
011111100001000010000001100101001111110111010010010010000011100011011001010010000111001111000111100001
110011100011000110001111100001001100101001011110000010100101111100110000001011001001011001111000000000
110000010111110011100110100010011011000101010100000111111011010111110110100110000001101011010100101111
011001001111100001110101111111110011101100010011000011110000001110110000011110011100100110011101100001
100111101101100011111111101101100000010110100010000001110101100001000000101010101111000101010111100110
110111100110000011001101011010111111000000111101001011100110111101000001101001101110101111000001100000
111111010101101011011001010111000000010001110100111001000101101111110111110001101011001001010111011100
101100010001110111110111001110110100101101111011000010101101101010110011011101111000000010000110111110
011010000111111101111010101010110100011100110000010010010101100111101000010101000011110000110001100111
001010001110110110000001000000011010011010101110100110100101001101100010110110000010000100001010011110
110001011010110100110011101000000111001110001010110000111100100011100110011100000110000010011010010010
111100000010011100100010010010101100100001100001001100111101111101100000000100100101010100010001010101
011001110001101000100011100011101001110001000010001010110100111110100101011001111110001011000110111010
110000110100110000000101000001010001101101111010111110010110110111110110011000010000001010111111010000
110010000001001000111100100010001101001001111001011110011101011011000100101111100101110010101101100101
010101110110010111110010101100000001101101001100010101011000011100010101011110001111110010001110011111
100001100100000100110110011001011011100010010111110100101011001010101110011010111011011011011011010110
001000000000001001101001100111001100101101101101111010000000101100001010100101001010000101101110110110
010100001110101000001111100110001011110001100100010101100110010010100010101011101111101001101010111001
101010110111111111011101010101100101101011101010001101100101010011110010001101100111101100011101010001
000010011000001000011101011000110111101110100111100101100011100101100111110111100111110011101101110110
010001001111001110110000101110111010101000100110010110001110110111000100011011001010101101000111111110
111111110011111110001101010111100011000000010110000110100011010100111001101000001111011011011010011100
111011011110101001110110001111000100010110001010011000001111010000000001011001010110100110011011000110
010100010001001011111011000101011110010000101010001010101000101010110111111011100001000101000010000111
000100000100000100001010011001101010110011011011001010001110011000011010011110100100010011100000101100
101101101010110110110111110010001100000000101111111101101000010111011000010000100000101100101001101101
000010000010110101111010101010100101001100000011110101110010100101101001000001000111110011110100111011
000000111010101101110010011011001101011011000011100111100000110101011000010101011010110010101001101101
001101110101110011110010101010000001011111111000100101011001100111100101101000101011101111110011111010
000111101110000111111011011111001010011101101100101101000010000000010100001010010100111000000111100001
101110010000001111111000110011110101010011011101001001011101100010100011110111101011010010000100001010
100001110100110000010010000000011100101000000101011001001111000001000100100101001111111011101101111111
000010110101011110000111111110100000100111011011101001000101001101011101011100100110011110000010111111
101011001101101001000110000110110011111011100010111001111110011100111101011100101110100001111011111000
111101011101001010111101011001010010100011111001010000110111001011100011101100101010101001101011101001
110001011000101110000011010000101110111100000100111111000011000010111111011000001110101010011110100110
001001111000010110000010011101101101101000110000000001001001111001001001110101000111000000111100110100
000101000001111000101110000100110001001000101101011101010100111100011110011010011011000000111110110011
110110001010010100111110111111011101010001001111101101100000111100101101111001011111001001110011010100
100100101000110101000000110110000010011001101011111101001001111000110000110011001111100000001110101001
001111000101001111110110000111110111101101011100111100101010010110000011001010101000111001110101100000
000011001100010000010001011100010011001101001100010101101000111010010001101111111101011100111110111111
001001000010111000101001011111001100010000011011000110111110110000001010011011000101100010000110001011
100000000110110100101011011000011001011100010010000110010011000111001000110101001000100101110001011000
001101101111010111110011100100110110000101000010001010110010011101101110101100110010110100000000011001
011111110100100101010110001011001011111100111111001010100100111011110111001001011000110000010000100100
110011001010001001011100111001010000110111111001111100001110011110000101000101100011111101011110000101
101000011010110101010000111001011100101010011000111001110010110000100001011001011010010101001000001000
101101000011100100101100010111110000000110100101001000110111101011110111101001100100110111100000011101
111101110110000000110111110111010110000110101001101011010110000011010001100111100100011111110010111111
001111101011000100100011101110101110111011010010000111110110011011101110111100000010101111001111110100
001011001100110100000101010110101101011001110000101111000100111110110000001110001111100001110100010100
010101010010111110010001001010111100001111000001001000100110000001001001010001000001101010001100000100
110000010101000000100111001110111000100110110000011000101010100011011010010000001010100011110110001001
111110000101110001111011000001011101000001010100011111011000111011010010001101110100100000101101011111
000011011010000110110000111010110011011010110010101111000100000001010110011101100001011101010000001101
001011101111011101101100010000000100101011110100100010111101011000011011100000111111010011101011001101
011111010010011101001010011100111000010010010101111100001100010111101110110110110010011100001001101000
101010111000101011111000110010111010011000000100001010101111011110011001010111001001111110110111000100
011010110010010110101000011011010010001110101011101111100000011100000101100100000000000101111001001110
100111000010000001110010001100000101100100100011110101010110110010101101100111101110011001010111001001
101111101001001110101110011001000001001101001111001010011001010000110100100011000000001010001000010101
101001101110110000000001001101100000110101011010010011001011111111100011111111001010011001001000101110
101110100011000011000010111101011000000011101000111010000110111111000101010110001100001110110111110110
011010111000000000101001011001100110110111101011111100001001011110110011010100000000100000100010001101
011000111111110100110100011000011010010100100001011010111001110011010011001000011010000011101000001001
111011011001110010110101100111000010101011111000100001111010001001001110010110111110000110100011011101
101001100010101100001110001110000011111010100100011001110110100110010111000010001100010110001011011001
111010101100111110011100110001011010001000011010011011111100010001000000011010110000001010111010010111
101010110101011001101010011011111010100100011001110110100110010111000010001100010110001011011001111010
101100111110011100110001011010001000011010011011111100010001000000011010110000001010111010010111101010
110101011001101010011010110101001000000011011110111000110110100011110101101111100000110111101000001111
000111110000000111101001011011111011011111011011100111000010100100101011110010110110100011100101111010
100000100010000011000000110011011001101010011110011001011011011101001001101110110110101010111001001001
010001101010000001101100000100110011010111111010010011110001100001100110011111000000011101010010011110
001010011111101100001111101111011010111001111001010100101100000110010101010001110011101011000000000110
011000100000100010111000100110010010100011111011000111011010010001101110100100000101101011111000011011
010000110110000111010110011011010110010101111000100000001010110011101100001011101010000001101001011101
111011101101100010000000100101011110100100010111101011000011011100000111111010011101011001101011111010
010011101001010011100111000010010010101111100001100010111101110110110110010011100001001101000101010111
000101011111000110010111010011000000100001010101111011110011001010111001001111110110111000100011010110
010010110101000011011010010001110101011101111100000011100000101100100000000000101111001001110100111000
010000001110010001100000101100100100011110101010110110010101101100111101110011001010111001001101111101
001001110101110011001000001001101001111001010011001010000110100100011000000001010001000010101101001101
110110000000001001101100000110101011010010011001011111111100011111111001010011001001000101110101110100
011000011000010111101011000000011101000111010000110111111000101010110001100001110110111110110011010111
000000000101001011001100110110111101011111100001001011110110011010100000000100000100010001101011000111
111110100110100011000011010010100100001011010111001110011010011001000011010000011101000001001111011011
001110010110101100111000010101011111000100001111010001001001110010110111110000110100011011101101001100
010101100001110001110000011111010100100011001110110100110010111000010001100010110001011011001111010101
100111110011100110001011010001000011010011011111100010001000000011010110000001010111010010111101010110
101011001101010011001111110010101001001110111101110010010110001100000100001001001100110010100010010111
001110010100001101111110011111000011100111100001010001011000111111010111100001011010000110101101010100
001110010111001010100110001110011100101100001000010110010110100101010010000010001011010000111001001011
000101111100000001101001010010001101111010111101111010011001001101111000000111011111011101100000001101

SS
to

c
h
astic

to
c
h
astic M M

o
d
ellin

g
o
d
ellin

g o
f

o
f

CC
o
u
n
tin

g
o
u
n
tin

g R R
in
g

in
g O O

sc
illato

r
sc

illato
r TRN

G
 TRN

G
ss

T
h

om

as P
o

u
w

els
T

h
om

as P

o
u

w
els

Stochastic Modelling
of Counting Ring
Oscillator TRNGs

by

Thomas Pouwels

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on July 16, 2024, at 2:00 PM.

Student number: 4705971
Project duration: November, 2023 – July, 2024
Thesis committee: Dr. M. Taouil, TU Delft, supervisor

Dr. S. Vollebregt, TU Delft
Ir. E. Hagenaars, Ministry of the Interior

and Kingdom Relations

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Abstract

True RandomNumber Generators (TRNG) are fundamental cryptographic primitives. They are needed,
for example, to generate cryptographic keys and numbers. Poor random number generation can lead
to weaknesses in the cryptographic system. A good example can be found in the work of Heninger et
al., who managed to retrieve large amounts of private RSA keys due to entropy problems in random
number generators used for key generation.

Statistical test suites such as Dieharder and NIST SP 800-22 can be used to determine whether random
number generators provide the required entropy. To improve such an evaluation, which is necessary for
high-assurance applications, a stochastic model of the noise source must be developed as described,
for example, in AIS 20/31.

The research presented in this thesis focuses on designing and validating a noise source based on
counting ring oscillator periods. The work presents an analysis of this ring oscillator-based design,
consisting of stochastic models, entropy evaluations, high-level and SPICE simulations, and hardware
validation using the Intel Arria 10 FPGA platform.

Using the developed models, this work (i) quantifies the improvement in randomness due to sampling
the noise source with a second ring oscillator, (ii) establishes a lower bound for the min-entropy of the
noise source, and (iii) shows that the design benefits from using ring oscillators with shorter periods
and, thus, less area. These findings are verified in high-level and SPICE simulations.

In the end, despite the appealing theoretical benefits of the proposed TRNG noise source, the hardware
validation revealed unmodeled noise components, leading to inconclusive results. Consequently, no
TRNG implementation based on the designed noise source was made. This highlights the challenges
of translating theoretical advantages into successful hardware implementations.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 2
1.3 Contributions . 3
1.4 Thesis Outline . 3

2 Random Numbers 5
2.1 Random Number Generation . 5
2.2 Noise Sources . 6

2.2.1 Entropy Sources in FPGAs . 6
2.2.2 Entropy Harvesting for Ring Oscillators . 7

2.3 Security of Ring Oscillators . 8
2.3.1 Vulnerabilities . 8
2.3.2 Attacks . 8

2.4 Conclusion . 9

3 Stochastic Model 11
3.1 Design . 11
3.2 Distribution of Oscillations . 12
3.3 Ideal Sample Time . 13

3.3.1 Expectation and Variance . 13
3.3.2 Skewness and Kurtosis . 13
3.3.3 Normal Approximation . 14

3.4 Entropy Estimations . 15
3.4.1 Min-Entropy . 15
3.4.2 Discrete Counter Values . 15
3.4.3 Worst Case Estimation . 15
3.4.4 Sampling Time . 17
3.4.5 Sizing the Counter . 18

3.5 Non-Ideal Sample Time . 19
3.5.1 Consistency with Ideal Model . 20
3.5.2 Expectation and Variance . 20

3.6 Extension to Flip-Flop Design . 23
3.7 Conclusion . 23

4 Verification 25
4.1 Rust Simulations . 25

4.1.1 Ideal Clock . 25
4.1.2 Non-Ideal Clock . 28

4.2 SPICE simulations . 31
4.2.1 Ideal Clock . 31
4.2.2 Non-Ideal Clock . 34

4.3 Conclusion . 36

5 Validation 37
5.1 Test Overview . 37

5.1.1 Test Setup . 37
5.1.2 Test Plan . 39

5.2 Results . 40
5.2.1 Ideal Clock . 40

v

vi Contents

5.2.2 PLL . 41
5.2.3 Non-Ideal Clock . 41

5.3 Analysis . 42
5.3.1 Ideal Clock . 42
5.3.2 PLL . 44
5.3.3 Non-Ideal Clock . 46
5.3.4 Comparison Ideal and Non-Ideal Clock . 46

5.4 Discussion . 48
5.5 Conclusion . 49

6 Conclusion 51
6.1 Summary and Discussion . 51
6.2 Future Work . 52

A Verification 57
A.1 Rust Simulations . 57

A.1.1 Rust Code . 57
A.1.2 Some Plots of the Ideal Model . 59
A.1.3 Some Plots of the Non-Ideal Model . 61

A.2 Spectre Simulations . 63
A.2.1 Plots Ideal Model . 63
A.2.2 Plots Non-Ideal Model . 65

B Validation 67
B.1 Measurement Results Function Generator . 67
B.2 Measurement Results PLL . 73
B.3 Measurement Results Ring Oscillator . 75

Acronyms

AES Advanced Encryption Standard

ASIC application-specific integrated circuit

BSI Bundesamt für Sicherheit in der Informationstechnik

DRNG deterministic random number generator

EMFI electromagnetic fault injection

EMI electromagnetic Interference

FFT fast Fourier transform

FPGA field-programmable gate array

LSB least significant bit

NIST National Institute of Standards and Technology

PCIe peripheral component interconnect express

PLL phase-locked loop

PTRNG physical true random number generator

RNG random number generator

RO ring oscillator

STR self-timed ring

TERO transient effect ring oscillator

TRNG true random number generator

vii

1
Introduction

This section provides a brief overview of the subjects covered in this thesis, emphasising their signifi-
cance and highlighting the main contributions. Section 1.1 presents the motivation for this study and
the relevance of proper random number generation. Section 1.2 gives a quick overview of the sub-
ject in literature, including a review of the current state-of-the-art. Section 1.3 presents the academic
contributions of this thesis. In Section 1.4, the thesis outline is introduced.

1.1. Motivation
Kerckhoff’s principle of cryptography states that a cryptosystem should be secure even if everything
about it, except the key, is public knowledge [1]. An example of a cryptosystem that did not follow this
principle is CRYPTO1, used in the Mifare Classic by NXP [2]. Although kept secret for a long time,
the protocol was eventually reverse-engineered, which showed weaknesses in the pseudo-random
number generator and protocol that allowed adversaries ’to find any key in a matter of seconds’ [2].
Note that at the time, the Mifare Classic was the most widely used contactless card in the market [3].

Conversely, a well-known example of a cryptosystem that does follow Kerckhoff’s principle is Advanced
Encryption Standard (AES) [4]. Disregarding implementation-based attacks such as side channels or
fault injection, the security of AES depends entirely on the security of the used encryption key. It is why
bodies such as the National Institute of Standards and Technology (NIST) recommend keys are based
directly or indirectly on the output of an approved random number generator (RNG) [5].

In like manner, random numbers also appear in other parts of cryptographic systems, such as message
randomisation, nonces, identification, and more [6]. Message randomisation, for example, is applied
to make the encryption process non-deterministic. This is necessary because deterministic encryption
gives an adversary valuable information. If the adversary sees the same ciphertext twice, they know
the same message was transmitted twice.

A nonce (short for ‘number used once’) is another way of introducing randomness into cryptographic
systems. They are, for example, used in the CTR mode of operation of AES [7]. A ciphertext is
obtained by encrypting the nonce with a key and then XORing this cypher with the plaintext. When
more cyphers are needed, the nonce is incremented and then encrypted again. This way, encrypting
the same message with the same key again will still give a different ciphertext.

All of the techniques discussed so far assume that the randomness used is, in fact, genuinely random.
If this were not the case, weaknesses would be introduced into the basis of the cryptographic primitives.
This is not just a theoretical problem. In [8], Heninger et al. performed a large-scale network survey and
were able to retrieve 172,000 RSA private keys due to entropy problems in the used random number
generators. The paper shows that the necessary computations are trivially implemented and executed
in several hours on a simple CPU.

Implementing proper random number generators is thus of paramount importance for the correct func-
tioning of cryptographic systems. It is a task not to be taken lightly.

1

2 Chapter 1. Introduction

1.2. State of the Art
The generation of random numbers is a problem that has been studied thoroughly, also before the need
for cryptographic random numbers arose. Already in 1890, Nature published an article by statistician
Francis Galton where he wrote that ”as an instrument for selecting at random, I have found nothing
superior to dice” [9].

