
 
 

Delft University of Technology

Fast generalized Nash equilibrium seeking under partial-decision information

Bianchi, Mattia; Belgioioso, Giuseppe; Grammatico, Sergio

DOI
10.1016/j.automatica.2021.110080
Publication date
2022
Document Version
Final published version
Published in
Automatica

Citation (APA)
Bianchi, M., Belgioioso, G., & Grammatico, S. (2022). Fast generalized Nash equilibrium seeking under
partial-decision information. Automatica, 136, Article 110080.
https://doi.org/10.1016/j.automatica.2021.110080

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.automatica.2021.110080
https://doi.org/10.1016/j.automatica.2021.110080


Automatica 136 (2022) 110080

M
a

b

i
t
t
c
t
m
c
m
a
t
i
e

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Fast generalized Nash equilibrium seeking under partial-decision
information✩

attia Bianchi a,∗, Giuseppe Belgioioso b, Sergio Grammatico a

Delft Center for Systems and Control, Delft University of Technology, The Netherlands
Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland

a r t i c l e i n f o

Article history:
Received 25 October 2020
Received in revised form 11 June 2021
Accepted 20 October 2021
Available online xxxx

Keywords:
Nash equilibrium seeking
Proximal-point method
Distributed algorithms
Multi-agent systems

a b s t r a c t

We address the generalized Nash equilibrium seeking problem in a partial-decision information
scenario, where each agent can only exchange information with some neighbors, although its cost
function possibly depends on the strategies of all agents. The few existing methods build on projected
pseudo-gradient dynamics, and require either double-layer iterations or conservative conditions on
the step sizes. To overcome both these flaws and improve efficiency, we design the first fully-
distributed single-layer algorithms based on proximal best-response. Our schemes are fixed-step
and allow for inexact updates, which is crucial for reducing the computational complexity. Under
standard assumptions on the game primitives, we establish convergence to a variational equilibrium
(with linear rate for games without coupling constraints) by recasting our algorithms as proximal-
point methods, opportunely preconditioned to distribute the computation among the agents. Since
our analysis hinges on a restricted monotonicity property, we also provide new general results that
significantly extend the domain of applicability of proximal-point methods. Besides, our operator-
theoretic approach favors the implementation of provably correct acceleration schemes that can further
improve the convergence speed. Finally, the potential of our algorithms is demonstrated numerically,
revealing much faster convergence with respect to projected pseudo-gradient methods and validating
our theoretical findings.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Generalized games model the interaction between self-
nterested decision makers, or agents, that aim at optimizing
heir individual, yet inter-dependent, objective functions, subject
o shared constraints. This competitive scenario has received in-
reasing attention with the spreading of networked systems, due
o the numerous engineering applications, including demand-side
anagement in the smart grid (Saad, Han, Poor, & Basar, 2012),
harging/discharging of electric vehicles (Grammatico, 2017), de-
and response in competitive markets (Li, Chen, & Dahleh, 2015),
nd radio communication (Facchinei & Pang, 2009). From a game-
heoretic perspective, the challenge is to assign the agents behav-
oral rules that eventually ensure the attainment of a satisfactory
quilibrium.
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A recent part of the literature focuses in fact on designing
distributed algorithms to seek a generalized Nash equilibrium
(GNE), a decision set from which no agent has interest to uni-
laterally deviate (Belgioioso & Grammatico, 2018; Chen, Ming, &
Hong, 2021; Facchinei & Kanzow, 2010; Yi & Pavel, 2019; Yu, van
der Schaar, & Sayed, 2017). In these works, the computational
effort is partitioned among the agents, but assuming that each
of them has access to the decision of all the competitors (or to
an aggregation value, in the case of aggregative games). Such
a hypothesis, referred to as full-decision information, generally
requires the presence of a central coordinator that communicates
with all the agents, which is impractical in some cases (Frihauf,
Krstic, & Basar, 2012; Swenson, Kar, & Xavier, 2015). One exam-
ple is the Nash–Cournot competition model described in Koshal,
Nedić, and Shanbhag (2016), where the profit of each of a group
of firms depends not only on its own production, but also on the
total supply, a quantity not directly accessible by any of the firms.
Instead, in this paper we consider the so-called partial-decision
information scenario, where each agent estimates the actions of
all the competitors by relying only on the information exchanged
with some neighbors over a communication network. Thus, the
goal is to design fully-distributed (namely, center-free) algorithms,
based exclusively on peer-to-peer communication.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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The partial-decision information setup has only been intro-
duced very recently. Most results consider non-generalized games
(i.e., games without shared constraints) (Koshal et al., 2016;
Salehisadaghiani & Pavel, 2016; Salehisadaghiani, Shi, & Pavel,
2019; Tatarenko, Shi, & Nedić, 2020). Even fewer algorithms can
cope with the presence of coupling constraints (Belgioioso, Nedić,
& Grammatico, 2021; Gadjov & Pavel, 2021; Pavel, 2020), despite
this extension arises naturally in most resource allocation prob-
lems (Facchinei & Kanzow, 2010, §2), e.g., due to shared capacity
limitations. All the cited formulations resort to (projected) gradi-
ent and consensus-type dynamics, and are single-layer (i.e., they
require a fixed finite number of communications per iteration).
The main drawback is that, due to the partial-decision infor-
mation assumption, theoretical guarantees are obtained only for
small (or vanishing) step sizes, which significantly affect the
speed of convergence. The only alternative available in literature
consists of double-layer algorithms (Lei & Shanbhag, 2018; Parise,
Gentile, & Lygeros, 2020), where the agents must communicate
multiple (virtually infinite) times to reach consensus, before each
update. An extensive communication requirement is however a
performance bottleneck, as the communication time can over-
whelm the time spent on local useful processing — in fact, this
is a common problem in parallel computing (Ivkin et al., 2019).
Let alone the time lost in the transmission, sending large volumes
of data on wireless networks results in a dramatically increased
energetic cost.

