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1. Introduction

Poor weather conditions, congestion at hub airports, and air-
craft mechanical problems are just a few of the causes that prevent
airlines from operating their flight schedules as planned. Flight
cancellations, departure and arrival delays can occur. These irregu-
larities in operations are called disruptions. Disruptions are very
common in the airline industry, greatly impacting the realized
operational performance. To mitigate the effect of these disrup-
tions, intervention by the airline is necessary to repair flight sched-
ules, aircraft schedules, crew schedules, and passenger itineraries.
Consequently, disruptions may result in a significant increase to an
airline’s operational costs, e.g., additional crew overtime, increased
fuel usage, passenger delay compensation, or re-accommodation
cost. For a clear overview of the problem, recovery process,
resources involved, and objectives considered, the reader is
referred to Chapter 10 of the second edition from Belobaba et al.
(2015).

According to statistics from EUROCONTROL (Walker, 2017), in
the third quarter of 2017, almost 24.0% of all scheduled flights in
Europe suffered from delays, which is equal to around 6500
delayed flights per day. Ball et al. (2010) showed that in 2007,
the total delay cost in the airline industry in the United States
Fig. 1. Number of publications

2

(US) was $32.9 billion from which $8.3 billion was of additional
expenses for fuel, crew, and maintenance. Because of the signifi-
cant associated costs, the use of efficient and accurate recovery
processes is of great importance to the airline industry.

There have been a few publications reviewing the literature
regarding airline disruption management. Clarke (1998) presented
the first overview of the state-of-the-art current information sys-
tems, and decision support systems used in operations control cen-
ters regarding irregular operations. This overview is based on field
studies at several airlines. Filar and Prabhu Manyem (2001)
reviewed literature in the area of recovery from schedule disrup-
tions, incorporating the perspective of airports. More recently,
Kohl et al. (2007) offered an introduction to airline disruptionman-
agement, provides a description of the planning processes, and
delivers a detailed overview of the numerous aspects of airline dis-
ruption management. Furthermore, they report on experiences
from project DESCARTES, a development project on airline disrup-
tion management supported by the European Commission. In the
same year, Ball et al. (2007) described models for aircraft, crew
and passenger recovery. Furthermore, it provides a survey on the
topic of developing schedules that provide operational robustness
as a proactive alternative to schedule recovery. Clausen et al.
(2010) provided a comprehensive review of the literature covering
per recovery type per year.
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airline disruption management, including aircraft, crew, passenger,
and integrated (i.e. combining aircraft, crew and passenger in one
model) recovery. Furthermore, an overview of model formulations
and common network representations is provided.

This paper updates the previous literature surveys. Three online
bibliography databases (Web of Science, SCOPUS, and Google Scho-
lar) were searched for peer-reviewed publications written in Eng-
lish proposing decision support models for airline disruption
management. Furthermore, conference papers that are published
in conference proceedings were also included, if the publication
is indexed at SCOPUS. The focus of the survey was on the literature
presenting decision-support solutions to be used during operations
at the Airline Operations Control Centers (AOCCs). For this reason,
the survey excludes papers not presenting a modeling solution.
Furthermore, we opted to not include papers addressing airline
schedule robustness. The schedule robustness research can be clas-
sified as being a disruption mitigation effort, done at a tactical
stage during scheduling and before disruptions are known. In this
paper, we focus on the disruption management problem that takes
place at the control stage, during the operations and when disrup-
tions may occur. Nevertheless, there is also a vast literature on the
topic of airline schedule robustness. The reader may refer to, e.g.,
Ahmadbeygi et al. (2010), Burke et al. (2010), Duran et al. (2015),
and Cadarso and Luis (2017) for good reference works on airline
schedule robustness.

The following search query was used during the search:((‘‘air-
line recovery” OR ‘‘aircraft recovery” OR ‘‘crew recovery” OR ‘‘pas-
senger recovery” OR ‘‘schedule recovery” OR ‘‘‘integrated
recovery”) AND (‘‘airline” OR ‘‘aircraft”))

OR((‘‘disruption management” OR ‘‘irregular operations”) AND
(‘‘airline” OR ‘‘aircraft”))

This query resulted in a total of 110 papers, from the earliest
possible start date until June 2020 (Fig. 1). The analysis of these
papers provides some interesting insights: (1) there is an increas-
ing interest for solving airline disruption management problems,
(2) more than 50% of papers have been published in the last
10 years, after the last literature review paper (Clausen et al.,
2010), and (3) since then, there is an increase in the number of
publications that integrate two or more resources in the recovery
process (i.e., aircraft, crew, and passengers). Therefore, this paper
reviews and classifies the airline disruption management literature
from 2009–2020, analyzing methodological trends, such as the
integration trend, and discussing the existing gap between the
capabilities of the state-of-the-art and the requirements for imple-
menting these tools in practice.

This paper is divided into two more sections. In Section 2, we
critically describe aircraft, crew, passenger, and integrated recov-
ery as presented in the literature. Section 3 concludes the paper
and describes various ways to close the gap between the reality
faced in AOCCs and the capabilities of the state-of-the-art.
2. A review of disruption management

The complete airline recovery process is a very large and com-
plex problem that is commonly divided into several sequential
stages. These stages are broadly categorized as schedule, aircraft,
crew, and passenger recovery, also defining clear boundaries for
research in this area. Schedule an aircraft recovery is commonly
solved at once. In this section, we will review the airline disruption
literature. We start with an overview of the research efforts until
2009, followed by a detailed analysis of the literature from 2010
until June 2020. The latter is divided according to the resources
modeled and classified them according to the type solution
methodology, i.e., exact optimization methods, (meta-) heuristics,
hybrid methods, multi-agent systems, and other methods.
3

Exact optimization methods, such as branch-and-bound algo-
rithms, as implemented in commercial linear programming (LP)
solvers, dynamic programming, and conic programming, guarantee
finding the global optimal solution. With most optimization prob-
lems, exact methods are the method of choice. With NP-hard prob-
lems, such as airline recovery, the situation is different since the
computation time grows exponentially with problem size and
exact methods can become intractable. Even medium-sized prob-
lems use extensive computation time to solve, which makes them
unfit for operational use. To overcome these problems, (meta-)
heuristics can be used. These methods are commonly applied to
solve computationally intractable combinatorial optimization
problems to a sub-optimum, such as greedy, genetic, or simulated
annealing algorithms. The effectiveness and quality of solutions
depend on the heuristics ability to adapt to a particular problem,
exploit the problem structure, and avoid getting stuck in local
optima.

Some authors have adopted hybrid methods. These are methods
involving the combination of exact methods with algorithmic tech-
niques (e.g., mixed-integer linear programming (MILP) with col-
umn generation or decomposition techniques) or the
combination of different heuristics in a single solution technique.
Multi-Agent Systems (MAS), an emerging approach in airline disrup-
tion management, are software systems composed of multiple
interacting intelligent agents. Here, intelligence may be algorith-
mic search, reinforcement learning, or procedural approaches
among others. MAS typically refers to software agents, but could
equally well be humans. In the context of airline disruption man-
agement, MAS usually represents the Operational Control Center
of the airline by adopting autonomous but interacting agents that
try to solve the aircraft recovery, the crew recovery, and the pas-
senger recovery problems at the same time (Castro and Oliveira,
2007). Finally, in the category others, we included techniques like
constraint programming or simulation approaches.

Section 2.1 presents the initial efforts on the topic of airline dis-
ruption management. Section 2.2 will present the literature
focused exclusively on aircraft (and schedule) recovery. Section 2.3
presents the literature covering crew recovery. Passenger recovery
will be discussed in Section 2.4. Several publications that integrate
two or more stages of the recovery process. Section 2.5 discusses
papers that integrated aircraft and passenger recovery while Sec-
tion 2.6 discusses papers covering integrated aircraft and crew
recovery. Literature that integrated the full recovery process, that
is schedule, aircraft, crew, and passenger, is presented in Sec-
tion 2.7. At the end each subsection, a summary table is presented,
describing each publication according to the type of network used
to represent the problem (i.e., time–space, connection, and time-
band networks, following the description presented by Clausen
et al. (2010)), the type of solution technique and a short descrip-
tion, some key functionalities and the dimensions of the largest
case study presented. Some fields in these tables are empty, mean-
ing that no information was presented in the paper or that the
respective field is not relevant for that publication.

2.1. Initial efforts

Teodorović and Dušan (1984) were the first authors that dis-
cussed the minimization of passenger delays in the aftermath of
schedule perturbations. The authors considered the case one or
more aircraft fail, having the delaying of flights and the swap of air-
craft as recovery options. The authors formulate the problem as a
network in which flights are represented by nodes and arcs are
used to represent time losses per flight. The objective is to mini-
mize the lost time by passengers. Their methodology utilizes
branch & bound methods and is based on the assumption that
the airline operates only one aircraft type. Furthermore, mainte-



Table 1
Overview and classification for literature focusing on Aircraft Recovery.

