIR models can produce simulations of both very lethal and very non-lethal 

outbreaks. Due to the non-linear nature of these models, outputs of simulations could even fall 

outside of plausible ranges for combinations of input uncertainties within ranges that are known 

to be plausible. Therefore, we post-processed the ensemble by selecting only those simulations 

https://github.com/quaquel/EMAworkbench
https://github.com/ep77/Ebola-Model-with-Endogenous-Response
http://nbviewer.ipython.org/gist/ep77/796491369b0e6fe84b4d


where the cumulative number of Ebola cases fell within a range of 80% to 250% of the WHO 

data on the total cumulative number of Ebola cases on 3 September 2014 (WHO, 2014b). 

Although we have used this model at later moments in time, we present our simulation results 

calibrated to the WHO data of 3 September 2014, because this ensemble of simulations provides 

a good illustration of the uncertainty we were facing at the time, as well as the potentially 

devastating impact of an outbreak without additional policies and changes in behavior. The 

broad uncertainty range (of 80% to 250%) was used at the time, because it was argued that the 

WHO data significantly underreported the actual number of EVD cases (Meltzer et al., 2014), 

although some over-reporting could not be ruled out either. Following this method, we selected 

3041 scenarios out of the total of 10,000 simulation runs. This process is depicted in Fig. 2. More 

visualizations of the initial ensemble, the screening, and subsequent analyses are provided in the 

online IPython notebook. 

 

[Include Figure 2 about here] 

Fig. 2. Flowchart of the experimental setup and post-processing of the ensembles of scenarios  

 

The ensemble (in shaded blue) and a randomly selected set of 30 out of the ensemble of 

3041 scenarios are displayed in Fig. 3a and Fig. 3b (these figures differ only in terms of the scales 

of the y-axes). The ensemble consists of different plausible projections of the simulated number 

of ‘Actual cases’ (i.e., the total ‘Cumulative exposed cases’ in the model) that were consistent with 

the WHO data on 3 September 2014. The runs start on 22 June 2014 (t=0), after the WHO 

reported the first 51 cases in Liberia. In the best-case scenarios, the underreporting of cases is 

limited due to sufficient tracing capacity. In these scenarios, the effective reproduction number 

gradually declines as the intervention becomes more effective. 

In other scenarios, the tracing capacity is inadequate, which leads to inadequate 

developments of isolation capacity and medical staff. In these cases, the development of the 

http://nbviewer.ipython.org/gist/ep77/796491369b0e6fe84b4d


intervention capacity is overly delayed. The non-isolated population consequently peaks 

considerably earlier than the isolated population. This results in an order of magnitude 

difference between the maximum non-isolated infectious and the maximum isolated infectious. 

The required isolation and treatment capacities are not available in these worst-case scenarios, 

even if changes in population behavior would be effective (e.g., when part of the diseased actively 

seek help at treatment centers, even if they were not traced).  

 

[Include Fig 3 about here] 

Fig. 3. Dynamics of 30 randomly selected runs and the ensembles for: (a) the cumulative number of cases 

(i.e., the total ‘Cumulative exposed cases’) on a logarithmic y-axis (with bounds around the historic WHO 

data displayed with dashed lines), (b) the same cumulative number of cases on a non-logarithmic y-axis , 

(c) the effective reproduction number, and (d) the doubling time of cases  

 

Limits in the EBOV intervention capability influence the speed with which the virus is 

transmitted. That is, starting from a situation in which there is a lack of intervention capacity, an 

increasing lack of intervention capacity may even result in an increase in the speed of virus 

propagation. However, so do ineffective measures, or a rise in ineffectiveness of measures. That 

is, the speed of virus transmission may also increase if individuals with EVD who end up in 

isolation and treatment centers infect more individuals than individuals with EVD who do not 

end up in isolation and treatment centers. This may for example happen if EVD cases are not 

recognized as such, if many individuals with similar symptoms – some of whom have EVD and 

most of whom do not have EVD at first – spend a relatively long time at the same center, if 

insufficient or ineffective protective measures are taken by non-infected individuals in isolation 

and treatment centers (e.g., health workers and patients with other diseases with similar 

symptoms), or if the trip to these centers results in many new infections.  