Nonetheless, when the need for large amounts of random numbers arose, a more efficient solution than
rolling dice was required. This is why, in 1955, the RAND Corporation published ”A Million Random
Digits with 100,000 Normal Deviates” [10]. As the title suggests, it contained a million random numbers
generated by an electronic roulette wheel. It was used extensively, for example, inMonte Carlomethods
[10].

Major improvements in the availability of random numbers were made when, in 1999, Intel released
the Intel 810 chipset [11], with an integrated random number generator. It ’supplies applications and
security middleware products with true non-deterministic random numbers’ [11] by exploiting thermal
noise across a resistor. Finally, proper random numbers were available locally to the machine.

With the emergence of the Internet of Things, more and more devices are becoming reliant on secure
communication and, thus, random number generators. This across a wide range of technology nodes,
such as CMOS and FinFET, and device types, such as CPUs, microcontrollers, field-programmable
gate arrays (FPGAs) and more. Not all of these technologies allow for the same kinds of random
number generators, and random number generators that can be implemented on different technologies
might still give differing results.

To compare these different random number generators, common statistical test suites have been devel-
oped. The test suites most used in literature include the ones provided by NIST [12] and the Bundesamt
für Sicherheit in der Informationstechnik (BSI) [13], and Dieharder [14]. These test suites allow develop-
ers to check for irregularities or patterns that would indicate their design might not be random (enough).

Nevertheless, passing such tests does not mean a design is truly random. A finite number of statistical
tests can, by definition, only test a finite number of patterns [13].

Recently, BSI published a (draft) revision of their mathematical-technical reference for the evaluation of
random number generators [13], often referred to as AIS 20/31. Regarding the evaluation of physical
true random number generators, AIS 20/31 requires the developer to establish assurance by means of
a stochastic model of the random numbers [13] for all functional classes. This stochastic model should
aim to describe the ‘randomness’ of the output by relating it to the physical randomness on which the
true random number generator is based.

In [15] and [16], it is shown that over-estimation of the randomness is an easy mistake to make as
external perturbations influence the noise source. It is thus extremely important to first develop and
validate the stochastic model before statistically testing the output bits of the noise source. Only then will
passing the test suite provide the necessary assurance that the output randomness indeed originates
from the intended source of randomness.

As of today, numerous designs for hardware random number generators exist, and evenmore variations
of these designs have been developed for use in different applications and devices. However, many
of these designs have the fundamental shortcoming that there is no clear stochastic model relating
the internal, physical randomness to the output; instead, they rely only on statistical tests to prove the
randomness of the design.

For these random number generator designs, there thus still exists a clear gap between the current
state of the art and the required theoretical rationale that provides the desired assurance. This work
aims to help close this gap by providing a stochastic model for a noise source that, to the best of our
knowledge, currently has none.

1.3. Contributions 3

1.3. Contributions
In this thesis, a noise source for a true random number generator is stochastically modelled, simulated
and tested. The design of the noise source is inspired by the work of Noumon Allini et al. [17]. Their
work, however, only included empirical validation of the entropy of the noise source. As discussed in
the state of the art, it is imperative that a stochastic model of the source is developed and tested to fully
understand the randomness in a noise source. This is where the contributions of this thesis come in.
They are as follows:

• This thesis presents a novel approach to modelling a noise source for a true random number
generator that obtains its randomness from counting the rising edges of a ring oscillator. Two
stochastic models are presented, one under the assumption of an ideal sampling time and one
where this assumption is relaxed to a normally distributed sampling time. The improvement in
randomness due to a noisy sample clock is then quantified by comparing the models.

• This thesis establishes a lower bound for the min-entropy of the noise source and relates it
to physical device parameters and sampling time. It is shown that not only the least significant bit
but also other bits in the counter contain some entropy when sampled, improving the efficiency
of the noise source by 60%.

• This thesis shows that using ring oscillators with smaller periods allows for shorter sam-
pling times. The period of a ring oscillator is loosely proportional to the number of inverters it
consists of. This means that the noise source has the huge practical benefit that using less area
gives better performance.

1.4. Thesis Outline
This report is organised in several chapters. First, relevant background information on random number
generation is discussed in Chapter 2. Then, Chapter 3 gives an overview of the noise source, presents
the stochastic model, and provides entropy estimations. This is followed by Chapter 4, where software
simulations are conducted to verify the stochastic model. Chapter 5 tests hardware implementations
of the noise source to validate the model and provides a discussion on the results obtained in the tests,
relating them to the stochastic model and simulation results. Finally, Chapter 6 provides a summary of
the results and potential future research subjects.

2
Random Numbers

In this chapter, an introduction to hardware random number generation is presented. Section 2.1 starts
with an overview of the topic and relevant standards. Section 2.2 then introduces different ways of
generating random numbers in hardware. An overview of the security aspects of random number
generators based on ring oscillators is presented in Section 2.3.

2.1. Random Number Generation
The generation of good random numbers is a crucial aspect of the implementation of cryptographic
systems. They are used in encryption schemes, key-generation processes, authentication protocols,
and other security-relevant functions. The quality of the generated random numbers directly affects the
security of the cryptographic system.

In general, two main classes of RNGs can be specified. Deterministic random number generators
(DRNGs), also known as pseudorandom number generators, take random inputs (seeds) and extend
these using deterministic algorithms to potentially very long output sequences. True random number
generators (TRNGs), on the other hand, produce random numbers based on some nondeterministic
noise source. These can be further divided into two subclasses: physical true random number gen-
erators (PTRNGs), which use a physical source, for example a noisy diode [18], and Non-Physical
TRNGs, such as /dev/random in some versions of the Linux kernel [19], which gain their entropy from
non-physical sources.

Figure 2.1: Classification of RNGs.

Figure 2.1 gives a graphical overview of the RNG classifications. The term TRNG is often used to
indicate a physical true random number generator, a convention that will also be used in this thesis.

To evaluate a TRNG, the minimal entropy of the noise source must be determined. One way of doing
this is using statistical test suites such as the ones described in NIST SP 800-22 [12] and AIS 20/31
[13]. However, this is no guarantee the entropy claim is correct, as a finite number of tests can only
check for a finite number of output patterns [12, 13].

5

6 Chapter 2. Random Numbers

To improve on the evaluation, a stochastic model of the noise source can be used [13, 20]. The goal is
to mathematically describe the physical phenomena contributing to the noise with the help of random
variables. This way, a relation is created between the unpredictable analogue phenomena inside the
device and the digitised output of the random number generator. After carefully estimating the model’s
physical parameters, a lower bound for the entropy can be established. Then, and only then, can the
test suites be used to verify the entropy claims.

2.2. Noise Sources
In [21], Cicek et al. split the TRNG into three main components: the entropy source, the entropy har-
vester and the post-processor. The entropy source is a (physical) effect which has some amount of
entropy in itself. The harvester then generates random bits based on this entropy. The post-processor
is often included to remove potential bias, but can be skipped altogether.

Figure 2.2 shows the different categories of entropy sources, their generation method and possible
technologies to implement the source.

Figure 2.2: Cicek’s classification of entropy sources [21]

As an example, in [22], Wang et al. generate random bits from thermal noise, the entropy source, by
amplifying it with a single CMOS inverter, the entropy harvester. Afterwards, a 4-bit Von Neumann [23]
circuit, the post-processor, is used to remove bias from the output.

2.2.1. Entropy Sources in FPGAs
The TRNG proposed in this thesis will be implemented and tested on a FPGA. FPGAs are hard-
ware devices that can be reconfigured. Advantages are reduced development time, increased cost-
effectiveness in low-volume production compared to application-specific integrated circuits (ASICs),
and the flexibility to update already fielded devices.

As per Cicek’s classification, Figure 2.2, entropy sources in FPGAs are generally based on metastabil-
ity, chaos or jitter. TRNGs exploiting metastability can, for example, be constructed using Set-Reset
latches, as discussed in [24] and [25]. In [26], a TRNG is presented based on the continuous unified
chaotic system.

A common way of exploiting jitter is by using ring oscillators (ROs) (such as in [16, 17, 27] for example).
Figure 2.3 shows the architecture of a RO. It consists of an odd number of inverters chained together
in a ring. Due to the propagation delay of the inverters, an oscillating signal is produced. Often, one of
the inverters is replaced with a NAND gate so that the inverting property can be turned on or off.

2.2. Noise Sources 7

Figure 2.3: Architecture of a ring oscillator (RO)

These oscillations do not have a perfectly stable period. Due to random noise, the inverters may switch
slightly before or after the expected switching time. This effect is illustrated in Figure 2.4 and referred
to as jitter in the time domain. As more and more periods of the RO go by, this jitter accumulates and
the total uncertainty on the switching time increases.

Figure 2.4: Illustration of the increasing uncertainty in switching time due to jitter.

2.2.2. Entropy Harvesting for Ring Oscillators
Harvesting jitter from ROs can be done in various ways. In [27], for example, Sunar et al. use several
parallel ROs, sampled using an XOR tree followed by a flip-flop. However, the design by [27] is not
random without post-processing, as shown in [28]. The design is improved by individually sampling the
ring oscillators using flip-flops before the XOR tree [28], but no updated stochastic model is provided.

Baudet et al. [16] sample a single RO using a flip-flop, clocked with some sampling frequency. Using
a phase-oriented approach, they also present a more precise study on the stochastic model of ROs.

In [17], Noumon Allini et al. propose a different method to generate random numbers from the single
RO by using a counter instead of the flip-flop. From this counter, the least significant bit (LSB) is taken
as a random number. They show that this method gives random numbers of significantly better quality
compared to simply sampling the RO signal. However, they only present an empirical evaluation of the
entropy.

Figure 2.5: Architecture of a transient effect ring oscillator (TERO)

Varchola et al. in [29] take an entirely different direction, where the design of the RO itself is adjusted.
The TERO, see Figure 2.5, still exploits jitter as a source of entropy, but the harvesting is different. The
oscillator is constructed such that after the enable signal, it settles in a stable state within some random
number of oscillations, which are counted using a simple ripple counter.

Figure 2.6: Architecture of a self-timed ring (STR)

8 Chapter 2. Random Numbers

Another design variation by Cherkaoui et al. [30] uses STRs to generate random numbers. In a STR,
the inverters used in the RO are replaced with a Muller gate followed by an inverter. This new element
takes input from the previous element in the ring and feedback from the element after it. An overview
can be found in Figure 2.6. The output of each of the elements is sampled and XORed to generate the
random output bits, which are still based on timing jitter.

2.3. Security of Ring Oscillators
The quality of the output of the TRNG has consequences for the security of the applications that depend
on it. For example, a faulty TRNG that only outputs zeroes would make for a very poor key generator.
Even in less extreme cases, security can be compromised by the overestimation of output entropy. In
the following sections, some vulnerabilities in ROs are given, followed by an overview of different types
of attacks against RO-based TRNGs.

2.3.1. Vulnerabilities
In [16], Baudet et al. show that the randomness of a TRNG can be overestimated under the influence
of global deterministic perturbations (or ‘global jitter’), a claim that is supported by [15]. This global
jitter can be introduced by supply voltage or temperature changes, among others, as Valtchanov et al.
described in [31].

Next to changes to the amount of jitter, the period of a RO can also change under external influences.
This effect is exploited in [32, 33, 34], where ROs are used to measure die temperature changes
and supply voltage fluctuations on FPGAs. The study by De Micco et al. [34] shows sensitivities of
0.02MHz/◦C and 0.01MHz/mV .

Fischer et al. propose a simple countermeasure to such changes in period and jitter in [35]. Instead of
sampling using the system clock, another RO is used. This way, both clock signals are influenced by
the same global effects, compensating for each other. It requires the ROs to be placed close to each
other in the hardware and have similar oscillation frequencies. Similar results were obtained by [17].

The usage of a second RO for the sample clock will also introduce more entropy into the noise source,
as will be shown in Chapter 3.

A last possible vulnerability in ROs is their electromagnetic emanation. By closely examining the fre-
quency spectrum of the EM emanations at different working conditions, significant information on the
ROs, such as location and frequency, can be obtained [36]. This information can then be used to
simplify various attacks.

2.3.2. Attacks
In [37], Ngo et al. use power traces and a deep-learning model to attack the RO-based TRNG in an
STM32 MCU. The attack uses side channels and is non-invasive, but it does require physical access
to measure the power usage of the device precisely.

An invasive attack is carried out by Markettos & Moore in [38]. A 900mV sine wave is injected on the
5V power rail of a TRNG based on two ROs, and it is shown that it is possible to lock the ROs to the
frequency of the sine wave. When this happens, the entropy of the noise source is drastically reduced.
The proposed attack lowers the ability of the microcontroller to produce 4 billion (232) random numbers
to just 255 (< 28) [38].

In [39], Bayon et al. improved on this attack with the use of electromagnetic fault injection (EMFI). This
way, the attacker does not need access to the power rail of the TRNG. Next to that, the attacked TRNG
uses 50 ROs. This is considerably more than the two used by [38] and also more common in real
cryptographic devices. Using a probe located closely to the location of the ROs in the FPGA, leaving
the FPGA packaging intact, the frequency of the ROs could be locked to that of the EM field induced
by the probe. This drastically increased the bias of the noise source, making it fail all statistical tests.

Mitigating the effects of EMFI is therefore essential for ensuring the security and reliability of RO-based
TRNGs. Many papers have been published with strategies to mitigate the effect of electromagnetic
interference [40, 41, 42].

2.4. Conclusion 9

Martin et al. [43] show that exposure to ionising radiation can also impact the performance of the RO.
The quality of the randomness of the TRNGwas determined for different accumulated doses of radiation
using NIST test suites. It was shown that the quality of the TRNG deteriorates before the first failure in
the deterministic blocks, meaning security is compromised before the device fails.

In [44], instead of the entropy source (a STR), the entropy harvester (an XOR tree) is attacked. By
introducing various power and clock glitches, the critical path delay of the XOR tree is violated, intro-
ducing faults in the output. Thus, although the randomness of the entropy source is not compromised,
the randomness at the output of the RNG is decreased.

2.4. Conclusion
This chapter presented an introduction to random number generation in hardware, with a focus on
FPGAs. First, the different types of RNGs were discussed. Then, the typical hardware-based TRNG
components were explained using Cicek’s classification. An overview of the entropy sources in FPGAs
was given, focusing on the RO based designs, as they are the focus of this thesis. Lastly, Section 2.3
presented a brief overview of the security aspects of RO based TRNGs.

3
Stochastic Model

This chapter first describes the design of the TRNG noise source in Section 3.1. Then, in Section 3.2,
a stochastic model for the output of this design is presented. In Section 3.3 this model is extended
under the assumption of an ideal sampling time. The entropy of the noise source is estimated in
Section 3.4. The stochastic model is then expanded to account for non-ideal sampling (Section 3.5),
and the implications on the entropy are discussed. Some notes on the extension of the models to a
more common TRNG design are discussed in Section 3.6. Section 3.7 concludes the chapter.

3.1. Design
In this thesis, a TRNG design based on counting RO periods is stochastically modelled and tested. The
design is inspired by the work of Noumon Allini et al. [17].

The entropy source of this design is the timing jitter in the RO. The entropy harvester is the counter,
counting the number of oscillations in a given sampling time. Together, these will often be referred to
as the noise source. The post-processing step is left out of scope and simply the identity mapping is
used.

Thus, the RO increments an m-bit counter, which is sampled with a sampling time T . At this sampling
time, an amount of oscillations occurred, which will be called n1. This n1 is a realization of the random
variable N1, for which a distribution needs to be found. From this distribution, probabilities for the
counter values can be computed. The value observed at the counter’s output is simply c = ⌊n1⌋, as it
only increments every whole period.

Generally, the reference clock will have a frequency higher than the desired sample frequency, so a
clock divider that counts n2 clock cycles is used. An overview of the annotated design can be seen in
Figure 3.1.

Figure 3.1: Design of the noise source.

11

12 Chapter 3. Stochastic Model

3.2. Distribution of Oscillations
The period of a ring oscillator can be modelled as a combination of an ideal period µro that depends on
the number of inverters, or the leg length, and the routing delay between them, local jitter ∼ N (0, σ2

ro)
and a global jitter that will not be taken into the model [31]. Together, the period of a ring oscillator
is then distributed normally with period µro and jitter σ2

ro, and the time elapsed after n1 ring oscillator
periods is distributed ∼ N (n1µro, n1σ

2
ro).