Contributions: To improve speed and efficiency, we design
the first fully-distributed single-layer GNE seeking algorithms
based on proximal best-response. For the sake of generality and
mathematical elegance, we take here an operator-theoretic ap-
proach (Belgioioso & Grammatico, 2017; Yi & Pavel, 2019), and
reformulate the GNE problem as that of finding a zero of a mono-
tone operator. The advantage is that several fixed-point iterations
are known to solve monotone inclusions (Bauschke & Combettes,
2017, §26), thus providing a unifying framework to design algo-
rithms and study their convergence. For instance, the methods
in Belgioioso et al. (2021), Gadjov and Pavel (2021) and Pavel
(2020), were developed based on the (preconditioned) forward–
backward (FB) splitting (Bauschke & Combettes, 2017, §26.5). To
enhance the convergence speed, we instead employ a proximal-
point algorithm (PPA) (Bauschke & Combettes, 2017, Th. 28.1),
which typically can tolerate much larger step sizes. Nonetheless,
the design of distributed GNE seeking PPAs was elusive until
now, because a direct implementation results in double-layer
algorithms (Scutari, Facchinei, Pang, & Palomar, 2014; Yi & Pavel,
2019). The novelties of this work are summarized as follows:
• We propose the first PPA to compute a zero of a restricted

monotone operator, which significantly generalizes classical
results for maximally monotone operators. Differently from
other recent extensions (El Farouq, 2001; Moudafi, 2020), we
also allow for set-valued resolvents and inexact updates, and
we do not assume pseudomonotonicity or hypomonotonicity.
This is a fundamental result of independent interest, which we
exploit to prove convergence of our algorithms (Section 4.2);
• We introduce a novel primal–dual proximal best-response GNE

seeking algorithm, which is the first non-gradient-based
scheme for the partial-decision information setup. We derive
our method as a PPA, where we design a novel preconditioning
matrix to distribute the computation and obtain a single-layer
iteration. Under strong monotonicity and Lipschitz continuity
of the game mapping, we prove global convergence with fixed
step sizes, by exploiting restricted monotonicity properties.
Convergence is retained even if the proximal best-response is
computed inexactly (with summable errors), which is crucial
for practical implementation. Differently from Pavel (2020,

Alg. 1), the step sizes can be chosen independently of a certain

2

restricted strong monotonicity constant. In turn, not only we
allow for much larger steps, but parametric dependence is also
improved: for instance, the bounds do not vanish when the
number of agents grows, and the resulting convergence rate
for non-generalized games is superior. Moreover our scheme
requires only one communication per iteration, instead of two
(Section 4.3, Section 5.1);
• We apply some acceleration schemes (Iutzeler & Hendrickx,

2019) to our preconditioned PPA (PPPA) and provide new the-
oretical convergence guarantees. We observe numerically that
the iterations needed to converge can be halved (Section 5);
• We tailor our method to efficiently solve aggregative games,

by letting each agent keep and exchange an estimate of the
aggregative value only, instead of an estimate of all the other
agents’ actions (Section 6);
• Via numerical simulations, we show that our PPPAs signifi-

cantly outperform the pseudo-gradient methods in Gadjov and
Pavel (2019) and Pavel (2020) (the only other known fully-
distributed, single-layer, fixed-step GNE seeking schemes), not
only in terms of number of iterations needed to converge
(hence with a considerable reduction of the communication
burden), but also in terms of total computational cost (despite
each agent must locally solve a strongly convex optimization
problem, rather than a projection, at each step) (Section 7).

Some preliminary results of this paper appeared in Bianchi,
Belgioioso, and Grammatico (2020), where we study only one
special case for games without coupling constraints and with ex-
act computation of the resolvent (and where we do not consider
aggregative games or acceleration schemes), see Section 5.1.

Basic notation: N is the set of natural numbers, including 0. R
(R≥0) is the set of (nonnegative) real numbers. 0q ∈ Rq (1q ∈ Rq)
is a vector with all elements equal to 0 (1); Iq ∈ Rq×q is an
identity matrix; the subscripts may be omitted when there is
no ambiguity. For a matrix A ∈ Rp×q, [A]i,j is the element on
row i and column j; null(A) := {x ∈ Rq

| Ax = 0n} and
range(A) := {v ∈ Rp

| v = Ax, x ∈ Rq
}; ∥A∥∞ is the maximum of

the absolute row sums of A. If A = A⊤ ∈ Rq×q, λmin(A) =: λ1(A) ≤
· · · ≤ λq(A) =: λmax(A) denote its eigenvalues. diag(A1, . . . , AN ) is
the block diagonal matrix with A1, . . . , AN on its diagonal. Given
N vectors x1, . . . , xN , col(x1, . . . , xN ) := [x⊤1 . . . x

⊤

N ]
⊤. ⊗ denotes

the Kronecker product. ℓ1 is the set of absolutely summable
sequences.

Euclidean spaces: Given a positive definite matrix Rq×q
∋ P ≻

0, HP := (Rq, ⟨· | ·⟩P ) is the Euclidean space obtained by
endowing Rq with the P-weighted inner product ⟨x | y⟩P = x⊤Py,
and ∥ · ∥P is the associated norm; we omit the subscripts if P = I .
Unless otherwise stated, we always assume to work in H = HI .