Paper Network Type Solution Approach Disruption types Recovery actions Problem
characteristics

Data Largest Case dimensions CPU

Flight
Delay

Flight
Canx

AC
U/A

Airport
Disruption

Flight
Delay

Flight
Canx

Create
flight

AC
Swap

Reserve
AC

Ferry
AC

Cruise Speed
Control

Other
*

Multi-
Fleet

Maint. Aircraft Fleets Flights [sec]

Gao et al. (2009) Flight
strings

HH GRASP and simulated annealing algorithm Y C Y Y N Y N N 30 1 149 57

Eggenberg et al.
(2010)

Time Band HH Dynamic programming with column generation Y C Y Y N Y Maintenance
swap

Y Y RL 100 1 760 63

Liu et al. (2010) Connection MH Hybrid multiobjective genetic algorithm C Y Y N Y N N RL 7 1 84 81–
450

Wu and Cong (2012) Time–
space

MH Iterative tree growing with Nde combination method Y Y Y N Y Y Y RL 35 5 170

Xiuli and Zhao (2012) HH GRASP combined with Ant colony Y Y N Y Y Y RL 50 5
Le et al. (2013) MH Time Window Modelling and Genetic Algorithm Y Y N N Y Y N RL 6 3 30 98
Aktürk and Atamtürk

(2014)
Time Space EX Conic quadratic mixed integer programming Y Y N N Y Y Y N RL 60 6 207 202

Brunner (2014) EX Linear integer programming Y Y N N N RL 79 <1
Arias et al. (2015) O Constraint programming with simulation Y Y Y N Y N RL 11 51 47280
Vos and Santos

(2015)
Time Space HH Aircraft Selection Heuristic with MILP Y Y Y N Y N RL 43 1 900

Sousa et al. (2015) Connection MH Dynamic Aircraft Scheduling with Ant Colony
Optimization

Y Y Y N Y N N RL 72 1 5722 32

Zhu et al. (2015) MH Stochastic Greedy Simulated Annealing algorithm Y Y Y N Y N N RL 6 1 23 <900
Xu et al. (2015) Time Band EX Time-band approximation with MILP Y Y Y N N N N G 3 1 11 <1
Guimarans et al.

(2015)
O Constraint programming with LNS and simulation Y Y N N Y N N RL 40 1 163 <226

Xu and Haiwen
(2016)

Time Band MH Weighted time-band approximation with MILP Y N Y N N RL 60 254 <1006

Wu et al. (2017) Connection EX Distributed fixed-point integer programming Y Y Y N Y N N RL 27 1 162
Wu et al. (2017) Connection EX Distributed fixed-point integer programming Y Y C Y Y N Y Y N RL 30 5 215
Wu et al. (2017) Connection EX Distributed fixed-point integer programming C Y Y N Y N N RL 12 1 140 7
Hu et al. (2017) Connection MH Neighborhood search algorithm with -constraints Y Y Y N Y Y N RL 104 1 410 1200
Zhang (2017) Connection MH Two stage heuristic for LOF reduction Y C Y Y N Y N Y RL 44 1 638 150
Khaled et al. (2018) Time Space MH Multiobjective LP with e-constaint for Pareto frontier N Y C N Y N Y N Y RL 10 1 111 <30
Šarčević et al. (2018) MH Artificial Bee Colony algorithm implemented in

MASDIMA
Y Y C Y Y N Y N

Liang et al. (2018) Connection HH Column generation Y Y F Y Y N Y Maintenance swap N Y RL 44 1 638 356
Zhao and Tong

(2018)
Time Space MH Weight-table based heuristic algorithm C Y Y N Y N RL 6 32

Lin and Hongtao
(2018)

MH Sequential decision algorithm Y N N Y Y N RL 151 9 749 <1

Wang et al. (2019) O Simulation based approach N Y C Y Y N N Y N N RL 628 5071 18–
105

Rhodes-Leader et al.
(2018)

Time Space O High-fidelity symbiotic simulation with a low-
fidelity integer program

Y Y Y N Y N RL 5 83

Rhodes-Leader et al.
(2019)

Time Space O High-fidelity symbiotic simulation with a low-
fidelity integer program

Y Y Y N Y N Y RL 8 1 54

Lee et al. (2020) Time Space O Dynamic stochastic integer programming framework Y Y Y C Y Y N Y Y Y N RL 3 852 <300

Abbreviations used in table: U/A: Unavailable, AC: Aircraft, Canx: Cancellation, Maint: Maintenance constraints, Pax: Passengers, CPU: Computation time in seconds,
EX: Exact method, MHL: (Meta-) heuristic, HH: Hybrid heuristic, O: Others, MA: Multi-Agent System,
Y: Included or mentioned, N: Not included nor considered, ‘ ’: Not mentioned or not relevant, F: Airport Flow restriction, C: Airport Closure, G: Generated Data, RL: Real-life Data.
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nance constraints are ignored and the model was tested on a net-
work of eight flights operated by three aircraft. Passengers are
explicitly modeled, but they assume that all itineraries contain
only a single flight leg. Teodorović and Dušan (1990) extended this
work by considering airport curfews as constraints and flight can-
cellations as a possible recovery action. A dynamic programming-
based approach is used where the goal is to minimize the total
number of canceled flights and the total passenger delay. The
model was tested on a network of 14 aircraft and 80 flights. Crew
and aircraft maintenance constraints were added in a following
work of the same authors, Teodorović and Dušan (1995). In this
new study, several disruption types, such as crew unavailability
and flight delays, were included as well. The paper presents a
heuristic based on the First In, First Out (FIFO) principle and a
dynamic programming based sequential approach. The model
determines aircraft and crew rotations while minimizing the total
number of canceled flights. The model was tested on 240 generated
instances. Four to five different disturbances were arbitrarily gen-
erated for each of the 240 numerical instances, so that the devel-
oped models were tested on over 1,000 different situations.
2.2. Aircraft recovery

The aircraft recovery problem can be formulated as follows:
given a flight schedule and a set of disruptions, determine which
flights to delay or cancel, and re-assign the available aircraft to
the flights such that the disruption cost is minimized. These dis-
ruption costs are defined as those costs over which the airline still
has control at the time of disruption, such as aircraft operating
costs and compensation to be paid to passengers for canceled or
delayed flights. These recovery problems are generally formulated
as cost minimization models, rather than profit maximization
models, since when disruptions occur the airline’s revenues are
fixed since tickets have been sold in advance. What remains is
the search for the lowest cost operation to complete the itinerary
sold to the passengers. Before 2009, the majority of publications
focused on aircraft recovery, in part because (1) aircraft are the
most constraining and expensive resource and (2) aircraft recovery
is a smaller and simpler problem than crew recovery (which
involves complex regulations and pilots’ preferences). Despite this,
aircraft recovery is still an active research subject, where the
efforts have been focused on increasing complexity to better repre-
sent real-world networks and decreasing the computation time.

Most studies addressing aircraft recovery consider aircraft
unavailability and airport disruptions as the main disruption types
handled. Two different approaches were followed to implement
airport disruptions: either by considering airport disruptions to
be binary (e.g. normal operations or closed), for example,
Eggenberg et al. (2010), Wu et al. (2017), or by considering flow
reductions as a percentage of the initial airport capacity, for exam-
ple, Liang et al. (2018). From the 27 papers reviewed, 20 (74%) con-
sidered aircraft unavailability while 12 (44%) considered airport
disruptions. Common recovery actions for papers addressing the
ARP include flight delays (93%), flight cancellations (89%), and air-
craft swaps (89%).

Since recovery models are a representation of reality, some
assumptions are needed to model the disruption problem. A com-
mon assumption, followed by almost all papers, is that crew is
always available to perform the flights in the recovered schedule
(e.g., Sousa et al., 2015; Vos and Santos, 2015). Another common
simplification is the exclusion of airport capacity constraints or slot
availability (e.g., Liu et al., 2010; Arias et al., 2015). Furthermore,
the majority of papers do not include maintenance constraints in
their models (e.g., Sousa et al., 2015; Zhao and Tong, 2018), which
in reality would limit recovery options. Finally, nearly all studies
5

assume that departure times for all non-disrupted flights are cer-
tain and will not change, i.e. that no other disruptions occur.

This section discusses and classifies papers published after 2009
addressing the aircraft recovery problem. The section is divided by
solution technique category. An overview of the papers discussed
in this section is provided in Table 1.

2.2.1. Exact optimization methods
Aktürk and Atamtürk (2014) were the first to successfully inte-

grate cruise speed control to deal with the Aircraft Recovery Prob-
lem (ARP). The authors consider the option of speeding up flights to
reduce delays, at the cost of higher fuel costs. Due to the non-
linearity of fuel burn in cruise speed, the authors use a conic quad-
ratic optimization approach to solve the problem with minimiza-
tion of recovery-related costs like swap, fuel consumption, and
passenger delay. Environmental cost and constraints were inte-
grated next to the additional fuel cost of speeding up flights. It is
stated in the paper that significant cost savings can be achieved
with cruise speed control, making it a suitable recovery approach
to include in aircraft recovery studies.

Xu et al. (2015) presented a time-band approximation model to
approximate delay cost considering a stochastic flying time. The
model is formulated as a MILP model and solved using a commer-
cial LP solver. With data on the actual flying time and the planned
flying time from 400 flights in a day of Sichuan Airlines, the authors
create a uniform probability density function which predicts the
flying time of flights. The model is tested on a network of generated
data with 3 aircraft and 11 flights. Xu and Haiwen (2016) extended
the work by presenting the weighted time-band approximation
model that incorporates a simplex group cycle approach. Here
the model is tested on data from China Airlines.

