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Abstract

The decreasing cost and improved sensor andmonitoring system technology (e.g., fiber optics and strain gauges) have
led to more measurements in close proximity to each other. When using such spatially dense measurement data in
Bayesian system identification strategies, the correlation in the model prediction error can become significant. The
widely adopted assumption of uncorrelated Gaussian error may lead to inaccurate parameter estimation and
overconfident predictions, which may lead to suboptimal decisions. This article addresses the challenges of
performing Bayesian system identification for structures when large datasets are used, considering both spatial
and temporal dependencies in themodel uncertainty.We present an approach to efficiently evaluate the log-likelihood
function, and we utilize nested sampling to compute the evidence for Bayesian model selection. The approach is first
demonstrated on a synthetic case and then applied to a (measured) real-world steel bridge. The results show that the
assumption of dependence in the model prediction uncertainties is decisively supported by the data. The proposed
developments enable the use of large datasets and accounting for the dependency when performing Bayesian system
identification, even when a relatively large number of uncertain parameters is inferred.

Impact Statement

In Bayesian system identification for structures, simplistic probabilistic models are typically used to describe the
discrepancies between measurement and model predictions, which are often defined as independent and
identically distributed Gaussian random variables. This assumption can be unrealistic for real-world problems,
potentially resulting in underestimation of the uncertainties and overconfident predictions. We demonstrate that
in a real-world case study of a twin-girder steel bridge, the inclusion of correlation is decisively favored by the
data. In the proposed approach, both the functional form of the probabilistic model and the posterior distribution
over the uncertain parameters of the probabilistic model are inferred from the data. A novel efficient log-
likelihood evaluation method is proposed to reduce the computational cost of the inference.
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1. Introduction

1.1. Motivation

Structural health monitoring (SHM) methods based on probabilistic approaches have seen significant
development in recent years (Farrar andWorden, 2012) and have been applied for system identification and
damage detection for various types of structures including bridges (Behmanesh and Moaveni, 2014), rail
(Lam et al., 2014), offshore oil and gas installations (Brownjohn, 2007), offshore wind farms (Rogers,
2018) and other civil engineering structures (Chen, 2018). The Bayesian system identification framework
established by Beck and Katafygiotis (1998) uses measurements of structural responses obtained from
sensors in combinationwith computational physicsmodels to infer uncertain parameters, calibratemodels,
identify structural damage, and provide insight into the structural behavior (Huang et al., 2019). In
Bayesian statistics the problem is cast as a parameter estimation and model selection problem, often
referred to as system identification in the SHM literature (Katafygiotis et al., 1998). Specifically, previous
knowledge about the system parameters to be inferred is represented by statistical distributions and
combined with measurements to infer the posterior parameter distribution. A key advantage of this
approach is that it provides a rigorous framework for combining prior knowledge and data with a
probabilistic description of the uncertainties to obtain a posterior distribution over nondirectly observed
parameters of interest (the so-called latent variables) using directly observed responses. For example, the
rotational stiffness of a support can be estimated based on measured deflections (Ching et al., 2006; Lam
et al., 2018).

In parallel with the probabilistic methods for SHM, sensor and monitoring technologies have seen
significant progress in recent years. These technologies can provide higher accuracy and improved
measurement capabilities, for example, by utilizing fiber optic strain sensors (Ye et al., 2014; Barrias
et al., 2016). Fiber optic strain sensors provide measurements with high spatial and temporal resolution as
large numbers of sensors with high sampling rates are used in the same structure. System identification is
carried out under the assumption that there is sufficient information in themeasurements so that the data can
overrule the prior assumption on the latent variables. Therefore, utilizing the additional information
contained in these measurements can potentially improve the accuracy of our predictions, reduce the
uncertainty on the inferred system parameters, and lead to improved physical models that can more
accurately capture the structural behavior. However, when usingmeasurements from dense sensor layouts,
such as fiber optic strain sensors, the discrepancies between model prediction and observations are
expected to be dependent. This dependence has to be considered in the system identification to avoid
inaccurate parameter estimation and overconfidence in the model predictions.

1.2. Problem statement

Current approaches in Bayesian inference for structures largely neglect the dependencies in the model
prediction error. Instead, it is typically assumed that the prediction error is Gaussian white noise, that is,
uncorrelated with zero mean (Lye et al., 2021). When using closely spaced measurements and model
predictions, for example, in the case of time series with high sampling rates or spatial data from densely
spaced sensors, dependencies may be present in the model prediction errors (Simoen et al., 1998).
The strength of the correlation typically depends on the proximity of the measurements in time and the
spacing of sensors on the structure. A fictitious example of a simply supported beam where the error
between measurement andmodel prediction for two sensors is modeled as a bivariate Normal distribution,
explicitly accounting for the spatial correlation of three different sets ofmeasurements, is shown in Figure 1
for illustration purposes. Disregarding the spatial and temporal measurements correlation, by enforcing the
assumption of independence can lead to large errors in the posterior distribution of the inferred parameters,
as correlation has been shown to have an impact on the information content of measurements
(Papadimitriou and Lombaert, 2012), the maximum likelihood and maximum a posteriori estimates of
the parameters of interest, and the posterior uncertainty (Simoen et al., 2013).

To consider correlations in Bayesian system identification for structures poses a number of challenges
for the modeler. An appropriate functional form of the prediction error correlation is not known a priori,
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and due to the prevalence of the independence assumption, there is limited information available on how
to model it. Additionally, it is not known to what degree the correlation is problem-specific. Hence, to
perform Bayesian system identification on real-world structures when spatial and/or temporal depend-
ence are present, we identified the following open issues:

1. Appropriate models for the spatial and temporal correlations must be included in the probabilistic
model that describes the uncertainties.

2. Bayesian inference must be performed in a computationally efficient manner when large datasets
and combined spatial and temporal dependencies are considered.

1.3. Approach

The approach proposed in this article to address the issues mentioned above can be summarized as
follows. First, a mathematical model of the data-generating process is formulated. This model is
composed of a physical model describing the response of the structure, and a probabilistic model
describing the measurement and model prediction error including the spatial and temporal correlation.
Both themeasurement andmodel prediction error are taken as normally distributed, and the strength of the
correlation is assumed to be dependent on the distance between measurements (in time and/or in space).
This dependence is modeled by a set of kernel functions. A pool of candidate models is defined, with each
model considering a different kernel function to describe the correlation in the physical model prediction
error. Bayesian inference is performed to obtain the posterior distribution of physical and probabilistic
model parameters based on the data. The posterior probability and Bayes factor are calculated for each
candidate model, making it possible to evaluate how strongly a given model is supported relative to the
other candidate models based on the data. The proposed approach is illustrated in Figure 2. More details
on the individual building blocks are given in Section 3.

Figure 1. Illustration of the impact of correlation in the model prediction error for the fictitious case of a
simply supported beam with two sensors.
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Second, a strategy is presented for performing system identification for relatively large datasets
(N > 102 for temporal dependencies and N > 103 for combined spatial and temporal dependencies) by
efficiently evaluating the log-likelihood and the evidence. We propose a procedure for exact and efficient
log-likelihood calculation by (i) assuming separability of the spatial and temporal correlation (Genton,
2007); (ii) exploiting the Markov property of the Exponential kernel (Marcotte and Allard, 2018); and
(iii) using the nested sampling strategy (Skilling, 2006) to reduce the computational cost of estimating the
evidence under eachmodel. The accuracy of the proposed approach is initially investigated in a case study
using synthetic data, and subsequently, the feasibility of the approach for its use in real-world cases is
demonstrated through a twin-girder steel road bridge case study. In the real-world use case, stress
influence lines obtained from controlled load tests are used to estimate the posterior distribution of a
set of uncertain, unobservable parameters. The accuracy and uncertainty of the posterior predictive stress
distributions obtained from each candidate model are compared, to determine the benefit of using a larger
dataset and considering dependencies.

2. Previous work

In the Bayesian system identification literature, it is typically assumed that the prediction error is Gaussian
white noise, that is, uncorrelated with zero mean (Mthembu et al., 2011; Chiachío et al., 2015; Pasquier
and Smith, 2015; Astroza et al., 2017). In some studies, for example, Goller and Schueller (2011) and

Figure 2. Overview of the Bayesian inference approach used in this work.
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Ebrahimian et al. (2018) the variance of the model prediction error is included in the vector of inferred
parameters, however, dependencies are not considered. In other works, such as Simoen et al. (2015),
Pasquier andMarcotte (2020), andVereecken et al. (2022) the parameters that define the uncertainty (with
or without considering dependencies) are estimated using a subset of the available data. This approach,
however, results in the use of data for inferring nuisance parameters andmay not be practical when limited
data is available. Examples of inference of the uncertainty parameters can be found in applications outside
of structural engineering, for example, in geostatistics (Diggle and Ribeiro, 2002).

To the best of the authors knowledge, Simoen et al. (2013) is the only work concerning model
prediction error correlation in Bayesian system identification for structures and investigates the impact of
considering dependencies in model prediction error in Bayesian system identification. The aforemen-
tioned study presents an approach with many similarities to the proposed one. Bayesian inference and
model selection are applied to a pool of candidate models to infer the distribution of uncertain parameters
and to determine the strength of the evidence in favor of each model. The physical and probabilistic
parameters are inferred for a simple linear regression example as well as a reinforced concrete beam
example using modal data. In both cases, the datasets are composed of synthetic observations polluted
with correlated noise. Furthermore, the posterior distributions are assumed to be Gaussian, allowing for a
computationally efficient asymptotic approximation to be utilized to obtain the posterior and evidence.