Operator-theoretic background: A set-valued operator F : Rq ⇒
q is characterized by its graph gra(F) := {(x, u) | u ∈ F(x)}.
om(F) := {x ∈ Rq

|F(x) ̸= ∅}, fix (F) := {x ∈ Rq
| x ∈ F(x)} and

er (F) := {x ∈ Rq
| 0 ∈ F(x)} are the domain, set of fixed points

nd set of zeros, respectively. F−1 denotes the inverse operator
f F , defined as gra(F−1) = {(u, x) | (x, u) ∈ gra(F)}. F is (µ-
trongly) monotone in HP if ⟨u − v | x − y⟩P ≥ 0 (≥ µ∥x − y∥2P )
or all (x, u), (y, v) ∈ gra(F); we omit the indication ‘‘in HP ’’
henever P = I . Id is the identity operator. JF := (Id + F)−1
enotes the resolvent operator of F . For a function ψ : Rq

→

∪ {∞}, dom(ψ) := {x ∈ Rq
| ψ(x) < ∞}; its subdifferential

perator is ∂ψ : dom(ψ) ⇒ Rq
: x ↦→ {v ∈ Rq

| ψ(z) ≥
(x) + ⟨v | z − x⟩,∀z ∈ dom(ψ)}; if ψ is differentiable and
onvex, ∂ψ = ∇ψ . For a set S ⊆ Rq, ιS : Rq

→ {0,∞} is
he indicator function, i.e., ιS(x) = 0 if x ∈ S, ∞ otherwise;
S : S ⇒ Rq

: x ↦→ {v ∈ Rq
| supz∈S ⟨v | z − x⟩ ≤ 0} is the

ormal cone operator of S. If S is closed and convex, then ∂ιS = NS
nd (Id+N )−1 = proj is the Euclidean projection onto S. Given
S S
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: S → Rq, the variational inequality VI(F, S) is the problem

f finding x∗ ∈ S such that ⟨F(x∗) | x − x∗⟩ ≥ 0, for all x ∈ S
(or, equivalently, x∗ such that 0 ∈ F(x∗)+NS(x∗)). We denote the
solution set of VI(F, S) by SOL(F, S).

2. Mathematical setup

We consider a set of agents, I := {1, . . . ,N}, where each agent
i ∈ I shall choose its decision variable (i.e., strategy) xi from its
local decision set Ωi ⊆ Rni . Let x := col((xi)i∈I) ∈ Ω denote the
stacked vector of all the agents’ decisions, Ω := Ω1× . . .×ΩN ⊆

Rn the overall action space and n :=
∑N

i=1 ni. The goal of each
agent i ∈ I is to minimize its objective function Ji(xi, x−i), which
depends on both the local variable xi and on the decision variables
of the other agents x−i := col((xj)j∈I\{i}). Furthermore, the feasible
decisions of each agent depends on the action of the other agents
via coupling constraints, which we assume affine: most of the
literature focuses on this case (Belgioioso et al., 2021; Parise et al.,
2020), which in fact accounts for the vast majority of practical
applications (Facchinei & Kanzow, 2010, §3.2). Specifically, the
overall feasible set is X := Ω ∩ {x ∈ Rn

| Ax ≤ b}, where A :=
[A1, . . . , AN ] and b :=

∑N
i=1 bi, Ai ∈ Rm×ni and bi ∈ Rm

being local data of agent i. The game is then represented by the
inter-dependent optimization problems:

∀i ∈ I : minimize
yi∈Rni

Ji(yi, x−i) s.t. (yi, x−i) ∈ X . (1)

The technical problem we consider here is the computation of a
GNE, namely a set of decisions that simultaneously solve all the
optimization problems in (1).

Definition 1. A collective strategy x∗ = col
(
(x∗i )i∈I

)
is a general-

ized Nash equilibrium if Ji(x∗i , x
∗

−i) ≤ inf
{
Ji(yi, x∗−i) | (yi, x

∗

−i) ∈ X
}

for all i ∈ I. □

Next, we postulate some common regularity and convexity
assumptions for the constraint sets and cost functions, as in,
e.g., Koshal et al. (2016, Asm. 1) and Pavel (2020, Asm. 1).

Standing Assumption 1. For each i ∈ I, the set Ωi is closed and
convex; X is non-empty and satisfies Slater’s constraint qualifi-
cation; Ji is continuous and Ji(·, x−i) is convex and continuously
differentiable for every x−i. □

As per standard practice (Parise et al., 2020; Yi & Pavel,
2019), among all the possible GNEs, we focus on the subclass of
variational GNEs (v-GNEs) (Facchinei & Kanzow, 2010, Def. 3.11),
which are more economically justifiable, as well as computation-
ally tractable (Kulkarni & Shanbhag, 2012). The v-GNEs are so
called because they coincide with the solutions to the variational
inequality VI(F ,X ), where F is the pseudo-gradient mapping of
the game:

F (x) := col
((
∇xi Ji(xi, x−i)

)
i∈I

)
. (2)

Under Standing Assumption 1, x∗ is a v-GNE of the game in
(1) if and only if there exists a dual variable λ∗ ∈ Rm such
that the following Karush–Kuhn–Tucker (KKT) conditions are
satisfied (Facchinei & Kanzow, 2010, Th. 4.8):

0n ∈ F (x∗)+ A⊤λ∗ + NΩ (x∗)
0m ∈ −(Ax∗ − b)+ NRm

≥0
(λ∗).