Many problematic scenarios are characterized by at least one of two virus accelerating 

effects: (i) failure to isolate the large majority of EVD cases which leads to an increase in the 

reproduction rate of the disease, causing an increase in the effective reproduction number, and 

(ii) successful isolation but with higher infectivity rates in isolation than outside of isolation 

which may lead to an increase in the effective reproduction rate of the disease, causing an 

increase in the effective reproduction number. The results of both accelerating effects are visible 

in Fig. 3c, which shows how the endogenously modeled effective reproduction number develops 

in 30 randomly selected scenarios out of the ensemble of 3041 scenarios as well as the ensemble 

itself. As a consequence, the doubling time of the number of cases declines (Fig. 3d). Finally, 

when EBOV transmission has peaked, the doubling time of cases rises quickly as the effective 

reproduction number falls below 1. 

It is important to realize that there may be two reasons why scenarios show increased 

effective reproduction numbers. First, the effective reproduction number is the result of 

infectious people having contact with their surroundings (e.g., with family members, or with 

deceased during unsafe burials). If the relative share of the infectious population that cannot be 

isolated increases, due to limitations in either available beds or available trained and well-

equipped staff, then the effective reproduction number could be expected to increase too. 

Second, many studies estimating the base reproduction number of EBOV or similar diseases 

assume that intervention capability is not available at the beginning of the epidemic, while its 

adequacy increases over time (e.g., Chowell et al., 2004; Chowell & Nishiura, 2014). However, 

that assumption may be wrong. In the case of the 2014 EBOV epidemic in West Africa, for 

example, it looks as though the adequacy of the intervention capability was first deteriorating 

over time (which can be inferred from the data in WHO (2014b)), resulting in dynamics similar 

to those simulated here. 



3.2 Effect of a more proactive approach 

Responses to unforeseen outbreaks involving increases of intervention capabilities are mostly 

delayed. As a result, when new capacities become available they often fall short of the capacity 

that is actually required, especially when insufficient capacity further increases the speed with 

which the virus propagates. This is, for example, the case if a lack of tracing officers results in 

underestimation and underreporting of the speed with which the virus is propagating. Therefore, 

increasing intervention capacities requires a more proactive approach, for example by trying to 

anticipate future increases in cases, while taking irreducible delays in the development of new 

capacities, into account. We therefore introduce the following formula (Eq. 1), which is one way 

to capture proactive planning:  

 

[Equation 1 comes here] 

𝐶𝑡+1 = 𝑐𝑢 ∗ 𝐶𝑡,𝑑𝑒𝑠 ∗ (1 + (
𝜏𝐶
𝜏2
)) − 𝐶𝑡 

Eq. 1 

 

Where: 

𝐶𝑡+1 is the capacity to develop; 

𝑐𝑢 is the expected underestimation factor of the number of EVD cases; 

𝐶𝑡,𝑑𝑒𝑠 is the presently desired capacity; 

𝜏𝐶 is the delay on capacity development; 

𝜏2 is the doubling time for the number of EVD cases; 

𝐶𝑡 is current available capacity. 

 

This formula expresses that while preparing new intervention capacities, one should be 

prepared for those EVD cases that will arise during the preparation time, as well as the exposed 

population that will become infectious after the deployment of capacity additions. If the 



preparation time is relatively short compared to the doubling time, the necessary extra capacity 

is, therefore, smaller. Existing capacity may be subtracted from the capacity to develop. It should 

be noted, however, that in the case of underestimation of the number of cases, the desired 

capacity at that time should also be multiplied with the expected underestimation factor. The 

potential underestimation factor may be assessed by experts in the field, organizations like MSF 

or the WHO, or from the literature (WHO Ebola Response Team, 2014). 

Fig. 4 shows the effects of a Reactive response policy (i.e., the light red envelope), a 

Proactive policy from on day 110 on (i.e., the light blue envelope), and a Proactive policy from 

day 72 on (i.e., the light green envelope) on the selected 3041 scenarios, as well as 30 randomly 

selected scenarios (reactive responses in red, proactive responses from day 110 on in blue, and 

proactive responses from day 72 on in green). Note that the envelopes are overlapping: overlap 

of light red and light blue shows as pink-purple, overlap of light green, light blue and light red 

shows as brown-grey, and overlap of light green and light red shows as yellow-green.   

