
 
 

Delft University of Technology

A design framework for nonlinear iterative learning control and repetitive control
Applied to three mechatronic case studies
Aarnoudse, Leontine; Pavlov, Alexey; Oomen, Tom

DOI
10.1016/j.conengprac.2024.105976
Publication date
2024
Document Version
Final published version
Published in
Control Engineering Practice

Citation (APA)
Aarnoudse, L., Pavlov, A., & Oomen, T. (2024). A design framework for nonlinear iterative learning control
and repetitive control: Applied to three mechatronic case studies. Control Engineering Practice, 149, Article
105976. https://doi.org/10.1016/j.conengprac.2024.105976

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.conengprac.2024.105976
https://doi.org/10.1016/j.conengprac.2024.105976


Control Engineering Practice 149 (2024) 105976

A
0

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

A design framework for nonlinear iterative learning control and repetitive
control: Applied to three mechatronic case studies✩

Leontine Aarnoudse a,∗, Alexey Pavlov b, Tom Oomen a,c

a Department of Mechanical Engineering, Control Systems Technology, Eindhoven University of Technology, Eindhoven, The Netherlands
b Department of Geoscience and Petroleum, NTNU Norwegian University of Science and Technology, Trondheim, Norway
c Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Iterative learning control
Repetitive control
Nonlinear Control
Convergent systems

A B S T R A C T

Iterative learning control (ILC) and repetitive control (RC) can lead to high performance by attenuating
repeating disturbances perfectly, yet these approaches may amplify non-repeating disturbances. The aim of
this paper is to achieve both perfect, fast attenuation of repeating disturbances and limited amplification of
non-repeating disturbances. This is achieved by including a deadzone nonlinearity in the learning filter, which
distinguishes disturbances based on their different amplitudes to apply different learning gains. Convergence
conditions for nonlinear ILC and RC are developed, which are used in combination with system measurements
in a comprehensive design procedure. Experimental implementation demonstrates fast learning and small
errors.
1. Introduction

Iterative learning control (ILC) and repetitive control (RC) are re-
lated approaches that can lead to high performance for systems with
disturbances that repeat, either over tasks (iteration-invariant) in ILC
or periodically within one task (periodic) in RC, by attenuating these
disturbances completely. In ILC, a feedforward signal is updated it-
eratively after each experiment (Bristow, Tharayil, & Alleyne, 2006),
and the system resets after each iteration, whereas in RC, a periodic
signal generator is included in the closed loop to reject periodic signals
without system resets (Longman, 2010). While iteration-invariant or
periodic disturbances are attenuated completely, iteration-varying or
non-periodic disturbances may be amplified by ILC (Butcher, Karimi, &
Longchamp, 2008; Oomen & Rojas, 2017) and RC (Chen & Tomizuka,
2014).

Linear iteration-invariant ILC approaches are subject to trade-offs
when reducing the amplification of iteration-varying disturbances, as
this often leads to both reduced attenuation of iteration-invariant dis-
turbances (Bristow et al., 2006) and slower convergence (Butcher et al.,
2008). Iteration-invariant ILC approaches to reduce amplification of
iteration-varying disturbances include using low-pass robustness filters
in frequency-domain ILC (Bristow et al., 2006) or weighting of the
feedforward signal in lifted norm-optimal ILC (Gunnarsson & Norrlöf,
2001). These approaches reduce the amplification of varying distur-
bances at certain frequencies, but they also lead to reduced attenuation

✩ This work is part of the research programme VIDI with project number 15698, which is (partly) financed by the NWO, Netherlands.
∗ Corresponding author.
E-mail address: l.i.m.aarnoudse@tue.nl (L. Aarnoudse).

of iteration-invariant disturbances at those frequencies. A small learn-
ing gain, or weighting of the change in input, leads to both a small
error and limited amplification of iteration-varying disturbances, but
the convergence is slow.

Since linear iteration-invariant ILC strategies are limited in the
presence of iteration-varying disturbances, iteration-varying ILC strate-
gies have been introduced. The overview paper (Shen & Wang, 2014)
mentions two distinct stochastic ILC approaches that take into account
iteration-varying disturbances to determine iteration-varying ILC up-
date laws that are optimal in some sense. The first approach uses
a P-type or D-type ILC update based on Kalman filtering, and re-
quires accurate knowledge of the system and the disturbances, see
also Saab (2001, 2003). Similar system and disturbance knowledge is
used in Deutschmann-Olek, Stadler, and Kugi (2021), which uses a
Wiener-filtering approach to find an optimal update based on the ex-
pected power-spectral densities of the iteration-invariant and iteration-
varying disturbances. The performance of these approaches depends
strongly on the accuracy of the system and disturbance models, and
tuning for robustness against model uncertainty is challenging. The
second approach is based on stochastic approximation and estimates
the gradient based on a perturbation experiment (Chen, 2003). This
stochastic gradient descent-based method leads to slow convergence,
especially when combined with descending step sizes that are needed to
ensure convergence. A similar systematic reduction of the learning gain
vailable online 30 May 2024
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at each iteration is used in Butcher et al. (2008), which uses a model-
based update instead of a gradient estimate, but which still leads to
slow convergence when limiting the amplification of iteration-varying
disturbances. In Oomen and Rojas (2017), a sparse ILC algorithm
is presented which leads to time-varying ILC within one trial. The
standard norm-optimal ILC criterion is extended by a convex relaxation
of the 𝓁0-norm of the input signal to enforce sparsity. This approach
achieves both fast convergence and limited amplification of iteration-
varying disturbances, but the input update that minimizes the criterion
cannot be obtained in closed form. Instead, an optimization problem is
solved for each iteration. Therefore, tuning for robustness is challenging
in this approach.

Similar to linear iteration-invariant ILC approaches, linear time-
invariant (LTI) RC approaches suffer from trade-offs between learning
speed, attenuation of periodic disturbances and limited amplification of
non-periodic disturbances. RC modifies the closed-loop through a modi-
fying sensitivity, which contains notches that provide local suppression
at the frequency of the periodic disturbance and its harmonics. Due
to the waterbed effect, the modifying sensitivity exceeds 0 dB at other
requencies, leading to amplification of non-periodic disturbances or
isturbances with different periods. Reducing the cut-off frequency of
he low-pass robustness filter or decreasing the learning gain (Yeol &
ongman, 2008) in RC has similar disadvantages as in ILC. In addition,
educing the learning gain in RC leads to reduced robustness against
eriod variations or uncertainty. Other approaches, including high-
rder RC (Pipeleers, Demeulenaere, De Schutter, & Swevers, 2008;
teinbuch, Weiland, & Singh, 2007) and optimal model-based RC de-
igned in conjunction with an observer-state feedback controller (De
oover, Bosgra, & Steinbuch, 2000), allow for more extensive trade-
ffs yet retain these fundamental limitations. Kalman filters may reduce
he amplification of non-periodic disturbances (Longman, 2010), yet
equire complete knowledge of the system model and the periodic
isturbance.

Although significant steps have been taken to apply ILC and RC
n the presence of both repeating and non-repeating disturbances, at
resent no approach exists that achieves fast, strong attenuation of re-
eating disturbances while limiting the amplification of non-repeating
isturbances. To address this challenge, this paper develops nonlinear
LC and RC approaches that include nonlinearities in the frequency-
omain learning filters. It is shown that under certain design condi-
ions, ILC and RC algorithms with these incrementally sector-bounded
onlinearities converge similar to linear ILC and RC algorithms. In-
luding nonlinearities leads to an additional degree of freedom to
mprove the performance of ILC and RC. In particular, by choosing
deadzone it is possible to distinguish between non-repeating (either

teration-varying or non-periodic)and repeating (iteration-invariant or
eriodic) disturbances based on their amplitude characteristics, and
pply learning gains that adapt to the type of disturbance. The idea
f nonlinear learning filters in ILC and RC relates to variable-gain feed-
ack controllers constructed through nonlinear filters, see, e.g., Heert-
es and Steinbuch (2004) and Pavlov, Hunnekens, Wouw, and Nijmeijer
2013). A similar idea has also been applied to lifted ILC (Aarnoudse,
avlov, & Oomen, 2023b; Heertjes & Tso, 2007), by including a dead-
one nonlinearity in the learning filter.

The contribution of this paper consists of the following elements:

• a framework for nonlinear frequency-domain ILC and RC, includ-
ing convergence conditions;

• a systematic design procedure for ILC and RC with deadzone
nonlinearities, including a simulation case study that illustrates
the effect of various design parameters; and

• validation of the approach through two experimental case studies
on a benchmark system and on an industrial print belt sys-
tem, which demonstrate fast and strong attenuation of repeating
disturbances while limiting the amplification of non-repeating
2

disturbances. I
Fig. 1. Closed-loop control scheme.

Preliminary results for nonlinear frequency-domain ILC and RC
are presented in respectively Aarnoudse, Pavlov, and Oomen (2023a)
and Aarnoudse, Pavlov, Kon, and Oomen (2023). The present paper
extends these results by a complete design procedure, extensive simu-
lation results and experimental implementation. In addition, for non-
linear frequency-domain ILC a new convergence theorem is developed
that considers iteration-varying inputs.