(3)

Standing Assumption 2. The pseudo-gradient mapping F in (2)
is µ-strongly monotone and θ0-Lipschitz continuous, for some µ,
θ > 0. □
0

3

The strong monotonicity of F is sufficient to ensure exis-
tence and uniqueness of a v-GNE (Facchinei & Pang, 2007, Th.
2.3.3); it was always assumed for GNE seeking under partial-
decision information with fixed step sizes (Tatarenko et al., 2020,
Asm. 2; Pavel, 2020, Asm. 3) (while it is sometimes replaced by
strict monotonicity or cocoercivity, under vanishing steps and
compactness of X (Koshal et al., 2016, Asm. 2; Pang & Hu, 2020,
Asm. 3; Belgioioso et al., 2021, Asm. 5).

3. Fully-distributed equilibrium seeking

In this section, we present our baseline algorithm to seek a
v-GNE of the game in (1) in a fully-distributed way. Specifically,
each agent i only knows its own cost function Ji and feasible set
Ωi, and the portion of the coupling constraints (Ai, bi). Moreover,
agent i does not have full knowledge of x−i, and only relies on
the information exchanged locally with some neighbors over an
undirected communication network G(I, E). The unordered pair
(i, j) belongs to the set of edges E if and only if agent i and j can
mutually exchange information. We denote: W = [wi,j]i,j∈I ∈

RN×N the symmetric weight matrix of G, with wi,j > 0 if (i, j) ∈ E ,
wi,j = 0 otherwise, and the convention wii = 0 for all i ∈ I;
L := D −W the Laplacian matrix of G, with degree matrix D :=
diag((di)i∈I), and di :=

∑N
j=1wi,j for all i ∈ I; Ni = {j | (i, j) ∈ E}

the set of neighbors of agent i. Moreover, we label the edges
(eℓ)ℓ∈{1,...,E}, where E is the cardinality of E , and we assign to
each edge eℓ an arbitrary orientation. We denote the weighted
incidence matrix as V ∈ RE×N , where [V ]ℓ,i =

√
(wi,j) if eℓ = (i, j)

and i is the output vertex of eℓ, [V ]ℓ,i = −
√
(wi,j) if eℓ = (i, j)

and i is the input vertex of eℓ, [V ]ℓ,i = 0 otherwise. It holds that
L = V⊤V ; moreover, null(V ) = null(L) = {κ1N , κ ∈ R} under
the following connectedness assumption (Godsil & Royle, 2013,
Ch. 8).

Standing Assumption 3. The communication graph G(I, E) is
undirected and connected. □

In the partial-decision information, to cope with the lack of
knowledge, each agent keeps an estimate of all other agents’
actions (Pavel, 2020; Tatarenko et al., 2020; Ye & Hu, 2017). We
denote xi := col((xi,j)j∈I) ∈ Rn, where xi,i := xi and xi,j is agent
i’s estimate of agent j’s action, for all j ̸= i; let also xj,−i :=
col((xj,ℓ)ℓ∈I\{i}). Moreover, we let each agent keep an estimate
λi ∈ Rm

≥0 of the dual variable, and an auxiliary variable zi ∈ Rm.
Our proposed dynamics are summarized in Algorithm 1, where

the global parameter α > 0 and the positive step sizes τi, δi,
ν(i,j) = ν(j,i), for all i ∈ I and (i, j) ∈ E , have to be chosen
appropriately (see Section 4). Each agent i updates its action
xi similarly to a proximal best-response, but with two extra
terms that are meant to penalize and correct the disagreement
among the estimates and the coupling constraints violation. Most
importantly, the agents evaluate their cost functions in their
local estimates, not on the actual collective strategy. In steady
state, the agents should agree on their estimates, i.e., xi = xj,
λi = λj, for all i, j ∈ I. This motivates the presence of consensus
terms for both primal and dual variables. From a control-theoretic
perspective, the updates of each zi can be seen as integrator
dynamics driven by the disagreement of the variables λj’s. This
integral action is meant to permit the distributed asymptotic
satisfaction of the coupling constraints, despite the computation
of each λi only involves the local block (Ai, bi) – differently from
typical centralized dual ascent iterations. We postpone a formal
derivation of Algorithm 1 to Section 4.
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Algorithm 1 Fully-distributed v-GNE seeking via PPPA

Initialization: · For all i ∈ I, set x0i ∈ Ωi, x0i,−i ∈ Rn−ni , z0i = 0m, λ0i ∈ Rm
≥0.

For all k ∈ N: · Communication: The agents exchange the variables {xki , x
k
i,−i, λ

k
i } with their neighbors.

· Local variables update: each agent i ∈ I computes

xk+1i,−i =
1

1+τidi

(
xki,−i + τi

∑
j∈Ni

wi,jxkj,−i
)

xk+1i = argmin
y∈Ωi

(
Ji(y, xk+1i,−i )+

1
2ατi

y− xki
2
+

di
2α

y− 1
di

∑
j∈Ni

wi,jxkj,i
2
+

1
α
(A⊤i λ

k
i )
⊤y

)
zik+1 = zki +

∑
j∈Ni

ν(i,j)wi,j(λki − λ
k
j )

λk+1i = projRm
≥0

(
λki + δi

(
Ai(2xk+1i − xki )− bi − (2zk+1i − zki )

))
.