We focus on the feasibility of the approach in a practical application with real-world data, where the
ground truth of the correlation structure and parameters are not known and the posterior and evidence are not
approximated analytically. We instead utilize nested sampling to estimate the evidence, ensuring the
applicability of the approach in cases where the Gaussian assumption for the posterior is not valid.
Additionally, we address the issue of efficiently calculating the log-likelihood for large datasets with
combined spatial and temporal dependencies under the assumption of separable space and time covariance.

3. Methods and tools

3.1. Continuous Bayes theorem

The Bayes theorem of conditional probability for continuous random variables can be written as (Gelman
et al., 2013):

pðθj�y,MÞ¼ pð�yjθ,MÞ �pðθjMÞZ
Θ
pð�yjθ,MÞ �pðθjMÞ �dθ

, (1)

where θ is a vector of uncertain parameters;�y a vector of observations;M denotes themodel; pðθj�y,MÞ is
the posterior distribution; pð�yjθ,MÞ is the likelihood; and p θjMð Þ is the prior.

It can be seen that pðθj�y,MÞ describes the posterior distribution of the model parameter set θ
conditional on measurements �y under model M. The likelihood term gives the probability of observing
�y given parameters θ. Finally, the denominator on the right-hand side is known as the evidence, ormarginal
likelihood, and gives the likelihood of obtaining themeasurements conditional on themodelM. Obtaining
the evidence is necessary for performing Bayesian model selection. In most practical applications this
integral is high-dimensional (see e.g., Lye et al., 2021) and computationally intractable. Furthermore, the
conventional Markov Chain Monte Carlo (MCMC) methods (Metropolis et al., 1953; Hastings, 1970)—
typically used in Bayesian inference—are primarily geared toward estimating the posterior, and do not
compute the evidence. The nested sampling method, implemented in the Dynesty Python package
(Speagle, 2019) is utilized to overcome this limitation. In this approach, the posterior is separated into
nested slices of increasing likelihood. Weighted samples are generated from each slice and subsequently
recombined to yield the posterior and evidence. Nested Sampling can deal effectively with moderate to
high-dimensional problems (e.g., in problems with up to 100 parameters) andmulti-modal posteriors. The

Data-Centric Engineering e22-5

https://doi.org/10.1017/dce.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.18


reader is referred to Skilling (2006) and Speagle (2019) for detailed information on the nested sampling
method.

3.2. Bayesian model selection

The posterior distribution of the parameters for a given set of data is conditional on the modelM. Often,
multiple models can be defined a priori to describe the observed behavior. To select the most plausible
model, a pool of models ℳ is defined and inference is performed conditional on eachmodelMi. The Bayes
rule can then be applied to select the most likely model based on the evidence. In Hoeting et al. (1999), the
following equation is provided for performing Bayesian model selection:

pðMij�yÞ¼ pð�yjMiÞ �pðMiÞPK
i¼1

pð�yjMiÞ �pðMiÞ
, (2)

where pðMij�yÞ is the posterior probability of model i; pð�yjMiÞ is the evidence under model Mi; and
p Mið Þ is the prior probability of model i.

Given a pool of models, selecting the model that best fits the data can straightforwardly be achieved by
selecting the model that minimizes a particular error metric between measurements and model outputs.
However, simply choosing the model that best fits the data could potentially lead to overfitting: more
complicatedmodels would tend to fit the data best, making them themost likely in this approach even if the
added complexity provides a negligible benefit. An advantage of Bayesian model selection is that it
automatically enforcesmodel parsimony, also known asOccam’s razor as discussed inMacKay (2003) and
Beck and Yuen (2004), penalizing overly complex models. It should be emphasized that a high posterior
model probability does not necessarily indicate that a particular model provides a good fit with the data,
since the model probabilities are conditioned on the pool of candidate models ℳ. Therefore, a high posterior
model probability can only be interpreted as a particular model being more likely, relative to the other
models that are considered. To aid the interpretation of the results, the relative plausibility of two models
M1 andM2 belonging to a class of models ℳ can be expressed in terms of the Bayes factor:

R¼ pðM1j�yÞ
pðM2j�yÞ �

pðM2Þ
pðM1Þ : (3)

An advantage of using the Bayes factor over the posterior model probabilities for model selection is
that it can be readily interpreted to indicate the support of one model over another, and thus offers a
practical means of comparing different models. The interpretation of Jeffreys (2003) is used in this work,
given in Table 1.

3.3. Posterior predictive distribution

Bayesian system identification can be used to obtain point estimates and posterior distributions of uncertain
parameters using physical models and measurement data. However, directly using the point estimates of
the inferred parameters to make predictions would result in underestimation of the uncertainty and overly

Table 1. Interpretation of the Bayes factor from Jeffreys (2003)

R Strength of evidence

<100 Negative
100 to 101=2 Barely worth mentioning
101=2 to 101 Substantial
101 to 103=2 Strong
103=2 to 102 Very strong
>102 Decisive
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confident predictions. This is due to the fact that using point estimates to make predictions disregards the
uncertainty in the inferred parameters resulting from lack of data. In contrast, the posterior predictive is a
distribution of possible future observations conditioned on past observations taking into account the
combined uncertainty from all sources (e.g., modeling andmeasurement error and parameter uncertainty).
The posterior predictive can be obtained as Gelman et al. (2013):

pðy∗j�yÞ¼
Z

Θ
pðy∗jθÞ �pðθj�yÞ �dθ, (4)

where y∗ is a vector of possible future observations.

3.4. Data-generating process

In order to perform system identification, the likelihood function is formulated based on the combination
of a probabilistic model and a deterministic physical model. This coupled probabilistic-physical model is
used to represent the process that is assumed to have generated the measurements, referred to as the data-
generating process. Details on the deterministic physical model are provided in Section 5.2. The
probabilistic model is used to represent the uncertainties that are inherent when using a model to describe
a physical system. The following sources of uncertainty are considered:

• Measurement uncertainty
• Physical model uncertainty

Measurement uncertainty refers to the error between themeasured response quantities and the true system
response, caused by the combined influence of sensor errors and environmental noise (Kennedy and
O’Hagan, 2001). Modeling uncertainty can contain several components and refers to the error between
reality and the models used to represent it. These errors arise, for example, due to simplifications in the
physical model and numerical approximations.

In this article, we consider data-generating processes based on a multiplicative and additive model
prediction error, whichwill be explained in the following subsections. In the following expressions, Greek
letters are used to represent random variables, while bold lower and upper-case letters denote vectors and
matrices respectively.

3.4.1. Multiplicative model
The data-generating processes described by equation (5) are obtained by considering the discrepancies
between the deterministic model output and the real system response, a process referred to as stochastic
embedding in Beck (2010). In this model of the data-generating process, a multiplicative prediction error
is considered:

χ θð Þ¼Y θsð Þηm θcð Þþ ε θcð Þ, (5)

where χ is a vector of predictions obtained from the coupled physical-probabilistic model of the data
generating process; Y is a diagonal matrix of physical model predictions obtained as Y ¼ diag yð Þ, with y
denoting the corresponding vector of predictions; ηm is a vector of multiplicative physical model error
factors; ε is a vector ofmeasurement error random variables; θs is a vector of physical model parameters to
be estimated; θc is a vector of probabilistic model parameters to be estimated; and θ¼ θs,θcf g is the set of
combined physical and probabilistic model parameters to be estimated.

In this model formulation, the error in the physical model prediction is assumed to scale with the
magnitude of the model output. This assumption is prevalent in the structural reliability literature
(Cervenka et al., 2018; Sykorka et al., 2018). The physical model predictions are multiplied by a factor
ηm, expressing the discrepancy between model prediction and reality. A correlated Multivariate Normal
distribution with a mean of 1:0 and covariance matrix Ση is assumed for ηm as shown in equation (6):
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ηmðθcÞ�N ð1:0,ΣηðθcÞÞ: (6)

The assumption of a Gaussian distribution for ηm is made primarily for simplicity and computational
convenience. The impact of this assumption is deemed to be outside the scope of this work and is not
further examined. The measurement error is taken as independent, identically distributed (i.i.d.) Gaussian
random variables, distributed as ε�N 0,σεð Þ. The assumption of Gaussian white noise for the measure-
ment error is prevalent in the literature and is commonly used in Bayesian system identification for
structures (see Section 2), stemming from the fact that measurement noise can be considered as a sum of a
large number of independent randomvariables.Modeling themeasurement error as i.i.d. realizations from
aNormal distribution is therefore justified by the central limit theorem. Utilizing the affine transformation
property of the Multivariate Normal distribution we obtain the following model for the data-generating
process:

χm �N ð yðθsÞ,YΣηY
T þσ2ε I Þ, (7)

with I being the identity matrix. The residuals between measurements and model predictions are
considered as a random field, with the position of each observation defined by a spatial coordinate
(representing the location of a sensor) and a temporal coordinate, denoted as xi and ti, respectively. The
position of an observation y

�
is described by a two-dimensional vector xi ¼ xi, tið Þ, and the random field is

represented as a (not necessarily regular) grid of points, as shown in Figure 3 with n denoting the total
number of sensors and m denoting the number of observations per sensor over time.

The correlation in themodel prediction error between two points xi ¼ xi, tið Þ and xj ¼ xj, tj
� �

is obtained
as the product of the spatial and temporal correlation, described in terms of the respective kernel functions:

ρi,j ¼ kx xi,xj;θc
� � � kt ti, tj;θc� �

, (8)

where kx xi,xj;θc
� �

and kt ti, tj;θc
� �

are parametrized by the set of parameters of the probabilistic
model θc. The standard deviation of the model prediction error at a point i is obtained as σi ¼Cv � yi,
where Cv denotes the coefficient of variation (COV) of the model prediction error. Calculating the
covariance for every pair of points yields a symmetric positive semi-definite covariance matrix Ση that
describes the covariance of the physical model prediction error for every point in the random field:

Σp ¼YΣηY
T ¼

σ21 … σ1 �σN �ρ1,N
⋮ ⋱ ⋮

σN �σ1 �ρN,1 … σ2N

2
64

3
75, (9)

with N¼ n �m.