The same distribution holds for the sample time T , where the period is denoted with µcl and the jitter
with σcl: T ∼ N (n2µcl, n2σ

2
cl). Figure 3.2 shows an illustration of these periods.

Figure 3.2: Illustration of Ring Oscillator periods with sampling time.

Both distributions model a time T given a number of oscillations. In the noise source design, however,
the number of oscillations that happened in a set sampling time is measured. Thus, instead of a
probability for T given n1, a model is needed that, given a sampling time T , presents a distribution for
the number of oscillations n1 measured at the output of the m-bit counter, or P (N1 = n1 | T = t).

Using Bayesian statistics and the fact that n1, t ≥ 0:

P (N1 = n1 | T = t) =
P (T = t | N1 = n1)P (N1)

P (T)
=

P (T = t | N1 = n1)P (N1)
∞∫
0

P (T = t | N1 = n1)P (N1 = n1)dn1

(3.1)

This requires us to find a prior distribution for P (N1). The only thing that is known about the value of
N1 when looking at the oscillator’s output is that it is non-negative. However, at the output of them−bit
counter, N1 is uniformly distributed over the interval [0, 2m). Assuming, without loss of generality as will
be shown later, thatm is large enough such that it is of no influence on the distribution P (N1 = n1 | T =
t):

P (N1 | T) =
P (T | N1)P (N1)

∞∫
0

P (T | N1)P (N1)dn1

=
P (T | N1)P (N1)

P (N1)
∞∫
0

P (T | N1)dn1

=
P (T | N1)

∞∫
0

P (T | N1)dn1

(3.2)

As P (N1) does not depend on n1, but only on the size of the counter m. All that is left is to solve the
integral:

∞∫
0

P (T = t | N1 = n1)dn1 =

∞∫
0

1

σro

√
2n1π

e
− (t−n1µro)2

2n1σ2
ro dn1 =

1

µro
(3.3)

The distribution of the number of oscillations N1 in a sample period T is now given by:

P (N1 | T) = fN1|T (n1|t) =


µro

σ
√
2n1π

e
− (t−n1µro)2

2n1σ2 if n1 > 0, t ≥ 0

0 otherwise
(3.4)

3.3. Ideal Sample Time 13

3.3. Ideal Sample Time
In the coming sections, the reference clock will be assumed not to have any jitter, as it makes the
calculations for a lower bound on the min-entropy less complex. This means that T is modelled as an
ideal clock Ti with period n2µcl. In the following calculations, n2 and µcl will even be ignored, and a
period t = n2µcl is taken instead as implementation details do not matter yet.

3.3.1. Expectation and Variance
The expectation of a continuous random variable is defined as E[X] =

∞∫
−∞

xf(x)dx. The expected

amount of samples after a sampling period Ti is thus:

E[N1 | Ti] =

∞∫
−∞

n1fN1|Ti
(n1|t)dn1 =

µro

σro

√
2π

∞∫
0

√
n1e

− (t−nµro)2

2nσ2
ro dn1

=
tµro + σ2

ro

µ2
ro

(3.5)

The expectation for the number of oscillations after a sampling period Ti is the sampling period divided
by the period of one oscillation, as would be expected, plus a small constant based on the physical
parameters of the noise source.

The variance of a variable X is defined as V ar[X] = E[X2]− E[X]2:

E[N2
1 | Ti] =

∞∫
−∞

n2
1fN1|Ti

(n1|t)dn1 =
µro

σro

√
2π

∞∫
0

n1
√
n1e

− (t−nµro)2

2n1σ2
ro dn1

=
t2µ2 + 3tµσ2 + 3σ4

µ4

(3.6)

V ar[N1 | Ti] = E[N2
1 | Ti]− E[N1 | Ti]

2 =
t2µ2

ro + 3tµroσ
2
ro + 3σ4

ro

µ4
ro

−
(
tµro + σ2

ro

µ2
ro

)2

=
tµroσ

2
ro + 2σ4

ro

µ4
ro

(3.7)

3.3.2. Skewness and Kurtosis
The skewness and kurtosis of a random variable tell us something about the shape of the distribution.
The value for the skewness indicates whether the distribution is symmetric (zero skew) or skewed
positively or negatively. Kurtosis, on the other hand, is a measure of the ‘tailedness’ of a distribution.
Higher kurtosis corresponds to more and more extreme outliers compared to low kurtosis. As the
normal distribution has kurtosis 3, the excess kurtosis is often defined as the kurtosis minus 3.

As the integrals in this section are rather complex, they are computed using SymPy [45], a Python
library for symbolic mathematics.

Skewness

The skewness is defined as Skew[X] = E

[(
X−µ
σ

)3

| Ti

]

Skew[N1 | Ti] =
E[N3

1 | Ti]− 4× E[N1 | Ti]× V ar[N1 | Ti]− E[N1 | Ti]
3

V ar[N1 | Ti]3/2

=
3tσroµro + 8σ3

ro

(tµro + 2σ2
ro)

3
2

(3.8)

Where the third moment of (N1 | Ti) is computed as:

14 Chapter 3. Stochastic Model

E[N3
1 | Ti] =

∫
n3
1fN1|Ti

(n1|t)dn1 =
µro

σro

√
2π

∞∫
0

n2
1

√
n1e

− (t−n1µro)2

2n1σ2
ro dn1

=
t3µ3

ro + 6t2µ2
roσ

2
ro + 15tµroσ

4
ro + 15σ6

ro

µ6
ro

(3.9)

As all parameters for the skewness are positive, the distribution of N1 is positively (or right) skewed.
When the sampling period is increased, the skewness decreases, and the distribution becomes sym-
metric for t→∞ (Equation 3.10).

lim
t→∞

Skew[N1 | Ti] = lim
t→∞

3tσroµro + 8σ3
ro

(tµro + 2σ2
ro)

3
2

= 0 (3.10)

Kurtosis

The kurtosis is defined as Kurt[X] = E

[(
X−µ
σ

)4
]

Kurt[N1 | Ti] =
E[N4

1 | Ti]− 4E[N1 | Ti]× E[N3
1 | Ti] + 6E[N1 | Ti]

2 × E[N2
1 | Ti] + 3E[N1 | Ti]

4

V ar[N1 | Ti]2

=
3
(
t2µ2 + 9tµσ2

ro + 20σ4
ro

)
t2µ2 + 4tµσ2

ro + 4σ4
ro

Where the fourth moment of (N1 | Ti) is computed as:

E[N4
1 | Ti] =

∫
n4fN1|Ti

(n)dn =
µ

σ
√
2π

∞∫
0

n3
√
ne−

(t−nµ)2

2nσ2 dn

=
t4µ4 + 10t3µ3σ2

ro + 45t2µ2σ4
ro + 105tµσ6

ro + 105σ8
ro

µ8

(3.11)

Computing the kurtosis for Ti → ∞ (Equation 3.12) shows that the kurtosis of the distribution of N
tends to 3 or that the excess kurtosis tends to zero. As mentioned before, this is the same kurtosis as
that of the normal distribution.

lim
Ti→∞

Kurt[N] = lim
Ti→∞

3
(
T 2
i µ

2 + Tiµσ
2
ro + 20σ4

ro

)
T 2
i µ

2 + 4Tiµσ2
ro + 4σ4

ro

= 3 (3.12)

3.3.3. Normal Approximation
The previous section showed that the skewness and excess kurtosis tend to zero as the sampling
time increases. This, in combination with the shape of the distribution, implies that for large sampling
times, the distribution in Equation 3.4 can be approximated with a normal distribution with parameters
E[N1|Ti] and V ar[N1|Ti].

N1 | Ti ∼ N (E[N1 | Ti], V ar[N1 | Ti]) = N
(
tµro + σ2

ro

µ2
ro

,
tµroσ

2
ro + 2σ4

ro

µ4
ro

)
, t≫ 0 (3.13)

This can be even further simplified (Equation 3.14) as, in practice, the oscillator period is large in
comparison to the timing jitter, µro ≫ σ2

ro. Since for the normal approximation to hold t is also large,
tµro ≫ σ2

ro, further supporting the simplification.

N1 | Ti ∼ N
(

t

µro
,
tσ2

ro

µ3
ro

)
, t≫ 0 (3.14)

3.4. Entropy Estimations 15

3.4. Entropy Estimations
Now that it is shown that the distribution of the number of oscillations at the output of the counter can
be approximated using a normal distribution (under the right conditions), the next step is to estimate
the randomness of the output bits. Section 3.4.1 discusses how this randomness is calculated. Then,
a translation is made from the continuous distribution to discrete counter values. The randomness for
a counter bit can be computed using these counter values. Section 3.4.3 discusses the worst- and
best-case scenarios for the output entropy. With all of this information, a minimum sampling time for
good randomness is calculated.

3.4.1. Min-Entropy
The entropy used to estimate the randomness of the output bits is the min-entropy, defined as [13,
p. 86]:

Hmin(X) = − log2

(
max
1≤i≤k

{P (X = ωi)}
)

(3.15)

Where X is a random variable that assumes values in the finite set Ω = {ω1, ω2, ..., ωk}. For the
entropy estimation, the individual output bits of the counter will be used, meaning that for every bit, the
set Ω = {0, 1}, and the min-entropy is loosely defined as the negative log of the probability of the most
likely output bit.

The reason to use min-entropy is that it defines the greatest lower bound on the entropy [46], meaning
that each observation of the random variable has at leastHmin information. This is a very nice property
when using the TRNG for cryptographic applications. AIS 20/31 specifies that the min-entropy for
internal random numbers should be at least 0.98 per bit [13].

3.4.2. Discrete Counter Values
At the moment, the distribution of the amount of oscillations is continuous. At the start of this chapter,
it was already briefly mentioned that the observed value at the output of the counter c = ⌊n1⌋. The
probability for a particular counter value c is thus equal to the integral of the probability density function
of N1|Ti from c to c+ 1. More formally:

P (C = c) = P (N1 < c+ 1 | Ti)− P (N1 < c | Ti), c ∈ {0, 1, 2, ..., 2m − 1} (3.16)

It is still assumed that m is large enough not to influence the distribution.

This is illustrated in Figure 3.3, where every region bounded by two adjacent dotted lines, the x-axis
and the curve of P (N1|Ti) corresponds to a P (C = c).

The probability of a certain bit having a value of 0 (or 1) is now also well-defined. It is simply the sum
of all the P (C = c) in which that bit of the counter value c equals 0 (or 1). For example, even counter
values correspond to LSB = 0, while odd counter values correspond to LSB = 1, and therefore:

P (LSB = 0) =

2m−1∑
c=0,2,...

P (C = c)

P (LSB = 1) =

2m−1∑
c=1,3,...

P (C = c)

(3.17)

3.4.3. Worst Case Estimation
Calculating the min-entropy for the LSB based on Figure 3.3 and Equation 3.17 gives Hmin(X) = 1.
Actually, it is not even necessary to calculate anything, as the normal distribution is symmetric, and it
follows that the areas of even and uneven counter values are symmetric as well.

16 Chapter 3. Stochastic Model

Figure 3.3: Illustration of the ring oscillator signal and the probability density function P (N1|Ti), t ≫ 0.

The simplest would then be to ensure that the RO is always sampled at this exact point. In hardware,
however, this is non-trivial. The sampling time t can most likely only be chosen in discrete steps, and
the period of the RO can change over time.

If, or when, this happens, the areas will no longer be symmetric as illustrated in Figure 3.4. The top
figure shows the perfectly aligned case, where the min-entropy of the LSB is 1, no matter the variance
of the normal distribution. The bottom figure shows the worst-case scenario when the distribution is
shifted exactly a half oscillation. For a robust design, the worst-case min-entropy of the LSB should be
such that the device still meets the min-entropy requirements.

Figure 3.4: Illustration of the distribution P (N1|Ti) for best- and worst-case min-entropy.

3.4. Entropy Estimations 17

3.4.4. Sampling Time
To calculate the min-entropy for the worst case, first note that for a normal distribution 99.9999% of the
values lie within five standard deviations from the mean. This interval is denoted as the width of the
distribution, w = 10×

√
tσ2

ro

µ3
ro
, and it is assumed that values outside the interval occur with probability 0.

When increasing the width, for example, by increasing the sampling time as per Equation 3.14, more
counter values will have a non-zero probability of occurring. Meaning the min-entropy will increase.

Figure 3.5: Worst-case min-entropy of the LSB as a function of the width of the normal distribution.

Figure 3.5 plots the worst-case min-entropy as a function of the distribution width w. A min-entropy of
at least 0.98 is achieved when w ≥ 10. From this, the desired sampling time t can be calculated as:

w ≥ 10

w = 10×

√
tσ2

ro

µ3
ro√

tσ2
ro

µ3
ro

≥ 1

tσ2
ro

µ3
ro

≥ 12

t ≥ µ3
ro

σ2
ro

(3.18)

Putting this in the normal approximation in Equation 3.14, this means that the min-entropy is ≥ 0.98
when the variance is at least equal to 1. Next to that, the requirement that tµro ≫ σro is also satisfied,
as µ4

ro ≫ σ3
ro.

To achieve a min-entropy Hmin(LSB) ≥ 0.98, the sample time t can thus be calculated given the
physical parameters of the ring oscillator. Practically speaking, this means that the counting RO noise
source can function as a TRNG without post-processing when taking the LSB as output and sufficiently
long sample time as per Equation 3.18.

Equation 3.18 also tells us that the minimum sampling time for a min-entropy of 0.98 increases with the
RO period cubed. As the period of a RO grows with the number of inverters it consists of, this means
that ROs with fewer inverters allow for shorter sampling times. Using fewer inverters also means using
less area, making a RO with a small period both less costly and more efficient.

18 Chapter 3. Stochastic Model

The other bits in the counter also have some entropy. To estimate
their worst-case min-entropy, note that the second bit changes
value every two oscillations, the third bit every four oscillations, etc.
The perceived width for every next bit is thus half that of the bit
before it. Table 3.1 shows the Hmin for bits 1, 2 and 3 when the
sampling time t is chosen such that the Hmin of the 0th bit, the
LSB, is ≥0.98. It makes sense to also use bits 1 and 2 in a post-
processing step, as it improves the efficiency of the TRNG by over
60%.

Table 3.1: Worst-case min-entropy
per bit with t such that
Hmin(LSB) = 0.98

Bit Hmin

0 (LSB) 0.98
1 0.55
2 0.07
3 0.00

3.4.5. Sizing the Counter
Until now, the counter was assumed to be large enough that it is possible to count the number of
oscillations precisely. Table 3.1 shows that in a practical application, it would be preferred to use only
3 bits for the counter, as there is no entropy in the other bits. As long as the counter simply overflows,
this also does not affect the calculations made thus far. The probabilities would merely add up, which
is precisely the desired effect as per Equation 3.17. This is illustrated in Figure 3.6.

Figure 3.6: Illustration of the distribution in counters of different sizes.

3.5. Non-Ideal Sample Time 19

3.5. Non-Ideal Sample Time
In this section, the assumption of an ideal sample time is dropped. Instead, the sample time is modelled
as a normal distribution Tn (Equation 3.19), as described in Section 3.2.

P (Tn = t|N2 = n2) = fTn|N2
(t|n2) =

1√
2n2πσcl

e
− (Tn−n2µcl)

2

2n2σ2
cl (3.19)

By using this distribution for the sampling time, an attempt is made to calculate a more realistic distribu-
tion for N1. First, the distribution is computed, after which it is compared against the distribution given
an ideal sampling time calculated before. Then, the expectation and variance of the distribution are
computed. Ideally, the expectation does not change while the variance increases.

By the law of total probability:

P (N1) =

∞∫
0

fN1|N2
(n1|n2)fN2(n2)dn2

P (N1) =

∞∫
0

fN1|Tn
(n1|t)fTn

(t)dt

P (Tn) =

∞∫
0

fTn|N2
(t|n2)fN2

(n2)dn2

(3.20)

Where the integral is taken from zero instead of −∞ since the probability of negative n1, n2 and t is
zero in a practical application.