L
x

d

Remark 1. The functions Ji(·, xi,−i) are strongly convex, for all
xi,−i, i ∈ I, as a consequence of Standing Assumption 2. Hence,
the argmin operator in Algorithm 1 is single-valued, and the
algorithm is well defined. □

Remark 2. In Algorithm 1, each agent has to locally solve an
ptimization problem, at every iteration. Not only these sub-
roblems are fully-decentralized (i.e., they do not require extra
ommunication), but they are also of low dimension (ni). This
s a major departure from the procedure proposed in the PPAs
f Scutari et al. (2014, Alg. 2), Yi and Pavel (2019, Alg. 2), where
he agents have to collaboratively solve a subgame (of dimension
) before each update. □

. Convergence analysis

.1. Definitions and preliminary results

We denote x := col((xi)i∈I) ∈ RNn. Besides, let us define, as
n Pavel (2020, Eq. 13, 14), for all i ∈ I,

i :=
[
0ni×n<i Ini 0ni×n>i

]
∈ Rni×n, (4a)

Si :=

[
In<i 0n<i×ni 0n<i×n>i

0n>i×n<i 0n>i×ni In>i

]
∈ Rn−i×n (4b)

here n<i :=
∑

j<i,j∈I nj, n>i :=
∑

j>i,j∈I nj and n−i := n − ni. In
imple terms, Ri selects the i-th ni-dimensional component from
n n-dimensional vector, while Si removes it. Thus, Rixi = xi,i =

xi and Sixi = xi,−i. Let R := diag ((Ri)i∈I), S := diag ((Si)i∈I). It
ollows that x = Rx and col((xi,−i)i∈I) = Sx ∈ R(N−1)n. Moreover,
x = R⊤x + S⊤Sx. We define the extended pseudo-gradient
mapping F : RNn

→ Rn as

F (x) := col
((
∇xi Ji(xi, xi,−i)

)
i∈I

)
, (5)

and the operators

Fa(x) := αR⊤F (x)+ (Dn −Wn)x, (6)

A(ω) :=

[Fa(x)
0Em
b

]
+

⎡⎣ R⊤A⊤λ
−Vmλ

V⊤m v− ARx

⎤⎦
  

:=A1(ω)

+

⎡⎣ NΩ (x)
0Em

NRNm
≥0

(λ)

⎤⎦ (7)

where α > 0 is a design constant, ω := col(x, v,λ), v :=

col((vℓ)ℓ∈{1,...,E}) ∈ REm, λ := col((λi)i∈I) ∈ RNm, A := diag((Ai)i∈I),
n := W ⊗ In, Dn := D⊗ In, Vm := V ⊗ Im, and Ω := {x ∈ RnN

|

x ∈ Ω}.
The following lemma relates the unique v-GNE of the game in

1) to the zeros of the operator A. The proof is analogous to Pavel
2020, Th. 1) or Lemma 10 in Appendix B, and hence it is omitted.
 i

4

emma 1. Let A be as in (7). It holds that zer(A) ̸= ∅. Moreover, let
∗
∈ RNn, λ∗ ∈ RNm; then, the following statements are equivalent:

(i) There exists v∗ such that col(x∗, v∗,λ∗) ∈ zer(A).
(ii) x∗ = 1N ⊗ x∗ and λ∗ = 1N ⊗ λ

∗, where the pair (x∗, λ∗)
satisfies the Karush–Kuhn–Tucker (KKT) conditions in (3),
hence x∗ is the v-GNE of the game in (1). □

Effectively, Lemma 1 provides an extension of the KKT con-
ditions in (3) and allows us to recast the GNE problem as that
of computing a zero of the operator A, for which a number of
iterative algorithms are available (Bauschke & Combettes, 2017,
§26-28). In fact, in Section 4.3, we show that Algorithm 1 can be
recast as a PPA (Bauschke & Combettes, 2017, Th. 23.41).

Nonetheless, technical difficulties arise in the analysis because
of the partial-decision information setup. Specifically, in (5), each
partial gradient ∇xi Ji(xi, xi,−i) is evaluated on the local estimate
xi,−i, and not on the actual value x−i. Only when the estimates
x are at consensus, i.e., x = 1N ⊗ x (namely, the estimate of
each agents coincide with the actual value of x), we have that
F (x) = F (x). As a result, the operator R⊤F (and consequently
the operator A) is not monotone in general1, not even under
the strong monotonicity of the game mapping F in Standing
Assumption 2. Instead, analogously to the approaches in Gadjov
and Pavel (2019), Pavel (2020) and Salehisadaghiani et al. (2019),
our analysis is based on a restricted monotonicity property.

Definition 2. An operator F : Rq ⇒ Rq is restricted (µ-strongly)
monotone in HP if zer(F) ̸= ∅ and ⟨ω − ω∗ | u⟩P ≥ 0 (≥
µ∥ω − ω∗∥2P ) for all (ω, u) ∈ gra(F), ω∗ ∈ zer(F) (we omit the
characterization ‘‘in HP ’’ whenever P = I). □

Definition 2 differs from that in Pavel (2020, Lem. 3), as we
only consider properties with respect to the zero set and we
need to include set-valued operators. The definition comprises
the nonemptiness of the zero set and it does not exclude an
operator that is multi-valued on its zeros. The next lemmas show
that restricted monotonicity of A can be guaranteed for any
game satisfying Standing Assumptions 1–3, without additional
hypotheses.