Figure 3. Illustration of space and time coordinate system. Influence lines along the time axis t are
obtained for each sensor position x.
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3.4.2. Additive model
A coupled probabilistic-physical model of the data-generating process based on a correlated, additive
model prediction error is also considered (equation (10). In this case, the model prediction error is
described by an additive term, modeled as a multivariate normal distribution with zero mean and
covariance ΣηðθcÞ. Similarly to the multiplicative model, the measurement error is represented by a
vector of i.i.d. normal random variables, with a mean of zero and standard deviation σε.

χa θð Þ¼ y θsð Þþηa θcð Þþ ε θcð Þ, (10)

where ηa denotes the vector of additive model prediction error.

ηaðθcÞ�N ð 0:0,ΣηðθcÞþσ2ε I Þ: (11)

4. Efficient log-likelihood evaluation

The assumption of a multiplicative or additive physical model uncertainty factor described by a Gaussian
distribution leads to a multi-variate Gaussian likelihood description. For a given covariance matrix Σ, and
omitting the dependence on the parameter vector θ from the right-hand side of the equation for brevity, the
multivariate normal log-likelihood function can be expressed as:

L θð Þ= �1
2
� log jΣjþ y� yð ÞTΣ�1 y� yð ÞþN � log 2 �πð Þ� �

: (12)

The evaluation of the Multivariate Gaussian log-likelihood (equation (12) requires calculating the
determinant (∣:∣) and inverse ( :ð Þ�1) of the covariance matrix Σ. These operations typically have O N3

� �
time complexity and O N2

� �
memory requirements for factorizing and storing the covariance matrix

respectively, making the direct evaluation of the log-likelihood infeasible for more than a few thousand
points.

To address this issue, we present an approach for efficient log-likelihood evaluation under the
multiplicative model uncertainty with additive Gaussian noise described in Section 3.4.1. For the case
of additive model uncertainty, described in Section 3.4.2 we utilize an existing approach from the
literature. A comparison of the average wall clock time required for log-likelihood evaluation as a
function of the size of a 2-dimensional grid of measurements against a naive implementation using the full
covariancematrix, for both the additive andmultiplicative cases, can be found in Koune (2021). A Python
implementation of both methods is available at https://github.com/TNO/tripy.

4.1. Efficient log-likelihood evaluation for combined spatial and temporal correlation and multiplicative
model prediction uncertainty

To reduce the computational complexity for evaluating the log-likelihood under themultiplicativemodel
uncertainty, we propose an approach that utilizes the tridiagonal inverse form of the correlationmatrix that
can be obtained from the Exponential kernel, as well as the Kronecker structure of the separable space and
time covariance matrix.

In the following, it is assumed that the correlation is exponential in time. No assumptions are made
regarding the structure of the correlation in space or the number of spatial dimensions. The i, jth element of
the temporal covariance matrix Σt is obtained as:

Σi,j
t ¼Cv,i �Cv,j � exp ∥ti� tj∥

lcorr

� �
, (13)

where lcorr is the correlation length and Cv is the coefficient of variation described in Section 3.4.1. It is
shown by Pasquier and Marcotte (2020) that the inverse of the covariance matrix for this kernel function
has a symmetric tridiagonal form:
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Σ�1
t ¼

d1 c1

c1 d2 c2

c2 d3 c3

⋱ ⋱ ⋱

2
66664

3
77775: (14)

Following Cheong (2016), the diagonal vectors of diagonal and off-diagonal terms in equation (14)
can be obtained analytically, eliminating the need to form the full correlation and covariance matrices
which is often computationally intensive due to the amount of memory and operations required. For a
given vector of observations with coordinates t¼ t1, t2,…, tmf g denoting Δti ¼ ∣ti� ti�1∣ for i∈ m½ � yields
equation (15).

ai ¼ e�λ�Δti , (15)

where λ is the inverse of the correlation length lcorr and ai is the correlation between points i and i�1. The
diagonal and off-diagonal elements of the inverse correlation matrix Σ�1

t can then be obtained analyt-
ically, eliminating the need for direct inversion ofΣt and reducing computational complexity andmemory
requirements:

d1 ¼ 1

C2
v,1

� 1
1�a22

, (16)

dm ¼ 1

C2
v,m

� 1
1�a2m

, (17)

dii ¼ 1

C2
v,i

� 1
1�a2i

þ 1
1�a2iþ1

�1

� �
, (18)

cii�1 ¼� 1
Cv,i �Cv,iþ1

� ai
1�a2i

: (19)

Furthermore, we define the combined space and time covariance which can be obtained as the
Kronecker product of the temporal correlation matrix and the spatial correlation matrix, Ση ¼Σt⊗Σx.
Using the properties of the Kronecker product, it can be shown that the resulting inverse matrix Σ�1

η has a
symmetric block tridiagonal form:

Σ�1
η ¼

D1 C1

C1 D2 C2

C2 D3 C3

⋱ ⋱ ⋱

2
66664

3
77775: (20)

We consider the covariance matrix for the data-generating process defined in equation (7). Expressing
the physical model uncertainty covariance matrix Σp in terms of the combined space and time covariance
Ση yields:

Σp ¼YΣηY
T : (21)

Then Σ�1
p will also be block tridiagonal. However, including additive noise such that Σp ¼YΣηYT þσ2ε I

leads to a dense inverse matrix. To efficiently evaluate the likelihood, we aim to calculate the terms

ð�y� yÞTΣ�1
p ð�y� yÞ and ∣Σp∣ in equation (12) without explicitly forming the corresponding matrices or

directly inverting the covariance matrix, while taking advantage of the properties described previously to

reduce the complexity. Algebraic manipulation of the product ð�y� yÞTΣ�1
p ð�y� yÞ is performed in order to

obtain an expression that can be evaluated efficiently by taking advantage of theKronecker structure and block
symmetric tridiagonal inverse of the covariance matrix.We apply theWoodburymatrix identity given below:
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A�1þBC�1BT
� ��1 ¼A�AB CþBTAB

� ��1
ABð ÞT : (22)

Substituting A!Σ�1
ε , B!Y , and C�1 !Ση, yields:

Σ�1
p ¼Σ�1

ε �ðΣ�1
ε YÞðΣ�1

η þY TΣ�1
ε YÞ�1ðΣ�1

ε YÞT : (23)

Applying the left and right vector multiplication by y, the second term in the r.h.s. of equation (12)
becomes:

yTΣ�1
p y¼ yTΣ�1

ε y� yTðΣ�1
ε YÞðΣ�1

η þYTΣ�1
ε Y Þ�1ðΣ�1

ε YÞTy: (24)

In the previous expression, the term yTΣ�1
ε y can be efficiently evaluated as the product of vectors and

diagonal matrices. Similarly, the term yTðΣ�1
ε Y Þ can be directly computed and yields a vector. We

consider the following term from the r.h.s. of equation (24):

ðΣ�1
η þY TΣ�1

ε YÞ�1ðΣ�1
ε YÞTy¼X : (25)

We note that the term Σ�1
η þYTΣ�1

ε Y is the sum of a symmetric block tridiagonal matrix Σ�1
η and the

diagonal matrix YTΣ�1
ε Y . We can therefore take advantage of efficient algorithms for Cholesky factor-

ization of symmetric block tridiagonal matrices and for solving linear systems using this factorization to
compute X . Furthermore, the Cholesky factors obtained previously are also used to reduce the compu-
tational cost of evaluating the determinant ∣Σ∣¼ ∣ΣεþYΣηYT ∣. Applying the determinant lemma for Σp

yields equation (26):

∣ΣεþYΣηY
T ∣¼ ∣Σ�1

η þY TΣ�1
ε Y ∣ � ∣Ση∣ � ∣Σε∣: (26)

The determinant ∣Ση∣ can be calculated efficiently by utilizing the properties of the Kronecker product,
given that ∣Ση∣¼ ∣Σt⊗Σx∣. Furthermore, Σε is a diagonal matrix meaning that the determinant can be
trivially obtained. Finally, we have previously calculated the Cholesky factorization of the term
Σ�1
η þYTΣ�1

ε Y . Using the fact that the determinant of a block triangular matrix is the product of the

determinants of its diagonal blocks and the properties of the determinant, the first expression in the r.h.s. of
equation (26) can be computed with:

∣Σ�1
η þYTΣ�1

ε Y ∣¼ ∣LLT ∣¼ ∣L∣ � ∣LT ∣¼ jLj2, (27)

where the matrix L is the lower triangular Cholesky factor ofΣ�1
η þYTΣ�1

ε Y . Since each block Lii is also
triangular, the evaluation of the determinant has been reduced to evaluation of the determinant of each
triangular block Lii, which is equal to the product of its diagonal elements.

Using the above calculation procedure, an efficient solution can also be obtained for the case of only
temporal correlation, where Σ�1

t has the symmetric tridiagonal form given in equation (14). The term
Σ�1
t þYTΣ�1

ε Y will be the sum of a symmetric tridiagonal and a diagonal matrix. From a computational
viewpoint, this property is advantageous as it allows for a solution to the system of equations equation (25)
with O Nð Þ operations using the Thomas algorithm (Quarteroni et al., 2007). Alternatively, for improved
efficiency and numerical stability, a Cholesky decomposition can be applied to solve the linear system and
calculate the determinants of the symmetric tridiagonal terms in equation (26).