Related results for lifted ILC are presented in Aarnoudse, Pavlov,
and Oomen (2023b), which interprets the nonlinear lifted ILC system as
a multiple-input multiple-output (MIMO) Lur’e system in the iteration
domain. Convergence criteria are developed by analyzing this system
as a discrete-time convergent system (Pavlov & Van De Wouw, 2012).
The theoretical results obtained for lifted ILC assume finite-time signals,
and cannot be applied directly to frequency-domain ILC, which assumes
infinite-time signals. Therefore, in this paper convergence criteria are
developed for nonlinear frequency-domain ILC, a corresponding design
procedure is provided, and the method is validated experimentally on
a benchmark system. In addition, the method is extended to nonlinear
repetitive control.

This paper is structured as follows. The problem is formulated
in Section 2. Nonlinear ILC and RC algorithms that include a static
incremental-sector bounded nonlinearity are introduced, and conver-
gence conditions are developed, in respectively Sections 3 and 4. The
amplification of disturbances in ILC and RC is analyzed in Section 5,
and a deadzone nonlinearity is introduced to apply adapting gains
based on the disturbance amplitude. In Section 6 the design procedure
is explained and illustrated using simulation results. The approach is
validated experimentally for ILC and RC in Section 7 and conclusions
are given in Section 8.

Notation: For a vector 𝑥 and a matrix 𝑃 , ‖𝑥‖2 =
√

∑∞
𝑖=−∞ |𝑥𝑖|

2 < ∞

denotes the 𝓁2-norm for 𝑥 ∈ 𝓁2 and ‖𝑥‖𝑃 =
√

𝑥𝖳𝑃𝑥 denotes the
eighted 2-norm. The spectral radius of a matrix is denoted by 𝜌(𝑃 ).
he ∞-norm is denoted by ‖𝐺‖∞ = sup𝜔∈[0,2𝜋) |𝐺(𝑒𝑖𝜔)| for a real-
ational, causal and stable transfer function 𝐺 ∈ ∞, and ‖𝐺‖∞

=
up𝜔∈[0,2𝜋) |𝐺(𝑒𝑖𝜔)| denotes the ∞-norm for a rational transfer function
∈ ∞. The sets of real, natural, and integer numbers are denoted by
, N and Z, respectively. The power spectrum 𝜙𝑥 of signal 𝑥 is defined
s in Ljung (1999, Section 2.3).

. Problem formulation

Consider a single-input single-output (SISO) LTI system as depicted
n Fig. 1, with a system 𝑃 and a feedback controller 𝐶. The error of the
riginal closed-loop system, 𝑒0, is given by

0 = (1 + 𝑃𝐶)−1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑆

(𝑦𝑑 − 𝑣), (1)

ith reference 𝑦𝑑 and measurement noise 𝑣. Without loss of generality,
t is assumed that 𝑦𝑑 is either iteration-invariant or periodic, while 𝑣
s iteration-varying or non-periodic. Since the system is LTI, all other
epeating and non-repeating disturbances can be included in the terms
𝑦𝑑 or 𝑆𝑣, respectively. Depending on whether 𝑦𝑑 is repeating over

asks or periodic within one task, either iterative learning control or
epetitive control can be used to attenuate the disturbances induced by
𝑑 completely by injecting a compensating signal after the controller
n parallel ILC, adding a compensating signal to the reference in serial

LC, or including a periodic signal generator before the controller in
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Fig. 2. Parallel iterative learning control scheme with the ILC update indicated in blue.

RC. The main difference is that in contrast to ILC, RC does not assume
a system reset between occurrences of the disturbance. Typical ILC and
RC implementations are shown in respectively Figs. 2 and 4.

This paper includes three different case studies on ILC and RC for
mechatronic systems that are subject to repeating and non-repeating
disturbances. The first is a simulation study using an industrial flatbed
printer that performs a scanning motion. The second case study con-
siders an experimental benchmark system that performs a scanning
motion similar to the flatbed printer. Third, experiments are performed
on an industrial print belt system that consists of various rollers and
belts that introduce periodic and non-periodic disturbance while the
system rotates with a constant velocity. The problem considered in this
paper is the development of ILC and RC approaches for these types of
systems, that can attenuate iteration-invariant or periodic disturbances
completely in a small number of iterations/periods, without amplifying
iteration-varying or non-periodic disturbances. Convergence conditions
should be developed for these algorithms, that can be evaluated based
on frequency-response measurements in order to design for robustness
against model uncertainty in a systematic design procedure.

3. Nonlinear iterative learning control

In this section, nonlinear iterative learning control is introduced.
The standard formulations are extended by a sector-bounded nonlin-
earity, and convergence conditions are developed. In the standard ILC
configuration illustrated in Fig. 2, a feedforward signal 𝑓𝑗 is applied to
he closed-loop system, resulting in the error

𝑗 = 𝑆(𝑦𝑑 − 𝑣𝑗 ) − 𝐽𝑓𝑗 (2)

t iteration 𝑗. Here 𝐽 = 𝑆𝑃 denotes the process sensitivity of the
ystem. Feedforward signal 𝑓𝑗 is updated iteratively according to

𝑗+1 = 𝑄(𝑓𝑗 + 𝛼𝐿𝑒𝑗 ), (3)

ith learning filter 𝐿, which is chosen to approximate 𝐽−1, robustness
ilter 𝑄, which is typically a zero-phase low pass filter, and learning
ain 𝛼 which is typically chosen to be ∈ (0, 1].

In the presented nonlinear ILC approach, the ILC update (3) is
xtended by a static nonlinearity 𝜑. The motivation for including this
ype of nonlinearity is that it can increase the design freedom in ILC
ignificantly, while convergence is still ensured under mild conditions
hat can be evaluated using identified frequency responses of the sys-
3

em. The additional design freedom is exploited in Section 5, where 𝜑
Fig. 3. Nonlinear parallel iterative learning control scheme with deadzone nonlinearity
𝜑. The ILC update is indicated in blue.

is chosen as a deadzone nonlinearity that enables fast convergence to
small errors. The static nonlinearity 𝜑 satisfies the incremental sector
condition

0 ≤ 𝜑(𝑎) − 𝜑(𝑏)
𝑎 − 𝑏

≤ 𝛾 (4)

for any two scalars 𝑎 and 𝑏. The nonlinear ILC scheme is illustrated in
Fig. 3 and uses the feedforward update

𝑓𝑗+1 = 𝑄(𝑓𝑗 + 𝛼𝐿𝑒𝑗 + 𝐿𝜑(𝑒𝑗 )), (5)

To analyze the convergence of algorithm (5) in case of frequency-
domain ILC, consider the following feedforward and error iterations

𝑓𝑗+1 = 𝛼𝑄𝐿𝑆(𝑦𝑑 − 𝑣𝑗 ) +𝑄(1 − 𝛼𝐿𝐽 )𝑓𝑗 (6)
+𝑄𝐿𝜑(𝑆(𝑦𝑑 − 𝑣𝑗 ) − 𝐿𝑓𝑗 ),

𝑒𝑗+1 = (1 −𝑄)𝑆𝑦𝑑 +𝑄𝑆𝑣𝑗 − 𝑆𝑣𝑗+1 (7)
+𝑄(1 − 𝛼𝐽𝐿)𝑒𝑗 −𝑄𝐽𝐿𝜑(𝑒𝑗 ).

The feedforward and error iterations for nonlinear ILC are inter-
preted as nonlinear systems in the iteration domain. To analyze the
stability of nonlinear ILC and RC with iteration-varying or non-periodic
inputs, the notion of exponential convergence for nonlinear systems is
introduced (Pavlov & Van De Wouw, 2012, Definition 1).

Definition 1. The system

𝑥(𝑘 + 1) = ℎ(𝑥(𝑘), 𝑘), (8)

ith state 𝑥 ∈ R𝑛, ℎ ∶ R𝑛 × Z → R𝑛 and discrete-time variable 𝑘 ∈ Z, is
alled exponentially convergent if

• there exists a unique solution �̄�(𝑘) that is defined and bounded on
Z (from −∞ to +∞),

• �̄�(𝑘) is globally exponentially stable, i.e., there exists 𝑐 > 0 and
0 < 𝜆 < 1 such that |𝑥(𝑘) − �̄�(𝑘)| ≤ 𝑐𝜆𝑘−𝑘0 |𝑥(𝑘0) − �̄�(𝑘0)| for all
𝑘 ≥ 𝑘0.

Solution �̄�(𝑘) is called a steady-state solution, to which any solution
of the convergent system converges, irrespective of the initial condition.
The time dependency of (8) is typically due to an input, and if that
input is periodic then �̄� is periodic with the same period (Pavlov &
Van De Wouw, 2012). If the right-hand side of (8) is independent
of time, then the steady-state solution is constant. The convergence
property is an extension of the stability properties of asymptotically
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stable linear systems excited by external inputs. The following result
establishes exponential convergence of a nonlinear system (Pavlov &
Van De Wouw, 2012, Theorem 1).