 Fig. 4a shows that early post-processing under severe uncertainty (i.e., on 3 September 

2014) results in rather similar ensembles in terms of the log-scaled cumulative number of Ebola 

cases. The underlying reason for this surprising result is that, in our worst case simulations, 

infectivity in isolation is not necessarily lower than infectivity outside of isolation. More and 

earlier isolation capacity may be problematic if it is ineffective. Again, the worst cases are either 

scenarios in which an initial underestimation of the size of the epidemic leads to an early 

increase in the reproduction number of the virus, or scenarios in which policies that are being 

implemented are counter-productive. In these worst cases, the EBOV outbreak is hard to curb. 

Fig. 4b and Fig. 4c nevertheless show that the earlier a more proactive approach is adopted, the 

earlier the effective reproduction number drops and the doubling time rises. Therefore, adopting 

a more proactive approach is beneficial across the ensemble, even if measures are not as effective 

as they could or should be. Adopting an effective proactive approach is what is really needed. 



The dominance of proactive approaches becomes clearer when post-processing later in 

time. Fig. 4d shows the ensembles of the same policies post-processed between 80% and 150% of 

the number of reported cases on 10 December 2014. That is, all simulation runs that are not in 

line with the real-world estimates of 10 December 2014, plus/minus a slightly smaller 

uncertainty interval, are excluded from these ensembles. The upper bound applied in December 

2014 is lower than the upper bound applied early September 2014 to account for more reliable 

data and a reduction in perceived uncertainty. Two observations could be derived from post-

processing at this later point in time. First, 65.5% of all runs that are in line with the real-world 

data are generated with the adaptive policy from day 72 on, compared to 21.5% with the adaptive 

policy from day 110 on, and 13% with the reactive policy. That is, the adaptive policy from day 72 

on corresponds better to what happened in the real-world than the adaptive policy from day 110 

on, which, in turn, corresponds better to the real-world data than the reactive policy. This was to 

be expected given the massive international deployment of intervention capacities that took 

place in West Africa between September and December 2014. The real-world massive 

deployment could indeed be argued to have been proactive, because more was planned for than 

was needed at the moment of planning. Second, the long-term ensemble projections of the 

proactive approaches are much lower than the long-term ensemble projections of the reactive 

approach (see the Kernel Density Estimates of the terminal values at the right hand side of Fig. 

4d).  

The effectiveness of the intervention capacity development approach also largely depends 

on the phase of the epidemic. Proactive approaches are more effective when applied early in the 

growth phase of the epidemic. The potential gains are much smaller when the spread of the virus 

is already decreasing and the doubling time is increasing.  

 

[Include Fig 4 about here] 



Fig. 4. Dynamics of 30 randomly selected runs and the ensembles of a Reactive response (red), a 

Proactive response from day 110 on (blue), and a Proactive response from day 72 on (green) for: (a) the 

cumulative number of actual cases, (b) the effective reproduction number, (c) the doubling time of the 

number of cases, and (d) the cumulative number of actual cases post-processed based on WHO data of 10 

December 2014. Overlap of light red and light blue shows as pink-purple, overlap of light green, light blue 

and light red shows as brown-grey, and overlap of light green and light red shows as yellow-green.   

 

4. Discussion 

In this paper, we presented a simulation model with a detailed endogenous dynamic 

response to outbreaks. When developing simulation models to plan the response to an outbreak, 

it is important to explicitly account for the dynamic development of capabilities and the 

associated delays in the system. Models that do not include capabilities are likely to overestimate 

epidemics and may lead to unrealistic planning or calls not to use models for planning epidemic 

responses (Butler, 2014). However, models with static capabilities or capabilities development 

without delays are likely to underestimate epidemics and the epidemic responses needed.  