2.2.2. (Meta-) heuristics
Liu et al. (2010) presented a hybrid heuristic that combined an

adaptive evaluated vector (AEV) and an inequality-based multi-
objective genetic algorithm (GA) formulation that was used to
search for Pareto solutions to the daily short-haul recovery prob-
lems. The AEV was used to guide the search and the GA was to pro-
vide the multi-objective solution. Although considering aircraft
swap and retiming options, the model does not consider flight can-
cellations as a recovery method. The presented model is tested on a
daily flight schedule of a Taiwanese airline with 7 aircraft (single
fleet) during a 1-h airport closure, impacting 39 flights. The heuris-
tic presents results in 3.6 min on average (7.5 min max). Despite
the short computation time, this model still takes more than the
2 min run time required during operations, as suggested by Vink
et al. (2020).

Wu and Cong (2012) developed a model based on flight strings
instead of individual flights. They transform these strings into a
time–space model that considers maintenance constraints and reg-
ulations. The model is solved with a heuristic that was developed
by the authors called the Iterative Tree Growing with Node Combi-
nation. The model is tested on a dataset from China Airlines con-
sisting of 170 flights, 5 fleets, 35 aircraft, and 51 airports.

Le et al. (2013) transformed the aircraft recovery problem into a
vehicle routing problem with time window modeling. The formu-
lation considers aircraft recovery and passenger delivery. In the
model, aircraft are vehicles, passengers are commodities and air-
ports are nodes. Each aircraft rotation is considered a route. The
model only considers aircraft ferrying and departure delays as
recovery options, while in reality more options are available. The
problem is solved with a genetic algorithm that is tested on a small
network from a regional Chinese airline. For three different disrup-
tion scenarios the GA solved within 100 s.

Zhu et al. (2015) presented a two-stage stochastic recovery
model to deal with the ARP. The first stage is a resource assignment
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model to minimizing delay and cancellation cost. The second stage
re-times the aircraft routings obtained in the first stage, with the
objective of minimizing the expected cost on the resource strategy
of the first stage plan due to uncertainty of aircraft recovery time.
The authors use a stochastic algorithm framework combining
Greedy Simulated Annealing (GSA) and a simple re-timing strat-
egy. Based on different scenarios of restoration time, the second
stage model can be decoupled as several linear models.

In the same year, Sousa et al. (2015) presented a similar study
using Ant Colony Optimization (ACO). The proposed algorithm
combines the Aircraft Assignment Problem (AAP) with the ARP
and aims to minimize the operational cost and (re-) schedules
flights dynamically by using a rolling time window. Two different
experiments, both using real data from a commercial airline, were
conducted. On a problem with 100 flights, the ACO outperforms
(non-truncated) branch & bound and Depth First Search (DFS) in
terms of solution quality, although it takes 40% more time on
average.

Hu et al. (2017) presented a solution approach for solving a
multi-objective recovery problem by combining e-constraints and
neighborhood search methods. The e-constraints method is in
charge of seeking the Pareto front for the multi-objective ARP
and the neighborhood search algorithm is responsible for improv-
ing the locally feasible solutions of the ARP in each iteration of the
e-constraints method. The problem includes three conflicting
objectives, the first objective minimizes the total deviation from
the original flight schedule, the second minimizes the maximum
flight delay time, and the third objective minimizes the number
of aircraft swapped. The methodology is tested on real-world
empirical data for a Boeing 737 fleet consisting of 104 aircraft from
a major Chinese airline covering 410 flights. The computation
times range between 12 and 20 min, depending on the disruption
instance.

Zhang (2017) proposed to use feasible lines of flights (LOF) as
the basic variables in the model, where LOFs are defined as a
sequence of flights flown by one aircraft within one day. A two-
stage heuristic is presented to reduce the number of included LOFs,
thereby reducing the run-time. In the first stage, LOFs are scored
and selected based on the number of swaps (less is better) and
the number of flight legs included in the LOF (more is better). In
the second stage, flow balance constraints for the aircraft were
aggregated by creating constraints for each airport only. The dis-
ruptions included in the model are airport closures and aircraft
unavailability due to unplanned maintenance. The approach is
tested on five real-life test scenarios. The largest instance included
44 aircraft and 638 flights, the computation time was 150 s.

Šarčević et al. (2018) described a methodology where the artifi-
cial bee colony (ABC) algorithm presented by Karaboga (2005) was
applied to the aircraft disruption problem. The proposed approach
is implemented as part of the Aircraft Manager agent of the multi-
agent system MASDIMA developed by Castro et al. (2014). The sys-
tem is tested on a month worth of real airline data, however,
dimensions of the case study and required runtime are not given.

Zhao and Tong (2018) presented a weight-table heuristic algo-
rithm for the aircraft recovery problem. The authors only consider
disruptions from airport closures due to bad weather conditions.
All common disruption recovery options are considered, however,
maintenance constraints are not included in the model. A single
case study consisting of 6 aircraft and 31 flights. The computation
times are not presented.

Khaled et al. (2018) proposed a multi-objective integer linear
programming problem for the tail assignment problem which min-
imizes the operating cost and the deviation from the original solu-
tion. The recovery problems focus on long-term disruptions (e.g.
airport closures for significant periods of time or multi-day techni-
cal problems with aircraft), and the model does not include the
6

possibility of delaying flights. The �-constraint method is used as
a Pareto frontier to generate multiple efficient solutions. The pro-
posed model computes solutions in less than 30 s for the adapted
test case involving 111 flights and 10 aircraft.
2.2.3. Hybrid heuristics
Gao et al. (2009) developed a greedy simulated annealing algo-

rithm, combining characteristics of Greedy Randomized Adaptive
Search Procedure (GRASP) and Simulated Annealing. The combina-
tion of heuristics improves the efficiency of the neighborhood
selection and decreases the probability of local optima. The objec-
tive of the model is to minimize the total passenger delay time.
One drawback of the model is that the objective function does
not take into account all cost incurred by irregular operations e.g.
the cost of ferrying and fleet substitution is not taken into account.

Eggenberg et al. (2010) extended the work of Bard et al. (2001)
and presented a column generation algorithm where a time-band
network model is used. Each unit (that is, a plane, a crew member
or a passenger) is associated with a specific recovery network and
the model considers unit-specific constraints. The column genera-
tion algorithm ensures global feasibility according to the structural
constraints of the problem. The usual multi-commodity approach
struggles with considering unit-specific constraints, which the
authors overcome with the proposed solution. While the result
presented in Table 1 seems promising and the majority of
instances solve within 100 s, the authors report that for the most
computationally expensive case the run time exceeds 1 h. The case
instances are tested with a single fleet type.

A hybrid heuristic was also used by Xiuli and Zhao (2012), who
combined a Greedy Random Adaptive Search Procedure (GRASP)
with Ant Colony Optimization (ACO). Compared to the original
GRASP algorithm, it provides a high global optimization capability.
The authors state that the model was tested on a multi-fleet net-
work with 50 aircraft and more than 5 aircraft types. However,
no results are presented.

Whereas other researchers validated models with a static dis-
ruption scenario, Vos and Santos (2015) established a dynamic
framework, named Disruption Set Solver (DSS) for the aircraft
schedule recovery. The framework handles disruptions as they
happen and builds on the solutions of previous disruptions. The
framework relies on the combined usage of an efficient aircraft
selection algorithm and a linear-programming model which can
track the status of individual aircraft on parallel time–space net-
works. The framework is applied to a set of real disruptive days
in the operation of Kenya Airways. In 93.3% of the times, the DSS
found solutions within 10 min. Furthermore, the authors showed
that the solution costs are underestimated when computed using
a static approach.

Wu et al. (2017) were the first to adopt the iterative fixed-point
method for integer programming (presented by Dang and
Chuangyin (2015)) for the construction of feasible flight routes.
Two methods are presented to divide the solution space into inde-
pendent segments and solve them with distributed computation.
Since the segments are independent, the calculation of integer
points can proceed parallel on each processor. The first method
attempts to divide the solution space into segments that contain
roughly equal integer points. For long haul problems, another divi-
sion method is proposed where the original flight routes are taken
as initial points. The algorithm is compared to the solutions
obtained using a commercial LP solver. In the majority of cases,
the number of partial feasible flight lines, which have to be calcu-
lated for finding an optimized airplane reschedule, is much fewer
compared with the number needed by LP solver. This makes the
method a promising alternative to further develop in the future.
Wu et al. (2017) extended the work by considering multiple fleets,
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while Wu et al. (2017) focused on disruptions caused by airport
closures.

Liang et al. (2018) developed a framework where a master prob-
lem was used to select routes and subproblems were used to gen-
erate routes. Airport capacity constraints are explicitly considered
in the master problem while maintenance constraints are consid-
ered in the subproblems. In the suggested framework, aircraft are
allowed to swap their planned maintenance, if all constraints
regarding maximum flying hours, the maximum number of take-
offs/landings, etc. are satisfied. The approach is based on a column
generation framework. The proposed framework is validated and
tested on eight real-world scenarios, which are based on the sce-
narios used as benchmark problems for the Airline Operations
Research Competition organized by Sabre Airline Solutions
(2016). For all scenarios, a solution was found in less than 357 s.
Moreover, the authors modeled flight delay as continuous instead
of discrete intervals. A comparison is presented where the contin-
uous flight delay solutions are compared to discrete flight delay
solutions where there is a 30-min interval between flight delay
options. The authors show that the continuous flight delay results
in lower disruption cost, however a comparison with different
delay interval times is not presented.