Lemma 2. Consider system (8) with a Lipschitz continuous (Khalil, 2002,
hapter 3) right-hand side satisfying

ℎ(𝑥1, 𝑘) − ℎ(𝑥2, 𝑘)‖𝑃 ≤ 𝜆‖𝑥1 − 𝑥2‖𝑃 , (9)
∀𝑥1, 𝑥2 ∈ R𝑛, 𝑘 ∈ Z

sup
𝑘∈Z

‖ℎ(0, 𝑘)‖𝑃 < +∞, (10)

for some matrix 𝑃 = 𝑃 𝖳 ≻ 0 and number 𝜆 ∈ (0, 1). Then system (8) is
exponentially convergent.

The notion of monotonic convergence in the 𝓁2-norm of the se-
quence of iterates is commonly used in ILC to ensure good learning
transients (Longman, 2000). This notion relates to the notion of ex-
ponential convergence as used for the analysis of nonlinear systems
according to the following definition.

Definition 3. A system (8) is called monotonically exponentially
convergent if it satisfies the conditions of Lemma 2 with 𝑃 = 𝐼 .
In that case, the corresponding sequence of states {𝑥(𝑘)} converges
monotonically in the 𝓁2-norm ‖𝑥‖2 =

√

∑∞
−∞ |𝑥𝑖|

2 < ∞.

A condition for the monotonic exponential convergence of the error
iteration (7) in frequency domain ILC is given by the following theorem
for an invertible system 𝐽 .

Theorem 4. The error iteration (7) for system (2) with feedforward
update (5) and nonlinearity 𝜑 satisfying (4) is monotonically exponentially
convergent if
‖

‖

‖

‖

𝑄
(

1 −
(

𝛼 +
𝛾
2

)

𝐽𝐿
)

‖

‖

‖

‖∞

+
𝛾
2
‖𝑄𝐽𝐿‖∞

< 1, (11)

with 𝛾, 𝛼 > 0. Then the corresponding sequence of iterates {𝑒𝑗} converges
onotonically in the 𝓁2-norm to a unique steady-state solution 𝑒𝑗 .

The proof of Theorem 4 is given in the appendix. Note that while
heorem 4 employs the same notion of discrete-time convergent sys-
ems as used in Aarnoudse, Pavlov, and Oomen (2023b, Theorem 9) for
ifted ILC, the resulting convergence conditions are different. Both ap-
roaches analyze the mapping from signals of one iteration to the next,
ut Theorem 4 analyzes the mapping directly using frequency-domain
ilters, whereas Aarnoudse, Pavlov, and Oomen (2023b, Theorem 9)
onsiders the lifted ILC system as a MIMO Lur’e system in the itera-
ion domain for which finally a MIMO frequency-domain condition is
btained. The convergence conditions for nonlinear frequency-domain
LC and lifted ILC cannot be interchanged.

Since the system 𝐽 in frequency-domain ILC is a transfer func-
ion, the inverse 𝐽−1 exists. Therefore, substitutions of the form 𝑓𝑗 =
−1(𝑆(𝑦𝑑 − 𝑣𝑗 ) − 𝑒𝑗 ) are possible and monotonic convergence of the
equence of error iterates ensures convergence of the sequence of
eedforward iterates. Note that if 𝐽−1 contains poles outside of the
nit disc due to non-minimum phase zeros in 𝐽 , it may be inter-
reted as a non-causal operator due to the availability of 𝑓𝑗 and 𝑒𝑗 ,
ee, e.g., Sogo (2010). Regarding the monotonic convergence of the
eedforward iteration (6), the following holds.

heorem 5. The feedforward iteration (6) for system (2) with feedforward
pdate (5) and nonlinearity 𝜑 satisfying (4) is monotonically exponentially
onvergent if
‖

‖

‖

‖

𝑄
(

1 −
(

𝛼 +
𝛾
2

)

𝐽𝐿
)

‖

‖

‖

‖∞

+
𝛾
2
‖𝑄𝐿‖∞

‖𝐽‖∞
<1, (12)

with 𝛾, 𝛼 > 0. Then the corresponding sequence of iterates {𝑓𝑗} converges
monotonically in the 𝓁 -norm to a unique steady-state solution 𝑓 .
4

2 𝑗 t
Fig. 4. Repetitive control scheme with the repetitive controller 𝑅 indicated in red.

The proof of Theorem 5 follows along the same lines as the proof of
Theorem 4 in the appendix. The main difference between the conditions
in Theorems 4 and 5 is the occurrence of respectively ‖𝑄𝐽𝐿‖∞

or
‖𝑄𝐿‖∞

‖𝐽‖∞
. Since ‖𝑄𝐽𝐿‖∞

≤ ‖𝑄𝐿‖∞
‖𝐽‖∞

, if (12) in Theo-
rem 5 holds then (11) in Theorem 4 holds also.

Remark 6. The conditions for monotonic convergence in Theorems 4
and 5 involve ∞-norms of dynamical systems. Since

‖𝑄𝐽𝐿‖∞
= sup

𝜔∈[0,2𝜋)
|𝑄(𝑒𝑖𝜔)𝐽 (𝑒𝑖𝜔)𝐿(𝑒𝑖𝜔)|, (13)

and similarly for the other ∞-norms, these conditions can be evaluated
based on models or frequency response measurements of 𝐽 . This is
illustrated in Section 6.

Remark 7. The results of Theorems 4 and 5 guarantee monotonic
exponential convergence to a steady-state solution for any nonlinearity
𝜑 that satisfies the incremental sector condition (4). The selection of
𝜑 to improve the performance in the presence of iteration-varying and
iteration-invariant disturbances is illustrated in Section 5.

4. Nonlinear repetitive control

In this section, nonlinear RC is introduced and stability conditions
are developed. A repetitive controller is a closed-loop controller that
is typically implemented as shown in Fig. 4. Consider once again the
error 𝑒0 without ILC or RC in (1). Through application of an repetitive
controller 𝑅, the error is modified to

𝑒 = (1 + 𝑃𝐶(1 + 𝑅))−1(𝑦𝑑 − 𝑣) (14)
= (1 + 𝑇𝑅)−1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑆𝑅

𝑒0,

with 𝑇 = 𝑃𝐶
1+𝑃𝐶 , see, e.g., Chang, Suh, and Kim (1995) for a derivation.

The repetitive controller 𝑅 is given by

𝑅(𝑧) =
𝛼𝐿𝑅(𝑧)𝑧−𝑁𝑄𝑅(𝑧)
1 − 𝑧−𝑁𝑄𝑅(𝑧)

, (15)

ith 𝑧−𝑁 the 𝑧-domain representation of the delay operator 𝐷𝑁 , such
hat 𝐷𝑁 (𝑧) = 𝑧−𝑁 , which acts as a buffer storing the error signal of the
revious repetition. The length of the delay 𝑁 ∈ N corresponds to a
isturbance frequency 𝑓𝑑 = 𝑓𝑠∕𝑁 for sampling frequency 𝑓𝑠. Analogous
o ILC, the robustness filter 𝑄𝑅(𝑧) ∈  and learning filter 𝐿𝑅(𝑧) ∈ 
an be non-causal as long as 𝑅(𝑧) ∈ ∞, i.e., the filters can have finite
review which is compensated by embedding the preview in the delay
−𝑁 . Typically, 𝐿𝑅 is chosen to approximate 𝑇 −1 using zero-phase error
racking control (ZPETC) (Tomizuka, 1987) and 𝑄𝑅 is a zero-phase
ow-pass filter. This leads to the modifying sensitivity

𝑅(𝑧) =
1 − 𝑧−𝑁𝑄𝑅(𝑧)

1 − 𝑧−𝑁𝑄𝑅(𝑧)(1 − 𝑇 (𝑧)𝛼𝐿𝑅(𝑧))
. (16)

Analogous to nonlinear ILC, a static sector-bounded nonlinearity

hat satisfies (4) is included in the repetitive controller. The resulting
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Fig. 5. Nonlinear repetitive control scheme with deadzone nonlinearity 𝜑. The
repetitive controller is indicated in red.

Fig. 6. Nonlinear repetitive control as a Lur’e system.

nonlinear repetitive controller is illustrated in Fig. 5. The input 𝑒 of
the nonlinearity is a function of its output signal 𝑒𝜑 = 𝜑(𝑒) and the
disturbances contained in 𝑒0, such that

𝑒 = 𝑇𝑅𝑒𝜑 + 𝑆𝑅𝑒0, (17)

in which the complementary sensitivity of the linear RC loop is given
by

𝑇𝑅 = 𝑇𝑅
1 + 𝑇𝑅

. (18)

RC is implemented as a feedback controller, which can influence the
stability of the closed-loop system. In contrast, ILC is implemented with
resets after each iteration, which means that stability or convergence
only needs to be analyzed in the iteration domain. Since for tradi-
tional (linear) RC stability of the closed-loop time-domain system is
desired (Longman, 2010), for nonlinear RC convergence according to
Definition 1 is shown.