Lemma 2 (Bianchi & Grammatico, 2020, Lemma 3). The mapping F
in (5) is θ-Lipschitz continuous, for some θ ∈ [µ, θ0]. □

Lemma 3. Let αmax :=
4µλ2(L)

(θ0+θ )2+4µθ
,

M := α

[
µ

N −
θ0+θ

2
√
N

−
θ0+θ

2
√
N

λ2(L)
α
− θ

]
, µFa := λmin(M). (8)

1 It can be shown that R⊤F is monotone only if the mappings ∇xi Ji(x)’s
o not depend on x−i (in which case, there is no need for a partial-decision
nformation assumption).
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f α ∈ (0, αmax], then µFa ≥ 0 and the operator A in (7) is restricted
onotone. □

roof. The operator A in (7) is the sum of three operators.
he third is monotone by properties of normal cones (Bauschke
Combettes, 2017, Th. 20.25); the second is a linear skew-

ymmetric operator, hence monotone (Bauschke & Combettes,
017, Ex. 20.35). Let ω∗ = col(x∗, v∗,λ∗) ∈ zer(A), where
er(A) ̸= ∅ by Lemma 1. By Lemma 1, x∗ = 1N ⊗ x∗, with x∗
he v-GNE of the game in (1); hence by Pavel (2020, Lemma 3),
or any α ∈ (0, αmax], it holds that M ≽ 0 and that, for all x ∈ RNn

x− x∗ | Fa(x)− Fa(x∗)⟩ ≥ µFa∥x− x∗∥2. (9)

Therefore, for all (ω, u) ∈ gra(A), with ω = col(x, v,λ), it holds
that ⟨ω − ω∗ | u− 0⟩ ≥ µFa∥x− x∗∥2 ≥ 0. ■

4.2. PPA for restricted monotone operators

In the remainder of this section, we show that Algorithm 1
is an instance of the PPA, applied to seek a zero of the (suitably
preconditioned) operator A in (7). Then, we show its convergence
based on the restricted monotonicity result in Lemma 3.

Informally speaking, in proximal-point methods, a problem is
decomposed into a sequence of regularized subproblems, which
are possibly better conditioned and easier to solve. Let B :

Rq ⇒ Rq be maximally monotone (Bauschke & Combettes, 2017,
Def. 20.20) in a space HP , and JB = (Id+B)−1 its resolvent. Then,
dom(JB) = Rq and JB is single-valued; moreover, if zer(B) ̸= ∅,
then the sequence (ωk)k∈N generated by the PPA,

(∀k ∈ N) ωk+1
= JB(ωk), ω0

∈ Rq, (10)

converges to a point in zer(B) = fix(JB) (Bauschke & Combettes,
2017, Th. 23.41). Note that performing the update in (10) is
equivalent to solving for ωk+1 the (regularized) inclusion

0 ∈ B(ωk+1)+ ωk+1
− ωk. (11)

Unfortunately, many operator-theoretic properties are not guar-
anteed if B is only restricted monotone. In fact, JB might not be
defined everywhere or single-valued.

Example 1. Let B : R → R, with B(ω) = 9 − 2ω if ω ∈ [3, 4),
B(ω) = ω otherwise. Then, zer(B) = {0} and B is restricted
strongly monotone. However, JB(ω) = {ω2 , 9 − ω} if ω ∈ [5, 6)
and JB(ω) = ∅ if ω ∈ (6, 8). □

Nonetheless, some important properties carry on to the re-
stricted monotone case, as we prove next.

Lemma 4. Let B : Rq ⇒ Rq be restricted monotone in HP . Then,
JB is firmly quasinonexpansive in HP : for any (ω, u) ∈ gra(JB),
ω∗ ∈ zer(B) = fix(JB), it holds that

⟨ω − u | ω − ω∗⟩P − ∥u− ω∥2P = ⟨ω − u | u− ω∗⟩P ≥ 0. (12)

oreover, JB(ω∗) = {ω∗}. □

Proof. By definition of resolvent, ω∗ ∈ JB(ω∗) ⇔ ω∗ + Bω∗ ∋
ω∗ ⇔ 0 ∈ B(ω∗); also, for any (ω, u) ∈ gra(JB), ω − u ∈ B(u).
Hence, the inequality in (12) is the restricted monotonicity of B;
the elementary equality follows by expanding the terms. Finally,
by taking ω = ω∗ in (12), we infer that JB is single-valued on
fix(JB). ■

Next, by leveraging Lemma 4, we extend classical results for
the PPA (Combettes, 2001, Th. 5.6) to the case of a restricted
monotone operator (possibly with multi-valued resolvent).
5

Theorem 1. Let B : Rq ⇒ Rq be restricted monotone in HP , and
C := zer(B) ̸= ∅. Let (γ k)k∈N be a sequence in [0, 2], and (ek)k∈N
a sequence in Rq such that (γ k

∥ek∥P )k∈N ∈ ℓ1. Let ω0
∈ Rq and let

(ωk)k∈N be any sequence such that:

(∀k ∈ N) ωk+1
= ωk

+ γ k(uk
− ωk

+ ek), uk
∈ JB(ωk). (13)

Then, the following statements hold:

(i) (∀ω∗ ∈ C)(∀k ∈ N) ∥ωk+1
−ω∗∥P ≤ ∥ω

k
−ω∗∥P+γ

k
∥ek∥P .

(ii)
(
γ k(2− γ k)∥uk

− ωk
∥
2
P

)
k∈N ∈ ℓ

1.
(iii) Assume that every cluster point of (ωk)k∈N belongs to C. Then,

(ωk)k∈N converges to a point in C.
(iv) Assume that B is µB-strongly restricted monotone in HP .