2.2.4. Other methods
Given the inherent uncertainty of ARP, several authors pre-

sented (partially) stochastic approaches. Arias et al. (2015) com-
bined constraint programming with a simulation approach to
solve the Stochastic Aircraft Recovery Problem. The goals of the
model are to restore the original flight schedule as much as possi-
ble, minimizing the total flight delay and the number of canceled
flights. The robustness of the solutions is assessed by comparing
the standard deviation from the simulation results with the varia-
tion of the probability distribution that was used for generating the
stochastic delays and the expected propagation. The proposed
model is tested with real data from a commercial airline with a
total of 51 flights, 13 airports, and 11 aircraft. The proposed model
can match the optimal solution in 14 cases out of 20. According to
the authors, the results suggest that the inherent uncertainty of the
ARP makes it a suitable candidate for combining simulation and
optimization methods.

Guimarans et al. (2015) described a methodology for the
Stochastic Aircraft Recovery Problem (SARP), which considers the
stochastic nature of air transportation systems. The methodology
is based on the Large Neighbourhood Search metaheuristic, com-
bined with a simulation run at different stages to ensure robust-
ness. A Constraint Programming formulation is developed to
solve the deterministic ARP. Flight cancellations are not considered
as a recovery option, however, aircraft may be ferried. The pro-
posed methodology was tested on several instances with different
characteristics, some of which were obtained from real data pro-
vided by a Spanish airline. The stochastic recovery problem was
also considered in a recent paper by Lee et al. (2020). The authors
propose an innovative reactive and proactive approach to solve the
ARP problem. By forecasting systematic delays at hub airports,
their study optimizes recovery actions that respond to both real-
ized disruptions and anticipated future disruptions. The authors
combine a stochastic queuing model to capture airport congestion,
with a commercial flight planning tool, and with a dynamic integer
programming solution to model the disruption recovery. A solution
based on a look-ahead approximation and sample average approx-
imation is proposed to solve the modeling framework.

In recent years, a few papers have been published where
simulation-based approaches have been used to solve the ARP.
Rhodes-Leader et al. (2018) and Rhodes-Leader et al., 2019 com-
bined a symbiotic simulation system. That is, a simulation
approach that combines a high-fidelity simulation model and a
7

low-fidelity physical model work together for the benefit of both
models (Aydt et al., 2008). In their case, the authors propose an
adapted version of the integer programming (IP) model presented
by Zhang et al. (2015) to reduce the complexity of the solution
space considered for the simulation model. The IP model generates
a set of good solutions that are then used as initial solutions in the
simulation model to guarantee a faster and effective high-fidelity
simulation system.
2.2.5. Discussion
Table 1 shows the overview and classification of the discussed

literature regarding the ARP including case dimensions and CPU
times.

The complexity of this problem is evident from the fact that
only three papers have adopted an exact method and over 80% of
publications use heuristics methods to solve the aircraft recovery
problem. Still, several relevant advances have been observed in
the last decade in terms of the computational efficiency of the solu-
tions proposed. In fact, several authors claim to solve (quasi-) real-
world problems in about one minute or less (Gao et al., 2009;
Eggenberg et al., 2010; Sousa et al., 2015). Unfortunately, they only
consider a single fleet, which does not represent the reality at most
airlines. Most other papers do not consider all recovery options
common at airlines or do not take maintenance constraints into
account, thereby simplifying the problem. Xiuli and Zhao (2012)
considered all recovery options, maintenance constraints and
includes multiple fleets. However, it does not present the number
of flights in the case study nor the computation times. In the
majority of papers, the delay costs are calculated by using con-
stants to express the average delay cost per minute. Similarly, a
constant parameter is used to express the average cancellation cost
of a flight. This approach usually underestimates the cost, due to
the non-linear relation between goodwill loss and the amount of
delay (Arikan et al., 2017). In the last years, several authors have
proposed a simulation-based approach to solve this recovery prob-
lem. However, computational times are usually omitted from the
discussion.
2.3. Crew recovery

The crew recovery problem (CRP) can be formulated as follows:
given a flight schedule and a set of disruptions, re-assign to each
(recovered) flight the necessary cabin and flight crew such that
the disruption costs are minimized. For crew recovery, these dis-
ruption costs can include direct crew costs (e.g., remuneration or
overtime compensation) and cost for deadheading crew. For stud-
ies that include flight cancellation as a recovery action, cancellation
costs can be included in case a flight cannot be staffed. Alterna-
tively, some authors opt to use minimizing the number of crew
schedule changes as a proxy to the minimization of the crew recov-
ery costs. The CRP is typically the second problem that is solved in
the sequential solution approach. It is considered harder than the
ARP since all regulations and restrictions dictated by government
regulations, union agreements and airline-specific policies have
to be taken into account. As shown in Table 2, in the period
2009–2018, there have been six publications on the CRP.

Most studies addressing crew recovery only consider a single
disruption type, such as flight delays (Novianingsih et al., 2015)
or crew unavailability (Castro and Oliveira, 2009). Only two studies
considered both disruption types (Liu et al., 2013; Zhu et al., 2014).
Interestingly, that only Castro and Oliveira (2009) and Chen and
Chiu Hung (2017) considered crew unavailability as disruptions.
From the 6 papers reviewed, most (83%) considered crew dead-
heading as a recovery action while 67% included crew swaps. Only
half considered flight cancellations as a recovery action. Castro and
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Oliveira (2009) only considered flight delays and did not consider
crew deadheading or crew swaps as a recovery action.

A common limitation of studies that focus on the Crew Recov-
ery Problem is that only flight crew are considered and cabin crew
are always assumed to be available. While flight crew is generally
the more constraining resource of the two, cabin crew availability
will limit recovery options in reality.

2.3.1. Multi-agent systems
Castro and Oliveira (2007) and Castro and Oliveira (2009) were

the first to use Multi-Agent Systems (MAS) to represent the Airline
Operations Control Center (AOCC) as an organization of agents. In
these papers, the authors present a Distributed MAS for integrated
disruption management. However, the authors only discuss the
application of their modeling framework to a crew recovery case
study. The MAS model for integrated recovery is discussed by the
authors in later papers, included in Section 2.7. The MAS has sev-
eral specialized agents that compete to find the best solution for
each subproblem. Besides operational cost, the authors introduced
a process of quantifying quality cost, which represent the impor-
tance that different passengers give to flight delays. The authors
solve the crew recovery problem from a real airline, although no
case dimensions (e.g., regarding the number of crews) are given.

2.3.2. (Meta-) heuristics
Chang (2012) developed a genetic algorithm (GA) to solve the

pilot recovery problem. The GA uses the original in-feasible sched-
ule as input and solves the problem while considering maximum
flying hours and minimum rest time constraints per day (8-in-
24 h rule) and per week (32 h in 7 days rule). The object-
orientedmatrix chromosome structure is introduced by the author,
where each row consists of CHROMOHEADS which correspond to a
pilot and each column consists of CHROMOCELLS which corre-
spond to the flights assigned to that pilot. The mutation rate for
the GA equals the sum of the violated hard constraints divided
by the number of hard constraints multiplied by the number of
cells in a chromosome. The GA was implemented to reach the opti-
mal recovery schedule in a short time. For a problem consisting of
668 flights, 70 crews and a recovery period of 18 days, the algo-
rithm takes approximately 10 min.

Intrafleet and interfleet models for the solution of crew recov-
ery problems were developed by Liu et al. (2013). Both models
are set covering problems, where the former is a 0–1 set covering
problem and the latter is a general set covering problem. Various
solution approaches are discussed, and a simulated annealing algo-
rithm is developed for models that are difficult to solve. Regula-
tions are taken into account by only considering legal crew
pairings. To limit the problem size, the time window was set to
24 h and a maximum of 6 crews were considered per missed con-
nection. The results show that although widely used in practice,
the intrafleet model can lead to inferior solutions since it limits
to solution space. The objective of the algorithm was to cover all
flights, so costs were not considered. On average, the interfleet
model reduces the objective function by 40%.

Novianingsih et al. (2015) presented a custom three-stage solu-
tion method. First, all possibilities for crew swaps are identified
and executed if possible. Second, if swaps are not possible, a
heuristic is used to construct new crew schedules. Third, the solu-
tion is then improved by applying an improvement procedure. The
model was tested on a one day network of 214 flights covered by
48 crew pairings. Regulations regarding flying hours were incorpo-
rated by only considering legal pairings. Based on the results, the
authors assume that their method can solve the crew scheduling
problem in polynomial time.

Chen and Chiu Hung (2017) proposed an evolutionary approach
for optimizing crew roster recovery problems with rosters for



Table 3
Overview and classification for literature focusing on Passenger Recovery.

Paper Network Type Solution Approach Disruption types Recovery actions Problem
characteristics

Data Largest Case dimensions CPU

Flight
Delay

Flight
Canx.

AC
U/A

Airport
Disruption

Flight
Delay

Flight
Canx.