To analyze the existence and global exponential stability of the
steady-state solution of the nonlinear RC system (17), it is rewritten in
state-space form as a cascade of a linear system 𝑆𝑅 and a Lur’e system
formed by the linear system −𝑇𝑅 with static nonlinearity 𝜑 in feedback,
see Fig. 6. The dynamics of the cascaded system are given by

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘)

}

− 𝑇𝑅 (19a)

𝑢(𝑘) = −𝜑(𝑦(𝑘) +𝑤(𝑘))

𝑛(𝑘 + 1) = 𝐴𝑛(𝑘) + 𝐵𝑒0(𝑘)
𝑤(𝑘) = 𝐶𝑛(𝑘) + 𝑒0(𝑘)

}

𝑆𝑅 (19b)

The matrices 𝐴, 𝐵 and 𝐶 form a minimal state-space realization of −𝑇𝑅,
such that (𝐴,𝐵) is controllable and (𝐴,𝐶) is observable. Note that since
𝑆𝑅 = 1 − 𝑇𝑅, (19a) and (19b) have the same 𝐴, 𝐵 and 𝐶-matrices.
For the convergence of the nonlinear RC system, the following theorem
holds.

Theorem 8. Given a minimal realization (𝐴,𝐵, 𝐶) of the linear system
−𝑇𝑅 with (𝐴,𝐵) controllable and (𝐴,𝐶) observable. The nonlinear RC
system (19) is exponentially convergent for any input 𝑒0(𝑘) bounded on Z
if the following conditions are met:
5

(a) 𝜌(𝐴) < 1.
(b) 𝜑 satisfies (4) for a certain 𝛾.
(c) The following small-gain condition holds:

sup
𝜔∈[0,2𝜋)

|𝑇𝑅(𝑒𝑖𝜔)| <
1
𝛾
. (20)

The proof is given in the appendix. Condition (a) of Theorem 8 can
be satisfied through the design of 𝐿 and 𝑄, similar to ILC, as stability
of the linear system can be verified using identified frequency response
functions of the system. Similarly, condition (c) is satisfied by choosing
suitable values for the linear gain 𝛼 and the nonlinear gain 𝛾, and can
be verified using a measured frequency response.

Remark 9. Theorem 8 provides conditions for exponential conver-
gence for any nonlinearity 𝜑 that satisfies the incremental sector condi-
tion (4). How to select 𝜑 to improve the performance of nonlinear RC
in the presence of periodic and non-periodic disturbances is described
in the next section.

5. Nonlinear ILC and RC for fast convergence and high accuracy

In the previous two sections, nonlinear ILC and RC are introduced.
In this section the propagation of disturbances in ILC and RC is illus-
trated, and it is shown how the LTI design parameters influence the
attenuation and amplification of the disturbances. Finally, a nonlinear
filter is introduced to reduce the amplification of non-repeating dis-
turbances and achieve both fast convergence and high performance
through nonlinear ILC and RC.

5.1. Amplification of iteration-varying disturbances in ILC

Consider the ILC system (2) with update (3). To analyze the prop-
agation of the iteration-invariant and iteration-varying disturbances
𝑆𝑦𝑑 and 𝑆𝑣𝑗 over iterations, it is assumed that 𝑄 and 𝐿 are chosen
such that the sequence of error iterates {𝑒𝑗} is convergent. In addition,
assume that 𝑣𝑗 is i.i.d. zero-mean white noise and 𝑆 is monic and
bistable (Ljung, 1999). Then, for 𝑓0 = 0 and 𝑗 → ∞, the spectrum of
the converged error is given by Oomen and Rojas (2017, Theorem 3)

𝜙𝑒∞ =
|

|

|

|

1 −𝑄
1 −𝑄(1 − 𝛼𝐿𝐽 )

|

|

|

|

2
𝜙𝑆𝑦𝑑+ (21)

(

1 +
|𝛼𝐽𝑄𝐿|2

1 − |𝑄(1 − 𝛼𝐿𝐽 )|2

)

𝜙𝑆𝑣,

with 𝜙𝑆𝑦𝑑 and 𝜙𝑆𝑣 the spectra of the iteration-invariant disturbance 𝑆𝑦𝑑
and the iteration-varying disturbance 𝑆𝑣, respectively. For the simple
case with 𝑄 = 1 and 𝐿 = 𝐽−1, it is clear that the first term in (21) is
qual to zero, such that the spectrum of the resulting converged error
s given by

𝑒∞ =
(

1 + 𝛼2

2𝛼 − 𝛼2

)

𝜙𝑆𝑣. (22)

For learning gain 𝛼 = 1, this gives 𝜙𝑒∞ = 2𝜙𝑆𝑣, i.e., the iteration-varying
art of the error is amplified by a factor 2 by ILC. For 𝛼 → 0, this

effect is mitigated and 𝜙𝑒∞ → 𝜙𝑆𝑣. This is the smallest achievable spec-
trum, since ILC cannot compensate for the unknown iteration-varying
disturbance 𝑆𝑣𝑗 in iteration 𝑗.

While reducing 𝛼 reduces the spectrum of the converged error, it
lso reduces the convergence speed significantly. In addition, reducing
∈ (0, 1] when 𝑄 ≠ 1 may increase the contribution of the spectrum

of the iteration-invariant disturbance to the error. To illustrate this,
consider the case with 𝑄 ≠ 1 and 𝐿 = 𝐽−1, such that

𝜙𝑒∞ =
|

|

|

|

1 −𝑄
1 −𝑄(1 − 𝛼)

|

|

|

|

2
𝜙𝑆𝑦𝑑+ (23)

(

1 +
|𝛼𝑄|

2

1 − |𝑄(1 − 𝛼)|2

)

𝜙𝑆𝑣.

n this case reducing 𝛼 ∈ (0, 1] reduces the term 1 − 𝑄(1 − 𝛼) in the
numerator of the term before 𝜙 , thus increasing the contribution of
𝑆𝑦𝑑
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Fig. 7. Error 2-norm over iterations for 𝛼 = 1 ( ), 0.5 ( ), 0.2 ( ) and 0.1 ( ),
nd the noise floor ( ), averaged over 20 realizations. Small learning gains lead to
ower converged errors at the cost of slower convergence. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his article.)

𝑆𝑦𝑑 to 𝜙𝑒∞ . It is therefore, in general, not desired to choose 𝛼 ≈ 0.
In Fig. 7 the effect of reducing 𝛼 is illustrated using simulation results
that are further elaborated upon in Section 6. It is shown that for high
values of 𝛼, the convergence is fast but the converged error is relatively
high. Reducing the learning gain reduces results in slow convergence,
but the converged error is reduced significantly since iteration-varying
disturbances are amplified less.

Analysis of the modifying sensitivity 𝑆𝑅 in (16) shows that repet-
tive control suffers from a similar trade-off between convergence
peed and converged error as ILC when both periodic and non-periodic
isturbances are present (Aarnoudse, Pavlov, Kon, & Oomen, 2023).
his is illustrated in a simulation example in Section 6.5. Reducing
he learning gain 𝛼 leads to reduced amplification of non-periodic
isturbances, but it also reduces the period-robustness of the repetitive
ontroller, which is problematic if 𝑓𝑑 is not known exactly. In addition,
f 𝛼 is reduced more periods are needed to attenuate the periodic
isturbance.

.2. Adapting learning gains through a deadzone nonlinearity

The nonlinearity included in the ILC and RC algorithms in Sections 3
nd 4 can be employed to apply different learning gains based on
he type of disturbances in the error signal. In particular, a deadzone
onlinearity is included in ILC and RC to apply different learning gains
o samples of the error signal based on the amplitude characteristics,
here it is assumed that repeating disturbances have, in general, larger
mplitudes than non-repeating disturbances. The deadzone, which is a
tatic nonlinearity that satisfies the incremental sector condition (4), is
llustrated in Fig. 8. It is applied to each element of 𝑒 according to

𝜑(𝑒(𝑘)) =

{

0, if |𝑒(𝑘)| ≤ 𝛿
(𝛾 − 𝛾𝛿

|𝑒(𝑘)| )𝑒(𝑘), if |𝑒(𝑘)| > 𝛿.
(24)

The width of the deadzone is denoted by 𝛿, and 𝛾 is a nonlinear
learning gain that can be compared to the linear learning gain 𝛼 in
(3) and (15), in the sense that it influences the convergence speed and
the amplification of iteration-varying disturbances. The main idea is
that learning is only applied to the error values that are above the
threshold 𝛿, where 𝛿 is chosen such that 𝜑(𝑣𝑗 ) ≈ 0. This allows for fast
convergence when the error is large, while disturbance amplification
is limited when the error is small. The width 𝛿 of the deadzone can
be chosen based on knowledge of the iteration-varying disturbances,
6

as explained in Section 6. G
Fig. 8. Deadzone nonlinearity 𝜑 according to (24) with width 𝛿 = 1 and gain 𝛾 = 1.