We used the simulation model presented in this paper to generate ensembles of scenarios 

for the spread of the EBOV in Liberia and to project how the epidemic might evolve under deep 

uncertainty with reactive and proactive policies. Early real-world information was used to inform 

the model-building, and early real-world data (August and early September 2014) and late real-

world data (10 December 2014) was used to post-process the policy ensembles (i.e., to remove 

simulation runs that were not compatible with real-world data from the policy ensembles) in 

order to test how well each of these policy ensembles corresponded to the real data. 

Many of the individual scenarios generated by this model were worse than what 

happened in reality. There are several reasons why the actual disease spread could have been 

expected to be less dramatic than the worst-case scenarios presented in this theoretical study. 



First, geographic spread of the population leads to slower virus transmission. Due to geographic 

spread and spreading of the virus, the real susceptible population at any one time (i.e., the real 

population-at-risk) was smaller than assumed in our simulation model, and the susceptible and 

infectious populations outside isolation were assumed to be perfectly mixed. Second, a high 

upper uncertainty bound was used to select the scenarios for this study. Third, large uniform 

uncertainty ranges were used for each of the uncertain parameters. Fourth, worst case planning 

assumptions about the effectiveness of ETCs were included in this study. Finally, this research 

was not exhaustive in terms of intervention measures considered. For example, essential medical 

supplies besides the medical staff and bed capacity in isolation were considered here.  

A possible limitation of sampling from large uniform uncertainty ranges may be that 

simulation runs are generated with unrealistic combinations of inputs. Although post-processing 

introduces some correlation, the ensembles may still contain many implausible scenarios. Since 

these scenarios are not used as predictions, merely as sets of what-if analyses and as inputs for 

policy robustness testing, this is, according to us, not a major problem. After all, our focus is on 

testing the effectiveness of policies across large ensembles of scenarios (i.e., no matter what 

could happen), especially in case of worse case scenarios. If policies happen to be effective across 

all cases, even for implausible scenarios, then implausible scenarios do not necessarily need to be 

identified and eliminated. For example, given the uniform distribution of the ‘relative reduction 

in infectivity due to isolation’ variable between 0.7 and 5 (see Table 1), many scenarios are 

simulated in which infectivity rises due to increased isolation of EVD cases. Proactive isolation-

oriented policies could be expected to perform poorly for these counter-intuitive scenarios. 

However, proactive policies seem to perform reasonably well across all scenarios, even across 

these least surprising or implausible scenarios. 

In our model, we have assumed that the intervention capacities developed would not be 

hindered by lack of resources like skilled medical personnel from foreign countries. Resources 



are nevertheless limited, both in the model and in reality, due to erroneous planning and due to 

normal planning and implementation delays. 

. The same principle nevertheless applies to all capability and resource under-capacities, 

whatever their cause: Any under-capacity harms the effectiveness of the total intervention 

capability. That is, the entire intervention capability is as strong as the weakest non-redundant 

capacity in the chain. 

Another limitation of our study relates to the consequences of the real-world geographic 

spread of virus transmission on real-world capacity planning. In this theoretical paper, we used a 

homogeneous mixing model, where any expected incidence and any capacity extension affects 

the whole population equally. In reality, heterogeneity and geographic spread mean that some 

parts of the population and territory are more heavily affected by the outbreak, which, given 

inherent uncertainty about the future geographic spreading of the virus, makes it more difficult 

to foresee where capacity expansions are needed. Although this limitation does not 

fundamentally alter the general insights of our study, it needs to be taken into account for real-

world planning purposes. That is, either these suggested capacity additions are considered to be 

the absolute minimum capacity additions and estimates are revised upward based on local 

characteristics and spreading, or geospatial models should be used for real planning purposes. 

This is especially important in case of heterogeneous spreading in large heterogeneous regions.   

 

5. Conclusions 

In this article, we have presented a simulation model with endogenous response related 

to the 2014 Ebola outbreak in Liberia. Our simulations show that both delayed responses and 

timely but ineffective measures can cause the effective reproduction number to increase. The 

consequence of such situations may be that the growth of the actual number of cases accelerates 



significantly. These findings were derived from an extended SEIR model with endogenously 

modeled intervention capacities parameterized for the EBOV outbreak in Liberia.  