AC
Swap

Pax Itinerary
change

Multi-
Fleet

Maint. Aircraft Fleets Flights [sec]

McCarty and
Cohn (2018)

- EX 2-level stochastic problem with
Benders decomposition

Y N N N N Y RL 1144 93,9

Abbreviations used in table: U/A: Unavailable, AC: Aircraft, Canx: Cancellation, Maint: Maintenance constraints, Pax: Passengers, CPU: Computation time in seconds,
EX: Exact method, MHL: (Meta-) heuristic, HH: Hybrid heuristic, O: Others, MA: Multi-Agent System,
Y: Included or mentioned, N: Not included nor considered, ‘ ’: Not mentioned or not relevant, F: Airport Flow restriction, C: Airport Closure, G: Generated Data, RL: Real-life Data.

Table 4
Overview and classification for literature focusing on Aircraft and Passenger Recovery.

Paper Network Type Solution Approach Disruption types Recovery actions Problem
characteristics

Data Largest Case dimensions CPU

Flight
Delay

Flight
Canx

AC
U/A

Airport
Disruption

Crew
U/A

Other Flight
Delay

Flight
Canx.

Create
flight

AC
Swap

Reserve
AC

Ferry
AC

Cruise speed
control

Pax Itineray
change

Other Multi-
Fleet

Maint. Aircraft Fleets Flights [sec]

JJafari and Niloofarafari and
Niloofar (2010)

Connection EX Rolling horizon time framework
with MILP

Y Y N Y Y Y Y Y Y Over-
flying

Y N RL 13 2 100

Zegordi and Hessameddin
(2010)

MH Ant Colony Optimization Y Y N Y Y Y Y Y Y RL 13 2 100 26

Jafari and Niloofar (2011) Connection EX Rolling horizon time framework
with MILP

Y Y N Y Y Y Y Y Y Over-
flying

Y Y RL 13 2 100

Bisaillon et al. (2011) Time Space MH Large Neighboorhood Search Y Y C Y Y Y Y Y Y Y RL 256 1 1423 <600
Mansi et al. (2012) Time Space HH Math heuristics Y Y Y F Personnel

strikes
Y Y Y Y Y Y RL 618 1 2178 <600

Jozefowiez et al. (2013) Connection MH Heuristic based on shortest
path

Y Y Y F Y Y Y Y Y Y Y RL 618 1 2178 230

Sinclair et al. (2014) Time Space MH Large Neighboorhood Search Y Y Y F Y Y Y Y Y Y Y RL 256 1 1423 <600
Hu et al. (2015) Time Band EX Integer programming model N N Y N Y Y Y Y Y N RL 188 13 628 172
Sinclair et al. (2016) Time Space HH Large Neighboorhood Search

with Col Generation
Y Y Y F Y Y Y Y Y RL 618 1 2178 1315

Arikan et al. (2017) Time Space EX Conic quadratic MILP Y Y N Y Y Y Y N RL 6 1429 <142
Zhang et al. (2016) Time Space MH Sequential three stage heuristic Y Y Y F Y Y Y Y Y Y Y RL 618 1 2178 <420
Hu et al. (2016) Time Space MH GRASP Y Y Y Y Y Y N RL 87 3 340 <100
Marla et al. (2017) Time Space EX Rolling horizon time framework

with MILP
Y Y Y Y Y Y Y Y RL 250 <120

Santos et al. (2017) EX Rolling horizon time framework
with MILP

Y Y N N Pax
reallocation

Y RL 250 <

3600
Yang and Tianshun (2019) Time Space MH Multi-objective Genetic

Algorithm
Y Y Y Y Y Y N RL 59 1 209 <11

Vink et al. (2020) Time Space HH MILP combined with a fleet
selection method

Y Y Y C Y Y Y Y Y Y RL 100 2 600 <44

Abbreviations used in table: U/A: Unavailable, AC: Aircraft, Canx: Cancellation, Maint: Maintenance constraints, Pax: Passengers, CPU: Computation time in seconds,
EX: Exact method, MHL: (Meta-) heuristic, HH: Hybrid heuristic, O: Others, MA: Multi-Agent System,
Y: Included or mentioned, N: Not included nor considered, ‘ ’: Not mentioned or not relevant, F: Airport Flow restriction, C: Airport Closure, G: Generated Data, RL: Real-life Data.
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multi-day flight duties. First, crew roster recovery problems are
formulated as combinational optimization problems with multiple
objectives and constraints. Second, a variant of the non-dominated
sorting genetic algorithm II method is used to explore Pareto solu-
tions. The study only considers crew unavailability disruptions and
crew deadheading and crew swaps as recovery options. As a result,
it is assumed that the flight schedule will never change. The
approach is tested on real-world bi-weekly pairings, in which there
are 270 pairings and 1048 flights. The execution time of the recov-
ery algorithm is approximately 18 min.

2.3.3. Other methods
Zhu et al. (2014) proposed a constraint programming model

where an algorithm based on sequential, least slack, and greedy
principles were designed to search the solution space. The objec-
tive was to minimize the total recovery cost and the temporal-
spatial requirements, deadheading, and time legalities (8-in-24 h
rule) were considered as constraints. The model does not require
the crew to be back at their base at the end of the time window.
The paper focuses on a two-pilot flight crew with a one day recov-
ery time window. To reduce the deviations from the original sched-
ule, the authors added a search rule to the algorithm which assigns
the original crew to execute flights. A case study shows that the
proposed method is feasible for solving the crew re-scheduling
problem. Since legal requirements become more complicated and
challenging with longer time windows, the authors mention that
it would be interesting to see how the efficiency of the model
develops on a larger network with severe irregularities.

2.3.4. Discussion
Table 2 shows the overview and classification of the discussed

literature regarding the CRP including case dimensions and com-
putational times. There has been much less attention to this prob-
lem than to the ARP. The reason for this could be the complexity of
the problem, compared to the ARP, given the several regulation
constraints that have to be considered when managing crew. This
fact is also observed by the fact that no research considered exact
methods and, still, the computation times are considerably larger
for these eight papers than for the most promising ARP works.

2.4. Passenger recovery

Arguably, passenger recovery is the most relevant problem for
airline disruption management since high passenger delay cost
and continuous flight disruptions will lead to a potential loss of
goodwill and long-term reputation damage. Passenger recovery
can be formulated as follows: given a recovered flight and crew
schedule and a set of disrupted passenger itineraries, re-assign to
each disrupted itinerary the (recovered) flights necessary (given
seat availability) to accommodate passengers from their current
position to their destination while minimizing cost. These passen-
ger recovery costs can include both hard and soft costs. Hard costs
are directly incurred when a passenger cannot complete its sched-
uled itinerary (e.g., compensation for delay and cancellation as
stipulated by government regulations). Soft costs are the potential
losses of future revenue as a result of passenger inconvenience,
possibly causing the passenger to switch to a different airline in
the future. These costs are approximations made by the airline
and can differ per passenger class or frequent flyer status. Alterna-
tively, these passenger disruption costs are minimized by minimiz-
ing the total number of passenger delay minutes.

For the soft cost, nearly all papers that focus on Passenger
Recovery (either stand-alone or in combination with Aircraft
and/or Crew Recovery) assume linear delay costs – i.e., a 2-h delay
is twice the cost of a 1-h delay. Cook et al. (2012) studied the
inconvenience experienced by passengers as a function of delay
10
duration. The study has shown that the delay cost as a function
of delay duration can be represented as a sigmoid function. Studies
that incorporate such a relation generally use a piece-wise linear
relation for delay costs, if they seek to prevent a nonlinear recovery
model.

As shown in Table 3, in the period 2009–2020, there has been
one single publication simply addressing the passenger recovery
problem as a stand-alone recovery problem. In that work,
McCarty and Cohn (2018) presented a two-stage stochastic to deal
with the rerouting of passengers, re-accommodating passengers as
soon as a delay is known and before the length of the delay is real-
ized. In the first stage, passengers are preemptively assigned to
new itineraries as soon as it is known that a flight will be delayed
and in anticipation of the delay’s impact. The second stage further
modifies itineraries for passengers who miss connections after the
delay has been realized. Benders decomposition is used to solve the
problem within reasonable computation times. The presented
method is tested on a case study using a real-life flight schedule
with 15 generated delay variations of a single flight. The case study
consists of 1144 flights and in the different test instances, there are
50, 100, or 200 passengers on the delayed flight. For the 15 test
instances, the final destination of each passenger on the delayed
flight is randomly selected. On average, all test instances were
solved within 115 s.

2.5. Aircraft and passenger recovery

As mentioned in Section 1, there has been a trend towards inte-
grating more than one resource in recovery models. Sequential
optimization approaches do not fully capture the inter-
dependencies between aircraft, crew, and passengers and therefore
usually result in sub-optimal recovery solutions. The papers in this
section attempt to overcome these downsides by simultaneously
solving the aircraft and passenger recovery. The overview of the
papers addressing both aircraft and passenger disruptions is pre-
sented in Table 4.

Of the studies addressing aircraft and passenger recovery the
majority considers aircraft unavailabilities (81%) and flight delays
(75%) as disruption types, less than half consider airport disrup-
tions (44%). From the 16 papers reviewed, all considered flight
delays as a recovery action and the majority of papers considered
flight cancellations (88%), aircraft swaps (94%), and/or passenger
itinerary changes (88%) as well. This means that two studies
(Santos et al., 2017; Sinclair et al., 2016) do not explicitly model
passengers and their itinerary recovery.