6. Design procedure and illustrative example

In this section, a design procedure using system measurements is
presented and illustrated through a case study on an industrial flatbed
printer. First, filters 𝐿 and 𝑄 are designed using standard approaches
for frequency-domain ILC or RC. Then, the gains 𝛼 and 𝛾 are chosen.
Lastly, the width of the deadzone nonlinearity is determined based
on a series of experiments. The design procedure for nonlinear ILC is
summarized in Procedure 10. For nonlinear RC, the same strategy is
employed to determine 𝛼, 𝛾 and deadzone width 𝛿, as summarized in
Procedure 11. The design procedure in this section is only illustrated
for nonlinear ILC for conciseness, since the procedure for RC is similar.
At the end of this section, it is explained where the RC procedure differs
from ILC, and a simulation example for nonlinear RC is provided.
Procedure 10 Nonlinear ILC design

1: Design learning filter 𝐿 to approximate 𝐽−1 (Section 6.2).
2: Design robustness filter 𝑄 such that ‖𝑄(1 − 𝐽𝐿)‖∞

< 1 (Section
6.2).

3: Choose 𝛾 such that 𝛾
2‖𝑄𝐽𝐿‖∞

< 0.5 (Section 6.3).
4: Choose 𝛼 small, while meeting the convergence condition in

Theorem 4 (Section 6.3).
5: Determine deadzone width 𝛿 based on system measurements

(Section 6.4).

Procedure 11 Nonlinear RC design

1: Design learning filter 𝐿𝑅 to approximate 𝑇 −1 (Section 6.2).
2: Design robustness filter 𝑄𝑅 such that ‖𝑄𝑅(1−𝑇𝐿𝑅)‖∞ < 1 (Section

6.2).
3: Choose 𝛾 ≈ 1 and 𝛼 small, while ensuring that the convergence

conditions in Theorem 8 are met (Section 6.3).
4: Determine deadzone width 𝛿 based on system measurements

(Section 6.4).

6.1. Case 1: nonlinear ILC on an industrial flatbed printer

To illustrate the various steps of the design procedure, a case study
using simulations of the carriage of an industrial flatbed printer is
included. In this case study the focus is on nonlinear ILC, which is a
suitable control strategy for many standard printing tasks, yet specific
tasks such as continuous media flow printing would also motivate the
use of RC, see, e.g., Blanken, Koekebakker, and Oomen (2020). Here,
the true system 𝑃 is a 20th-order model of the carriage, which is
approximated by a 12th-order model 𝑃 . At high frequencies, there is

model mismatch between 𝑃 and 𝑃 , see Fig. 9. The system is placed
n feedback with a PD-type controller 𝐶. The fourth-order reference
onsists of a forward and backward translation and in the simulations
aussian white noise with a variance of 0.005 is added to the plant
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Fig. 9. Bode diagram of the ‘true’ simulated system 𝑃 ( ) and a low-order
approximation 𝑃 ( ). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. Error 2-norm for linear ILC with 𝛼 = 1 ( ), 0.5 ( ) and 0.2 ( ) and
onlinear ILC with 𝛼 = 0.1, 𝛾 = 0.9 and 𝛿 = 5×10−6 ( ). The noise floor ( ) follows

from the averaged 2-norm of ten noise realizations. Nonlinear ILC removes the trade-off
between convergence speed and converged error. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

input. Nonlinear parallel ILC is applied as shown in Fig. 3, such that
𝐽 = 𝑃

1+𝑃𝐶 and 𝐽 = 𝑃
1+𝑃𝐶

. For each ILC configuration, the results are
veraged over 20 realizations.

Fig. 10 shows simulation results for nonlinear ILC based on the
esign procedure that is explained in the remainder of this section.
he results illustrate that nonlinear ILC removes the trade-off between
onvergence speed and converged error value, achieving both fast
onvergence and small converged errors. In contrast, for linear ILC,
maller values of 0 < 𝛼 ≤ 1 result in slower convergence and lower
rrors, as explained in Section 2.

.2. Design of 𝑄 and 𝐿 for ILC

The convergence conditions of Theorems 4 and 5 resemble the
tandard convergence conditions for frequency-domain ILC and can
e evaluated using frequency response measurements of 𝐽 . This is

advantageous for mechatronic systems, because these measurements
are typically fast, inexpensive and give accurate system information.
The following design procedure is used to select 𝑄 and 𝐿, where the
selection of 𝛼 and 𝛾 is left out on purpose.
7

Fig. 11. Bode magnitude plots of 𝐽 ( ), 𝐽 ( ) and 𝐿 = 𝐽−1 ( ), obtained using
stable inversion. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 12. Bode magnitude plots of 1 − 𝐽𝐿 ( ) and 𝑄(1 − 𝐽𝐿) ( ). The first-order
lowpass filter 𝑄 is designed such that ‖�̃�(1 − 𝐽�̃�)‖∞

< 1.. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

1. Determine a parametric model 𝐽 of 𝐽 and obtain measured or
model-based frequency-response data of 𝐽 . Then, choose 𝐿 =
𝐽−1. Note that by using stable inversion, see e.g. Sogo (2010),
𝐽 can be inverted exactly even if it is non-minimum phase.
Alternatively, techniques like ZPETC (Tomizuka, 1987) give 𝐿 ≈
𝐽−1. This step is illustrated for the simulation example in Fig. 11,
where stable inversion is used.

2. Plot the Bode magnitude diagram of 1 − 𝐽𝐿 and determine the
frequencies where |1 − 𝐽 (𝑒𝑖𝜔)𝐿(𝑒𝑖𝜔)| ≥ 1. Design 𝑄 such that it is
as close to 1 as possible, while making sure that ‖𝑄(1−𝐽𝐿)‖∞

<
1. Since 𝑄 may be non-causal and computations are offline, it is
advantageous to choose it as a zero-phase filter 𝑄 = 𝑄∗

𝑝𝑄𝑝. This
step is illustrated for the simulation example in Fig. 12, where
the Q-filter is chosen as a first-order lowpass filter with a cutoff
frequency of 100 Hz.

These steps leads to a design that meets the convergence condition
for 𝛼 = 1, 𝛾 = 0, which does not yet include any nonlinear components.
This provides a basis for selecting suitable values of 𝛼 and 𝛾. In the
remainder of this section, stable inversion (Sogo, 2010) is used such
that 𝐿 = 𝐽−1 and the Q-filter is chosen as a first-order lowpass filter
with a cutoff frequency of 100 Hz.

6.3. Nonlinear gain selection for ILC

The main idea of using a nonlinear learning filter in ILC and RC
is that when 𝛿 is chosen such that 𝜑(𝑣𝑗 ) ≈ 0, the nonlinear learning
gain 𝛾 affects only the repeating part of the disturbances and can be
chosen close to 1 to enable fast learning, while the linear learning gain
𝛼 affects both the repeating and non-repeating disturbances and should
be chosen ≈ 0 to ignore the non-repeating disturbances completely.
However, non-repeating disturbances may occur on top of repeating
disturbances for part of the experiment, as seen in Fig. 16. In this
region, the deadzone nonlinearity acts as an automatic gain-tuner.
Initially, the error exceeds the deadzone bound, such that the nonlinear

learning gain 𝛾 leads to fast attenuation of the repeating disturbances,
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Fig. 13. Error 2-norm over iterations for 𝛼 = 0.01, 𝛿 = 6×10−6 and varying values of 𝛾:
= 1 ( ), 0.9 ( ), 0.5 ( ) and 0.3 ( ), and the noise floor ( ), averaged over

20 realizations. High nonlinear gains lead to both small errors and fast convergence, and
decreasing the gain does not decrease the converged error further. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 14. Error 2-norm over iterations for 𝛾 = 0.9, 𝛿 = 6× 10−6 and varying values of 𝛼:
= 0.01 ( ), 0.1 ( ), 0.5 ( ) and 0.9 ( ), and the noise floor ( ), averaged

ver 20 realizations. Small linear gains lead to fast convergence and low errors, while
ncreasing the linear gain increases the error and may lead to diverging behavior ( ).
For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

et the non-repeating disturbances are amplified. As the repeating
isturbances are attenuated the total error approaches the bounds of
he deadzone. At that point, the relative influence of 𝛼 increases and
f 𝛼 is small, the initial amplification is reduced. At this point the
onvergence speed and converged error depend on 𝛼.

Simulation results show that 𝛼 should be small but nonzero, while
should be close to 1. Fig. 13 illustrates the influence of deadzone

ain 𝛾 for 𝛾 ∈ {0.3, 0.5, 0.9, 1}, 𝛼 = 0.01 and 𝛿 = 6 × 10−6. Increas-
ng 𝛾 increases the convergence speed but not the converged error.
herefore, 𝛾 should be chosen as close to 1 as possible while still
nsuring convergence. Fig. 14 illustrates the influence of linear gain
for 𝛼 ∈ {0.01, 0.1, 0.5, 0.9}, 𝛾 = 0.9 and 𝛿 = 6 × 10−6. For small values

f 𝛼, further reducing it slightly reduces the convergence speed and
arely influences the converged error. Choosing 𝛼 too high leads to
ncreased converged errors or even divergence. In general, 𝛼 should
e chosen small but nonzero. In some of the combinations compared
n this section, 𝛼 + 𝛾 > 1, which may lead to increased amplification
f non-repeating disturbances (cf. Eq. (22)) and reduced convergence
peed, as is also seen in Fig. 14. But since the effective gain of the
onlinear ILC algorithm depends also on the deadzone width and the
rror magnitude, it is not necessarily problematic if the sum of 𝛼+𝛾 > 1,
ee, e.g., Fig. 13 for 𝛼 = 0.01 and 𝛾 = 1.