Equating P (N1) and filling in for fTn
(t) = P (Tn):

∞∫
0

fN1|N2
(n1|n2)fN2

(n2)dn2 =

∞∫
0

fN1|Tn
(n1|t)

 ∞∫
0

fTn|N2
(t|n2)fN2

(n2)dn2

 dt (3.21)

Since fN1|Tn
(n1|t) does not depend on n2, it can be taken into the integral:

∞∫
0

fN1|N2
(n1|n2)fN2

(n2)dn2 =

∞∫
0

∞∫
0

fN1|Tn
(n1|t)fTn|N2

(t|n2)fN2
(n2)dn2 dt (3.22)

As fN1|Tn
(n1|t)fTn|N2

(t|n2)fN2
(n2) is non-negative and measurable, per definition of a probability den-

sity function, and [0, ∞) is σ-finite, by Tonelli’s theorem the order of integration can be swapped:

∞∫
0

fN1|N2
(n1|n2)fN2(n2)dn2 =

∞∫
0

∞∫
0

fN1|Tn
(n1|t)fTn|N2

(t|n2)fN2(n2)dt dn2 (3.23)

Now both sides can be differentiated with respect to n2, and fN2
(n2) cancels out:

fN1|N2
(n1|n2)fN2

(n2) =

∞∫
0

fN1|Tn
(n1|t)fTn|N2

(t|n2)fN2
(n2)dt

fN1|N2
(n1|n2) =

∞∫
0

fN1|Tn
(n1|t)fTn|N2

(t|n2)dt

(3.24)

20 Chapter 3. Stochastic Model

The distribution of the output of the noise source N1, with a non-ideal sample clock divided by some
n2, is given by:

P (N1 = n1|N2 = n2) = fN1|N2
(n1|n2) =

∞∫
0

fN1|Tn
(n1|t)fTn|N2

(t|n2)dt (3.25)

3.5.1. Consistency with Ideal Model
The sample time Tn is distributed normally with jitter σcl. When this jitter σcl goes to zero, the sample
time becomes ideal, and thus the non-ideal model should coincide with the ideal model for limσcl → 0:

fTn|N2
(t|n2) =

1

σcl

√
2n2π

e
− (t−n2µcl)

2

2n2σ2
cl

lim
σcl→0

1

σcl

√
2n2π

e
− (t−n2µcl)

2

2n2σ2
cl = δ(t− n2µcl)

(3.26)

Where δ denotes the Dirac distribution. Filling in:

P (N1 | N2) =

∞∫
0

fN1|Tn
(n1|t)δ(t− n2µcl)dt

P (N1 | N2) = P (N1 | Tn = n2µcl)

(3.27)

Which is the same as the probability given ideal sampling time Ti = n2µcl as described in Section 3.3,
meaning the models are consistent.

3.5.2. Expectation and Variance
Ideally, the expectation for the distribution ofN1 stays the same when jitter is introduced in the sampling
time T , while the variance should preferably increase.

Expectation
The expectation of P (N1 | N2) is computed as:

E[N1|N2] =

∞∫
0

n1fN1|N2
(n1|n2)dn1

=

∞∫
0

n1

∞∫
0

fN1|Tn
(n1|t)fTn|N2

(t|n2)dt dn1

=

∞∫
0

∞∫
0

n1fN1|Tn
(n1|t)fTn|N2

(t|n2)dt dn1

(3.28)

According to Tonelli’s theorem, the order of integration can be swapped again, as [0, ∞) is σ-finite and
n1fN1|Tn

(n1|t)fTn|N2
(t|n2) is non-negative and measurable on this domain. Then, fTn|N2

(t|n2) can be
taken out of the integral as it does not depend on n1:

E[N1|N2] =

∞∫
0

 ∞∫
0

n1fN1|Tn
(n1|t)dn1

 fTn|N2
(t|n2)dt (3.29)

This inner integral has been computed before (Equation 3.5):
∞∫
0

n1fN1|Tn
(n1|t)dn1 = E[N1|Tn] = E[N1|Ti] =

tµro + σ2
ro

µ2
ro

(3.30)

3.5. Non-Ideal Sample Time 21

Filling in gives:

E[N1|N2] =

∞∫
0

(
tµro + σ2

ro

µ2
ro

)
fTn|N2

(t|n2)dt

=
σ2
ro

µro

∞∫
0

tfTn|N2
(t|n2)dt+

σ2
ro

µ2
ro

∞∫
0

fTn|N2
(t|n2)dt

(3.31)

Here, the integrals are almost equal to the normal distribution’s expectation and cumulative density
function, which is taken from −∞ to ∞. However, it is known that the distribution is shifted along the
positive axis. Since its standard deviation is very small compared to the mean, it is safe to assume the
part from −∞ to 0 is negligible. The first integral then simply evaluates to the expected value n2µcl,
and the second integral to 1:

E[N1|N2] =
σ2
ro

µro
(n2µcl) +

σ2
ro

µ2
ro

× 1

=
n2µclµro + σ2

ro

µ2
ro

(3.32)

Comparing Equation 3.32 with Equation 3.5, they are equal when the ideal sampling time is chosen as
n2µcl.

Variance
Intuitively, using a non-ideal clock will increase the variance compared to the ideal case. To test this
hypothesis, note that the expectation is the same in both scenarios and thus:

V ar[N1|N2] = E[N2
1 |N2]− E[N1|N2]

2

V ar[N1|Ti] = E[N2
1 |Ti]− E[N1|Ti]

2

E[N1|N2] = E[N1|Ti]

V ar[N1|N2] ≥ V ar[N1|Ti] iff E[N2
1 |N2] ≥ E[N2

1 |Ti]

(3.33)

To compute the second moment of N1|N2, the same steps as for the expectation are taken:

E[N2
1 |N2] =

∞∫
0

n2
1fN1|N2

(n1|n2)dn1

=

∞∫
0

∞∫
0

n2
1fN1|Tn

(n1|t)fTn|N2
(t|n2)dt dn1

=

∞∫
0

 ∞∫
0

n2
1fN1|Tn

(n1|t)dn1

 fTn|N2
(t|n2)dt

(3.34)

Again, this inner integral has been computed before (Equation 3.6):

∞∫
0

n2
1fN1|Tn

(n1|t)dn1 = E[N2
1 |Tn] = E[N2

1 |Ti] =
t2µ2

ro + 3tµroσ
2
ro + 3σ4

ro

µ4
ro

(3.35)

22 Chapter 3. Stochastic Model

Filling in gives:

E[N2
1 |N2] =

∞∫
−∞

[
t2µ2

ro + 3tµroσ
2
ro + 3σ4

ro

µ4
ro

]
fTn|N2

(t|n2)dt

=
1

µ2
ro

∞∫
0

t2fTn|N2
(t|n2)dt+

3σ2
ro

µ3
ro

∞∫
0

tfTn|N2
(t|n2)dt+

3σ4
ro

µ4
ro

∞∫
0

fTn|N2
(t|n2)dt

=
1

µ2
ro

(n2
2µ

2
cl + n2σ

2
cl) +

3σ2
ro

µ3
ro

(n2µcl) +
3σ4

ro

µ4
ro

=
n2
2µ

2
clµ

2
ro + 3n2µclσ

2
roµro + 3σ4

ro

µ4
ro

+
n2σ

2
cl

µ2
ro

(3.36)

Where the same approximation for the integrals of the normal is used, and the fact that:

∞∫
0

t2fTn|N2
(t|n2)dt = E[T 2

n |N2] = (E[Tn|N2])
2
+ V ar[Tn|N2] = n2

2µ
2
cl + n2σ

2
cl (3.37)

Choosing t = n2µcl for the sample time in Equation 3.6:

E[N2
1 |Ti] =

n2
2µ

2
clµ

2
ro + 3µcln2µroσ

2
ro + 3σ4

ro

µ4
ro

E[N2
1 |N2] =

n2
2µ

2
clµ

2
ro + 3n2µclσ

2
roµro + 3σ4

ro

µ4
ro

+
n2σ

2
cl

µ2
ro

E[N2
1 |N2]− E[N2

1 |Ti] =
n2σ

2
cl

µ2
ro

≥ 0 (q.e.d.)

(3.38)

This is the variance increase due to the sample clock having non-zero jitter. This increase depends on
n2, which is the amount of sample clock cycles, σcl, the jitter on every sample clock cycle, and µro, the
period of the sampled RO. Adding this increase in variance to the variance found in Equation 3.7, the
total variance under a non-ideal clock is equal to:

V ar[N1 | N2] =
n2σ

2
cl

µ2
ro

+
n2µclµroσ

2
ro + 2σ4

ro

µ4
ro

=
n2

(
µroσ

2
cl + µclσ

2
ro

)
µ3
ro

+
2σ4

ro

µ4
ro

(3.39)

When implementing the reference clock as a second ring oscillator with approximately the same phys-
ical properties as the first ring oscillator, this becomes:

V ar[N1 | N2] = 2
n2σ

2
ro

µ2
ro

+
2σ4

ro

µ4
ro

≈ 2× V ar[N1 | Ti] (3.40)

This means that using a second ring oscillator to sample the first one approximately doubles the vari-
ance at the output of the noise source. As the variance is linear with time, practically speaking this
means that the sampling time calculated with Equation 3.18 can be halved to achieve the same worst-
case min-entropy.

3.6. Extension to Flip-Flop Design 23

3.6. Extension to Flip-Flop Design
This improvement in variance when sampling with a second RO is clearly a very useful property of the
proposed noise source. There are, however, also different methods of generating random bits from
ROs, of which the most commonly used one is to sample the RO using a flip-flop. This design can be
seen in Figure 3.7. The output from several of these elements is then XORed to form the output bits.
It is, for example, used in [28].

Figure 3.7: Ring oscillator sampled using a flip-flop.

The output of this flip-flop can be modelled as the LSB of a counter that is increased not only on the
rising edge of the oscillating signal but also on the falling edge. As this does not violate any of the
assumptions made so far, it is safe to say that the variance of such a design will also increase when
using a RO for the sample clock.

Furthermore, the counter value c now equals ⌊2n1⌋ mod 2, assuming the oscillator signal has a duty
cycle of 50%. This implies that the relative width of the distribution also doubles, and the sample time
t can be halved. Note that it is very important that the assumption on the duty cycle holds. Otherwise,
there will be a bias in the output bits, and the min-entropy will be lower than expected. The noise source
proposed in this thesis does not have this problem, as only the rising edges are counted, and a bias in
the duty cycle is of no influence.

3.7. Conclusion
This chapter presented a design for a TRNG noise source. This design was then first modelled under
the assumption of an ideal sample clock, and it was shown that this model could be approximated as a
normal distribution with expectation and variance according to Equation 3.14 when the sampling time
was taken appropriately large.

Using this model, it was possible to calculate the minimum sampling time to achieve the required min-
entropy of at least 0.98 for the LSB. This sampling time can be reduced for ROs with fewer inverters,
allowing for small and efficient designs.

The model was then extended for a non-ideal sample clock. It was shown that this model is consistent
with the ideal clock model and that the variance increases as the jitter of the sample clock increases.
When the sample clock is chosen as a RO with the same period and jitter as the sampled RO, the
variance approximately doubles compared to the ideal clock, which means only half the sample time is
needed for the same min-entropy.

4
Verification

In this chapter, simulations are performed to verify that they correspond to the mathematical models
and conclusion from Chapter 3. A first set of simulations is carried out using Rust. These simulations
are quick and easy to do, but their significance is limited as the simulation only uses a very simple noise
model. The methods used and the results of these simulations can be found in Section 4.1. To improve
on the Rust simulations, SPICE simulations are carried out using Cadence Spectre. These simulations
provide a better understanding of how the noise source will perform in hardware. Section 4.2 describes
the used models and parameters, and presents the results of the SPICE simulations. A conclusion to
this chapter is presented in Section 4.3. Appendix A contains all the important code snippets and plots
of the simulation results.

4.1. Rust Simulations
The first set of simulations to verify the models is carried out using Rust. In Section 4.1.1, simulations
under the assumption of an ideal clock are carried out. Section 4.1.2 contains the simulations for a
non-ideal model, as well as some discussion on the difference between the two.

In Rust, the rand and rand_distr crate [47] are used for the simulations. The code can be found
in Appendix A.1.1. The rand crate provides the ThreadRng struct, which generates random numbers
using the ChaCha12 stream cypher [48] as DRNG, seeded by the operating system every 64 KiB of
random. Using these crates, the period of a RO is simulated as a normal distribution with mean and
standard deviation as per Section 3.2. The simulation does not take global noise into account.

4.1.1. Ideal Clock
For the ideal clock simulations, the noise source is simulated in software according to Algorithm 1. The
algorithm describes the simulation for a single measurement. This simulation is then repeated 100,000
times to generate the samples for a single experiment. These experiments are repeated for different
ideal sampling times Ti and RO periods µro. For the jitter of the RO, a relative value of 2% of the period
is taken, which seemed reasonable based on preliminary tests on the FPGAs. The simulated periods
are 3, 4 and 5ns, which should correspond well to the periods on the FPGA.

Algorithm 1 Simulation of a single measurement for the ideal model.
t← N (µro, σro)
c← 0
while t ≤ Ti do

t← t+N (µro, σro)
c← c+ 1

end while
return c

25

26 Chapter 4. Verification

Figure 4.1 shows the simulation results for a simulation with µro = 4ns and varying sampling times. The
sampling time is chosen such that the distribution follows the best-case scenario for the min-entropy, as
can be seen by the even distribution of samples. The distribution of the simulated samples corresponds
well to the theoretical distribution. The distribution of samples clearly gets wider as the sampling time
increases, as predicted by the model. Plots for the worst-case scenario and different RO periods
(µro = 3ns and µro = 5ns) can be found in Appendix A.1.2.

Ideal clock
µro = 4ns, σro = 80ps

Figure 4.1: Impact of sampling time T on distribution of samples

From these distributions, the sample variance can now be calculated. Remember that themathematical
model predicted a linear increase in variance as the sampling time increased.

Figure 4.2 shows the variance of the simulated samples for the different sampling times, as well as the
theoretical variance per Equation 3.14. The predicted linear increase in variance as the sample time
increases is clearly visible. The small discrepancy between the simulated and computed variances can
be attributed to the precision loss in the integer samples.

Figure 4.3 and 4.4 show the min-entropy depending on the sampling time of simulated samples in the
best-case and worst-case scenario for different RO periods. As a reminder (see also Section 3.4), the
best-case scenario happens when the sampling time Ti is such that the noise source is sampled on
the rising edge of the RO, while the worst-case scenario happens exactly half a RO period later.

The best-case scenario should always yield a min-entropy close to 1, which is confirmed by Figure 4.3.
For the worst-case min-entropy, there should be a dependence on both the sampling time and the
period and jitter, as per Equation 3.18.

Figure 4.4 indeed shows an increase in min-entropy as the sampling time increases. The plot also
shows that for longer RO periods, a longer sampling time is needed to achieve the same min-entropy,
while the relative jitter is the same.

4.1. Rust Simulations 27

Ideal clock
µro = 4ns, σro = 80ps

Figure 4.2: Change in variance due to increasing sampling time, theoretical model and simulated samples.

Ideal clock, best-case scenario

Figure 4.3: Impact of sampling time on min-entropy of the LSB.

Ideal clock, worst-case scenario

Figure 4.4: Impact of sampling time on min-entropy of the LSB.

28 Chapter 4. Verification

For the worst-case scenario, Equation 4.1 allows us to compute the minimal sampling such that the
min-entropy is at least the required 0.98, as shown in Section 3.4.4.

t =
µ3
ro

σ2
ro

(4.1)

Filling in for µro = 3ns and σro = 2% ∗ µro gives t = 0.75× 10−5. The same can be done for the other
periods, giving t = 1 × 10−5 and t = 1.25 × 10−5, for µro = 4ns and µro = 5ns respectively. These
calculated sampling times correspond well with the simulation results in Figure 4.4.

Another way to obtain these sampling times lies in the other conclusion that was drawn in Section 3.4.4,
namely that the variance of the distribution is 1 when the sampling time is chosen such that the min-
entropy is 0.98. Figure 4.2 showed a plot of the variance for µro = 4ns. The figure shows that when
the variance is 1, the sampling time t ≈ 1× 10−5, which is the same time as calculated before.

Also observe that, assuming jitter is relative to the period, a longer RO period has a negative impact on
the required sampling time. This follows directly from Equation 4.1 and is confirmed by the simulations
in Figure 4.4.

4.1.2. Non-Ideal Clock
With the results in the previous section in mind, we now take a look at what happens when the RO is
sampled with a non-ideal clock. The noise source is simulated in the software according to Algorithm 2,
where the difference is that the sampling time Ts is now also a simulated RO, as per Section 3.5. The
experiment is repeated for different µro and n2, where σro is again assumed to be 2% of µro. For the
clock RO, the same parameters are used as for the sampled RO.

Algorithm 2 Simulation of a single measurement for the non-ideal model.
t← N (µro, σro)
c← 0
Ts ← N (n2µcl,

√
n2σcl)

while t ≤ Ts do
t← t+N (µro, σro)
c← c+ 1

end while
return c

Figure 4.5 shows the simulation results for µro = µcl = 4ns. The sampling time is once again chosen
such that the distribution follows the best-case scenario for the min-entropy. For easier comparison
with the ideal clock results, the expected value of the sampling time (n2 × µcl) is used to indicate the
plots.