4.2. Efficient log-likelihood evaluation for combined spatial and temporal correlation and additive model
prediction uncertainty

To reduce the computational complexity of the log-likelihood evaluation in the case of additive model
prediction uncertainty and combined spatial and temporal correlation, we use an approach that utilizes the
properties of the Kronecker product and the eigendecomposition of the separable covariancematrix. For a
detailed description of this approach, the reader is referred to Stegle et al. (2011).
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5. Description of the IJssel bridge case study

5.1. Description of the structure

The IJssel bridge is a twin-girder steel plate road bridge that carries traffic over the river IJssel in the
direction of Westervoort. It consists of an approach bridge and a main bridge, of which the latter is of
interest in this case. The main bridge has a total length of 295 m and five spans with lengths of 45, 50,
105, 50, and 45 m. In total, the bridge has 12 supports. An elevation view of the structure is shown in
Figure 4. The supports at pillar H are hinges, while the rest are roller bearings in the longitudinal
directions. The roller bearings at pillars G andK can resist uplift forces. The deck structure of the bridge is
composed of two steel girders with variable height, ranging from 2:4 to 5:3 m, and cross-beams with a
spacing of approximately 1:8m. The main girders and cross beams support the steel deck plate. The deck
plate has a thickness of 10 or 12 mm and 160× 8 mm longitudinal bulb stiffeners. The cross beams are
placed with a center-to-center distance of 1:75 to 1:80m and are composed of a 500× 10mmweb with a
250× 12mmwelded flange. The cross beams are tapered in the parts that extend beyond the main girders
and the beam height is reduced to 200 mm at the beam ends. The two main girders are coupled with
K-braces located below every second or third cross beam, with a distance of 5:4 m on average.

5.2. Description of the physical model

A two-dimensional twin-girder finite element (FE)model based onEuler-Bernoulli beam elements is used
to model the IJsselbridge, shown in Figure 5. Each element has four degrees of freedom (DOFs): two
translations and two rotations. The variable geometrical properties of the steel girders along the
longitudinal axis are taken into account by varying the structural properties of the individual beam
elements, where each element has a prismatic cross-section. In addition to the main girder, half the width
of the deck plate and the corresponding longitudinal stiffeners are also considered in the calculation of the
structural properties for each cross-section along the x-axis. The maximum beam element length can be
specified in order to approximate the variable geometry of the main girders along the length of the bridge
to the required precision. A maximum element length of 2:0mwas used for all simulations, resulting in a

Figure 4. Elevation view of the IJsselbridge (top), and typical cross-section including K-brace (bottom),
with lengths shown in meters (from Rijkswaterstaat).
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model with nnode ¼ 193 nodes and nDOF ¼ 386 DOFs. The coupling between the main girders due to
combined stiffness of the deck, crossbeams, and K-braces is simulated by vertical translational springs,
placed approximately at the positions of the K-braces that connect the two main girders of the IJssel
bridge. Six pinned supports are specified for each girder at locations corresponding to pillars F through
L. Independent rotational springs are defined at the supports to simulate the friction at the support bearings
and to account for the possibility of partial locking.

During the measurement campaign, the bridge was closed for traffic and only loaded by a heavy
weighted truck at the left and right lanes. To account for the position of the truck along the transverse
direction (z-axis)—which is not included in the FE model—each load is multiplied by a value of the
Lateral Load Function (LLF), as illustrated in Figure 5 (right). The LLF is taken as a linear function, with
slope and intercept coefficients such that: (i) a point load applied directly on a girder does not affect the
other girder; and (ii) a load applied at the center of the bridge deck is equally distributed between the left
and right girders.

5.3. Measurements

The data used in this study is obtained from a measurement campaign performed under controlled load
tests. A total of 34 strain measurement sensors were placed on the top and bottom flanges of the steel
girders, the cross beams, the longitudinal bulb stiffeners, and the concrete approach bridge, to measure the
response of the structure to traffic loads. In this article, we use only a subset of sensors that are placed on
the center of the bottom flange of the right main girder, since they measure the global response of the
bridge. These sensors are denoted with the prefix “H” (Figure 6). The exact position of each considered
sensor along the length of the bridge and the sensor label are provided in Table 2. It should be noted that the
authors were given access to the experimental data and details regarding the sensor network, data
acquisition system, and experimental procedure of the measurement campaign, however, the location
of the sensors was not chosen specifically for the purposes of the present study. Additional information
regarding the measurement campaign can be found in Appendix B.

Time series of the strain ε at a sampling rate of 50Hz are obtained from each sensor and postprocessed
to yield the corresponding influence lines. These strain influence lines are converted to stress influence
lines using Hooke’s law σ¼E � ε, where σ denotes the stress and E denotes Young’s modulus. The latter is
taken as E¼ 210GPa, as specified in the IJsselbridge design. Each sensor yields two influence lines, one
for each lane that was loaded during the measurement campaign. Linear interpolation is performed to

Figure 5. Illustration of the IJsselbridge FE model (left), lateral load function (right), and paramet-
rization of the FE model (bottom).
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obtain the stresses at the locations along the length of the bridge corresponding to the locations of the
nodes of the FE model. The processed influence lines are plotted in Figure 7.

It is noted that significant discrepancies were observed between the measurements and FE model
predictions for a number of sensors during a preliminary comparison of model predictions using a model
fitted to the measurements with conventional numerical optimization. It was determined, after verifying
the validity of the measurements, that this can be attributed to the simplicity of the model, which was not
able to capture the structural behavior at a number of sensor locations. The following list is a summary of
the physical simplifications and assumptions that could potentially contribute to the observed discrep-
ancies:

• Only limited number of structural elements are explicitly modeled, with elements such as stiffeners,
K-braces, the steel deck, and cross-beams being only considered implicitly (e.g., by modifying the
cross-sectional properties of the elements representing the main girders), or omitted entirely.

• The 3D distribution of forces within the elements is neglected, loads are lumped to the closest node
and supports are considered as points, potentially overestimating the stresses.

• Although likely negligible, the stiffness of the deck and cross-beams between the two girders is only
considered implicitly as lumped stiffness in the vertical springs.

• Variations in the geometry and cross-section properties of theK-braces along the length of the bridge
are not taken into account.

• Shear lag in the deck is not modeled.

The uncertainty in the physical model prediction resulting from the aforementioned simplifications and
misspecifications is accounted for in the Bayesian inference by considering the additive and multiplica-
tive error models, introduced in Section 3.4.

Figure 6.Approximate location of sensors on the right girder. The prefix “H” is used to denote the sensors
on the main structure of the IJsselbridge. Adapted from a Rijkswaterstaat internal report.

Table 2. Names, labels, and positions of strain gauges placed on the IJsselbridge main girder

Sensor H1 H2 H3 H4 H5 H7 H8 H9 H10

Position (m) 20.42 34.82 47.70 61.97 68.60 96.80 113.35 123.90 147.50

Note. The positions are measured from pillar F (see Figure 4).
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5.4. Correlation functions

Correlation functions also referred to as kernels or kernel functions in the literature and throughout this
work, are positive definite functions of two Euclidean vectors k x,x0;θcð Þ (Duvenaud, 2014) that describe
the correlation between points x and x0. Table 3 provides a summary of the kernel functions used to model
the correlation in themodel prediction error in this article. These kernel functions were chosen due to their
wide adoption in statistical applications, ease of implementation, and small number of parameters.
Additionally, these kernel functions were empirically found to result in more accurate posterior and
posterior predictive distributions among a group of candidate kernel functions in Koune (2021).

5.5. Physical model parameters

The set of physical model parameters to be inferred, θs, is shown in Figure 5. The choice of the uncertain
physicalmodel parameters is based primarily on sensitivity analyses, the damagemechanisms expected to
affect the behavior of the structure and consultation with steel bridge experts. Independent rotational
springs are defined at supports F, G,H, and J, with the corresponding rotational spring stiffnessses denoted
as Kr,1 through Kr,4, to simulate the friction at the support bearings and to account for the possibility of
partial locking. An analysis of the sensitivity of the stress response to the stiffness of the support bearings

Figure 7. Stress influence lines obtained from the measurement campaign. The blue and red lines
correspond to the measured response for different truck positions in the transverse direction of the bridge.
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indicated that the stiffness at supportsK and L has negligible influence on the stress at the sensor locations.
Therefore, the bearings at supports K and L are assumed to be hinges with no rotational stiffness.
Furthermore, the riveted connections present in the K-braces result in high uncertainty on their stiffness,
while additionally this stiffness was found to have a significant effect on the FE model response. The
stiffness parameter of the vertical springs, Kv, is assumed to be equal for all vertical springs along the
length of the bridge. Both the vertical and rotational spring stiffness values span several orders of
magnitude. We therefore represent these parameters in terms of their base-10 logarithms. In addition to
the more natural and convenient representation, the parametrization by the base-10 logarithm yields a
reduction of the relative size of the prior to the posterior, and therefore a reduction of the number of
samples required for convergence when using nested sampling.

Table 4 summarizes the prior distributions that are used for log10 Krð Þ and log10 Kvð Þ. The prior
distributions are determined using a combination of engineering judgment and sensitivity analysis.
Additional details of the sensitivity analysis for the rotational and vertical spring stiffness parameters
can be found in Appendix A. It should be noted that the impact of the physical model parameterization on
the Bayesian model selection is not considered in this study. The feasibility of inferring parameters of the
probabilistic model, and selecting the most likely model from a pool of candidate models, when a large
number of physical model parameters is present is left as a potential topic for future work.