Both 𝛾 and 𝛼 also influence the stability criteria, which should
e taken into account. In particular, the convergence condition often
imits how small 𝛼 may be. The gains can be chosen as follows for
requency-domain ILC:

1. Choose 𝛾 such that 𝛾
2‖𝑄𝐽𝐿‖∞

< 1 or such that 𝛾
2‖𝑄𝐿‖∞

‖𝐽‖∞
< 1, depending on whether the condition for the error iteration
or the feedforward iteration is used. Typically, the idea is to
combine a value of 𝛾 close to 1 with a small value 𝛼. To that end,
8
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Fig. 15. Bode magnitude plots of 𝑄
(

1 − 𝛼𝐽𝐿 − 𝛾
2
𝐽𝐿

)

with ∞ = 0.5720 ( ) and
𝛾
2
𝑄𝐽𝐿 with ∞ = 0.4224 ( ). Since 0.5720 + 0.4224 < 1, the system with 𝛼 = 0.3,
= 0.7 meets the convergence condition of Theorem 4. (For interpretation of the

eferences to color in this figure legend, the reader is referred to the web version of
his article.)

it is desirable that 𝛾
2‖𝑄𝐽𝐿‖∞

respectively 𝛾
2‖𝑄𝐿‖∞

‖𝐽‖∞
<

0.5.
2. Choose 𝛼 small, but such that the convergence condition in

Theorems 4 or 5 is met. Fig. 15 shows the Bode magnitude
diagrams of the two terms 𝛾

2𝑄𝐽𝐿 and 𝑄
(

1 − 𝛼𝐽𝐿 − 𝛾
2𝐽𝐿

)

in the
convergence condition of Theorem 4 for the simulation example
with 𝛼 = 0.3 and 𝛾 = 0.7.

6.4. Deadzone selection for ILC

The aim is to attenuate repeating disturbances completely, without
amplifying the non-repeating disturbances. To choose the deadzone
width 𝛿 appropriately, it is therefore important to determine the size
of the non-repeating disturbances. To this end, consider a series of 𝑛𝑒
xperiments on the system (2) with 𝑓𝑗 = 0 ∀ 𝑗. The output of each

experiment is given by

𝑒𝑗 = 𝑆𝑦𝑑 − 𝑆𝑣𝑗 (25)

ith 𝑆𝑦𝑑 the iteration-invariant part of the disturbances, and 𝑆𝑣𝑗 a
ealization of the iteration-varying disturbances. Note that 𝑆𝑣𝑗 is by

definition zero-mean, since any bias is iteration-invariant which means
that it is included in 𝑆𝑦𝑑 . An estimate 𝑆𝑦𝑑 of the invariant part of the
disturbances is obtained by computing the sample mean of the error
signal over 𝑛𝑒 experiments, see also Oomen (2020):

𝑆𝑦𝑑 = 1
𝑛𝑒

𝑛𝑒−1
∑

𝑗=0
𝑒𝑗 = 𝑆𝑦𝑑 − 1

𝑛𝑒

𝑛𝑒−1
∑

𝑗=0
𝑆𝑣𝑗 . (26)

Then, for each experiment 𝑒𝑗 an estimate of the iteration-varying
disturbances is given by

𝑆𝑣𝑗 = 𝑆𝑦𝑑 − 𝑒𝑗 . (27)

This gives several realizations of the iteration-varying part of the error.
Based on the distribution of these disturbances, a suitable value of 𝛿
that filters out the desired percentage of iteration-varying disturbances
can be chosen. Note that for values slightly larger than 𝛿 the gain is very
small, because of the shape of the deadzone, see Fig. 8. Therefore, it is
typically not necessary to choose 𝛿 so high that all iteration-varying
disturbances are included. The estimates 𝑆𝑦𝑑 , 𝑆𝑣𝑗 and the intervals
corresponding to 𝛿 = 3 × 10−6, 5 × 10−6, and 8 × 10−6, are illustrated
in Fig. 16 for 𝑛𝑒 = 20.

Fig. 17 illustrates the influence of the deadzone width 𝛿 for 𝛿 ∈
3, 4, 5, 6, 7, 8} × 10−6, 𝛼 = 0.01 and 𝛾 = 1. Here, 𝛿 = 5 × 10−6 leads

to the best performance in terms of convergence speed and converged
error. If 𝛿 is small compared to the noise level, many iteration-varying
disturbances exceed the deadzone resulting in larger errors. Similarly,
if 𝛼 is too large, the part of the iteration-invariant disturbances that is

ot compensated increases which again results in increased errors. In
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Fig. 16. Mean 𝑆𝑦𝑑 of the error signal over 20 iterations ( ) and the noise estimates
𝑆𝑣𝑗 for 𝑗 = 1, 2,… , 20 in simulation. The black lines indicate three different intervals:
−3×10−6 , 3×10−6] ( ), [−5×10−6 , 5×10−6] ( ), and [−8×10−6 , 8×10−6] ( ), which
re compared in simulation. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 17. Error 2-norm over iterations (zoomed in) for 𝛼 = 0.01, 𝛾 = 1 and varying
values of 𝛿: 𝛿 = 3 × 10−6 ( ), 4 × 10−6 ( ), 5 × 10−6 ( ), 6 × 10−6 ( ), 7 × 10−6

( ) and 8×10−6 ( t), averaged over 20 realizations. The optimal deadzone width is
around 5×10−6 ( ). Even though the differences are small, it is shown that increasing
he width leads to larger errors and slower convergence ( , t), while decreasing
he width leads to increased errors with similarly fast convergence ( , ). (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

ddition, increasing 𝛿 decreases the convergence speed. It follows that
here is an optimal value of 𝛿, and it should be chosen to include most
f the iteration-varying disturbances.

.5. Design and performance of nonlinear RC

The design steps in this section are illustrated for ILC, yet they can
e applied almost directly to RC as is also summarized in Procedure 11.
he three main differences are the following.

• Regarding the design of the filters 𝐿𝑅 and 𝑄𝑅 (Section 6.2), the
filters for repetitive control typically have finite preview which is
compensated for in the delay 𝐷𝑁 . In general, 𝐿 ≈ 𝑇 −1 is designed
using ZPETC and 𝑄 is a FIR lowpass filter.

• Regarding the gains 𝛼 and 𝛾 (Section 6.3), these are chosen
similar to ILC using the corresponding convergence conditions
from Theorem 8.

• Regarding the deadzone width (Section 6.4), similar data can be
9

used to determine the deadzone width in RC, by measuring 𝑛𝑒
Fig. 18. Error 2-norm reduction over repetitions for repetitive control, averaged over
20 simulations. Compared to linear RC for 𝛼 = 1( ), 0.5 ( ), and 0.2 ( ), nonlinear
RC with 𝛾 = 1, 𝛼 = 0.1 and 𝛿 = 2× 10−4 ( ) achieves faster learning and lower errors.
The noise floor ( ) follows from the averaged 2-norm of twenty noise realizations.
RC is activated at repetition 2. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

repetitions with length 𝑁 and taking

𝑒𝑗 =
[

𝑒((𝑗 − 1)𝑁 + 1) … 𝑒(𝑗𝑁)
]𝖳 (28)

where 𝑁 corresponds with the periodic disturbance.

Next, nonlinear repetitive control is applied to a simulated printer
system, the carriage of which performs a periodic motion. The printer
is modeled as a discrete-time non-collocated two-mass–spring–damper
system. The system is sampled at 𝑓𝑠 = 1000 Hz and the reference 𝑦𝑑
leads to a disturbance that is periodic with 𝑁 = 2000 such that 𝑓𝑑 =
0.5 Hz. The non-periodic disturbance comes from zero-mean Gaussian
white output noise �̃� with a variance of 10−8. The learning filter 𝐿 is
constructed using ZPETC and the robustness filter 𝑄 is a 30th order
zero-phase low-pass FIR filter (Longman, 2010) with a cut-off frequency
of 200 Hz. Each simulation is repeated 20 times and averaged.

Based on the approach in Section 6.4, the deadzone width is set to
𝛿 = 2 × 10−4. In Fig. 18 the error 2-norm over repetitions for nonlinear
RC with 𝛾 = 1, 𝛼 = 0.1 is compared to linear RC with 𝛼 = 1, 𝛼 = 0.5
and 𝛼 = 0.2. Similar to linear ILC, smaller values of 0 < 𝛼 ≤ 1
lead to slower convergence and lower errors. The simulations illustrate
that nonlinear RC converges fast to low errors, removing the trade-off
between convergence speed and converged error value.