The distributions again correspond well to the theoretical distribution, and the distribution of samples
gets wider as the sampling time increases. Compared to the distributions using an ideal clock in Fig-
ure 4.1, the non-ideal clock simulations show a wider distribution for all sampling times.

Plots for the worst case scenario and different RO periods (µro = 3ns and µro = 5ns) can be found in
Appendix A.1.3.

Again, the sample variance can be computed from these simulated samples. The models predict that
variance should still increase linearly and approximately double compared to the ideal clock simulations.

Figure 4.6 shows the variance of the simulated samples, as well as the theoretical variance according
to Equation 3.40, for increasing sampling times. The variance still increases linearly, and its value has
indeed doubled compared to the variance of the ideal clock simulations seen in Figure 4.2. Again,
there is a small discrepancy between the theoretical and sample variance, which can be attributed to
the precision loss due to integer sample values.

4.1. Rust Simulations 29

Non-ideal clock
µro = µcl = 4ns, σro = σcl = 80ps

Figure 4.5: Impact of sampling time T on distribution of samples

Non-ideal clock
µro = µcl = 4ns, σro = σcl = 80ps

Figure 4.6: Change in variance due to increasing sampling time, theoretical model and simulated samples.

30 Chapter 4. Verification

Figure 4.7 and 4.8 show plots of the min-entropy as the sampling time increases for simulated samples
in the best-case and worst-case scenario, for different RO periods. Figure 4.7 shows that the best-case
scenario still gives a min-entropy close to 1 independent of the sampling time.

For the ideal clock, it was discussed that the minimum sampling time for a min-entropy of at least
the required 0.98 could be obtained from the variance plot. Simply take the sampling time when the
variance is equal to 1. As the shape of the distribution does not change, the same thing can be applied
to the non-ideal clock simulations. Now, as the variance has doubled, this would mean that only half
the sampling time of the ideal clock simulations is needed to achieve the same min-entropy.

This is confirmed by comparing the worst-case min-entropies in Figure 4.4 with the ones in Figure 4.8.
Note also that the relative distance between the slopes for different periods has not changed. A RO
with a shorter period thus still allows for shorter sampling times.

Non-ideal clock, best-case scenario

Figure 4.7: Impact of sampling time on min-entropy of the LSB.

Non-ideal clock, worst-case scenario

Figure 4.8: Impact of sampling time on min-entropy of the LSB.

4.2. SPICE simulations 31

4.2. SPICE simulations
The second set of simulations to verify the models is carried out using Cadence Spectre. In Sec-
tion 4.2.1, simulations are carried out for the ideal clock model. Section 4.2.2 presents simulations for
the non-ideal model, comparing them with the ideal clock results.

Spectre is a SPICE-class circuit simulator, allowing for more realistic simulations of the RO. Instead
of simulating according to one of the algorithms described before, a circuit netlist is provided to the
simulator. An example of such a netlist can be seen in Listing 4.1.

This netlist describes a RO with a leg length of 3 inverters. The simulations are also performed for
ROs with leg lengths 5 and 7, to compare the influence of the RO period on the variance. Note that the
period of these ROs will be much smaller than those in the Rust simulations and FPGA tests. On top
of that, the amount of noise can not be explicitly set to 2% of the period. Instead, a noise bandwidth
has to be supplied to the simulator.

The simulations are performed using BSIM models [49] for the transistors. The zero-bias threshold
voltage is adjusted slightly for every transistor to simulate process variation that would lead to different
RO periods. To ensure that the simulated noise is different for every run, the noise seed parameter of
the transient analysis is changed in every experiment. The simulations are repeated for different tem-
peratures (-15, 25 and 80 °C), different noise bandwidths (5, 50 and 500GHz), and different technology
nodes (45nm CMOS, 20nm FinFET).

Listing 4.1: SPICE Netlist
1 .INCLUDE 'p045/p045_cmos_models_tt.inc'
2 .GLOBAL VDD GND
3 .PARAM Lmin = 45n
4 .PARAM Wmin = 45n
5 .PARAM Wp=90n
6 Vsupply VDD 0 1
7 Vground GND 0 0
8 .MODEL n1 nmos LEVEL=54 vth0=0.40145
9 .MODEL p1 pmos LEVEL=54 vth0=-0.50567
10 .MODEL n2 nmos LEVEL=54 vth0=0.38652
11 .MODEL p2 pmos LEVEL=54 vth0=-0.40200
12 .MODEL n3 nmos LEVEL=54 vth0=0.50165
13 .MODEL p3 pmos LEVEL=54 vth0=-0.49321
14 Mn1 a1 a3 GND GND n1 L=Lmin W=Wmin
15 Mp1 a1 a3 VDD VDD p1 L=Lmin W=Wp
16 Mn2 a2 a1 GND GND n2 L=Lmin W=Wmin
17 Mp2 a2 a1 VDD VDD p2 L=Lmin W=Wp
18 Mn3 a3 a2 GND GND n3 L=Lmin W=Wmin
19 Mp3 a3 a2 VDD VDD p3 L=Lmin W=Wp
20 .IC V(a1)=1
21 .END

4.2.1. Ideal Clock
For the ideal clock simulations, a RO is simply simulated for the desired sampling time. The simulated
counter value is then obtained by counting the number of rising edges that occurred before the sampling
time. This simulation is then repeated 1000 times to generate the samples for a single experiment.
These experiments are then repeated for the different parameters discussed before.

Figure 4.9 shows the simulation results for a RO with leg length 3, using the 45nm CMOS models, for
varying sampling times. The shape of the histograms resembles the expected distribution, and the
width increases as the sampling time increases.

The sample variance can be computed again from these simulated samples. As with the Rust simula-
tions, the variance is predicted to increase linearly with sample time.

Figure 4.10 shows a plot of the variance of the simulated samples for different temperatures, with
a noise bandwidth of 500GHz. The variance clearly increases linearly with the sample time for all
temperatures. There is, however, a large difference in slope for different temperatures.

32 Chapter 4. Verification

Ideal clock, leg length 3
45nm CMOS, T = 25°C,BWnoise = 500GHz

Figure 4.9: Distribution of simulated samples for various sampling times.

Figure 4.11 shows that when changing the noise bandwidth, the variance still increases linearly in time.
Again, different bandwidths give different slopes.

The relatively large change in variance due to temperature and noise bandwidth warrants caution when
designing TRNGs based on this noise source. The sampling time should be chosen such that the
variance is at least 1 for the highest operating temperature, and a proper value for the noise bandwidth
should be obtained from physical measurements.

No plots for the min-entropy of the SPICE simulations are provided, as there is no clear best- or worst-
case situation. Combined with the relatively small sample size, they would provide no information.

Ideal clock, leg length 3
45nm CMOS, BWnoise = 500GHz

Figure 4.10: Impact of sampling time and temperature
on variance.

Ideal clock, leg length 3
45nm CMOS, T = 25°C

Figure 4.11: Impact of sampling time and noise
bandwidth on variance.

Figures 4.12 and 4.13 show plots of the variance for different temperatures for ROs with leg lengths of
5 and 7 inverters respectively. Comparing the variances to those in Figure 4.10 shows that a longer
period due to a longer leg leads to less variance for equal sampling time. This is the same result as
obtained with the Rust simulations.

The simulations thus far have been based on transistor models of 45nm CMOS technology. The FPGA
that will be used for the hardware validation, however, is based on 20nm FinFET technology. Simu-
lations are also carried out using a FinFET transistor model to see the impact of using this different
technology node.

Figure 4.14 shows plots of the variance for different temperatures for a RO with leg length 3, using
the 20nm FinFET model. Compared to the plots of the variance for the CMOS simulation, there is
a clear reduction in variance, which is to be expected from a newer technology node. Temperature
dependence still exists and seems to have increased, especially for low temperatures.

4.2. SPICE simulations 33

Ideal clock, leg length 5
45nm CMOS, BWnoise = 500GHz

Figure 4.12: Impact of sampling time and temperature on variance.

Ideal clock, leg length 7
45nm CMOS, BWnoise = 500GHz

Figure 4.13: Impact of sampling time and temperature on variance.

Ideal clock, leg length 3
20nm FinFET, BWnoise = 50GHz

Figure 4.14: Impact of sampling time and temperature on variance.

34 Chapter 4. Verification

4.2.2. Non-Ideal Clock
To simulate sampling the counter with a non-ideal clock, such as a second RO, a second set of 1000
simulations is done to simulate the sampling times. For this set, the average period of the ROs is
determined. Using this average period, the ‘clock divider’ value n2 is calculated. The sampling times
are then extracted from the simulations as the time when rising edge n2 occurred.

After simulating this set of sampling times, the counter values can be obtained in almost the same way
as with the ideal clock simulations. Instead of using the same (ideal) sampling time, every ideal clock
simulation is paired with a sampling time simulation. Then, the rising edges in this sampling time are
counted.

Figure 4.15 shows the simulation results for the RO with leg length 3 from Figure 4.9, now sampled
with another RO. Again, the expected value of the sampling times indicates the plots, which facilitates
comparison with the ideal clock simulations.

The shape of the histograms resembles the expected distribution. Compared to Figure 4.9, the width
of the distribution has increased. This is the expected behaviour, which was also seen in the Rust
simulations.

Non-ideal clock, leg length 3
45nm CMOS, T = 25°C,BWnoise = 500GHz

Figure 4.15: Distribution of simulated samples for various sampling times.

Figures 4.16 and 4.17 show the variance for the non-ideal clock simulations, for a RO with leg length
3 using the 45nm CMOS models. Figure 4.16 shows the temperature dependence for a given noise
bandwidth (500GHz), while Figure 4.17 shows the noise bandwidth dependence for a given tempera-
ture (25°C) For reference, the ideal clock simulation results are also included.

Ideal clock, leg length 3
45nm CMOS, BWnoise = 500GHz

Figure 4.16: Impact of sampling time and temperature on
variance.

Ideal clock, leg length 3
45nm CMOS, T = 25°C

Figure 4.17: Impact of sampling time and noise bandwidth on
variance.

4.2. SPICE simulations 35

As predicted by the mathematical model from the previous chapter and previously confirmed by the
Rust simulation, the variance approximately doubles when sampling the RO with another RO. This
increase exists for all simulated temperatures (Figure 4.16) and noise bandwidths (Figure 4.17).

When the period of the ROs in the ideal simulation was increased by addingmore inverters, the variance
decreased. Figures 4.18 and 4.19 show plots of the variance for different temperatures for ROs with
leg lengths 5 and 7, sampled with a second RO. Compared to Figure 4.16, the variance has decreased,
but compared to the ideal clock simulations, the variance has again doubled.

Ideal clock, leg length 5
45nm CMOS, BWnoise = 500GHz

Figure 4.18: Impact of sampling time and temperature on
variance.

Ideal clock, leg length 7
45nm CMOS, BWnoise = 500GHz

Figure 4.19: Impact of sampling time and temperature on
variance.

Lastly, the non-ideal clock simulations are performed for the 20nm FinFET technology node, as this is
the technology used in the FPGA for hardware validation. When analysing the ideal clock simulations,
it was already discussed that the variance was smaller compared to the CMOS simulations.

Figure 4.20 shows plots of the variance for different temperatures for a RO with leg length 3, with the
20nm FinFET model. Here as well, using a second RO to generate the sampling clock improves the
variance across all temperatures and sampling times.

Ideal clock, leg length 3
20nm FinFET, BWnoise = 500GHz

Figure 4.20: Variance of simulated samples as a function of the sample time for different temperatures, leg length 3,
BWnoise = 50GHz, 20nm FinFET

36 Chapter 4. Verification

4.3. Conclusion
In this chapter, two sets of software simulations were used to verify the mathematical findings and
conclusions from the previous chapter. First, a simple Rust program was used that simulated the period
and jitter of a RO as a normal distribution. The simulation results for both the ideal and non-ideal sample
clock corresponded well to the stochastic models.

The calculated minimum sampling time for a worst-case min-entropy of 0.98, required by AIS 20/31
[13], was verified. It was shown that this sampling time corresponds to a variance in the counter of 1.
The non-ideal sample clock simulations confirmed that using a second RO to sample the first doubles
the variance.

Then, SPICE simulations were performed using Cadence Spectre. The simulations again showed
results that were predicted by the stochastic models from Chapter 3 and previously verified in the Rust
simulations. Using a noisy sample clock approximately doubled the variance of the noise source for all
the tested parameters.

In both simulations, reducing the period of the RO increased the variance for a given sampling time,
as predicted by the model. This means that using fewer inverters and, thus, less area improves the
performance of the noise source.

5
Validation

In this chapter, the mathematical models and conclusions are validated in hardware using the Intel
Arria 10 FPGA. Section 5.1 starts with an overview of the tests that will be conducted, including the
test setup in Section 5.1.1. The results of these tests are presented in Section 5.2 and then analysed
in Section 5.3. A discussion on the test results and their relation with the stochastic model and the
simulation results is presented in Section 5.4. Section 5.5 concludes this chapter.

5.1. Test Overview
This section first gives an overview of the test setup in Section 5.1.1. It introduces the used hard-
ware and software components and provides an overview of the hardware implementation of the noise
sources. Then, Section 5.1.2 gives an overview of the different experiments that will be conducted to
validate the mathematical model in hardware.

5.1.1. Test Setup
The setup consists of an Intel Arria 10 FPGA, on which the noise sources are implemented, a PC
that handles the collection of samples and communication with the FPGA, and a function generator to
generate a very low jitter clock. Figure 5.1 shows their connections.

Figure 5.1: Top-level overview of the test setup.

The Arria 10 FPGA contains the noise sources, including sampling circuitry, which outputs random
numbers to an asynchronous FIFO to buffer them. A peripheral component interconnect express (PCIe)
IP block handles communication with the host PC. A configuration block is included to select different
parameters, such as the sampling clock, from the host PC without needing to reprogram the device.

37

38 Chapter 5. Validation

The function generator is used to validate the stochastic models, as an ‘ideal’ design and a non-ideal
design are needed. The latter is easy to realise, while a sampling period with zero jitter is necessary
for the ideal clock model. This is impossible in practice, but a jitter of ∼ 10ps can be achieved by
testing with a function generator. This is much smaller than that of the ROs and will therefore suffice.
It also allows for comparing a sample clock with known parameters and a sample clock with unknown
parameters, such as a second RO.

The internal clock of the FPGA, a phase-locked loop (PLL), will also be tested and compared to the
function generator. If the noise source is to be implemented in a TRNG design, it should be able to
function without an external clock generator.

Figure 5.2 shows the implementation of the noise sources block from Figure 5.1. It consists of 6 different
sample clocks, of which one is selected to generate the sample signal. This signal samples six different
noise sources, of which one is fed to the output. The sample clock select, noise source select and N2

signals are all configurable from the host PC.

Next to the already mentioned advantage of not needing to reprogram the device, this also ensures the
noise source’s physical parameters stay the same when testing different sample clocks.

Figure 5.2: Overview of the noise sources with sample clocks.

The noise source design is slightly more complicated than the one presented in Chapter 3. It can be
seen in Figure 5.3 and consists of a noisy clock (a RO with three inverters in this example), two ripple
counters, and a flip-flop to sample the counters. The second counter is added so that the counters can
be alternated. This ensures that the ripple counter has settled before sampling, removing noise due to
metastability, which would make proper analysis of the jitter noise more complicated.

Both ripple counters are 32-bit. In Section 3.4, it was discussed that only the three least significant bits
have entropy and that using a wider counter, therefore, does not improve the TRNG. When validating
the model, however, the calculations are more straightforward when the counters do not overflow.

Figure 5.3: Design of one noise source.

5.1. Test Overview 39

5.1.2. Test Plan
Here, the proposed tests are described. First, some general parameters are discussed, such as the
length of the ROs. Then, three sets of experiments are described.

For the sample clocks, the PLL, function generator, and four different ROs will be tested. For the noise
clocks, also four (different from those used for the sample clocks) ROs are used. The other two noise
sources use the PLL and function generator as noise clocks. This allows for, among others, sampling
of the PLL with a RO, which should give almost the same entropy as the other way around, according
to the mathematical model.