2.5.1. Exact optimization methods
Hu et al. (2015) presented an integrated integer programming

model based on an approximated reduced time-band network
and a passenger transiting relationship. The authors extend their
earlier work to model multi-fleet aircraft routing. The objective is
to minimize the total cost associated with the reassignment of air-
craft and passengers to flights. One assumption the authors make
is that all passenger itineraries are comprised of a single flight
leg. A feasibility study is conducted to find the conditions under
which aircraft and passenger recovery are possible. The authors
test the model on 10 scenarios with real data of a Chinese airline
with over 180 aircraft, 113 fleets, and over 620 flights. All scenarios
take less than 172 s to solve with a maximum optimality gap of
8.74% compared to the LP relaxation.

Using a mixed-integer non-linear programming model, Arikan
et al. (2016) modeled the aircraft recovery problem and the pas-
senger recovery problem. The authors employ several recovery
actions such as re-timing departures, canceling passenger itiner-
aries, and flight planning (cruise speed control). The goal of the
model was to minimize passenger related costs and fuel costs.
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Due to the non-linearity of the cost associated with fuel consump-
tion, an LP model is no longer applicable. However, the authors
reformulate the non-linear model as a conic quadratic mixed-
integer programming model, similar to Aktürk and Atamtürk
(2014). The authors used a time–space network representation to
model the aircraft and passenger itineraries. The paper shows the
impact of cruise speed control on the airline disruption problem
and the ability to reduce cost, showing that cruise speed control
is a feasible recovery technique. In a later paper (Arikan et al.,
2017), the authors mentioned that the proposed formulation is
not flexible, such that it cannot be extended (easily) with other
entity types, such as aircraft crew and passengers, and recovery
actions. In the same paper, the authors propose a more generalized
network structure, which will be discussed in Section 2.7.

Recently, Marla et al. (2017) extended the set of traditional
recovery actions by considering flight planning. The same time–
space network representation from Bratu and Stephane (2006) is
utilized. Departure time decisions are incorporated by creating
copies of flight arcs, while the cruise speed control alternatives
are incorporated by generating a second set of flight copies for dif-
ferent cruise speed alternatives for each departure time alterna-
tive. This approach requires a discretization of the cruise speed
options and increases the size of the generated network. Due to
the intractability of the original formulation, the authors propose
an approximation model that deals with larger airline networks.
The model is steered away from solutions that would result in pas-
senger disruptions, by explicitly assigning costs to avoid delaying
flights that carry connecting passengers. A case study was per-
formed on data from a major European airline with about 250 daily
flights in a hub-and-spoke network. The computation time is lim-
ited to 120 s. Based on the airlines’ historical data, 60 scenarios are
considered. The authors conclude that their enhanced recovery
models reduce total costs and passenger-related delay costs for
the airline, compared to existing approaches.

Santos et al. (2017) presented an integer linear programming
model that incorporates airport limitations in terms of bay avail-
ability, taxiway capacity, and runway separation. The objective is
to minimize fuel costs as well as passenger compensation and
inconvenience cost. A rolling horizon is used to decrease computa-
tion times. The model is tested on a network of Kenya Airways, an
international hub-and-spoke carrier. For the case study the flight
schedule of 8 days, consisting of 250 flights, was considered. A full
day of operations is solved in less than 60 min.

2.5.2. (Meta-) heuristics
In 2009, the French Operational Research and Decision Support

Society (ROADEF) organized an OR challenge regarding disruption
management for commercial aviation, which was proposed by
Amadeus. This challenge resulted in several publications.
Bisaillon et al. (2011) formulated a large neighborhood search
(LNS) heuristic that combined fleet assignment, aircraft routing,
and passenger assignment. The heuristic cycles through three
phases: construction, repair, and improvement. These phases
destroy and repair parts of the solution in iteratively. The model
constructs aircraft routes and passenger itineraries for the recovery
period to minimize operating cost and impact on passengers. The
first two phases produce the initial solution while taking into
account the operational and functional constraints. The third phase
considers large schedule changes and tries to improve the solution
while maintaining feasibility. This work won the ROADEF 2009
challenge. Sinclair et al. (2014) improved the work of Bisaillon
et al. (2011) by making changes in each of the three phases, to find
better final solutions. In the construction phase, the aircraft that
caused the highest cost when canceled were prioritized. In the
repair phase, the focus was on re-booking passengers with dis-
rupted itineraries as well as covering flights that were canceled
11
in the construction phase with spare aircraft. In the improvement
phase, the authors attempt to accommodate disrupted passengers
by delaying flights. The improved model was tested on the ROADEF
2009 dataset. The algorithm found 17 best solutions for 22
instances in five minutes and 21 best solutions in 10 min.

The experiments of Zegordi and Hessameddin (2010) showed
that their ACO algorithm can build a revised schedule in less than
26 s for the same problem described in JJafari and Niloofarafari and
Niloofar (2010). According to the authors, the method was imple-
mented at an airline. The algorithm does not consider scenarios
where aircraft from different flight rotations recover each other,
thereby limiting the solution space.

Jozefowiez et al. (2013) presented a three-phase heuristic. In
the first phase, the disruptions are integrated in the schedule. Each
disruption is solved by a separate algorithm, flight legs are
removed and passenger itineraries are canceled to return a feasible
solution. The second phase attempts to re-assign disrupted passen-
gers with the same origin and destination to itineraries, using a
shortest path algorithm. In the third phase, new flight legs are
added to the schedule in an attempt to recover the remaining dis-
rupted passengers. Passengers are grouped by itinerary and based
on the size of the group a prioritization is made. This work was also
one of the finalists of the ROADEF 2009 Challenge. Although it did
not perform as well as Bisaillon et al. (2011), the algorithm did not
keep iterating the full 10 min but reached a feasible solution for all
cases in less than 4 min.

Zhang et al. (2016) developed a three-stage sequential heuristic
framework to solve the integrated aircraft and passenger recovery
problem. In the first stage, the flight schedules and aircraft rota-
tions are recovered. The next two steps iteratively solve the flight
rescheduling problem and the passenger recovery problem. A
time–space network representation is used together with a
mixed-integer programming formulation of the model. The pro-
posed algorithm is tested based on the same data sets used by
the ROADEF 2009 challenge. The algorithm can beat the finalists
of the challenge on all datasets.

Hu et al. (2016) proposed a mathematical model based on the
flight connection network and the passenger reassignment rela-
tionship. To solve the problem, a heuristic based on a Greedy Ran-
domized Adaptive Search Procedure (GRASP) is adopted. The
heuristic is tested through experiments based on generated and
real datasets. For all test instances, a solution was found within
100 s. The authors compare the results of the heuristic to a sequen-
tial solution approach and show that their heuristic is able to find
higher quality solutions. However, the solution costs are not com-
pared to a global optimum, so the (near-) optimality of solutions is
not presented.

In a recent paper, Yang and Tianshun (2019) presented a multi-
objective genetic algorithm to solve the aircraft and passengers’
recovery problems. The authors considered passenger preferences
when accessing the options of accepting an itinerary change or
demanding the ticket refund. The objectives considered were the
minimization of the costs incurred by the airline and the minimiza-
tion of the utility loss experienced by the passengers. The authors
study the effectiveness and efficiency of the algorithm proposed
with a couple of case studies. Although, the effectiveness is clearly
demonstrated, the authors conclude that the efficiency of that
algorithm decreases as the number of delayed aircraft increases.

2.5.3. Hybrid heuristics
JJafari and Niloofarafari and Niloofar (2010) presented an

assignment model for solving the aircraft recovery problem and
reassigning disrupted passengers simultaneously, using sequential
recovery stages within the time window. The objective is to mini-
mize the sum of aircraft assignment costs, delay costs, cancellation
costs, and disrupted passenger costs. The proposed approach uti-
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lizes a wide range of recovery actions. The model used aircraft
rotations and passenger itineraries instead of flights. The study
did not consider maintenance constraints. Jafari and Niloofar
(2011) extended the work. Due to the high complexity of the algo-
rithm, the method was only tested on disruptions with 13 aircraft
of 2 fleet types. The authors do not demonstrate that the method is
computationally efficient, nor do they show that the model can
deal with disruptions that reflect operations of a larger airline.
Zegordi and Hessameddin (2010) solved the same problem with
an ACO heuristic, which was discussed in the previous section.

Mansi et al. (2012) proposed a heuristic based on exact methods
and an oscillation strategy. In the first phase, the heuristic solves a
relaxation of the problem to find a feasible solution for aircraft and
passengers close to the initial schedule. If no feasible solution is
obtained, a dynamic programming algorithm refines the alterna-
tives and generates a feasible solution. In the second phase, the
oscillation strategy alternatively destroys and constructs aircraft
routes and passenger itineraries and assigns them to aircraft and
passengers simultaneously. This work received the second prize
in the challenge.