7. Experimental results

In this section, the presented approach is experimentally validated.
It is shown that by using a deadzone in the learning filter in ILC and RC,
the traditional trade-off between convergence speed and performance
is removed.

7.1. Case 2: Nonlinear ILC on a prototype motion system

The presented approach is validated using a fourth-order mecha-
tronic system consisting of two rotating masses connected by an axle
that acts as a spring and damper, shown in Fig. 19. The system is
measured at the mass that is not actuated directly, i.e., the system
is non-collocated. The setup is placed in closed-loop with a feedback
controller consisting of a notch filter, a low-pass filter and a lead–lag
filter. Nonlinear parallel ILC is applied, see Fig. 3, such that the system
𝐽 considered in the ILC procedures is the process sensitivity of the
experimental setup. In Fig. 20 the measured frequency response of the
process sensitivity as well as a model fitted on this data are shown.
The third-order reference consists of a forward and backward rotation.
Gaussian white noise with a variance of 0.002 is added to the plant
input, resulting in the mean and noise estimates shown in Fig. 21.

Linear and nonlinear frequency-domain ILC are applied to the sys-
tem, following the design procedure described in Section 6. Based on

Fig. 21 a deadzone width of 0.04 is chosen. Learning filter 𝐿 is designed
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Fig. 19. Two mass–spring–damper system. The actuator is connected to the mass on the
right, in the non-collocated situation the position of the mass on the left is controlled.

Fig. 20. Bode magnitude plot of the measured frequency response ( ) and model
( ) of 𝐽 for the two mass–spring–damper system in Fig. 19. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 21. Mean �̂� of the error signal over 20 iterations ( ) and the noise estimates
̂𝑗 for 𝑗 = 1, 2,… , 20 for the two mass–spring–damper system. The black lines indicate
the interval [−0.04, 0.04], which encompasses most of the iteration-varying disturbances.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

using stable inversion, meaning that an exact non-causal inverse of the
model shown in Fig. 20 is used. The robustness filter 𝑄 = 𝑄∗

𝑝𝑄𝑝 is
zero-phase filter, with 𝑄𝑝 a second-order lowpass filter with a cutoff
frequency of 70Hz. The nonlinear gains for which the convergence
condition is satisfied are given by 𝛾 = 0.95, 𝛼 = 0.1.

The error 2-norm over iterations for three different linear ap-
proaches as well as the presented nonlinear approach is shown in
Fig. 22. For linear ILC, the trade-off between convergence speed and
converged error is illustrated. A high learning gain 𝛼 = 1 results in fast
convergence, while a lower learning gain 𝛼 = 0.2 results in much slower
convergence, but the resulting error is reduced because iteration-
varying disturbances are less amplified. Nonlinear ILC combines the
advantages, achieving both fast convergence and a small converged
error, thus removing the trade-off.

7.2. Case 3: Nonlinear RC on an industrial print belt system

Nonlinear repetitive control is applied to an industrial print belt
system, shown in Fig. 23. The aim of the system is to transport paper
10
Fig. 22. Error 2-norm for linear ILC with 𝛼 = 1 ( ), 0.5 ( ) and 0.2 ( ) and
nonlinear ILC with 𝛼 = 0.1, 𝛾 = 0.95 and 𝛿 = 0.04 ( ), applied to the two mass–
spring–damper system. The noise floor ( ) follows from the averaged 2-norm of ten
noise realizations. Nonlinear ILC removes the trade-off between convergence speed and
converged error. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 23. Industrial print belt system. The aim is to transport paper on the print
belt with a constant velocity. The rollers and drive belts induce various repeating
disturbances in the system.

Fig. 24. Error spectrum of the print belt system without RC. The disturbances due to
the low-speed and high-speed drive belts are visible at respectively 1.7Hz and 5.4Hz.

on the print belt with a constant velocity, during which the rollers
and drive belts introduce repeating disturbances at various frequencies.
Linear and nonlinear repetitive controllers are applied to attenuate the
disturbances originating from the low-speed and high-speed drive belts,
which occur at respectively 1.7Hz and 5.4Hz as shown in Fig. 24.

The disturbance caused by the low-speed drive belt is attenuated
using standard RC with 𝛼 = 0.1. For the high-speed drive belt, different
configurations are compared. To ensure stability and safe operation
of the system, the sum of the learning gains 𝛼 and 𝛾 for the high-
speed drive belt is limited to 0.3. The error and cumulative error
spectra for linear RC with 𝛼 = 0.1 and 𝛼 = 0.2 and nonlinear RC
with 𝛼 = 0.05, 𝛾 = 0.2 and 𝛿 = 1 × 10−4 are shown in Fig. 25.
All RC implementations strongly reduce the disturbances at 1.7Hz and
5.4Hz. Because there is limited room for large learning gains in the safe
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Fig. 25. Error spectrum (top) and cumulative error spectrum (bottom) of 60 s of
teady-state operation of the print belt system with linear RC to compensate the
isturbance from the low-speed drive belt (1.7Hz). The disturbance from the high-
peed drive belt (5.4Hz) is compensated using linear RC with 𝛼 = 0.1 ( ) and 𝛼 = 0.2

( ), and nonlinear RC with 𝛼 = 0.05, 𝛾 = 0.2 and 𝛿 = 1 × 10−4 ( ). All approaches
compensate the disturbance at 5.4Hz well (cf. Fig. 24) and since all approaches use
omparable low learning gains, the performance is similar. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his article.)

earning range, all approaches use comparable learning gains that lead
o similar converged errors, which are as small as possible. Showing
he convergence speed similar to the simulation results in Fig. 18 is
omplicated in practice, because the system is operating continuously.
owever, the results demonstrate that nonlinear ILC indeed leads to
stable system and good compensation of repeating disturbances. In

ddition, Fig. 25 shows that for similar learning gains and convergence
peeds, nonlinear RC with 𝛾 = 0.2, 𝛼 = 0.05 obtains a slightly smaller
rror than linear RC with 𝛼 = 0.2.

. Conclusions

Nonlinear frequency-domain ILC and RC algorithms are developed
hat achieve both fast convergence and a small converged error in
he presence of non-repeating disturbances. The approach removes the
raditional trade-off between convergence speed and limited amplifica-
ion of non-repeating disturbances by applying various learning gains
o different elements of the error signal depending on their magni-
ude. A condition for monotonic convergence of the frequency-domain
lgorithm is given, which is reminiscent of the existing convergence
riterion for frequency-domain ILC and which can be evaluated using
easured frequency-response data of the system. For RC, a stability

ondition is developed by interpreting the system as a convergent
ur’e system. A design procedure based on disturbance measurements
nd system knowledge is provided. The effect of the various design
arameters is illustrated using simulations, and both nonlinear ILC
nd nonlinear RC are validated in simulations and experiments in
hich fast convergence to small errors is demonstrated. Future research

hould involve the analysis of the effect of the design parameters in
onlinear ILC and RC on the converged error, similar to the analysis in
ection 5.1.
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Appendix

Proof of Theorem 4

In this section, the proof of Theorem 4 is provided. The following
auxiliary lemma is used in this proof.

Lemma 12. After a loop transformation, the feedforward update with
𝜑(𝑒𝑗 ) satisfying sector condition (4) is equivalent to

𝑓𝑗+1 = 𝑄
(

𝑓𝑗 +
(

𝛼 +
𝛾
2

)

𝐿𝑒𝑗 + 𝐿�̃�(𝑒𝑗 )
)

, (29)

�̃�(𝑒𝑗 ) = 𝜑(𝑒𝑗 ) −
𝛾
2
𝑒𝑗 (30)

with nonlinearity �̃�(𝑒𝑗 ) satisfying the symmetric sector condition

−
𝛾
2
≤

�̃�(𝑒1) − �̃�(𝑒2)
𝑒1 − 𝑒2

≤ 𝛾
2
. (31)

Proof of Theorem 4. Consider two solutions 𝑒1 and 𝑒2 to (7), with
the same iteration-varying input (𝛼 + 𝛾

2 )𝑄𝐿(𝑆(𝑦𝑑 − 𝑣𝑗 )). Substitution in
condition (9) for 𝑃 = 𝐼 gives

‖ℎ(𝑒1, 𝑗) − ℎ(𝑒2, 𝑗)‖2 = (32)
‖𝑄(1 − 𝛼𝐽𝐿)(𝑒1 − 𝑒2) −𝑄𝐽𝐿(𝜑(𝑒1) − 𝜑(𝑒2))‖2.

sing the loop transformation of Lemma 12,

ℎ(𝑒1, 𝑗)−ℎ(𝑒2, 𝑗)‖2=∥𝑄
(

1−
(

𝛼+
𝛾
2

)

𝐽𝐿
)

(𝑒1−𝑒2)

−𝑄𝐽𝐿(�̃�(𝑒1) − �̃�(𝑒2)) ∥2

≤
‖

‖

‖

‖

𝑄
(

1 −
(

𝛼 +
𝛾
2

)