In Chapters 3 and 4 it was shown that using ROs with shorter periods gives better results. For this
reason, the length of the ROs is also chosen very short in hardware. However, preliminary tests showed
that ROs with a leg length of only 1 or 3 inverters oscillated too quickly for the logic inside the FPGA.
This led to stability issues in the counter and sample circuit, which in turn led to a lot of artefacts in
the measurement results. When implementing the noise source in a TRNG, this is not necessarily a
problem, as it simply makes the output less predictable. For this thesis, however, those artefacts make
proper analysis of the results impossible, and they are therefore not used.

Thus, ROs with leg lengths of 5, 7, 9 and 11 inverters are used for both the noise RO and the sample
RO.

In some experiments, the sampling time T will be chosen to be much larger than what is needed for a
min-entropy of at least 0.98. This would reduce the efficiency of the TRNG. The counter, however, has
only integer precision, making calculations more precise for higher counter values as this reduces the
relative error.

To check that results are reproducible, the test design discussed in Section 5.1.1 is synthesised twice
using different seed values. Then, both designs are tested on two different Intel Arria 10 FPGAs.

Ideal Clock
For the first set of measurements, the function generator is used to generate a sampling signal close
to what would be considered ideal. With this sampling signal, the four ROs with leg lengths 5, 7, 9 and
11 are sampled for different sampling times.

The sampling times are taken from 5µs to 50µs, with 5µs intervals. For each of these sampling times,
500,000 samples are taken.

With these results, it should be possible to confirm the variance in the counter is linear with sampling
time and that the variance decreases when using ROs with longer periods.

PLL
For the second set of measurements, the same tests as above are carried out. The only difference
is that instead of the function generator, the PLL is used to generate the sampling signal. This test is
purely carried out to check the performance of the PLL. It should behave as an ideal clock, but very
little is known about its actual performance.

Non-Ideal Clock
For the third and final set of measurements, ROs are used to sample the noise source. Every noise
RO is sampled using a sample RO of the same leg length.

Again, the sampling times are taken from 5µs to 50µs, with 5µs intervals. For each of these sampling
times, 500,000 samples are taken.

The goal is to confirm the increase in variance due to sampling with a non-ideal clock by comparing the
results from this set of measurements to those obtained in the first set of ideal clock measurements.

40 Chapter 5. Validation

5.2. Results
In this section, some of the more interesting results of the tests described in the test plan are presented.
All results are included in Appendix B. An analysis of the results is presented in Section 5.3.

5.2.1. Ideal Clock
Figure 5.4 shows histograms of some of the experiments with a RO with leg length 7, sampled with
the function generator. These histograms correspond well to the expected distribution of samples
discussed so far. It is clear that the variance of the data increases as the sample time increases.

Function generator sampling RO of length 7, FPGA 1, build 1

Figure 5.4: Distribution of measured samples for various sampling times.

Figure 5.5 shows histograms of a RO with leg length 11, showing that a longer leg length, implying a
longer period, negatively impacts the variance.

Function generator sampling RO of length 11, FPGA 1, build 1

Figure 5.5: Distribution of measured samples for various sampling times.

Figure 5.6 shows histograms that do not correspond to the expected distribution, although the individual
peaks resemble the predicted distribution. This behaviour seems to be inherent to a specific build, as it
is replicated on a different FPGA (Figure B.12), while different builds do show different behaviour (Fig-
ure B.3). Some possible reasons for this behaviour were investigated, yet no satisfactory explanation
was found.

Function generator sampling RO of length 11, FPGA 1, build 2

Figure 5.6: Distribution of measured samples for various sampling times.

5.2. Results 41

5.2.2. PLL
Figure 5.7 shows results for measurements with the PLL. The double peaks visible with some function
generator measurements are now present in nearly all measurements (see also Appendix B.2).

PLL sampling RO of length 7, FPGA 1, build 1

Figure 5.7: Distribution of measured samples for various sampling times.

Using the PLL as noise source and sampling with the function generator, Figure 5.8 and Figure B.16,
shows that this time however it seems to be a problem in the PLL. Further analysis is presented in
Section 5.3.2.

Function generator sampling the PLL, FPGA 1, build 1

Figure 5.8: Distribution of measured samples for various sampling times.

5.2.3. Non-Ideal Clock
Figure 5.9 shows histograms of some of the experiments with a RO with leg length 7, sampled with
another RO of the same length. Again, these histograms seem to correspond well to the expected
distribution of samples, and the variance of the data increases as the sample time increases.

Compared to the measurement results with the function generator in Figure 5.4, there definitely seems
to be some increase in the width of the distribution. Further analysis is presented in Section 5.3.3.

RO sampling RO of length 7, FPGA 1, build 1

Figure 5.9: Distribution of measured samples for various sampling times.

42 Chapter 5. Validation

5.3. Analysis
In this section, the obtained results are analysed. First, the different sets of measurements, as pre-
sented in the test plan, are analysed separately in Section 5.3.1 through Section 5.3.3. Then, in Sec-
tion 5.3.4, a comparison is made between the results of the ideal and non-ideal clock measurements.

Note that although measurements with a RO with five inverters were carried out, its period, in the end,
turned out to also be too short to clock the asynchronous design reliably. This led to artefacts in the
measurement results, which is why they are not included in the analysis presented here.

5.3.1. Ideal Clock
The first set of measurements tested the different noise RO using the function generator as the sample
clock. The goal was to confirm a linear relation between the sampling time and variance, as well as
a reduction in variance for longer RO periods. Again, only the ROs with leg lengths 7, 9 and 11 are
included in the analysis.

The first step in analyzing the results is to calculate the average periods of the ROs from the measure-
ments. Table 5.1 lists the periods for both builds on FPGA 1. The periods for the same builds on the
other FPGA are almost equal to these, again indicating the results are influenced more by different
builds than by using a different FPGA.

The ROs with leg lengths 9 and 11 have periods corresponding to those utilised in the Rust simulations,
facilitating a comparison between the measurement and simulation outcomes.

Table 5.1: Estimated periods of the sampled ROs on FPGA 1

Leg length Build 1 Build 2
7 2.35ns 2.71ns
9 3.02ns 2.98ns
11 3.98ns 3.48ns

In Figure 5.4, measurement results from sampling a RO of length 7 with the function generator were
shown for some sampling times. More distributions can be seen in Appendix B.1. Visually, it is clear
that the variance increases for longer sampling times and decreases for ROs with longer periods.

Figure 5.10 shows the impact of sampling time on the variance for the three different ROs. Where the
model predicted, and the simulations showed, a linear increase in variance, the increase in this plot is
clearly superlinear.

Function generator simpling ROs, FPGA 1, build 1

Figure 5.10: Impact of sampling time on variance for different leg lengths.

One explanation for this is that this variance is not instantaneous, sample-to-sample variance but the
variance over the duration of the whole experiment.

The largest sampling time taken for the measurements was 50µs. This means the total time to conduct

5.3. Analysis 43

an experiment of 500,000 samples can take up to 25 seconds. As discussed in Section 2.3.1, the period
of a RO is sensitive to changes in temperature and voltage. Although the FPGA is cooled, the logic
blocks that implement the RO are bound to have some temperature change over this period, meaning
the period of the RO changes as well. As the voltage will never be completely stable over time either,
this time dependence must be considered when calculating the samples’ variance.

To see the effect of the time dependency, the data is split into segments of 10 milliseconds. Figure 5.11
shows the histograms of these segments.

Function generator sampling RO of length 7

Figure 5.11: Impact of total experiment time on distribution of samples.

The average value of the samples changes over time. This means that a portion of the variance of
the data is not due to jitter but due to fluctuations in the period of the RO. Also, note that this change
is minimal: the average counter value varies between 21259 and 21250, indicating a change in the
period of only 0.04%.

Fully correcting the variance in Figure 5.10 for this time dependence is non-trivial. The segment sizes
should not be too small to make a proper variance estimate, but they can also not be as large as the
period would not be stable again. Figure Figure 5.12 shows the raw and corrected variance, where
segments, or slices, of 200 samples are used. Although still slightly superlinear, this variance more
closely resembles that of the model.

Function generator sampling ROs, FPGA 1, build 1

Figure 5.12: Reduction in variance due to applied correction for different leg lenghts.

Comparing this corrected variance of the ROwith leg length 11, which has a period of approximately 4ns,

44 Chapter 5. Validation

to the variance found in simulations with 2% jitter (Figure 4.2), the sampling time is almost 7 times as
large before the same variance is obtained. This would mean the jitter in the hardware implementation
is only 0.8% of the period. Comparing the RO with a leg length of 9 inverters to the Rust simulations for
a 3ns period gives a jitter of approximately 1%, confirming that the initial estimation used for the Rust
simulations was too high.

5.3.2. PLL
The second set of measurements tested the performance of the PLL, to see whether it would fit the
ideal clock model. This is important information when implementing the noise source in a TRNG design.
The only other option is to keep using the external function generator, which is very impractical to say
the least.

As discussed when presenting the measurements results in Section 5.2, the measurements with the
PLL showed some odd results compared to those performed using the function generator. An example
of such a measurement is shown in Figure 5.13. There is a clear bimodal distribution, which looks like
a convolution of the expected distribution with some sine wave.

Noisy PLL sampling RO of length 7
FPGA 1, build 1

Figure 5.13: Impact of spread spectrum clocking on measurements results.

It turns out that this is almost exactly what happened. The PLL clock was taken from the PCIe IP block,
which uses the PCIe reference clock from the PC motherboard as the reference for the PLL. This does
not need to constitute a problem, as long as this reference clock is a nice, stable clock. However, the
PCIe reference clock uses spread spectrum clocking. With spread spectrum clocking, the PCIe clock
is frequency modulated with a triangle wave with a frequency between 30 − 33kHz. This reduces the
amount of electromagnetic Interference (EMI) associated with the signal’s fundamental frequency [50].

This would mean that the bimodal distribution thus consists of a convolution of the expected distribution
with this triangle wave. Figure 5.14 shows the frequency spectrum of the samples in Figure 5.13,
obtained by applying the fast Fourier transform (FFT). The peak in the spectrum occurs at 31.3kHz,
which implies that spread spectrum clocking is indeed the problem.

To confirm these suspicions, the measurement of Figure 5.13 is repeated with a PLL using an onboard
oscillator as the reference clock. The results of this measurement can be seen in Figure 5.15, and its
spectrum in Figure 5.16. The histogram now resembles the expected distribution and the frequency at
31.3kHz has disappeared.

The results of these last measurements show that it should be possible to use the PLL as the sampling
clock, when using a proper reference. They also show the importance of developing a stochastic model
before testing. The variance of the noisy measurement results in Figure 5.13 is clearly larger than the
variance of the results in Figure 5.15. This would most likely mean that the first results perform better
in statistical tests, although it is shown that this variance is coming from a deterministic signal.

5.3. Analysis 45

Noisy PLL sampling RO of length 7
FPGA 1, build 1

Figure 5.14: Frequency spectrum of the samples in Figure 5.13.

PLL sampling RO of length 7
FPGA 1, build 1

Figure 5.15: Measurement results that show expected distribution after properly implementing the PLL.

PLL sampling RO of length 7
FPGA 1, build 1

Figure 5.16: Frequency spectrum of the samples in Figure 5.15

46 Chapter 5. Validation

5.3.3. Non-Ideal Clock
The third and final set of measurement aimed to confirm the increase in variance due to sampling with
a second RO. To this end the same ROs that were sampled using the function generator are now also
sampled with a RO.

As discussed in the test plan, the value for the clock divider n2 should be such that the mean sam-
pling time for the non-ideal clock matches that of the ideal clock measurements. Only then can a fair
comparison between the two measurements be made.

To this end, the periods of the sample ROs are determined. They can be found in Table 5.2 for FPGA 1.
There is quite some difference in the periods, also compared to those of the noise ROs. In particular,
the sample RO with length 11 has wildly different periods between builds. The periods of the sample
ROs in FPGA 2 on the other hand are again comparable to the ones presented here for FPGA 1. This
confirms that the impact of the different builds is larger than the impact of using a different FPGA.

Table 5.2: Estimated periods of the sample clock ROs on FPGA 1

Leg length Build 1 Build 2
7 2.55ns 2.43ns
9 3.07ns 3.03ns
11 4.61ns 3.56ns

Figure 5.17 shows the variance of the measurement results of sampling a RO with a second RO, for
different leg lengths. The raw variance is again superlinear in time, which is why the same correction
as discussed for the function generator measurements is applied. This corrected variance can be seen
in the same figure, and shows a more linear trend.

Compared to Figure 5.12 the reduction in variance due to the correction has increased. In the ideal
clock measurements, the variance was approximately halved for the longest sampling times, while in
these measurements, only a third of the variance remains. A possible explanation for this is that now,
not only the noise clock is influenced by global effects such as temperature and voltage changes, but
also the sampling clock.

ROs sampling ROs, FPGA 1, build 1

Figure 5.17: Impact of sampling time on raw and corrected variance for different leg lengths.

The measurement results do still show that the variance of the ROs decreases as the leg length, and
thus the period, increases. This again confirms the result that better performance is achieved for smaller
ROs.

5.3.4. Comparison Ideal and Non-Ideal Clock
After analysing the different measurement results using the function generator, the PLL and different
ROs as sample clocks, it is time to compare the results to see if they validate the stochastic model.
The assumption is still that the function generator approximates the ideal clock, and that sampling with
a RO should double the variance.

5.3. Analysis 47

A comparison between the raw variances of the measurement results obtained with the function gener-
ator and ROs for different leg lengths can be seen in Figure 5.18. The variance of the measurements
sampled with the RO has increased compared to variance of the measuremets sampled with the func-
tion generator for almost all sampling times and leg lengths. However, as discussed before this raw
variance also contains variance due to changes in the period of the ROs, and therefore gives skewed
results.

Figure 5.19 shows the comparison between the results for the function generator and RO measure-
ments, after the correction for the variance has been applied. Unfortunately, where the stochastic
model and simulations predicted the measurements with a RO sample clock to have larger variance,
this is no longer the case in the hardware tests conducted here.

Function generator or ROs sampling ROs, FPGA 1, build 1

Figure 5.18: Comparison between the variance in ideal clock and non-ideal clock measurements.

These results clearly do not coincide with the mathematical findings, nor with the simulations in Chap-
ter 4. The indication from the corrected variance plot even seems to be that using a sampling clock
with more noise has little to no impact on the variance of the noise source and might even reduce it.

In Section 2.3 it was discussed that Fischer et al. [35] showed that using a second RO as the sample
clock reduced the impact of global jitter. This would explain the reduction in variance when introducing
a RO as sample clock. However, their results also showed that this is the case only when 1, the noise
RO and sample RO have almost identical periods and 2, they are placed close together in hardware.
Neither of these is true for the measurements conducted in this thesis.

Function generator or ROs sampling ROs, FPGA 1, build 1

Figure 5.19: Comparison between the corrected variance in ideal clock and non-ideal clock measurements.

To test whether a correlation between two ROs might still exist, a design is made with two ROs of
leg length 7, sampled at the same time using the function generator. Then, a moving average of the

48 Chapter 5. Validation

samples is taken. The results can be seen in Figure 5.20. On the y-axis, zero indicates the mean over
all the samples for that RO. Note that again there are no placement constraints, and the periods of the
ROs differ by almost 10%.

Figure 5.20: Moving average of two ROs sampled simultaneously.

From the plot, it is clear that there is at least some correlation between the ROs still. Calculating the
Pearson correlation for the moving averages gives a value of 0.56, while the Pearson correlation for
the samples is 0.24. Thus, there is quite some correlation between the ROs, but there is also still a lot
of uncorrelated randomness, as indicated by the correlation for the samples being lower than that of
the moving average.

It therefore seems that the sample RO at least partially compensates for the global jitter in the noise RO.
This would indicate that although the total variance stays the same, a larger portion of this variance is
due to local Gaussian jitter, and the influence of global jitter is reduced.

5.4. Discussion
The results presented in this chapter, obtained bymeasuring different configurations of the noise source
in hardware using a function generator, PLL and ROs of different leg lengths, showed results that did
not fully correspond with the mathematical and simulation results obtained so far. Although it is shown
that for ROs with smaller periods, the variance increases quicker in time than for ROs with long periods,
the increase was non-linear and did not double when sampling with a second RO.

This shows that noise other than the local Gaussian jitter of the ROs is present, skewing the results. It
is no surprise that such noise exists. Other papers implementing RO-based TRNGs even show that
these global deterministic jitters might lead to overestimation of the jitter [15, 16]. Sampling with a
second RO could, under the right circumstances, reduce the impact of these global jitters by providing
a differential measurement.