Sinclair et al. (2016) extended on the work in Sinclair et al.
(2014) and Bisaillon et al. (2011) by presenting a post-
optimization column generation heuristic that reduces the model
size to improve solutions within reasonable run-times. By defining
dual variables after solving the LP relaxation, the reduced costs of
the variables are calculated. The variables with negative reduces
cost are considered when resolving the LP problem. The model
was tested on the ROADEF 2009 Challenge dataset and found best
known solutions to all scenarios. The authors suggest future
research should focus on implementing a rolling-time horizon with
the column-generating algorithm.

Vink et al. (2020) extended the work from Vos and Santos
(2015) by considering passengers’ itineraries and aircraft mainte-
nance requirements when solving the ARP. The authors modeled
passengers’ delay costs by precomputing a delay cost matrix for
both direct and connecting passengers. Maintenance constraints
are directly considered and parallel-time space networks are used
to track the route of each aircraft. The problem is formulated as a
MILP problem that is dynamically solved. That is, a recovery solu-
tion is produced every time new information about disruptions is
made available. The authors claim that to make such an operation
tool a solution has to be found within 2 min. To cope with this
requirement, the authors propose a selection algorithm, which
iteratively solves the MILP by considering selections of sub-sets
of the fleet. The selection algorithm proves to be efficient, provid-
ing an initial solution within a couple of seconds and producing a
near-optimal solution within 22 s on average.

2.5.4. Discussion
Table 4 presents an overview of the papers discussed in this sec-

tion. As can be seen, 14 papers were published between 2009 and
2020. From these, 43% used exact optimization solution methods
while the remaining 57% used heuristic methods. It is important
to refer that six of these 14 papers use the dataset provided in
the ROADEF challenge, showing the impact of this challenge in
the literature.

The ACO approach by Zegordi and Hessameddin (2010) seems
promising since it considers all relevant recovery options and
maintenance constraints while still managing to solve a real-life
case in 26 s with 61% optimality gap. It is unknown how the com-
putation times scale with problem size. Another promising paper is
the work by Hu et al. (2015), Hu et al. (2016). The authors are able
to solve several real-life instances in under 100 s with small opti-
mality gaps. Unfortunately, the authors do not currently consider
maintenance constraints. Recently, Vink et al. (2020) proposed
another interesting approach. The authors discuss an operational
12
tool, solving the disruption problems in a few seconds while
explicitly considering connecting passengers’ delay costs.

Finally, it is interesting to observe that two recent papers (Marla
et al. (2017); Arikan et al. (2016)) considered changing flights’
cruise speeds as a recovery option. This functionality increases
the computational complexity of the models presented but it
reflects the option available to the airlines to change their flight
times to recover from disruptions.

2.6. Aircraft and crew recovery

In this section, publications on simultaneous aircraft and crew
recovery will be discussed. To the best of the authors’ knowledge,
there are no pre-2009 papers that present solutions on the com-
bined aircraft and crew recovery. Aguiar et al. (2013) were the first
to suggest a solution method for this problem, as will be discussed
below. In fact, Table 5 shows that only four papers covering both
aircraft and crew recovery were published until today. None of
the papers addressing aircraft and crew recovery consider all com-
mon disruption types (flight delays, aircraft unavailabilities and
airport disruptions) in their models and case studies. Aguiar et al.
(2013) was the only study that considers aircraft unavailabilities.
Furthermore, none of the studies consider crew unavailabilities
as a disruption. From the 3 papers reviewed, all considered flight
delays and cancellations as a recovery action. Maher (2016) did
not consider aircraft swaps as a recovery action, while Zhang
et al. (2015) was the only study that regards utilizing reserve air-
craft as a possible recovery action. None of the studies considers
reserve crew as a recovery action.

2.6.1. (Meta-) heuristics
Le and Mei Long (2013) extended the work presented in Le et al.

(2013) to include crew recovery. As in the previous work, the
authors use flight strings to represent a sequence of flights. An iter-
ative tree growing algorithm with nodes combination method is
proposed to speed up the computational time. The authors con-
sider maintenance requirements and pilot union regulations. A
case study using data from a Chinese airline is presented.

In the same year, Aguiar et al. (2013) used and compared sev-
eral different meta-heuristics such as hill-climbing, simulated
annealing, and genetic algorithm to solve the aircraft and crew
recovery problem. For the aircraft recovery, a multi-objective
approach was developed. Hill-climbing, simulated annealing, and
genetic algorithm were used to solve the ARP. The genetic algo-
rithm outperformed the other heuristics, although all heuristics
performed well. The solution of the ARP serves as the input for
the crew connecting problem. To solve the CRP, hill-climbing and
simulated annealing algorithms were developed and tested on data
from TAP Portugal. For the crew connecting problem, the simulated
annealing algorithm performed best in terms of crew cost. None of
the results are compared with the global optimum, so although
feasible solutions are given, the quality of those solutions cannot
be determined.

Zhang et al. (2015) proposed a two-stage heuristic for the inte-
grated aircraft and crew recovery problem. In the first stage, the
aircraft recovery with partial crew considerations model is built.
This model is based on the traditional multi-commodity network
model for the aircraft schedule recovery problem. In the second
stage, the crew schedule recovery with partial aircraft considera-
tion model is built. The authors propose a new multi-commodity
model for the crew schedule recovery. The two stages are run iter-
atively until no improvement is found. The proposed algorithm is
compared to the integrated model of Abdelghany et al. (2008)
and a sequential algorithm. The algorithm can improve the solu-
tions of the other two algorithms for all scenarios. Although the
algorithm had a higher run-time, it never exceeds 72 s.
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2.6.2. Hybrid heuristics
Maher (2016) proposed a column-and-row generation frame-

work that extends the existing branch & price (B&P) models and
reduces the problem size. The model employs departure delays
and cancellations as recovery techniques. The proposed model is
compared to a column generation model. On average, the
column-and-row generation model had a 27% lower run-time.
The authors tested the model on both a point-to-point and a
hub-and-spoke network with 262 and 442 flights respectively.

2.6.3. Discussion
Table 5 shows the overview and classification of the papers

regarding aircraft and crew recovery. It is curious to observe that
the integration of these two resources has not received much
attention, despite the resources are closely related for several air-
lines. Nevertheless, the few works published present a comprehen-
sive analysis of the problem. Le and Mei Long (2013) and Aguiar
et al. (2013) included all common recovery options and mainte-
nance constraints in the model formulation. While Zhang et al.
(2015) also included all recovery options and maintenance con-
straints. No computational times are presented by Le and Mei
Long (2013). But both other papers seem to produce a recovery
solution in a few seconds. Unfortunately, both papers do not pre-
sent a comparison with the global optimum, therefore the solution
quality of the heuristics cannot be assessed. Maher (2016) consid-
ered the generation of new crew duties as a recovery solution but
did not consider a multiple fleet formulation of the model. For the
hub-and-spoke formulation the solutions were found in 2–15 min
for all scenarios.

2.7. Integrated recovery

Both from a mathematical and computational perspective, the
integration of all recovery stages (aircraft, crew, and passengers) is
a difficult task. The purpose of this integration is to minimize the
total disruption cost. This is achieved by weighing the disruption
cost related to aircraft, crew, and passengers simultaneously to find
the recovery solution that overall results in the lowest cost for the
airline. To the best of the authors’ knowledge, the first proposal of
a truly integrated approach was the PhD Thesis of Lettovsky
(1997), where the author formulated the ‘Airline Integrated Recov-
ery’ problem which consists of aircraft routing, crew assignment,
and passenger flow. The thesis presents a linear mixed-integer
mathematical problem that captures the availability of the afore-
mentioned resources. A decomposition scheme is presented where
the ‘Schedule Recovery Model’ master problem controls the three
sub-problems known as the ‘Aircraft recovery model’, ‘Crew recov-
ery model’, and ‘Passenger flow model’. The solution is derived by
applying Benders’ decomposition. A limitation is that the model
only considers the cockpit crew and not cabin crew. This subsection
will present the fully integrated recovery papers between 2009–
2018, with the overview presented in Table 6.

Almost all papers addressing integrated recovery consider air-
port disruptions. Other typical disruption sources considered are
flight delays (50%) and aircraft unavailability (30%). Castro et al.
(2014) is the only work to consider crew unavailability as a disrup-
tion source. In terms of recovery action, except for Ogunsina et al.
(2019), all papers reviewed considered flight delays, cancellations,
aircraft swaps, crew deadheading and passenger itinerary changes
as recovery actions. Most also considered crew swaps (80%) and
reserve crew (80%). Arikan et al. (2017) can be considered the most
complete in terms of disruption types handled and recovery
actions included since it considers all disruption types but crew
unavailability and in addition to all recovery actions mentioned
above also includes reserve aircraft, aircraft ferrying, and cruise
speed control.
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2.7.1. Exact optimization methods
Arikan et al. (2017) developed a new flight network representa-

tion for the integrated recovery problem, based on the flow of each
entity (aircraft, crew, and passenger) through the network. With
the proposed flight network, the problem size is kept within limits
so that real-time solutions can be provided since it does not
require discretization of departure times and cruise speed deci-
sions. Similar to Aktürk and Atamtürk (2014), the authors imple-
mented aircraft cruise speed control and proposed a conic
quadratic mixed-integer programming formulation. The model
explicitly models passengers, thereby evaluating the passenger
delay costs more realistically. The authors test the model on a net-
work of a major U.S. airline. The effect of the the pre-processing
methods, the cruise speed control, the passenger delay function,
the severity of the disruptions, and the length of the recovery hori-
zon on the optimality gap and run-time are evaluated.
2.7.2. (Meta-) heuristics
Zhu et al. (2016) proposed a model for the integrated recovery