𝐽𝐿
)

(𝑒1 − 𝑒2)
‖

‖

‖

‖2

+ ‖

‖

𝑄𝐽𝐿(�̃�(𝑒1) − �̃�(𝑒2))‖‖2 ,

≤
‖

‖

‖

‖

𝑄
(

1 −
(

𝛼 +
𝛾
2

)

𝐽𝐿
)

‖

‖

‖

‖∞

‖𝑒1 − 𝑒2‖2

+ ‖𝑄𝐽𝐿‖∞
‖

‖

�̃�(𝑒1) − �̃�(𝑒2)‖‖2 , (33)

hrough application of the triangle inequality and multiplicative prop-
rty for matrix norms, and Zhou, Doyle, and Glover (1996, Theorem
.4). From (31), it follows that for each entry of 𝑒1 and 𝑒2,

�̃�(𝑒1(𝑘)) − �̃�(𝑒2(𝑘))| ≤
𝛾
2
|𝑒1(𝑘) − 𝑒2(𝑘)|. (34)

Therefore, it also holds that

‖�̃�(𝑒1) − �̃�(𝑒2)‖2 ≤
𝛾
2
‖𝑒1 − 𝑒2‖2. (35)

Using this inequality,

‖ℎ(𝑒1, 𝑗) − ℎ(𝑒2, 𝑗)‖2
‖

‖

‖

𝑄
(

1 −
(

𝛼 +
𝛾 )

𝐽𝐿
)

‖

‖

‖

‖𝑒1 − 𝑒2‖2

‖

2
‖∞
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𝛾
2
‖𝑄𝐽𝐿‖∞

‖

‖

𝑒1 − 𝑒2‖‖2 (36)
(

‖

‖

‖

‖

𝑄
(

1−
(

𝛼+
𝛾
2

)

𝐽𝐿
)

‖

‖

‖

‖∞

+
𝛾
2
‖𝑄𝐽𝐿‖∞

)

‖𝑒1−𝑒2‖2

It follows that condition (9) with 𝑃 = 𝐼 holds for (7) if
‖

‖

‖

‖

𝑄
(

1 −
(

𝛼 +
𝛾
2

)

𝐽𝐿
)

‖

‖

‖

‖∞

+
𝛾
2
‖𝑄𝐽𝐿‖∞

≤ 𝜌 (37)

with 𝜌 < 1. □

Proof of Theorem 8

In this section, the proof of Theorem 8 is provided. The following
uxiliary lemma for the cascade of two exponentially convergent sys-
ems (Aarnoudse, Pavlov, Kon, & Oomen, 2023, Lemma 4) is used in
he proof.

emma 13. Consider the cascaded system
{

𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑤(𝑘), 𝑘)
𝑤(𝑘 + 1) = 𝑔(𝑤(𝑘), 𝑘).

(38)

uppose the 𝑥-subsystem meets the conditions in Lemma 2 for any 𝑤(𝑘)
ounded on Z and is therefore exponentially convergent, and the 𝑤-
ubsystem is exponentially convergent. In addition, 𝑓 (𝑥,𝑤, 𝑘) is globally
ipschitz with respect to 𝑤 with Lipschitz constant 𝐾, i.e.,

𝑓 (𝑥,𝑤1, 𝑘) − 𝑓 (𝑥,𝑤2, 𝑘)‖ ≤ 𝐾‖𝑤1 −𝑤2‖∀𝑥, 𝑘. (39)

hen system (38) is exponentially convergent.

roof of Theorem 8. Consider system (19) as a cascade of (19a) and
19b). The idea is to establish exponential convergence as a cascade
f two exponentially convergent systems. First, condition (a) ensures
hat system (19b) is exponentially convergent for any bounded input
0(𝑘), as a linear exponentially stable system. Secondly, the incremental
ector condition in (b) ensures that the right-hand side of (19a) is
lobally Lipschitz in 𝑤, uniformly in 𝑥, i.e., that (39) holds. Thirdly,
onditions (a) -(c) ensure that the nonlinear Lur’e system (19a) with
(𝑘) as inputs is convergent. Condition (9) of Lemma 2 is applied to

he Lur’e system (19a). Take

(𝑥1, 𝑘) − 𝑓 (𝑥2, 𝑘) = 𝐴𝛥𝑥 − 𝐵𝛥𝜑, (40)

ith 𝛥𝑥 = 𝑥1 − 𝑥2 and 𝛥𝜑 = 𝜑(𝐶𝑥1 +𝑤(𝑘)) −𝜑(𝐶𝑥2 +𝑤(𝑘)). Using (40),
condition (9) is rewritten to
[

𝛥𝑥
𝛥𝜑

]𝖳 [ 𝐴𝖳𝑃𝐴 −𝐴𝖳𝑃𝐵
−𝐵𝖳𝑃𝐴 𝐵𝖳𝑃𝐵

] [

𝛥𝑥
𝛥𝜑

]

(41)

− 𝜆2𝛥𝑥𝖳𝑃𝛥𝑥 ≤ 0, ∀𝑥1, 𝑥2 ∈ R𝑛, 𝑘 ∈ Z.

ext, the incremental sector condition (4) for 𝜑 is written as a quadratic
matrix inequality for 𝛥𝜑. Denote 𝑧𝑖 = 𝐶𝑥𝑖 + 𝑤(𝑘) and 𝛥𝑧 = 𝑧1 − 𝑧2. By
ondition (b) , 𝜑 satisfies the incremental sector condition with 𝛾, and
herefore

𝛥𝑧
𝛥𝜑

]𝖳 [𝛾2 0
0 −1

] [

𝛥𝑧
𝛥𝜑

]

≥ 0. (42)

ubstituting 𝛥𝑧 = 𝐶𝛥𝑥 and dividing by 𝛾2 gives
[

𝛥𝑥
𝛥𝜑

]𝖳
[

𝐶𝖳𝐶 0
0 − 1

𝛾2

]

[

𝛥𝑥
𝛥𝜑

]

≥ 0. (43)

he system is exponentially convergent if there exists 𝑃 = 𝑃 𝖳 ≻ 0
nd 𝜆 ∈ (0, 1) such that (41) holds for all 𝛥𝑥, 𝛥𝜑 that satisfy (43).
y the S-procedure (Pólik & Terlaky, 2007), this holds if there exists
𝑃 = 𝑃 𝖳 ≻ 0, 𝜆 ∈ (0, 1) such that

[

𝛥𝑥
]𝖳

[

𝐴𝖳𝑃𝐴 + 𝐶𝖳𝐶 − 𝜆2𝑃 −𝐴𝖳𝑃𝐵
−𝐵𝖳𝑃𝐴 𝐵𝖳𝑃𝐵 − 1

]

[

𝛥𝑥
]

12

𝛥𝜑 𝛾2 𝛥𝜑
≤ 0, ∀𝑥1, 𝑥2 ∈ R𝑛, 𝑘 ∈ Z. (44)

Taking 𝜆2 = 1 − 𝜀 for some 𝜀 ∈ (0, 1) in (44) gives
[

𝛥𝑥
𝛥𝜑

]𝖳
[

𝐴𝖳𝑃𝐴 + 𝐶𝖳𝐶 − 𝑃 −𝐴𝖳𝑃𝐵
−𝐵𝖳𝑃𝐴 𝐵𝖳𝑃𝐵 − 1

𝛾2

]

[

𝛥𝑥
𝛥𝜑

]

+ 𝛥𝑥𝖳𝜀𝑃𝛥𝑥 ≤ 0, ∀𝑥1, 𝑥2 ∈ R𝑛, 𝑘 ∈ Z. (45)

f there exists a 𝑃 = 𝑃 𝖳 ≻ 0 such that the strict inequality
[

𝛥𝑥
𝛥𝜑

]𝖳
[

𝐴𝖳𝑃𝐴 + 𝐶𝖳𝐶 − 𝑃 −𝐴𝖳𝑃𝐵
−𝐵𝖳𝑃𝐴 𝐵𝖳𝑃𝐵 − 1

𝛾2

]

[

𝛥𝑥
𝛥𝜑

]

< 0, ∀𝑥1, 𝑥2 ∈ R𝑛, 𝑘 ∈ Z, (46)

olds, then there also exists 𝜀 ∈ (0, 1) such that nonstrict inequality (45)
olds for the same 𝑃 , and consequently (44) holds for the same 𝑃 and
=

√

1 − 𝜀 ∈ (0, 1). By the Kalman-Szegö lemma, see, e.g., Matveev
and Pogromsky (2016, Lemma 17), a matrix 𝑃 = 𝑃 𝖳 ≻ 0 for which
(46) holds exists if and only if

‖ − 𝑇𝑅‖∞ = ‖𝑇𝑅‖∞ = sup
𝜔∈[0,2𝜋)

|𝑇𝑅(𝑒𝑖𝜔)| <
1
𝛾
, (47)

which is ensured by condition (c) . It follows that if conditions (a) -
(c) are satisfied, then system (19a) is exponentially convergent for any
bounded 𝑤(𝑘) by Lemma 13. □
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