5.6. Probabilistic model parameters

Table 5 provides an overview of the set of probabilistic model parameters to be inferred, θc, and their prior
distributions. Details of the probabilistic model formulations for each of the cases investigated are
provided in Sections 6 and 7. The support (domain) of the priors must be defined such that it is possible
to capture the structure of the correlations in the residuals between model predictions and measurements.
It should be noted that choosing the priors for the parameters of the probabilistic model is not a simple task
as no information on the correlation structure is available. Furthermore, a poor choice of prior can
significantly impact the inference and prediction, leading towide credible intervals (Fuglstad et al., 2018).
Uniform priors are chosen with supports that are wide enough to capture a range of correlations that are
expected to be present in the measurements.

Table 3. List of correlation functions and corresponding parameters

Kernel Shorthand k x,x0ð Þ Parameters

Independent IID 1 if x¼ x0

0 if x ≠ x0

�
—

Radial basis RBF exp �∥x,x0∥2
2l2corr

	 

lcorr

Exponential EXP exp ∥x,x0∥
lcorr

	 

lcorr

Table 4. Description and uniform prior distribution bounds of physical model parameters

Parameter Unit Description Lower bound Upper bound

log10 Kr,1�4ð Þ kNm/rad Rotational spring stiffness at the
supports F to J (see Figure 5)

4.0 10.0

log10 Kvð Þ kN/m Stiffness of the vertical translational
springs, representing the K-braces

0.0 8.0
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5.7. Notation

The coupled probabilistic-physical models considered in the case studies presented in Sections 6 and 7 are
distinguished by the model prediction error which can be multiplicative equation (5) or additive equation
(10), the kernel function used in the probabilistic model and the number of measurements used in the
inference per influence line. A shorthand notationwill be adopted to refer to themodels for the remainder of
this article. Models will be referred to by the kernel that describes the temporal correlation (as shown in
Table 3) and the type ofmodel prediction error considered, that is, multiplicative or additive, denoted by the
suffixes “M” and “A,” respectively. As an example, following this notation, a model with multiplicative
error where complete independence between the errors is considered will be written as IID-M.

6. Exploratory analyses on the IJsselbridge case study using synthetic measurements

6.1. Description

Initially, a synthetic example is studied to explore the impact of the size of the dataset on the feasibility of
inferring the functional form the probabilistic model and the posterior distribution of the uncertain
parameters. A pool of candidate probabilistic models with different correlation functions is formed, as
described in Table 6. For each probabilistic model, a number of synthetic datasets with varying size
(i.e., varying spatial and temporal discretization) are generated by evaluating the response of the physical
model and contaminating this response with random samples drawn from the probabilistic model for a
prescribed set of ground truth values of the parameters. Bayesian inference is then performed for all
models for each dataset, using the nested sampling method described in Section 3.1 to estimate the
posterior distribution and evidence. The resulting point estimates of the parameters of the probabilistic
model are compared to the ground truth, under the assumption that the probabilistic model used to
generate each dataset is known a priori. Additionally, the most likely model corresponding to each dataset
is determined by comparing the estimated evidence under each probabilistic model for different dataset
sizes. The aim of this synthetic case study is twofold:

• To investigate the impact of the size of the dataset, and the functional form of the probabilisticmodel,
on the accuracy of maximum a posteriori (MAP) estimates of the parameters of the probabilstic
model.

• To gain insight into the size of the dataset required to correctly identify the probabilisticmodel from a
pool of candidate models.

The example is structured as follows: The response of the physical model is evaluated for a set of
ground truth parameters for increasing numbers of sensors per span, and considering an equal number of
measurements in time. Denoting the number of sensors per span with Nx and the number of points per
influence line by Nt (with each sensor yielding one influence line for each of the two traffic lanes), the
resulting physical model response is a rectilinear grid with Nx ¼Nt. In this manner, the physical model
response is evaluated for Nx ¼ 1,2,…10f g sensors per span, with each sensor yielding two influence

Table 5. Description and uniform prior distribution bounds of probabilistic model parameters

Parameter Unit Description Lower bound Upper bound

Cv (�) COVof the multiplicative model prediction error 0.0 1.0
σmodel MPa Standard deviation of the additive model prediction error 0.0 5.0
σmeas MPa Standard deviation of the additive measurement error 0.0 1.0
lcorr,t m Temporal correlation lengthscale 0.0 300.0
lcorr,x m Spatial correlation lengthscale 0.0 300.0
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lines, each with Nt ¼ 1,2,…10f g measurements respectively. The sensors are placed such that they are
equally spaced within each span, with the distance between sensors taken as Lspan= Nxþ1ð Þ (Figure 8),
where Lspan denotes the length of the span. The physical model response is then contaminated with noise
samples drawn from the probabilistic models summarized in Table 6. To reduce the impact of the random
sampling of the noise on the synthetic case study results, 50 samples are generated from each probabilistic
model and for each grid size, and the resulting MAP estimates and the evidence for each model are
averaged over the samples. The number of simulations was chosen as a compromise between having a
large enough sample size to minimize the effects of the random sampling in the synthetic dataset, and the
computational cost of performing multiple Bayesian inference realizations for a large number of models
over a range of grid sizes.

6.2. Results

Bayesian inference is performed for themodelsM1 toM6 listed in Table 6. At each grid size, we examine
if the correlation parameters are correctly inferred, when performing inference with the true probabilistic
model used to generate the measurements, by computing the relative error between the known ground
truth for each probabilistic model and the mean MAP point estimate obtained from the Bayesian
inference. The scatter of the MAP estimates for each ground truth model, expressed in terms of the
COVis also computed in order to quantify the impact of the random sampling as a function of the grid size.
The results are shown in Figure 9. A grid size of 10× 10 (corresponding to N ¼ 2 sensors per span) is
sufficient to obtain an accurate point estimate of the multiplicative model prediction uncertainty COV
parameter Cv, the standard deviation of the additive model prediction uncertainty σmodel and the standard
deviation of the measurement uncertainty σmeas (i.e., the relative error is below 0:10). For models with

Table 6. Overview of models used in the case with synthetic measurements

Model Shorthand Temporal correlation Spatial correlation θc

ℳ1 IID-M Independent Independent Cv, σmeas

ℳ2 RBF-M Radial Basis Exponential Cv, σmeas, lcorr,x, lcorr,t
ℳ3 EXP-M Exponential Exponential Cv, σmeas, lcorr,x, lcorr,t
ℳ4 IID-A Independent Independent σmodel

ℳ5 RBF-A Radial basis Exponential σmodel, σmeas, lcorr,x, lcorr,t
ℳ6 EXP-A Exponential Exponential σmodel, σmeas, lcorr,x, lcorr,t

Note. See Table 3 for the meaning of the abbreviations and the details of the correlation function.

Figure 8. Rectilinear grid of sensor and measurement positions considered in the synthetic case study for
Nx ¼Nt ¼ 1,5,10f g.
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multiplicative model prediction uncertainty, both the relative error and the COVof the MAP estimate of
the spatial and temporal correlation length parameters are heavily dependent on the grid size. This is not
the case for models with additive prediction uncertainty, where the relative error is not significantly
affected when increasing the grid resolution beyond 10× 10. This could potentially be explained by
considering that the multiplicative error structure introduces a dependency of the probabilistic model on
the physical model. We speculate that this additional complexity may hinder the estimation of the
posterior distribution of the parameters of multiplicative models, resulting in slower convergence (with

Figure 9. Relative error of the mean MAP estimates of probabilistic model parameters compared to the
ground truth, and COVof MAP estimates as a function of grid size.
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respect to the grid size) of the point estimates of the probabilistic model parameters to the ground truth
values. It is noted that the accuracy of the obtained point estimates for the correlation length parameters is
also expected to depend on their size relative to the distances between points on the measurement grid.
However, this dependence is not further examined in this article.

By calculating the log-evidence for each of the models M1 to M6 we investigate if the correct
probabilistic model is identified from the pool of candidatemodels for each dataset. The log of the average
evidence—based on 50 generated datasets—obtained for each probabilistic model and for each ground
truth model and grid size is shown in Table 7. The correct ground truth model is identified with a single
sensor per span in the case of additivemodel prediction uncertainty. Formultiplicative models, the ground
truth is correctly identified for two to three sensors per span.

Additionally, the posterior probability of the ground truth model pgt, and the identification accuracy
(i.e., the percentage of realizations for which the ground truth model obtains the highest posterior
probability) for increasing refinement of the grid of sensors are also shown in Table 7. The posterior
probabilities are obtained using equation (2), with the evidence for eachmodel taken as the average across
the independent realizations. It is observed that multiplicative models generally require finer discret-
ization and larger datasets, compared to additive models, to achieve similar levels of accuracy. For the
additive models, the ground truth model is recovered with perfect accuracy for three or more sensors per
span, with the exception of the IID-A case. The comparatively low posterior probability of the ground
truth model observed for the IID-A case can be attributed to the fact that all of the considered models are
able to describe uncorrelated additive Gaussian noise.

6.3. Conclusions

Based on the results presented previously it can be seen that, although the estimated evidence for each
model is sensitive to the size of the dataset, the correct probabilistic model used to generate the data can be
identified in all cases, for as few as three sensors per span. Furthermore, it is evident that the correlation
structure and the size of the dataset impact the accuracy of the posterior distributions and point estimates
of the parameters describing the uncertainty. For additive probabilistic models with correlation, the MAP
estimates of the parameters converge faster (i.e., for a smaller number of measurements) to the known
ground truth values, compared to the multiplicative probabilistic models.

7. Analyses on the IJsselbridge case study using real-world measurements

7.1. Analysis considering a single-sensor

An initial analysis is performed considering data from the H4 sensor (see Figure 7), with the aim of
assessing the feasibility of performing system identification while considering dependencies in the model
prediction uncertainties, and to examine the benefit of the additional data compared to a reference case
where only four hand-picked measurements from the largest peaks and troughs of each influence line are
considered. A second analysis with multiple sensors is performed to demonstrate the feasibility of
considering large datasets under combined spatial and temporal dependencies and to determine the
efficiency of the block Cholesky log-likelihood evaluation presented in Section 4.1.