problem based on a sampling-based algorithmic framework. The
recovery process is divided into two parts. In the first part, a
multi-stage IP model reconstructs the flight schedule and fleet
assignment. The second part creates IP models for crew schedule
recovery and passenger re-accommodation. All feasible recon-
struction solutions in the current time period are obtained by
relaxing crew and passenger constraints. By optimizing the crew
recovery and passenger re-accommodation heuristically based on
random samples of the reconstruction solutions for future time
stages, the upper and lower bound of each solution is estimated.
The algorithm is tested on the flight network of a Chinese airline
with 250 flight legs, 65 aircraft in six families, and 85 crews.
2.7.3. Hybrid heuristics
Petersen et al. (2012) presented an integrated optimization

approach that resembled the one used by Lettovsky (1997), where
they distinguish between four different phases: schedule recovery,
aircraft rotations, crew assignment, and passenger assignment. In
the first phase, the schedule is repaired by flying, canceling, delay-
ing or diverting flights. Then, in the second phase, aircraft are
assigned to the new schedule. Third, the crew is assigned to the air-
craft rotations. In the last phase, the passenger recovery ensures
that all passengers arrive at their final destination. The authors
tested the model with data from a regional US carrier that operates
a hub-and-spoke network with 800 daily flights. The results of the
proposed integrated model are compared to the results of a
sequential approach. Where the proposed approach always finds
a feasible solution, the sequential model only finds a feasible solu-
tion in 75% of the cases. The results show that the costs of the inte-
grated approach are always equal to or lower than the cost of the
sequential approach. The computation time of the proposed solu-
tion ranges between 20–30 min. Currently, the network is rebuilt
with every disruption. The authors note that, by building the net-
work in advance, the computation time could be reduced.

Maher (2015) presented a column and row generation approach
to solve the integrated recovery model. The framework is based on
general column generation and Bender’s decomposition, which
improves the run-time and quality of the solution. Using the Big
M method, costs are assigned to the objective function when dis-
rupted passengers are not assigned to a flight that recovers the
itinerary. By using the Big M method, infeasibilities due to conflict-
ing constraints are prevented, while as many passengers as possi-
ble are recovered. Due to the integration of passengers, the run-
time increases. Solution times range between 500 and 2700 s
depending on the scenario.
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2.7.4. Multi-agent systems
Following their previous work, Castro et al. (2014) presented a

‘Multi-Agent System for Disruption Management’ (MASDIMA)
and a related work analysis and comparison with MASDIMA. The
proposed MAS is capable of autonomously monitoring the opera-
tions of the airline and deciding whether an event requires action
or not. The MAS is adaptive to the environment and includes learn-
ing capabilities. Furthermore, the MASDIMA allows for human-in-
the-loop inclusion, which improves user acceptance of the solu-
tions by reacting and learning from user preferences. According
to the authors, the main advantages of their approach are: gener-
ates integrated (i.e. that included all parts of the problem) and
more balanced solutions (in terms of the objectives of each part).

In a recent paper, Ogunsina et al. (2019) proposed an automated
learning approach to solve the integrated airline disruption prob-
lem. Although not presenting its implementation, the authors
described the framework in which an agent uses a multidimen-
sional Markov chain model to assess the propagation of disrup-
tions. Based on this assessment, the agent recommends recovery
solutions to a human controller that would then select one solution
to be applied. The agent would learn from the selection made by
the human controller to improve the automated generation of
future recovery solutions. The paper also discusses two different
methods for dimensionality reduction, that can be used for training
in the data-driven agent-based approach proposed.

2.7.5. Discussion
The overview and classification of the discussed papers on inte-

grated recovery can be found in Table 6. Maher (2015) does not
include maintenance constraints and the model formulation does
not allow for multiple fleet types. The model formulations of
Petersen et al. (2012) and Arikan et al. (2017) are fit for use in an
AOCC. Unfortunately, the computation times for the given case
studies are too long for operational implementation.

The conclusion from this overview is that there are few papers
considering the full integration of the three resources usually con-
sidered in the airline disruption management problem. In part, this
comes from the difficulty of solving this integrated problem in a
reasonable time. All studies presented in the literature declare
computational times of several minutes, even for case studies
smaller than most realistic problems.

3. Conclusion and directions for further research

In this paper, we reviewed the recent literature in the field of
airline disruption management and recovery methodologies that
can be used as decision-support solutions at the Airline Operations
Control Centers (AOCCs). We identified the functionalities of the
models presented and the characteristics of the largest case studies
solved in the papers found in the literature in the last decade. We
dedicated separated sections to the different recovery scopes and
solution methods used. Papers presenting airline scheduled
robustness and resilience were left out of this survey, despite the
rich literature on the topic and the interest to airlines. The last lit-
erature review on the topic was presented by Clausen et al. (2010),
so future works could address this gap and complement this paper
with an overview of the solutions proposed in the literature to mit-
igate disruptions at the scheduling stage.

Two interesting trends have been observed in the literature
review presented in this paper. The first is that in recent years more
works present an integrated approach, explicitly modeling crew
and/or passenger recovery as part of the aircraft recovery problem.
This is a relevant development for the deployment of the proposed
decision support tools in practice. Airline operation controllers
require an integrated solution when solving disruption in practice.
The second trend relates to the increasing number of functionalities
15
included in the approaches proposed to better represent the real-
world operational context. With the increase in computing power,
several authors have included more detailed operational aspects
in their models, such as the consideration of multiple aircraft fleets,
themodeling of passengers’ itineraries, or the introduction of cruise
speed control as a recovery technique. This focus on the detailing of
the functionalities of the models will increase the accuracy and
added-value of the disruption models presented.

These two trends come, however, at expenses of higher compu-
tational requirements posing additional challenges in the develop-
ment of very efficient solution techniques. This is particularly the
case since most airline operations controllers demand operational
disruption models to provide good solutions at the fleet level in
one or two minutes (Vink et al., 2020). This is perhaps the major
challenge for researchers working on the airline disruption man-
agement problem in the coming decade. A promising research line
is the adoption of data-driven or machine learning (ML) tech-
niques. ML techniques can either be considered as stand-alone an
end-to-end solution technique (e.g., using reinforcement learning),
as a support approach to provide additional information to an opti-
mization algorithm (e.g., the ML can be used to explore the solu-
tion space or provide effective problem relaxations) or as
solution technique alongside with traditional optimization tech-
niques. For instance, future research could consider ML algorithms
to approximate the lower bound of the optimization problem to
create cutting planes that could tighten the relaxed version of
the disruption management model. Another idea to leverage the
use of ML algorithms is to have a supervised learning algorithm
running alongside the optimization algorithm, either to improve
the algorithm configuration or to help with the definition of
promising neighborhoods considered by the optimization algo-
rithm. A good example is the selection algorithm presented by
Vink et al. (2020), which could be replaced by an ML algorithm.
Please refer to Bengio et al. (2018) for a recent overview on ML
approaches to solve combinatorial problems.

Moreover, one aspect that is emerging and will be a future trend
is the consideration the dynamic nature of the disruption problem
(Marla et al., 2017; Vink et al., 2020). Future research, to be rele-
vant for practical implementations, should solve the disruption
problem the same way it is solved in practice – recovery solutions
have to be found every time there is new information about dis-
ruptions and previous decisions can be revoked if it improves the
solution and there is still time to change them. On one hand, such
an approach will make the modeling approach more complex,
requiring the adaptation of sequential decision models with lag
decisions reconsidering previous actions. On the other hand, this
can be used to break down the problem into sequential smaller
problems, speeding up the computation times (but possibly com-
promising the optimality of the solutions found).

Another aspect that requires more attention is the considera-
tion of proactive disruption management. That is, to anticipate
future disruptions while solving current disruptions. In fact, with
exception of the recent paper from.

Lee et al. (2020), all research found on the topic of airline dis-
ruptionmanagement follows a reactive approach in which the flex-
ibility to accommodate future disruptions in neglected. This could
be a very interesting topic of research, appreciated by practitioners.
This line of research can combine the use of robust scheduling
techniques at the disruption mitigation stage with disruption man-
agement techniques at the control stage. Furthermore, it also
opens the door to the implementation of data analytics to simulate
systematic disruption and the use of reinforcement learning tech-
niques to learn how to make optimal decisions when anticipating
future consequences.

In addition to these findings, it important to highlight the
impact that the ROADEF 2009 Challenge had to bust the interest



L.K. Hassan, B.F. Santos and J. Vink Computers and Operations Research 127 (2021) 105137
in the airline disruption management topic. The publication of
open data called the attention of many researchers. It is, therefore,
important to promote the publication of research data to accelerate
research in this domain and the use of existing research data for
benchmark the solutions proposed.

The main conclusion that can be drawn from this literature
review is that the airline disruption management problem is still
a growing field of research. Several practical and methodological
challenges can be identified and stimulate future research. More-
over, in a time of higher data accessibility and higher distributed
computational power, the research opportunities will go beyond
the traditional operations research domain and will include devel-
opments in the data and computer science domain.
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