Then, C = {ω∗} and ∥ωk+1
−ω∗∥P ≤ ρ

k
∥ωk
−ω∗∥P+γ

k
∥ek∥P

for all k ∈ N, where ρk
= max(1− γ kµB

1+µB
, γ k
− 1). □

roof. See Appendix A. ■

emark 3. The condition dom(JB) = Rq is sufficient (but not
ecessary) for the existence of a sequence (ωk)k∈N that satisfies
13), which can be constructed choosing arbitrarily uk ∈ JB(ωk),
for all k ∈ N. □

Example 2. Consider the VI(Ψ , S), where S ⊂ Rq is compact and
convex, and Ψ : Rq

→ Rq is continuous and pseudomonotone in
the sense of Karamardian (i.e., for all ω,ω′ ∈ Rq, the implication
⟨Ψ (ω), ω′ − ω⟩ ≥ 0 ⇒ ⟨Ψ (ω′), ω′ − ω⟩ ≥ 0 holds). It holds
that SOL(Ψ , S) = zer(B) ̸= ∅, where B = Ψ + NS (Facchinei
& Pang, 2007, Prop. 2.2.3). Moreover B is restricted monotone.
To show this, consider any ω∗ ∈ zer(B) and (ω, u) ∈ gra(B), so
u = Ψ (ω) + u′, for some u′ such that (ω, u′) ∈ gra(NS). Then,
⟨u | ω − ω∗⟩ = ⟨Ψ (ω) | ω − ω∗⟩ + ⟨u′ − 0 | ω − ω∗⟩ ≥ 0,
where we used that ⟨Ψ (ω) | ω−ω∗⟩ ≥ 0, by pseudomonotonicity
and because ⟨Ψ (ω∗) | ω − ω∗⟩ ≥ 0 by definition of VI, and
⟨u′−0 | ω−ω∗⟩ ≥ 0 because (ω∗, 0) ∈ gra(NS) and monotonicity
of the normal cone.

We note that dom(JB) = Rq by Facchinei and Pang (2007,
Prop. 2.2.3). Let us consider any sequence (ωk)k∈N such that, for
all k ∈ N, ωk+1

= uk, uk
∈ JB(ωk), (or equivalently (11) or ωk+1

∈

SOL(Ψ + Id−ωk, S)). By Theorem 1 (with γ k
= 1, ek = 0), (ωk)k∈N

is bounded, hence it admits at least one cluster point, say ω̄; by
Theorem 1(ii) ∥uk

− ωk
∥ → 0. However, by definition of VI, for

any ω ∈ S, ⟨Ψ (uk) + uk
− ωk

| ω − uk
⟩ ≥ 0. By passing to the

limit (on a subsequence) and by continuity, we obtain ⟨Ψ (ω̄) |
ω − ω̄⟩ ≥ 0, which shows that ω̄ ∈ SOL(Ψ , S). Therefore (ωk)k∈N
converges to a solution to VI(Ψ , S) by Theorem 1(iii). This extends
the results in El Farouq (2001, §4.2), where hypomonotonicity of
Ψ is assumed and where a small-enough step size is chosen to
ensure that JB is single-valued (besides, pseudomonotonicity of Ψ
is sufficient, but not necessary, for the restricted monotonicity of
B, and Theorem 1 would also allow to take into account iterations
with errors, cf. El Farouq (2001, §4.2)). □

4.3. Derivation and convergence

Next, we show how that Algorithm 1 is obtained by applying
the iteration in (13) to the operator Φ−1A, where

Φ :=

⎡⎣τ̄−1 +Wn 0 −R⊤A⊤

0 ν̄−1 Vm

−AR V⊤m δ̄−1

⎤⎦ (14)

is called preconditioning matrix. The step sizes τ̄ := diag((τiIn)i∈I),
ν̄ := diag((ν(i,j)Im)(i,j)∈E ), δ̄ := diag((δiIm)i∈I), have to be chosen
such that Φ ≻ 0. In this case, it also holds that zer(Φ−1A) =
zer(A). Sufficient conditions that ensure Φ ≻ 0 are given in the
next lemma, which follows by the Gershgorin’s circle theorem.
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emma 5. The matrix Φ in (14) is positive definite if ν(i,j)−1 >
2
√
(wi,j) for all (i, j) ∈ E and τ−1i > di + ∥A⊤i ∥∞, δ−1i > ∥Ai∥∞ +
N
j=1

√
(wi,j) for all i ∈ I. □

In the following, we always assume that the step sizes in
Algorithm 1 are chosen such that Φ ≻ 0. Then, we are able to
formulate the following result.

Lemma 6. Algorithm 1 is equivalent to the iteration

(∀k ∈ N) ωk+1
∈ JΦ−1A(ωk), (15)

with A as in (7), Φ as in (14): for any initial condition ω0
=

col(x0, v0
= 0Em,λ

0), the sequence (xk,V⊤m vk,λk)k∈N generated
by (15) coincides with the sequence (xk, zk,λk)k∈N generated by
Algorithm 1 with initial conditions (x0, z0 = 0Nm,λ

0). □

Proof. By definition of inverse operator, we have that

ωk+1
∈ (Id+Φ−1A)−1(ωk)

⇔ 0 ∈ Φ−1A(ωk+1)− ωk
+ ωk+1

⇔ 0 ∈ Φ(ωk+1
− ωk)+ A(ωk+1) (16)

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ τ̄−1(xk+1 − xk)+����Wnxk+1 −Wnxk + Dnxk+1

−�����
R⊤A⊤λk+1

+R⊤A⊤λk
+ αR⊤F (xk+1)

−����Wnxk+1 +�����
R⊤A⊤λk+1

+ NΩ (xk+1)
0 ∈ ν̄−1(vk+1

− vk)+����Vmλk+1
− Vmλk

−����Vmλk+1

0 ∈ δ̄−1(λk+1
− λk)+ NRmN

≥0
(λk+1)+ b

− AR(2xk+1 − xk)+ V⊤m (2vk+1
− vk)

(17)

In turn, the first inclusion in (17) can be split in two by left-
multiplying both sides with R and S. By SNΩ = 0(N−1)n, RR⊤ =
In and SR⊤ = 0(N−1)n×n, we get⎧⎪⎨⎪⎩