However, as discussed when analyzing the results, these circumstances were not met during the mea-
surements. No constraints were placed on the routing of the ROs, and inspecting the place and route
results showed that they were indeed not necessarily close together in hardware. This also yielded
different periods for ROs with the same length, up to almost 30%. Sampling two ROs of the same
length then showed correlations between the two, which would imply that at least some of the global
noise still affects both ROs in the same manner.

If this is indeed the case, this could simply mean that a larger portion of the corrected variance is now
due to local Gaussian noise in the ROs. On the other hand, the results in Figure 5.19 showed that the
corrected variance was equal for both the function generator and RO measurements. This could be
coincidental but was replicated in 2 different builds tested on 2 FPGAs.

Lastly, it must be noted that the applied correction to the variance is not very sophisticated. Better
statistical analysis of the samples by, for example, combining it with the work on Allan variance in [17]
could give a better understanding of what parts of the noise are due to the ROs.

5.5. Conclusion 49

5.5. Conclusion
In this chapter, an attempt was made to validate the mathematical models and conclusions. The test
plan, including the physical test setup, was described. Then, the results were presented, after which
they were analyzed. For the PLL measurements, the results showed a bimodal distribution, where an
unimodal distribution was expected. It was found that the source of this inconsistency was in the PCIe
reference clock. When using a proper reference clock, the PLL measurements did show the expected
distribution. Some measurements with the function generator also showed the bimodal distribution.
However, no satisfactory explanation was found for these measurements. It should be noted that these
anomalies seemed to be almost independent of the hardware, only depending on the placement and
routing.

Although the measurement results seemed to correspond well to the mathematical model at first, closer
inspection of the observed variance in the counter outputs showed that it was non-linear. It was shown
that this is at least partly due to the instability of the RO period, which can lead to overestimation of the
variance and jitter. A simple correction based on calculating the average variance over slices of the
data was presented. Lastly, the measurement results showed that the variance did not double when
sampling with a non-ideal clock compared to the ideal clock. A possible explanation for this was given,
but there is no compelling evidence to support this explanation. It is, therefore, also not possible to
consider the model validated in hardware. This does not necessarily mean that the proposed noise
source can not be used as a TRNG, but without validation of the stochastic model, no assurance can
be provided for security applications.

6
Conclusion

This chapter first provides a summary and discussion of the highlights of this thesis in Section 6.1.
Then, some potential future research directions are presented in Section 6.2.

6.1. Summary and Discussion
Chapter 1 gave the motivations for this thesis, an analysis of the state-of-the-art of random number
generation, and an overview of the main contributions.

Chapter 2 provided an introduction to random number generation, focussing on FPGA based implemen-
tations. The different types of RNGs were discussed, and, using Cicek’s classification, an overview of
entropy sources was given. The chapter went into more detail on RO based designs, which are the
focus of this thesis. A summary of security aspects of RO based designs, including vulnerabilities and
different types of attacks, concluded the chapter.

Chapter 3 presented a design for a TRNG noise source based on counting the rising edges of a RO.
A stochastic model was developed under the assumptions of an ideal sampling clock, which was later
extended to use a non-ideal clock, such as a second RO. With these models, it is possible to calculate
the minimum sampling time that gives sufficient min-entropy in the LSB of the counter. The other
bits also contain entropy at this sampling time, improving the efficiency of the design. It was shown
that ROs that use fewer inverters and thus less area should perform better. Using a second RO as
a sampling clock allows for further reduction of the sampling time by a factor of 2 while achieving the
same min-entropy.

Chapter 4 showed the results of two sets of simulations to verify the mathematical findings and con-
clusions from Chapter 3. The first simulations were carried out in Rust, using a very basic model of a
RO period. After this, SPICE simulations were performed using Cadence Spectre. These simulations
give a better insight into the expected behaviour of the noise source in hardware. Both simulations
confirmed that ROs with shorter periods perform better and that using a second RO as the sampling
clock halves the required sampling time to achieve the same min-entropy.

Chapter 5 attempted to validate the mathematical and simulation results in hardware using an Intel Arria
10 FPGA. After describing the test plan, the results were presented for measurements with a function
generator, the FPGA’s internal clock (a PLL), and ROs as sampling clocks. The function generator and
PLL measurements should give a relatively good approximation of an ideal clock measurement. How-
ever, the PLL results unexpectedly showed bimodal distributions. It was found that this inconsistency
was due to the PCIe reference clock. Some measurements with the function generator also showed a
bimodal distribution, but no satisfactory explanation could be found.

Although themeasurement results with the function generator and RO sampling clocks seemed to corre-
spond well to the mathematical model at first, further inspection of the observed variance in the counter
outputs showed non-linearity. This is at least partially due to the instability of the RO period, which
leads to an overestimation of the variance. A simple correction was applied by calculating the average

51

52 Chapter 6. Conclusion

variance over slices of the data. After correction, the experiments did not show a larger counter vari-
ance when sampling with a second RO compared to sampling with the function generator. A possible
explanation was given, but it was insufficient for the model to be considered validated.

The proposed design for the noise source, a ring oscillator incrementing a counter sampled after a
sampling time, has some very appealing theoretical benefits compared to other RO based designs.
First of all, the design benefits from having a RO with a short period, meaning fewer inverters and, thus,
less area. Next to that, the counter is shown to have some entropy in the bits other than the LSB, which
can be used in post-processing. This would increase the amount of output min-entropy by 60% without
needing to increase the sampling time. The SPICE simulations confirmed the theoretical improvements
a second RO as the sampling clock should give and confirmed that designs using smaller ROs are more
efficient.

Unfortunately, validating the model in hardware proved to be more difficult. The experimental results
showed a superlinear increase in variance, indicating other unmodeled noise components were present.
Attempts to isolate the ROs or to measure the jitter directly were unsuccessful. Applying a correction
after the measurements did improve the results somewhat, but not enough to consider the experiments
a success. For this reason, no TRNG implementation based on the noise source was made.

6.2. Future Work
This section provides suggestions to enhance certain aspects discussed in this thesis. The suggestions
are divided into three categories: verification, validation, and security.

• Verification

1. The current SPICE simulations check for different temperatures and some noise bandwidth
settings. A more detailed analysis could, for example, include more technology nodes, delay
lines between elements, temperature and supply voltage noise, and other improvements to
make the simulation results closer to resembling hardware implementations.

2. In this work, the simulation results were only used to verify the proposedmathematical model.
The next step would be to verify the randomness of these samples using, for example, the
NIST [12] or AIS 20/31 [13] statistical test suites.

• Validation

1. The attempts to validate the model in the Intel Arria 10 FPGA proved unsuccessful. The
increase in variance was superlinear in time, which indicates that noise other than jitter was
present. Future research in this direction could attempt to identify these noise sources and
try to reduce their effects, or focus on better statistical analysis of the results in an attempt
to remove noise from the measurements instead.

2. As the SPICE simulations were successful, the next step would be to implement the ROs in
an ASIC to see if comparable results will be obtained. Then, a TRNG design based on the
validated model can also be tested using the AIS 20/31 test suite.

• Security

1. The stochastic model of the noise source, combined with the SPICE simulation, shows that
the entropy of the counter is largely dependent on the RO periods. As these are easily
influenced by voltage and temperature changes, exhaustive testing is needed to ensure the
noise source does not fail due to relatively simple heating fault attacks, for example.

2. The paper by Bayon et al. [39] showed that it was possible to bias the output of a RO based
TRNG using EM harmonic injection. The design, however, was based on XORing a number
of parallel ROs to generate a single output bit. The noise source presented in this the-
sis might, therefore, be less susceptible to this type of attack, perhaps even depending on
whether a second RO is used as the sample clock. Further research should be conducted
to test this hypothesis.

Bibliography

[1] A. Kerckhoff, “La cryptographie militaire,” Journal des sciences militaires, vol. IX, pp. 5–38, Jan.
1883.

[2] K. Nohl, D. Evans, S. Starbug, and H. Plötz, “Reverse-engineering a cryptographic rfid tag,” in Pro-
ceedings of the 17th Conference on Security Symposium, ser. SS’08. USA: USENIX Association,
2008, p. 185–193.

[3] G. de Koning Gans, J.-H. Hoepman, and F. D. Garcia, “A practical attack on the mifare classic,” in
Smart Card Research and Advanced Applications, G. Grimaud and F.-X. Standaert, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 267–282.

[4] M. J. Dworkin, “Advanced encryption standard (AES),” no. NIST FIPS 197-upd1, pp. NIST
FIPS 197–upd1, May 2023. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.197-upd1.pdf

[5] E. Barker, A. Roginsky, and R. Davis, “Recommendation for cryptographic key generation,”
no. NIST SP 800-133r2, pp. NIST SP 800–133r2, Jun. 2020. [Online]. Available: https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf

[6] R. Gennaro, “Randomness in cryptography,” IEEE Security & Privacy, vol. 4, no. 2, pp. 64–67,
2006.

[7] M. Dworkin, “Recommendation for block cipher modes of operation: Methods and techniques,”
no. NIST SP 800-38A, pp. NIST SP 800–38A, Dec. 2001.

[8] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining your ps and qs: Detection
of widespread weak keys in network devices,” in 21st USENIX Security Symposium (USENIX
Security 12). Bellevue, WA: USENIX Association, Aug. 2012, pp. 205–220. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger

[9] F. Galton, “Dice for statistical experiments,” Nature, vol. 42, no. 1070, pp. 13–14, May 1890.

[10] Rand Corporation, A Million Random Digits with 100,000 Normal Deviates. Free Press, 1955.

[11] Intel Corporation, “Intel 810 chipset design guide,” Jun. 1999.

[12] A. Rukhin, J. Soto, J. Nechvatal, E. Barker, S. Leigh, M. Levenson, D. Banks, A. Heckert, and
J. Dray, “A Statistical Test Suite for Random and Pseudorandom Number Generators for Crypto-
graphic Applications,” Sep. 2010.

[13] W. Schindler andM. Peter, “A Proposal for Functionality Classes for RandomNumber Generators,”
Sep. 2022, Version 2.35 - DRAFT.

[14] R. G. Brown, D. Eddelbuettel, and D. Bauer, “Dieharder: a random number test suite (version
3.31.1),” 2024. [Online]. Available: https://webhome.phy.duke.edu/~rgb/General/dieharder.php

[15] Y. Ma, J. Lin, T. Chen, C. Xu, Z. Liu, and J. Jing, “Entropy Evaluation for Oscillator-Based
True Random Number Generators,” in Advanced Information Systems Engineering, D. Hutchi-
son, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, C. Sali-
nesi, M. C. Norrie, and Ó. Pastor, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, vol.
7908, pp. 544–561.

[16] M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux, “On the Security of Oscillator-Based Random
Number Generators,” Journal of Cryptology, vol. 24, no. 2, pp. 398–425, Apr. 2011.

53

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

54 Bibliography

[17] E. Noumon Allini, M. Skórski, O. Petura, F. Bernard, M. Laban, and V. Fischer, “Evaluation and
Monitoring of Free Running Oscillators Serving as Source of Randomness,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, pp. 214–242, Aug. 2018.

[18] W. Killmann and W. Schindler, “A Design for a Physical RNG with Robust Entropy Estimators,” in
Cryptographic Hardware and Embedded Systems – CHES 2008, E. Oswald and P. Rohatgi, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol. 5154, pp. 146–163.

[19] Bundesamt für Sicherheit in der Informationstechnik, “Overview of Linux kernels with NTG.1- or
DRG.3-compliant random number generator /dev/random.”

[20] M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, andM. Boyle, “Recommendation for the
entropy sources used for random bit generation,” National Institute of Standards and Technology,
Gaithersburg, MD, Tech. Rep. NIST SP 800-90b, Jan. 2018.

[21] I. Cicek, A. E. Pusane, and G. Dundar, “A novel design method for discrete time chaos based true
random number generators,” Integration, vol. 47, no. 1, pp. 38–47, Jan. 2014.

[22] X. Wang, H. Liu, R. Zhang, K. Liu, and H. Shinohara, “An Inverter-Based True Random Number
Generator with 4-bit Von-Neumann Post-Processing Circuit,” in 2020 IEEE 63rd International Mid-
west Symposium on Circuits and Systems (MWSCAS). Springfield, MA, USA: IEEE, Aug. 2020,
pp. 285–288.

[23] R. Zhang, S. Chen, C. Wan, and H. Shinohara, “High-throughput Von Neumann post-processing
for random number generator,” in 2018 International Symposium on VLSI Design, Automation and
Test (VLSI-DAT). Hsinchu: IEEE, Apr. 2018, pp. 1–4.

[24] R. Sivaraman, S. Rajagopalan, A. Sridevi, J. B. B. Rayappan, M. P. V. Annamalai, and A. Rengara-
jan, “Metastability-Induced TRNG Architecture on FPGA,” Iranian Journal of Science and Technol-
ogy, Transactions of Electrical Engineering, vol. 44, no. 1, pp. 47–57, Mar. 2020.

[25] J. Bahrami, M. Ebrahimabadi, S. Guilley, J.-L. Danger, and N. Karimi, “Impact of ProcessMismatch
and Device Aging on SR-Latch Based True Random Number Generators,” in Constructive Side-
Channel Analysis and Secure Design, R. Wacquez and N. Homma, Eds. Cham: Springer Nature
Switzerland, 2024, vol. 14595, pp. 177–196.

[26] T. L. Liao, P. Y. Wan, and J.-J. Yan, “Design and Synchronization of Chaos-Based True Random
Number Generators and Its FPGA Implementation,” IEEE Access, vol. 10, pp. 8279–8286, 2022.

[27] B. Sunar, W. Martin, and D. Stinson, “A Provably Secure True Random Number Generator with
Built-In Tolerance to Active Attacks,” IEEE Transactions on Computers, vol. 56, no. 1, pp. 109–119,
Jan. 2007.

[28] K.Wold and C. H. Tan, “Analysis and Enhancement of RandomNumber Generator in FPGABased
on Oscillator Rings,” International Journal of Reconfigurable Computing, vol. 2009, pp. 1–8, 2009.

[29] M. Varchola and M. Drutarovsky, “New High Entropy Element for FPGA Based True Random Num-
ber Generators,” in Cryptographic Hardware and Embedded Systems, CHES 2010, D. Hutchi-
son, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
S. Mangard, and F.-X. Standaert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
vol. 6225, pp. 351–365.

[30] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert, “A Very High Speed True Random Number
Generator with Entropy Assessment,” inCryptographic Hardware and Embedded Systems - CHES
2013, G. Bertoni and J.-S. Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, vol.
8086, pp. 179–196.

[31] B. Valtchanov, A. Aubert, F. Bernard, and V. Fischer, “Modeling and observing the jitter in ring
oscillators implemented in FPGAs,” in 2008 11th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems. Bratislava, Slovakia: IEEE, Apr. 2008, pp. 1–6.

Bibliography 55

[32] J. J. L. Franco, E. Boemo, E. Castillo, and L. Parrilla, “Ring oscillators as thermal sensors in fpgas:
Experiments in low voltage,” in 2010 VI Southern Programmable Logic Conference (SPL), 2010,
pp. 133–137.

[33] E. Boemo and S. López-Buedo, “Thermal monitoring on fpgas using ring-oscillators,” in Field-
Programmable Logic and Applications, W. Luk, P. Y. K. Cheung, and M. Glesner, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 69–78.

[34] L. De Micco, C. Minchola, J. J. Leon-Franco, E. Boemo, and M. Antonelli, “An annotated guide
to utilize ring-oscillators as thermal sensor in fpga technology,” in 2020 Argentine Conference on
Electronics (CAE), 2020, pp. 1–7.

[35] V. Fischer, F. Bernard, N. Bochard, and M. Varchola, “Enhancing security of ring oscillator-based
trng implemented in FPGA,” in 2008 International Conference on Field Programmable Logic and
Applications. Heidelberg, Germany: IEEE, 2008, pp. 245–250.

[36] P. Bayon, L. Bossuet, A. Aubert, and V. Fischer, “Electromagnetic analysis on ring oscillator-based
true random number generators,” in 2013 IEEE International Symposium on Circuits and Systems
(ISCAS), 2013, pp. 1954–1957.

[37] K. Ngo and E. Dubrova, “Side-channel analysis of the random number generator in stm32
mcus,” in Proceedings of the Great Lakes Symposium on VLSI 2022, ser. GLSVLSI ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p. 15–20. [Online]. Available:
https://doi.org/10.1145/3526241.3530324

[38] A. Markettos and S. Moore, “The frequency injection attack on ring-oscillator-based true random
number generators,” in Cryptographic Hardware and Embedded Systems - CHES 2009, 11th In-
ternational Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, ser. Lecture
Notes in Computer Science, vol. 5747. Springer, 09 2009, pp. 317–331.