Table 8 provides an overview of the considered models in the real-world case study, including their
labels, correlation structure, dataset size, and parameters. Compared to the synthetic case study, two
“reference” analyses are added, referred to as “REF,” in which we adopt a small dataset with 4 × 2 points.
These analyses represent a typical application of Bayesian system identification for structures, where only
a limited number of manually selected measurements are included in the dataset. In these reference
analyses, we assume that the discrepancies between measurement and model prediction are fully
independent. The four largest (in absolute value) peaks per influence line are chosen to form this dataset,
such that they maximize the amount of information regarding the parameters of interest while being
spaced far enough apart to be considered independent. The assumption of independence is based mainly
on engineering judgment, which is often the case in applications where a limited amount of measurements
makes it infeasible to assess their independence.
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Table 7. Log of the mean evidence, posterior probability of the ground truth model, and identification accuracy per model as a function of the number of
sensors per span for different ground truth models, averaged over 50 randomly generated datasets

N 1 2 3 4 5 6 7 8 9 10

IID-M �66.50 �267.45 �587.77 �1050.10 �1635.36 �2357.95 �3198.63 �4210.59 �5329.55 �6539.73
RBF-M �66.08 �273.26 �594.69 �1057.69 �1644.28 �2365.88 �3207.05 �4220.28 �5340.00 �6550.03
EXP-M �66.44 �272.45 �594.31 �1057.76 �1644.18 �2365.74 �3206.78 �4219.59 �5340.46 �6549.96
IID-A �74.11 �292.36 �634.86 �1156.65 �1758.60 �2602.01 �3562.04 �4604.75 �5903.94 �7294.54
RBF-A �76.82 �294.67 �638.15 �1160.86 �1764.36 �2609.82 �3564.69 �4608.00 �5913.43 �7302.32
EXP-A �76.87 �294.77 �637.77 �1160.42 �1764.56 �2609.67 �3564.56 �4607.45 �5913.02 �7302.19

pgt 0.28 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Acc. 0.62 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

IID-M �72.97 �262.56 �569.84 �1024.87 �1624.73 �2283.02 �3133.34 �4035.82 �5174.47 �6323.96
RBF-M �71.06 �260.07 �547.66 �968.03 �1536.89 �2159.71 �2947.94 �3854.52 �4875.21 �6022.68
EXP-M �71.61 �259.56 �549.72 �970.29 �1542.18 �2162.22 �2956.65 �3864.16 �4886.69 �6027.02
IID-A �80.98 �270.99 �594.33 �1091.26 �1701.98 �2344.76 �3233.32 �4073.89 �5341.58 �6585.27
RBF-A �82.65 �275.41 �598.35 �1080.67 �1673.37 �2303.21 �3182.04 �4018.69 �5187.90 �6314.14
EXP-A �82.50 �275.12 �598.38 �1082.46 �1674.78 �2307.78 �3185.81 �4021.77 �5201.11 �6327.58

pgt 0.58 0.36 0.89 0.91 0.99 0.92 1.00 1.00 1.00 0.99
Acc. 0.44 0.72 0.86 0.92 0.88 0.96 0.96 0.98 1.00 1.00

IID-M �61.64 �266.86 �590.31 �1033.72 �1619.24 �2317.31 �3158.95 �4162.92 �5233.14 �6482.46
RBF-M �59.92 �263.45 �579.58 �999.59 �1550.39 �2227.75 �3030.65 �3944.78 �5015.33 �6114.11
EXP-M �60.67 �262.29 �575.65 �996.73 �1541.55 �2216.66 �3018.81 �3918.58 �4975.22 �6090.35
IID-A �67.82 �296.88 �614.16 �1092.10 �1689.28 �2426.96 �3270.71 �4385.12 �5494.79 �6846.72
RBF-A �70.18 �292.18 �613.42 �1089.07 �1684.85 �2377.04 �3216.52 �4245.98 �5317.11 �6551.88
EXP-A �70.26 �291.23 �613.26 �1088.96 �1684.45 �2378.49 �3214.03 �4250.08 �5321.82 �6551.58

pgt 0.29 0.76 0.98 0.95 1.00 1.00 1.00 1.00 1.00 1.00
Acc. 0.30 0.82 0.98 0.90 0.98 0.98 1.00 1.00 1.00 1.00

IID-M �110.91 �457.77 �1032.15 �1822.18 �2882.95 �4150.56 �5678.20 �7375.49 �9373.51 �11566.59
RBF-M �110.69 �457.87 �1033.20 �1822.45 �2885.07 �4150.93 �5678.80 �7376.49 �9373.58 �11566.89
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Table 7. Continued

N 1 2 3 4 5 6 7 8 9 10

EXP-M �110.84 �457.80 �1033.07 �1822.57 �2885.07 �4150.86 �5678.61 �7376.35 �9373.13 �11566.89
IID-A �108.57 �454.82 �1029.84 �1819.42 �2881.06 �4147.81 �5674.38 �7371.99 �9369.32 �11563.00
RBF-A �110.11 �457.30 �1031.99 �1822.60 �2885.24 �4151.45 �5678.68 �7376.64 �9371.79 �11566.81
EXP-A �109.91 �457.29 �1031.70 �1822.44 �2885.15 �4151.30 �5678.59 �7376.45 �9371.84 �11566.58

pgt 0.56 0.76 0.69 0.80 0.82 0.82 0.93 0.93 0.82 0.89
Acc. 0.80 0.92 0.92 0.94 0.96 0.94 1.00 0.96 1.00 0.98

IID-M �116.12 �449.47 �1004.21 �1773.42 �2680.87 �3635.65 �5189.07 �6853.51 �8621.59 �10818.35
RBF-M �116.25 �449.20 �1003.54 �1727.56 �2590.33 �3540.85 �5144.94 �6612.07 �8247.39 �9938.49
EXP-M �116.22 �449.45 �1003.71 �1743.65 �2621.39 �3569.22 �5165.94 �6711.81 �8354.34 �10122.47
IID-A �113.77 �446.42 �1000.72 �1770.73 �2681.02 �3635.19 �5184.55 �6849.24 �8619.79 �10818.07
RBF-A �102.52 �327.30 �693.87 �1171.40 �1758.91 �2431.99 �3295.85 �4260.14 �5318.40 �6524.88
EXP-A �104.22 �336.12 �709.04 �1197.58 �1795.79 �2490.29 �3375.42 �4337.38 �5441.78 �6677.48

pgt 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Acc. 0.76 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

IID-M �114.34 �442.17 �996.64 �1777.73 �2726.68 �3959.78 �5384.25 �7211.06 �9076.12 �11267.86
RBF-M �114.40 �442.10 �996.48 �1775.52 �2707.97 �3911.51 �5211.81 �7000.00 �8721.13 �10778.94
EXP-M �114.48 �441.95 �996.60 �1775.57 �2715.95 �3918.94 �5241.51 �7056.89 �8805.41 �10875.05
IID-A �111.73 �439.29 �993.23 �1774.09 �2723.19 �3956.71 �5381.91 �7207.27 �9076.46 �11280.75
RBF-A �110.85 �393.23 �837.71 �1432.90 �2120.02 �3013.09 �4039.86 �5175.60 �6460.53 �7814.57
EXP-A �110.56 �389.56 �814.55 �1383.96 �2068.01 �2906.41 �3836.56 �4944.19 �6174.49 �7484.61
pgt 0.47 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Acc. 0.54 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note. Underscores denote the ground truth model used to generate the data and bold type denotes the highest evidence.
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Inference is performed using the nested sampling technique, yielding an estimate of the posterior
distribution and evidence for each of the models M1�M8. The IID-M, REF-M, IID-A, and REF-A
models consider complete independence in themodel prediction uncertainty, whilemodels RBF-M, EXP-
M, RBF-A, and EXP-A assume dependencies modeled by exponential and radial basis kernel functions.
The uniform prior distributions assumed for the physicalmodel parameters and uncertainty parameters are
listed in Tables 4 and 5, respectively. It is noted that in models IID-M and IID-A, complete independence
is assumed for the model prediction uncertainty, despite the dense spacing of the measurements. It is
therefore expected that the uncertainty in the posterior distributions will be significantly underestimated if
dependencies are present in the model prediction error. The posterior distributions obtained by this model
are included for the purpose of comparing the inferred means of the parameters with other models that
assume dependence, as well as illustrating the effect of increasing the number of points under the
independence assumption on the posterior distributions.

Figures 10 and 11 show the posterior distribution of highest density (HD) credible intervals (CIs) for
models with multiplicative model prediction uncertainty and additive model prediction uncertainty.
Comparing the reference models M4 and M8 with the other models, we observe that for the additive
probabilistic model, the posterior CIs of the physical model parameters are wider, indicating that the
additional information contained in the full dataset of 193× 2 data points can result in reduced uncertainty
in the posterior distributions of the parameters of interest. This can also be observed for parameters
log10 Kr,1ð Þ and log10 Kr,4ð Þ in the case of multiplicative model prediction uncertainty. Furthermore, for
the RBF-M and EXP-M models higher point estimates are obtained for Cv compared to both the IID-M
and REF-Mmodels, indicating that including correlation parameters in the vector of uncertain parameters
to be inferred can affect the inference of other parameters of interest, or that it requires an increase in the
size of the dataset to obtain accurate estimates and low uncertainty in the posterior distribution of
parameters of the probabilistic model.