In early September 2014, our research suggested that the effective reproduction number 

of the 2014 Ebola epidemic could increase compared to the measured effective reproduction 

number (WHO Ebola Response Team, 2014) if the capacities of the different interventions were 

not brought to the minimally required level over time. During the first months of the 2014 

outbreak in Liberia, which was characterized by a significant shortfall in bed capacity due to a 

lack of health care staff and a lack of operational bed capacity in Ebola treatment units (WHO, 

2014a), intervention capacities were insufficient and ineffective.  

This under-capacity may be the result of the reactive response to the initial exponential 

growth of the number of EVD cases. Early proactive approaches in building up the total 

spectrum of intervention capacities decrease, on an ensemble level, the final scale of the 

epidemic, especially if intervention capacities turn out to be effective. More proactive approaches 

in expanding the intervention capacities may, therefore, help in controlling epidemics like the 

2014 West Africa EBOV. Such proactive approaches would at least have to take into account how 

the development time of these capacities relates to the doubling time of the disease, and the 

factor by which the measured cases may be underreported (Farrar & Piot, 2014). 

 

References 

Althaus, C. L. (2014). Estimating the Reproduction Number of Ebola Virus (EBOV) During the 

2014 Outbreak in West Africa. PLoS Currents Outbreaks. doi: 

10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288 



Amblard, J., Obiang, P., Edzang, S., Prehaud, C., Bouloy, M., & Guenno, B. L. E. (1997). 

Identification of the Ebola virus in Gabon in 1994. The Lancet, 349(9046), 181-182. doi: 

10.1016/S0140-6736(05)60984-1 

Bachinsky, A. G., & Nizolenko, L. P. (2013). A universal model for predicting dynamics of the 

epidemics caused by special pathogens. Biomed Res Int, 2013, 467078. doi: 

10.1155/2013/467078 

Borchert, M., Mutyaba, I., Van Kerkhove, M. D., Lutwama, J., Luwaga, H., Bisoborwa, G., . . . 

Van Der Stuyft, P. (2011). Ebola haemorrhagic fever outbreak in Masindi District, 

Uganda: outbreak description and lessons learned. BMC Infect Dis, 11, 357. doi: 

10.1186/1471-2334-11-357 

Bryant, B. P., & Lempert, R. J. (2010). Thinking inside the box: A participatory, computer-

assisted approach to scenario discovery. Technological Forecasting & Social Change, 77, 

34-49. doi: 10.1016/j.techfore.2009.08.002 

Butler, D. (2014). Models overestimate Ebola cases. Nature, 515(6 November 2014), 18. doi: 

10.1038/515018a 

Bwaka, M. A., Bonnet, M. J., Calain, P., Colebunders, R., De Roo, A., Guimard, Y., . . . Van den 

Enden, E. (1999). Ebola hemorrhagic fever in Kikwit, Democratic Republic of the Congo: 

clinical observations in 103 patients.  

Camacho, A., Kucharski, A. J., Funk, S., Breman, J., Piot, P., & Edmunds, W. J. (2014). Potential 

for large outbreaks of Ebola virus disease. Epidemics, Article in press, 1-9. doi: 

10.1016/j.epidem.2014.09.003 



CDC. (2014, 2014/10/06/09:32:29). 2014 Ebola Outbreak in West Africa | Ebola Hemorrhagic 

Fever | CDC. from http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-

africa/index.html 

Chowell, G., Hengartner, N. W., Castillo-Chavez, C., Fenimore, P. W., & Hyman, J. M. (2004). 

The basic reproductive number of Ebola and the effects of public health measures: the 

cases of Congo and Uganda. J Theor Biol, 229(1), 119-126. doi: 

10.1016/j.jtbi.2004.03.006 

Chowell, G., & Nishiura, H. (2014). Transmission dynamics and control of Ebola virus disease 

(EVD): A Review. BMC Medicine, 12, 196. doi: 10.1186/s12916-014-0196-0 

WHO (1978a). Ebola haemorraghic fever in Sudan. Bulletin of the World Health Organization, 

56(2), 247-270.  

WHO (1978b). Ebola haemorrhagic fever in Zaire, 1976. Bulletin of the World Health 

Organization, 56(2), 271-293.  