[39] P. Bayon, L. Bossuet, A. Aubert, V. Fischer, F. Poucheret, B. Robisson, and P. Maurine, “Con-
tactless electromagnetic active attack on ring oscillator based true random number generator,”
in Constructive Side-Channel Analysis and Secure Design, W. Schindler and S. A. Huss, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 151–166.

[40] L. Machado, A. Roca, and J. Cortadella, “Increasing the robustness of digital circuits with ring
oscillator clocks,” in 2nd International Workshop on Resiliency in Embedded Electronic Systems:
SwissTech Convention Centre, Lausanne, Switzerland, March 31st, 2017: final proceedings,
2017, pp. 29 – 34. [Online]. Available: http://hdl.handle.net/2117/114922

[41] S. El Amraoui, R. Leveugle, and P. Maistri, “Choose your Path: Control of Ring Oscillators
EMFI Susceptibility through FPGA P&R Constraints,” in International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS 2024), ser. Proceedings, Kielce, Poland,
Apr. 2024. [Online]. Available: https://hal.science/hal-04513560

[42] Z. Zhang and T. Su, “Behavioral analysis and immunity design of the ro-based trng
under electromagnetic interference,” Electronics, vol. 10, no. 11, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/11/1347

[43] H. Martin, P. Martin-Holgado, P. Peris-Lopez, Y. Morilla, and L. Entrena, “On the entropy of
oscillator-based true random number generators under ionizing radiation.” Entropy (Basel, Switzer-
land), vol. 20, Jul 2018.

[44] H. Martin, T. Korak, E. Millán, and M. Hutter, “Fault attacks on strngs: Impact of glitches, tem-
perature, and underpowering on randomness,” IEEE Transactions on Information Forensics and
Security, vol. 10, pp. 266 – 277, 02 2015.

[45] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov,
J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta,
S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Saboo, I. Fernando,
S. Kulal, R. Cimrman, and A. Scopatz, “Sympy: symbolic computing in python,” PeerJ Computer
Science, vol. 3, p. e103, Jan. 2017. [Online]. Available: https://doi.org/10.7717/peerj-cs.103

https://doi.org/10.1145/3526241.3530324
http://hdl.handle.net/2117/114922
https://hal.science/hal-04513560
https://www.mdpi.com/2079-9292/10/11/1347
https://doi.org/10.7717/peerj-cs.103

56 Bibliography

[46] E. B. Barker and J. M. Kelsey, “Recommendation for Random Number Generation Using Deter-
ministic Random Bit Generators,” National Institute of Standards and Technology, Tech. Rep. NIST
SP 800-90Ar1, Jun. 2015.

[47] The Rand Project Developers, “The Rust Rand Book,” Available: https://rust-random.github.io/
book/, 2024, [Accessed: 21 May 2024].

[48] D. J. Bernstein et al., “Chacha, a variant of salsa20,” in Workshop record of SASC, vol. 8, no. 1.
Citeseer, 2008, pp. 3–5.

[49] BSIM Group, UC Berkely, “The BSIM Family,” Available: https://bsim.berkeley.edu/models/, [Ac-
cessed: 26 June 2024].

[50] “Spread spectrum clocking,” Microsemi Corporation, White Paper, June 2015.

https://rust-random.github.io/book/
https://rust-random.github.io/book/
https://bsim.berkeley.edu/models/

A
Verification

This appendix contains code snippets and some additional plots of both the Rust and SPICE simulation
results. The Rust simulation results are presented first in Section A.1, followed by the SPICE results
in Section A.2.

A.1. Rust Simulations
A.1.1. Rust Code
The code snippets below constitute the Rust implementation of the algorithms described in Section 4.1.
By using a multithreaded approach, a lot of samples could be generated very quickly, which helped the
verification of the model.

Listing A.1: Rust implementation of the algorithm for ideal clock simulations.
1 use rand::thread_rng;
2 use rand_distr::{Normal, Distribution};
3 use std::thread;
4 use std::sync::mpsc;
5

6 fn ideal_clock_sim(experiments: u64, mu: f64, sigma: f64, sample_time: f64
) -> Vec<i32> {

7 let threads = 50;
8 let thread_experiments = experiments / threads;
9 let mut results: Vec<i32> = Vec::with_capacity(experiments as usize);
10 let (tx, rx) = mpsc::channel();
11 for _ in 0..threads {
12 let tx_clone = tx.clone();
13 thread::spawn(move || {
14 let ro_normal = Normal::new(mu, sigma).unwrap();
15 let mut rng = thread_rng;
16

17 for _ in 0..thread_experiments {
18 let mut ro_time = ro_normal.sample(&mut rng);
19 let mut cnt: i32 = 0;
20 while ro_time < sample_time {
21 ro_time += ro_normal.sample(&mut rng);
22 cnt += 1;
23 }
24 tx_clone.send(cnt).unwrap();
25 }
26 });
27 }
28 drop(tx);
29 for received in rx {
30 results.push(received)
31 }
32 results
33 }

57

58 Appendix A. Verification

Listing A.2: Rust implementation of the algorithm for non-ideal clock simulations.
1 use rand::thread_rng;
2 use rand_distr::{Normal, Distribution};
3 use std::thread;
4 use std::sync::mpsc;
5

6 fn non_ideal_clock_sim(experiments: u64, mu: f64, sigma: f64, n2: f64) ->
Vec<i32> {

7 let threads = 50;
8 let thread_experiments = experiments / threads;
9 let mut results: Vec<i32> = Vec::with_capacity(experiments as usize);
10 let (tx, rx) = mpsc::channel();
11 for _ in 0..threads {
12 let tx_clone = tx.clone();
13 thread::spawn(move || {
14 let cl_normal = Normal::new(n2 * mu, n2.sqrt() * sigma)
15 let ro_normal = Normal::new(mu, sigma).unwrap();
16 let mut rng = thread_rng;
17

18 for _ in 0..thread_experiments {
19 let mut ro_time = ro_normal.sample(&mut rng);
20 let mut cnt: i32 = 0;
21 let sample_time = cl_normal.sample(&mut rng);
22 while ro_time < sample_time {
23 ro_time += ro_normal.sample(&mut rng);
24 cnt += 1;
25 }
26 tx_clone.send(cnt).unwrap();
27 }
28 });
29 }
30 drop(tx);
31 for received in rx {
32 results.push(received)
33 }
34 results
35 }

A.1. Rust Simulations 59

A.1.2. Some Plots of the Ideal Model
The following figures show simulation results for the ideal clock simulations. Figure A.1 shows results
for various sampling times for a RO period of 3ns. The sampling time is chosen so that the distribution
follows the best-case for the min-entropy. This can be seen from the even distribution, which results in
a fifty-fifty distribution of zeroes and ones in the LSB no matter the sampling time. Figure A.2 shows
the worst case, where the distribution is odd, and some minimum sampling is needed to achieve the
required min-entropy.

Figure A.3 shows the results for various sampling times for a RO period of 5ns. The width of the
distribution has decreased for all sampling times compared to those in Figure A.2.

Ideal clock, best-case
µro = 3ns, σro = 60ps

Figure A.1: Impact of sampling time T on distribution of samples.

60 Appendix A. Verification

Ideal clock, worst-case
µro = 3ns, σro = 60ps

Figure A.2: Impact of sampling time T on distribution of samples.

Ideal clock, worst-case
µro = 5ns, σro = 100ps

Figure A.3: Impact of sampling time T on distribution of samples.

A.1. Rust Simulations 61

A.1.3. Some Plots of the Non-Ideal Model
In this section, figures are presented that show some of the results of the non-ideal clock simulations.
Figure A.4 shows results for various sampling times for a RO period of 3ns, sampled with a second RO
with a period of 3ns, in the best-case scenario. The width of the distribution has increased compared to
the distributions presented in Figure A.1. Figure A.5 shows simulations for the same RO periods, now
in the worst-case scenario. Again, the difference between the odd and even distributions is very clear.

Figure A.6 shows results for RO periods of 5ns, showing the decline in variance for all sampling times
due to a longer period.

Non-ideal clock, best-case
µro = 3ns, σro = 60ps

Figure A.4: Impact of sampling time T on distribution of samples.

62 Appendix A. Verification

Non-ideal clock, worst-case
µro = 3ns, σro = 60ps

Figure A.5: Impact of sampling time T on distribution of samples.

Non-ideal clock, worst-case
µro = 5ns, σro = 100ps

Figure A.6: Impact of sampling time T on distribution of samples.

A.2. Spectre Simulations 63

A.2. Spectre Simulations
A.2.1. Plots Ideal Model
The following figures show some results of the ideal clock SPICE simulations. Figure A.7 shows sim-
ulation results for different sampling times for a RO consisting of 3 inverters. Figure A.8 shows the
same RO for different sampling times, but now for a temperature of −10°C. Recall from the analysis in
Chapter 4 that the noise source showed a larger variance for low temperatures.

Figure A.9 shows results for a RO with 7 inverters. The width of the distribution, and with it the variance,
has clearly decreased compared to Figure A.7.

Ideal clock, leg length 3
45nm CMOS, BWnoise = 500GHz, T = 25°C

Figure A.7: Impact of sampling time T on distribution of samples.

64 Appendix A. Verification

Ideal clock, leg length 3
45nm CMOS, BWnoise = 500GHz, T = −10°C

Figure A.8: Impact of sampling time T on distribution of samples.

Ideal clock, leg length 7
45nm CMOS, BWnoise = 500GHz, T = 25°C

Figure A.9: Impact of sampling time T on distribution of samples.

A.2. Spectre Simulations 65

A.2.2. Plots Non-Ideal Model
In this section, some results of the non-ideal clock simulations in SPICE are presented. Figure A.10
shows results for a RO of length 3, now sampled using a different simulated RO with 3 inverters as
well. Figure A.11 shows the same simulation, with a temperature of −10°C. Figure A.12 shows the
distributions when the ROs have leg length 7. All figures show a clear increase in variance compared
to the figures of the ideal clock simulations.

Non-ideal clock, leg length 3
45nm CMOS, BWnoise = 500GHz, T = 25°C

Figure A.10: Impact of sampling time T on distribution of samples.

66 Appendix A. Verification

Non-ideal clock, leg length 3
45nm CMOS, BWnoise = 500GHz, T = −10°C

Figure A.11: Impact of sampling time T on distribution of samples.

Non-ideal clock, leg length 7
45nm CMOS, BWnoise = 500GHz, T = 25°C

Figure A.12: Impact of sampling time T on distribution of samples.

B
Validation

In this appendix, the measurement results from the experiments conducted on the Intel Arria 10 FPGA
platform are presented. For the function generator and RO sample clock, all results are included for
RO leg lengths 7, 9 and 11, both FPGAs, and both builds. For the PLL measurements, only the results
for FPGA 1, build 1 are included.

The function generator measurements are in Section B.1, the PLL results in Section B.2, and the RO
results in Section B.3.

B.1. Measurement Results Function Generator
Function generator sampling RO of length 7, FPGA 1, build 1

Figure B.1: Impact of sampling time T on distribution of samples.

67

68 Appendix B. Validation

Function generator sampling RO of length 9, FPGA 1, build 1

Figure B.2: Impact of sampling time T on distribution of samples.

Function generator sampling RO of length 11, FPGA 1, build 1

Figure B.3: Impact of sampling time T on distribution of samples.

B.1. Measurement Results Function Generator 69

Function generator sampling RO of length 7, FPGA 1, build 2

Figure B.4: Impact of sampling time T on distribution of samples.

Function generator sampling RO of length 9, FPGA 1, build 2

Figure B.5: Impact of sampling time T on distribution of samples.

70 Appendix B. Validation

Function generator sampling RO of length 11, FPGA 1, build 2

Figure B.6: Impact of sampling time T on distribution of samples.

Function generator sampling RO of length 7, FPGA 2, build 1

Figure B.7: Impact of sampling time T on distribution of samples.

B.1. Measurement Results Function Generator 71

Function generator sampling RO of length 9, FPGA 2, build 1

Figure B.8: Impact of sampling time T on distribution of samples.

Function generator sampling RO of length 11, FPGA 2, build 2

Figure B.9: Impact of sampling time T on distribution of samples.

72 Appendix B. Validation

Function generator sampling RO of length 7, FPGA 2, build 2

Figure B.10: Impact of sampling time T on distribution of samples.

Function generator sampling RO of length 9, FPGA 2, build 2

Figure B.11: Impact of sampling time T on distribution of samples.

B.2. Measurement Results PLL 73

Function generator sampling RO of length 11, FPGA 2, build 2

Figure B.12: Impact of sampling time T on distribution of samples.

B.2. Measurement Results PLL
PLL sampling RO of length 7, FPGA 1, build 1

Figure B.13: Impact of sampling time T on distribution of samples.

74 Appendix B. Validation

PLL sampling RO of length 9, FPGA 1, build 1

Figure B.14: Impact of sampling time T on distribution of samples.

PLL sampling RO of length 11, FPGA 1, build 1

Figure B.15: Impact of sampling time T on distribution of samples.

B.3. Measurement Results Ring Oscillator 75

Function generator sampling PLL, FPGA 1, build 1

Figure B.16: Impact of sampling time T on distribution of samples.

B.3. Measurement Results Ring Oscillator
RO sampling RO of length 7, FPGA 1, build 1

Figure B.17: Impact of sampling time T on distribution of samples.

76 Appendix B. Validation

RO sampling RO of length 9, FPGA 1, build 1

Figure B.18: Impact of sampling time T on distribution of samples.

RO sampling RO of length 11, FPGA 1, build 1

Figure B.19: Impact of sampling time T on distribution of samples.

B.3. Measurement Results Ring Oscillator 77

RO sampling RO of length 7, FPGA 1, build 2

Figure B.20: Impact of sampling time T on distribution of samples.

RO sampling RO of length 9, FPGA 1, build 2

Figure B.21: Impact of sampling time T on distribution of samples.

78 Appendix B. Validation

RO sampling RO of length 11, FPGA 1, build 2

Figure B.22: Impact of sampling time T on distribution of samples.

RO sampling RO of length 7, FPGA 2, build 1

Figure B.23: Impact of sampling time T on distribution of samples.

B.3. Measurement Results Ring Oscillator 79

RO sampling RO of length 9, FPGA 2, build 1

Figure B.24: Impact of sampling time T on distribution of samples.

RO sampling RO of length 11, FPGA 2, build 1

Figure B.25: Impact of sampling time T on distribution of samples.

80 Appendix B. Validation

RO sampling RO of length 7, FPGA 2, build 2

Figure B.26: Impact of sampling time T on distribution of samples.

RO sampling RO of length 9, FPGA 2, build 2

Figure B.27: Impact of sampling time T on distribution of samples.

B.3. Measurement Results Ring Oscillator 81

RO sampling RO of length 11, FPGA 2, build 2

Figure B.28: Impact of sampling time T on distribution of samples.

	Introduction
	Motivation
	State of the Art
	Contributions
	Thesis Outline

	Random Numbers
	Random Number Generation
	Noise Sources
	Entropy Sources in FPGAs
	Entropy Harvesting for Ring Oscillators

	Security of Ring Oscillators
	Vulnerabilities
	Attacks

	Conclusion

	Stochastic Model
	Design
	Distribution of Oscillations
	Ideal Sample Time
	Expectation and Variance
	Skewness and Kurtosis
	Normal Approximation

	Entropy Estimations
	Min-Entropy
	Discrete Counter Values
	Worst Case Estimation
	Sampling Time
	Sizing the Counter

	Non-Ideal Sample Time
	Consistency with Ideal Model
	Expectation and Variance

	Extension to Flip-Flop Design
	Conclusion

	Verification
	Rust Simulations
	Ideal Clock
	Non-Ideal Clock

	SPICE simulations
	Ideal Clock
	Non-Ideal Clock

	Conclusion

	Validation
	Test Overview
	Test Setup
	Test Plan

	Results
	Ideal Clock
	PLL
	Non-Ideal Clock

	Analysis
	Ideal Clock
	PLL
	Non-Ideal Clock
	Comparison Ideal and Non-Ideal Clock

	Discussion
	Conclusion

	Conclusion
	Summary and Discussion
	Future Work

	Verification
	Rust Simulations
	Rust Code
	Some Plots of the Ideal Model
	Some Plots of the Non-Ideal Model

	Spectre Simulations
	Plots Ideal Model
	Plots Non-Ideal Model

	Validation
	Measurement Results Function Generator
	Measurement Results PLL
	Measurement Results Ring Oscillator