The number of parameters considered in the Bayesian inference, and the probabilistic model of the
data-generating process used to obtain the likelihood function can have a significant impact on the number
of likelihood function evaluations required to achieve convergence when performing Bayesian inference
using nested sampling. The total number of function evaluations (NFE) per model is shown in the second
column of Table 9. A range of approximately 29 �103 to 109 �103 likelihood evaluations are needed to
achieve convergence depending on the model. The models where correlation is considered generally
require a larger number of likelihood evaluations compared to models where the model prediction errors
are taken as independent. Although no clear conclusions arise in this case regarding the impact of the
number of parameters, correlation structure, and dataset size on the NFE, it is found that the reference
cases, and the cases where independence is assumed, generally require considerably fewer likelihood
function evaluations compared to models where correlation is considered.

Table 8. Overview of models used in the case with real-world measurements

Model Shorthand Temporal correlation Dataset sizea θc

ℳ1 IID-M Independent 193 × 2 Cv, σmeas

ℳ2 RBF-M Radial basis 193 × 2 Cv, σmeas, lcorr,t
ℳ3 EXP-M Exponential 193 × 2 Cv, σmeas, lcorr,t
ℳ4 REF-M Independent 4 × 2 Cv, σmeas

ℳ5 IID-A Independent 193 × 2 σmodel

ℳ6 RBF-A Radial basis 193 × 2 σmodel, σmeas, lcorr,t
ℳ7 EXP-A Exponential 193 × 2 σmodel, σmeas, lcorr,t
ℳ8 REF-A Independent 4 × 2 σmodel

Note. See Table 3 for the meaning of the abbreviations and the details of the correlation function.
aThe factor 2 in the dataset size is included to indicate that each sensor yields two influence lines, one for each controlled loading test as discussed in
Section 5.3.
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Nested sampling also yields a noisy estimate of the evidence, which can be used to determine the most
likely modelMi within the candidate pool of models. Based on these estimated evidences, the posterior
probability of each model inM is calculated using equation (2). All models inM are considered a priori
equally likely. Table 9 provides the log-evidence, posterior probability, and interpretation of the Bayes
factor per model. It is noted that the reference modelsM4 andM8 are not included in the model selection
due to the different dataset used with these models, and therefore no evidence, posterior probabilities, or
Bayes factors are obtained. It is possible to observe that the assumption of complete independence in the

Figure 10. Comparison of posterior mean and 90% HD CIs for models with multiplicative uncertainty
structure.

Figure 11. Comparison of posterior mean and 90% HD CIs for models with additive uncertainty
structure.
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model prediction uncertainty is not supported by the evidence, which is reflected in the low values of the
log evidence for the IID-M and IID-A models. The additive model with exponentially correlated model
prediction uncertainty (EXP-A) is themost likelymodel, with practically 100% posterior probability. This
indicates that the data decisively supports the inclusion of correlation. It should be emphasized that the
posterior probability only reflects the likelihood of a model compared to other models in the candidate
pool, and cannot be used to draw conclusions on the validity of a model in general.

As mentioned in Section 5.6, the choice of prior distributions for the probabilistic model parameters
can have a significant impact on the posterior and posterior predictive distributions. It was observed that
the models with exponential correlation for the case of a single sensor are particularly sensitive to prior
distribution of the correlation length parameter, due to the joint unidentifiability of the marginal variance
and the correlation length parameters (Fuglstad et al., 2018). The corresponding joint posterior distribu-
tions for the EXP-M and EXP-A models are shown in Figure 12. It can be seen that specifying a large
upper bound on the prior of the correlation length will result in wide credible intervals in the posteriors of
the corresponding σmodel and Cv parameters. This effect is less pronounced in the case of multiple sensors
presented in Section 7.2 and furthermore does not affect the RBF kernel in either the single or multiple
sensor case.

7.2. Analysis considering multiple sensors

In order to evaluate the feasibility of the approach under combined spatial and temporal dependencies,
Bayesian inference is performed considering influence lines from multiple sensors. For the reference
models REF-M and REF-A, four measurements are selected per influence line, with each sensor yielding
two influence lines. Specifically, one peak stress measurement per span is selected from the four spans
with the largest absolute peak stresses. For the remainingmodels, 193measurements per influence line are
considered from locations along each influence line corresponding to the longitudinal positions of nodes
in the FE model. The dataset includes influence lines for truck trial runs on the left and right lanes for
sensors H1, H2, H4, H5, H9, and H10. The remaining sensor data exhibits structural behavior that cannot
be captured by the twin-girder FE model presented in Section 5.2 and is therefore discarded.

Table 10 provides an overview of the considered models in the analyses using data from multiple
sensors. In Section 7.1, with data coming from one sensor we only dealt with temporal correlation. Here,
both spatial and temporal correlation is present in the model prediction error. For all models in M the
temporal correlation is described by an exponential kernel function. The spatial correlation is only
considered in the modelsM2,M3,M6, andM7, also using an exponential kernel function. In the other
models, spatial correlation is not taken into account, with each strain gauge along the length of the bridge
considered fully independent. By comparing the posterior model probabilities for models with and
without spatial correlation, we can evaluate the validity of the spatial correlation assumption, and
determine which description of the model prediction uncertainties is best supported by the data.

Table 9. NFE required for convergence rounded to the nearest thousandth, log-evidence, posterior
probability, and Bayes factors per model

Model Shorthand NFE (�1000) log(Z) p(ℳ) Evidence against

ℳ1 IID-M 64 �358.28 0.00 Decisive
ℳ2 RBF-M 93 �58.06 0.00 Decisive
ℳ3 EXP-M 76 �126.95 0.00 Decisive
ℳ4 REF-M 51 — — —

ℳ5 IID-A 41 �381.15 0.00 Decisive
ℳ6 RBF-A 109 322.22 0.00 Decisive
ℳ7 EXP-A 92 349.55 1.00 Barely worth mentioning
ℳ8 REF-A 29 — — —

Note. All models included in the model selection are assumed a priori equally likely.
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The assumption of exponentially correlated model prediction uncertainty in space provides a compu-
tational advantage, compared to other kernel functions. Due to poor scaling of the computational
complexity of the multivariate Gaussian log-likelihood with the size of the dataset, the use of a
conventional approach to evaluate the log-likelihood (e.g., by factorizing the full covariance matrix)
would result in significant computational cost even for datasets with a few thousand observations when
correlation is taken into account. To alleviate this issue, the efficient log-likelihood evaluation approaches
described in Section 4 are utilized for models RBF-M, EXP-M, RBF-A, and EXP-A. For models IID-M
and IID-A, efficient log-likelihood evaluation is trivially obtained due to the diagonal structure of the
covariance matrix.

The posterior distribution credible intervals (CIs) for the multiplicative and additive uncertainty
models are shown in Figures 13 and 14, respectively. For the models with additive model prediction
uncertainty, it is observed that the reference case REF-A generally results in wider CIs for the inferred
parameters, which is expected given the smaller dataset used in this case. Conversely, IID-A typically
yields narrower CIs for the physical model parameters. Under a multiplicative model prediction
uncertainty, the reference model REF-M yields the lowest point estimate for the COV parameter Cv.
Given that only a few hand-selected peaks are considered for the reference models, it is likely that the
model prediction uncertainty is underestimated for the REF-M model due to the omission of measure-
ments across the entire length of the bridge, and particularly at locations near the supports where the

Figure 12. Joint unidentifiability of the correlation length and model prediction uncertainty parameters
for the exponential kernel considering additive (left) and multiplicative (right) model prediction uncer-

tainty.

Table 10. Overview of models used in the case with real-world measurements using multiple sensors

Model Shorthand Temporal correlation Spatial correlation Dataset sizea θc

ℳ1 IID-M Independent Independent 193 × 12 Cv, σmeas

ℳ2 RBF-M Radial basis Exponential 193 × 12 Cv, σmeas, lcorr,t, lcorr,x
ℳ3 EXP-M Exponential Exponential 193 × 12 Cv, σmeas, lcorr,t, lcorr,x
ℳ4 REF-M Independent Independent 4 × 12 Cv, σmeas

ℳ5 IID-A Independent Independent 193 × 12 σmodel

ℳ6 RBF-A Radial basis Exponential 193 × 12 σmodel, σmeas, lcorr,t, lcorr,x
ℳ7 EXP-A Exponential Exponential 193 × 12 σmodel, σmeas, lcorr,t, lcorr,x
ℳ8 REF-A Independent Independent 4 × 12 σmodel

Note. See Table 3 for the meaning of the abbreviations and the details of the correlation function.
aThe factor 12 in the dataset size is included to indicate that each of the six sensors yields two influence lines, one for each controlled loading test as
discussed in Section 5.3.
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predicted stress is close to zero. This conclusion is supported by observing that IID-M, while having the
same probabilistic model as REF-M and a larger dataset, yields a higher point estimate forCv. Despite the
lower Cv, the REF-M model results in wider CIs for the physical model parameters.

The estimated log evidence for each coupled probabilistic-physical model is provided in Table 11. The
highest log-evidences are obtained for the models with correlation and additive model prediction
uncertainty, RBF-A and EXP-A, while models with multiplicative model prediction uncertainty result
in lower evidence, indicating that the mechanisms that contribute to the error between measurements and

Figure 13. Comparison of posterior mean and 90% highest density credible intervals for models with
multiplicative uncertainty structure.

Figure 14. Comparison of posterior mean and 90% highest density credible intervals for models with
additive uncertainty structure.
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physical model predictions are closer to being additive in nature for this specific case study. It can also be
seen that models where correlation is not considered result in significantly lower evidence. The impact of
the probabilistic model and number of parameters on the number of likelihood function evaluations
required for convergence is also more pronounced in this case. As shown in the second column of
Table 11, the EXP and RBFmodels require approximately two to four times more function evaluations as
the corresponding IID models. This highlights the necessity of utilizing an efficient log-likelihood
evaluation method in order to reduce the computational cost to a level that makes this approach feasible
in practice. It is also emphasized that the applicability of the proposed approach is limited to cases where a
computationally cheap physical model or an efficient surrogate model is available.