EMA Group. (2011, 2011). Exploratory Modelling & Analysis (EMA) Workbench. from 

http://simulation.tbm.tudelft.nl/ema-workbench/contents.html 

Farrar, J. J., & Piot, P. (2014). The Ebola Emergency — Immediate Action, Ongoing Strategy. 

New England Journal of Medicine, 371, 1545-1546. doi: 10.1056/NEJMe1411471 

Fisman, D., Khoo, E., & Tuite, A. (2014). Early Epidemic Dynamics of the West African 2014 

Ebola Outbreak: Estimates Derived with a Simple Two-Parameter Model. PLoS Currents. 

doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571 

Forrester, J. W. (1961). Industrial Dynamics. Cambridge, Massachusetts: MIT Press. 

http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html
http://simulation.tbm.tudelft.nl/ema-workbench/contents.html


Fraser, C., Riley, S., Anderson, R. M., & Ferguson, N. M. (2004). Factors that make an infectious 

disease outbreak controllable. Proc Natl Acad Sci U S A, 101(16), 6146-6151. doi: 

10.1073/pnas.0307506101 

Gire, S. K., Goba, A., Andersen, K. G., Sealfon, R. S. G., Park, D. J., Kanneh, L., . . . Sabeti, P. C. 

(2014). Genomic surveillance elucidates Ebola virus origin and transmission during the 

2014 outbreak. Science, 345(6202), 1369-1372. doi: 10.1126/science.1259657 

Hewlett, B. L., & Hewlett, B. S. (2005). Providing Care and Facing Death: Nursing During Ebola 

Outbreaks in Central Africa. Journal of Transcultural Nursing, 16(4), 289-297. doi: 

10.1177/1043659605278935 

Kenah, E., Chao, D., Matrajt, L., Halloran, M. E., & Longini, I. (2011). The Global Transmission 

and Control of Influenza. PLoS One, 6(5), e19515. doi: 

10.1371/journal.pone.0019515.g001 

Klepac, P., Bjørnstad, O. N., Metcalf, J. E., & Grenfell, B. T. (2012). Optimizing Reactive 

Responses to Outbreaks of Immunizing Infections: Balancing Case Management and 

Vaccination. PLoS One, 7(8), e41428. doi: 10.1371/journal.pone.0041428 

Kucharski, A. J., & Edmunds, W. J. (2014). Case fatality rate for Ebola virus disease in west 

Africa. The Lancet, 384(9950), 1260. doi: 10.1016/S0140-6736(14)61706-2 

Lane, D. C. (2000). Diagramming conventions in system dynamics. Journal of the Operational 

Research Society, 51(2), 241-245.  

Lekone, P. E., & Finkenstädt, B. F. (2006). Statistical inference in a stochastic epidemic SEIR 

model with control intervention: Ebola as a case study. Biometrics, 62(4), 1170-1177. doi: 

10.1111/j.1541-0420.2006.00609.x 



Luz, P. M., Vanni, T., Medlock, J., & Galvani, A. (2011). Dengue vector control strategies in an 

urban setting: an economic modelling assessment. The Lancet, 377, 1673-1680. doi: 

10.1016/S01406736(11)60246-8 

McCaw, J. M., & McVernon, J. (2007). Prophylaxis or treatment? Optimal use of an antiviral 

stockpile during an influenza pandemic. Math Biosci, 209(2), 336-360. doi: 

10.1016/j.mbs.2007.02.003 

Meltzer, M. I., Atkins, C. Y., Santibanez, S., Knust, B., Petersen, B. W., Ervin, E. D., . . . 

Washington, M. L. (2014). Estimating the Future Number of cases in the ebola epidemic - 

Liberia and Sierra Leone, 2014-2015. Morbidity and Mortality Weekly Report. 

Surveillance Summaries (Washington, D.C.: 2002), 63(3), 1-14.  