The degree to which the size of the dataset and the assumptions on the probabilistic model affect the
quality of the prediction are reflected in the posterior predictive distribution. For each model, 2000
samples are drawn from the posterior predictive distribution of the stress influence line. The median and

Table 11. NFE required for convergence rounded to the nearest thousandth, log-evidence, posterior
probability, and Bayes factors per model

Model Shorthand NFE (�1000Þ log(Z) p(ℳ) Evidence against

ℳ1 IID-M 78 �2312.29 0.00 Decisive
ℳ2 RBF-M 193 �94.12 0.00 Decisive
ℳ3 EXP-M 140 �440.28 0.00 Decisive
ℳ4 REF-M 64 — — —

ℳ5 IID-A 48 �3400.96 0.00 Decisive
ℳ6 RBF-A 204 1693.24 1.00 Barely worth mentioning
ℳ7 EXP-A 196 1058.73 0.00 Decisive
ℳ8 REF-A 30 — — —

Note. All models included in the model selection are assumed a priori equally likely.

Figure 15. Comparison of median and 90% credible intervals of the posterior predictive stress
distribution per model and sensor at the location of peak stress for a truck on the right lane. The red

dashed lines denote the measurements.
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90% CIs at the location of peak stress for each influence line are plotted in Figure 15, considering a truck
load on the right lane. Significant variations in thewidths of the posterior predictive CIs are observed, with
the multiplicative models yielding wider CIs compared to the additive models. This may be attributed to
the sensitivity of the posterior predictive distributions of themultiplicativemodels to the uncertainty of the
COV parameter Cv. Small uncertainties on the posterior of Cv can lead to wide predictive credible
intervals at locations where the model response has a large magnitude, such as the peak stress locations
shown in Figure 15. Additionally, it is likely that the multiplicative model may not be an appropriate
description of the measured data for the considered case, leading to wide posterior distributions ofCv, and
consequently wide posterior predictive distributions. This provides additional motivation for performing
the model selection procedure described in this study. Furthermore, considering the full dataset and
complete independence is shown to result in lower uncertainty in the posterior predictive compared to
models where dependence is taken into account for multiplicative models. This is not the case for additive
models where no significant differences in the posterior predictive CIs are observed. These results,
combined with the calculated evidence and posterior probabilities per model shown in Table 11 indicate
that the assumption of complete independence in the model prediction error can result in overconfident
posterior and posterior predictive distributions for certain models.

8. Conclusions

An approach is proposed to carry out Bayesian system identification of structures when spatial and
temporal correlations are present in the model prediction error, and large datasets (in the order of 102 to
104 measurements) are available. To address the issue of the computationally expensive likelihood
function, which becomes a bottleneck for large datasets, an approach based on the properties of the
exponential kernel function is proposed. It is applicable to both additive and multiplicative model
prediction error. Moreover, nested sampling is utilized to compute the evidence under each model and
apply Bayesian model selection. The nested sampling method has been shown to be effective for high-
dimensional and multi-modal posteriors, indicating that the approach presented in this work is applicable
to problems with large numbers of uncertain parameters. Investigating the impact of the physical model
parameters on Bayesian inference and model selection could be an interesting avenue for future research.

We conducted a case study using both synthetic and real-world measurements to evaluate the
feasibility of performing Bayesian system identification for structures with large datasets. Our proposed
approach considers spatial and temporal correlation in the model prediction error. The synthetic example
aims to investigate the impact of the dataset size and the assumed structure of the correlation on the
inference of the parameters of the probabilistic model, as well as the feasibility of inferring the true
probabilistic model from a pool of candidate models, particularly when the number of measurements
available is limited. In this example, Bayesian inference and model selection are performed for a set of
coupled probabilistic-physical models while refining the spatial and temporal resolution of a dataset. The
size of the dataset ranges from 25 to 2500 measurements. It is demonstrated that the most likely
probabilistic model (which in this case is the a priori known model used to generate the data) can be
identified from a pool of candidate models using datasets with as few as 25measurements. The size of the
dataset is found to have an impact on both the identification of the correct probabilistic model and the
accuracy of the point estimates obtained for the uncertain probabilistic model parameters, with larger
datasets leading to higher accuracy in both tasks. The structure (e.g., multiplicative or additive) and kernel
function considered in the probabilistic model are also found to have a significant influence on the
accuracy of the obtained point estimates, particularly for the correlation length parameters. Whereas a
relative error below 10% is achieved in the MAP estimates of the probabilistic model parameters of
additive models for grids with as few as 10× 10measurements, grid sizes of 50 × 50 or larger are required
to obtain similar accuracy with multiplicative models.

Through the IJsselbridge case study, it is demonstrated how Bayesian system identification can be
feasibly performed when spatial and temporal dependence might be present. Datasets with up to
approximately 2300 measurements are used to infer the uncertain parameters of the coupled physical-
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probabilistic models, and Bayesian model selection is applied to determine the most probable model
within a pool of candidate models. In addition to updating the physical model and quantifying the
uncertainty in the physical model parameters, this approach makes it possible to infer the correlation
structure and obtain an improved description of the measurement and model prediction errors. Through
the study of the posterior predictive credible intervals and the corresponding model posterior probabil-
ities, both the single and multiple sensor use cases highlight the importance of considering dependencies
in the probabilistic model formulation, and demonstrate the benefits of performing Bayesian model
selection to determine the posterior probability of different probabilistic models. It is found that the use of
a few selected peaks under the i.i.d. assumption for the model prediction error in Bayesian inference can
lead to insufficient data and inability to infer all of the parameters of interest, therefore limiting the number
and type of parameters that can be identified. Using the full dataset under the assumption of dependence
allows for additional parameters to be inferred. In both real-world examples, the estimated Bayes factors
and posterior probabilities overwhelmingly favor additive error models where correlation is considered,
with the EXP-A and RBF-A models obtaining practically 100% posterior probability for the single and
multiple sensor cases respectively.

The proposed approach is based on a multiplicative or additive physical model error. These errors are
assumed to follow a Gaussian distribution which determines the likelihood of our model. However, this
assumption may not always be realistic in real-world applications. We are currently working on making
our model more flexible to better accommodate real-world scenarios.
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Appendix A. Sensitivity analysis
For log10 Krð Þwe assume that any stiffness value from zero (practically pinned support) to infinity (fixed support) is equally likely.
In practice, the stiffness must be finite and therefore a high value is specified as an upper limit instead. This value is determined by
calculating the peak stress predicted at each sensor location as a function of log10 Krð Þ. The upper bound of the support for the prior
distribution is chosen as the point where any further increase has a negligible effect on the calculated influence line. The prior of
log10 Kvð Þ is determined in a similar manner. All values between zero (practically uncoupled main girders) and infinity (fully
coupled main girders) are considered equally likely, and the difference in peak stress for a truck load applied to the left and right lane
is calculated. The analyses described previously are performed for the sensors H1, H5, and H10, which are the closest to each of the
first three midspans (see Figure 6). The results for log10 Kr,4ð Þ and log10 Kvð Þ are shown in Figure A1.

Appendix B. Measurements
Measurements are obtained by 34 sensors connected by a total of 9 fiber optic lines to an interrogator sampling at a frequency of 50:0
Hz. A total of six tests were performed with trucks driving over the left or right lane at a constant speed, with the truck transverse
position roughly corresponding to that of the right or left girder depending on the test. Both the transverse position and speed were
manually controlled. Different load tests with various truck speeds were performed. A summary of these tests is provided in
Table B1. In this article, we only consider the low-speed tests (i.e., 20 km/h) to measure the structural response under approximately
static loading conditions. The axle distance and load per axle of the truck used to perform the controlled loading tests are provided in
Table B2.

The truck center of mass is calculated by assuming that the front axle take 12% of the total load, with the remaining axles taking
22% of the load. The center of mass is calculated as:

xCM ¼
P

wi � xiP
wi

: (B.1)

During processing of the measurement data, it was found that the truck speed deviated from the assumed 20 km/h and this deviation
should be accounted for in the processing. To implement the correction it was assumed that the influence line peak for each sensor
occurs when the truck center of mass coincides with the sensor longitudinal position. The time difference Δt between the peaks of

Figure A1. Peak stress response at selected sensors as a function of log10 Krð Þ (left) and log10 Kvð Þ
(right).
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Table B1. Controlled loading test parameters

Time start (CET) Lane Speed (km/h)

21:56:55 Right 20
22:05:55 Left 20
22:21:30 Left 80
22:29:12 Left 80
22:41:25 Right 80
22:49:15 Right 80

Table B2. Properties of truck used in controlled load tests

Axle no. Axle distance (m) Load per axle (kN)

1 2.06 59.35
2 1.83 108.82
3 1.82 108.82
4 1.82 108.82
5 — 108.82

Figure B1. Load position at influence line start (top), peak (middle), and end (bottom).
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sensors H1 and H10 was measured. The distance Δx between the two sensor positions was then divided by Δt to obtain the truck
velocity for the left and right lanes equal to vl ¼ 21:18 km/h and vr ¼ 21:66 km/h respectively. The influence lines are obtained by
applying a timewindow to the strain time series. Thewindow start and end times correspond to the first track axle entering the bridge
and the last truck axle leaving the bridge respectively, as shown in Figure B1. The time corresponding to the start and end position
can be determined using the known distances Δx1 and Δx2 and the truck speed calculated previously. A�0:1 s shift was applied to
the right lane measurements to minimize the discrepancies between the measured and predicted stress influence lines.
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