Moss, R., McCaw, J. M., & McVernon, J. (2011). Diagnosis and antiviral intervention strategies 

for mitigating an influenza epidemic. PLoS One, 6(2), e14505. doi: 

10.1371/journal.pone.0014505 

Okware, S. I., Omaswa, F. G., Zaramba, S., Opio, A., Lutwama, J. J., Kamugisha, J., . . . Lamunu, 

M. (2002). An outbreak of Ebola in Uganda. Tropical Medicine and International 

Health, 7(12), 1068-1075. doi: 10.1046/j.1365-3156.2002.00944.x 

Pattyn, S. R. (1977). Ebola Virus Haemorrhagic Fever. Antwerp, Belgium. 

Pruyt, E. (2013). Small System Dynamics Models for Big Issues: Triple Jump towards Real-

World Complexity    

Pruyt, E., Auping, W. L., & Kwakkel, J. H. (2015). Ebola in West Africa: Model-based 

Exploration of Social Psychological Effects and Interventions. Systems Research and 

Behavioral Science, 32, 2-14. doi: 10.1002/sres.2329 



Roddy, P., Howard, N., Van Kerkhove, M. D., Lutwama, J., Wamala, J., Yoti, Z., . . . Borchert, M. 

(2012). Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever 

Caused by a Newly Identified Virus Strain, Bundibugyo, Uganda, 2007–2008. PLoS One, 

7(12). doi: 10.1371/journal.pone.0052986 

Shoemaker, T., MacNeil, A., Balinandi, S., Campbell, S., Wamala, J. F., McMullan, L. K., . . . 

Nichol, S. T. (2012). Reemerging Sudan Ebola Virus Disease in Uganda, 2011. Emerg 

Infect Dis, 18(9). doi: 10.3201/eid1809.111536 

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex 

World. New York: McGraw. 

Thompson, K. M., & Duintjer Tebbens, R. J. (2009). Using system dynamics to develop policies 

that matter: global management of poliomyelitis and beyond. System Dynamics Review, 

24(4), 433-449. doi: 10.1002/sdr.419 

Ventana, S. (2010). Vensim Reference Manual. 

WHO. (2014a). Ebola Response Roadmap Situation Report - 15 October 2014 (Vol. 15 October 

2014): World Health Organizion. 

WHO. (2014b). Ebola virus disease - Disease outbreak news. Global Alert and Response (GAR).  

Retrieved 20 October, 2014, from 

http://www.who.int/csr/don/archive/disease/ebola/en/ 

WHO. (2014c). Experimental Ebola vaccines. Retrieved on 18-9-2014 from 

http://www.who.int/mediacentre/news/ebola/01-october-2014/en/index4.html 

WHO Ebola Response Team. (2014). Ebola Virus Disease in West Africa — The First 9 Months of 

the Epidemic and Forward Projections. New England Journal of Medicine. doi: 

10.1056/NEJMoa1411100 

http://www.who.int/csr/don/archive/disease/ebola/en/


 

APPENDIX 

 

INCLUDE FIGURE A.1 ABOUT HERE 

Fig. A.1. Detailed Stock-flow diagram of the SEIR sub-model 

 

INCLUDE FIGURE A.2 ABOUT HERE 

Fig. A.2. Detailed Stock-flow diagram of the Medical Staff sub-model and the Isolation Capacity 

sub-model 

 

INCLUDE FIGURE A.3 ABOUT HERE 

Fig. A.3. Detailed Stock-flow diagram of the Tracing Staff sub-model and the Vaccines Program 

sub-model: In the vaccine program sub-model, it is assumed that one vaccine per person is being 

developed albeit with an uncertain delay, in line with WHO (2014c) estimates, such that vaccines 

would become available from the first half of 2015 on.  

                                                        
i According to Liberia’s ambassador to the United States, Liberia has about 50 doctors — about 

one for every 90,000 citizens, not counting foreign physicians (see http://www.bbc.com/news/world-
africa-29516663 and https://www.washingtonpost.com/world/africa/liberia-already-had-only-a-few-
dozen-of-its-own-doctors-then-came-ebola/2014/10/11/dcf87c5c-50ac-11e4-aa5e-
7153e466a02d_story.html). The CIA’s World Fact Book reports that in 2008 there were 0.01 physicians 
per 1000 inhabitants (see https://www.cia.gov/library/publications/the-world-factbook/fields/2226.html 
- last consulted on 10/09/2015).  
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