0 ∈ S((I + τ̄Dn)xk+1 − xk − τ̄Wnxk)
0 ∈ R((I + τ̄Dn)xk+1 − xk − τ̄Wnxk)
+ NΩ (xk+1)+ ατ̄F ((xk+1, Sxk+1))+ τ̄A⊤λk

⇔
∀i∈I

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xk+1i,−i =
1

1+τidi
(xki,−i + τi

∑N
j=1wi,jxkj,−i)

0ni ∈ ∂xk+1i

(
Ji(xk+1i , xk+1i,−i )+

1
2ατi

xk+1i − xki
2

+
1

2αdi

dixk+1i −
∑N

j=1wi,jxkj,i
2

+ ιΩi (x
k+1
i )+ 1

α
(A⊤i λ

k
i )
⊤xk+1i

)
.

Therefore, since the zeros of the subdifferential of a (strongly)
convex function coincide with the minima (unique mini-
mum) (Bauschke & Combettes, 2017, Th. 16.3), (17) can be
rewritten as

∀i ∈ I :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xk+1i,−i =
1

1+τidi
(xki,−i + τi

∑N
j=1wi,jxkj,−i)

xk+1i = argmin
y∈Ωi

(
Ji(y, xk+1i,−i )+

1
2ατi

y− xki
2

+
1

2αdi

diy−∑N
j=1wi,jxkj,i

2

+
1
α
(A⊤i λ

k
i )
⊤y

)
vk+1
= vk
+ ν̄Vmλk

λk+1
= projRmN

≥0

(
λk
+ δ̄

(
AR(2xk+1 − xk)− b

− V⊤m (2vk+1
− vk)

))
. (18)

he conclusion follows by defining zk := V⊤m vk, where zk =
ol((zi)i∈I) ∈ RNm and zki ∈ Rm is a local variables kept by agent
, provided that z0 = V⊤m v0. The latter is ensured by z0 = 0Nm, as
n Algorithm 1. ■
6

emark 4. The preconditioning matrixΦ is designed to make the
ystem in (17) block triangular, i.e., to remove the term Wnxk+1
nd R⊤A⊤λk+1 from the first inclusion, and the terms Vmλk+1

rom the second one: in this way, xk+1i and zk+1 do not depend
n xk+1j , for i ̸= j, or on λk+1. This ensures that the resulting
teration can be computed by the agents in a fully-distributed
ashion (differently from the non-preconditioned resolvent JA).
urthermore, the change of variable z = V⊤m v reduces the number
f auxiliary variables and decouples the dual update in (18) from
he graph structure. □

emark 5. By Lemma 6, Remark 1 and by the expression of
Φ−1A in (18), we conclude that dom(JΦ−1A) = RNn+Em+Nm and
hat JΦ−1A is single-valued. □

In order to apply Theorem 1 to the iteration in (15), we still
eed the following lemma.

emma 7. Let α ∈ (0, αmax], αmax as in Lemma 3. Then Φ−1A is
estricted monotone in HΦ . □

roof. Let (ω, u) ∈ gra(Φ−1A), ω∗ ∈ zer(Φ−1A). Then, (ω,Φu) ∈
gra(A) and ω∗ ∈ zer(A). Therefore, by Lemma 3, we conclude that
⟨u | ω − ω∗⟩Φ = ⟨Φu | ω − ω∗⟩ ≥ 0. ■

Theorem 2. Let α ∈ (0, αmax], with αmax as in Lemma 3, and let the
step sizes τ̄ , ν̄, δ̄ be as in Lemma 5. Then, the sequence (xk, zk,λk)k∈N
generated by Algorithm 1 converges to some equilibrium (x∗, z∗,λ∗),
where x∗ = 1N ⊗ x∗ and x∗ is the v-GNE of the game in (1). □

Proof. By Lemma 6, we can equivalently study the convergence
of the iteration in (15). In turn, (15) can be rewritten as (13) with
γ k
= 1, ek = 0, for all k ∈ N. For later reference, let us define uk

=

JΦ−1A(ωk) (here uk
= ωk+1). Φ−1A is restricted monotone in HΦ

by Lemma 7. By Theorem 1(i), the sequence (ωk)k∈N is bounded,
hence it admits at least one cluster point, say ω̄. By (16) and (7),
it holds, for any ω ∈ Ω ×REm

×RNm
≥0 , that ⟨A1(uk)+Φ(uk

−ωk) |
ω − uk

⟩ ≥ 0, with A1 as in (7). By Theorem 1(ii), uk
− ωk

→ 0.
Therefore, by continuity of A1, taking the limit on a diverging
subsequence (lk)k∈N such that (ωlk )k∈N → ω̄, we have that for
all ω ∈ Ω × REm

× RNm
≥0 , ⟨A1(ω̄) | ω − ω̄⟩ ≥ 0, which shows

that ω̄ ∈ zer(A) = fix(JΦ−1A). Hence (ωk)k∈N converges to an
equilibrium of (15) by Theorem 1(iii). The conclusion follows by
Lemma 1. ■

Remark 6. While the choice of step sizes in Lemma 5 is decen-
tralized, computing the bound αmax for the common parameter
α in Algorithm 1 requires some global information on the graph
G (i.e., the algebraic connectivity) and on the game mapping (the
strong monotonicity and Lipschitz constants). □

Remark 7. If x0 ∈ ΩN , then xk ∈ ΩN for all k ∈ N (by convexity
and the updates in Algorithm 1), and Assumption 2 can be relaxed
to hold only on Ω . □

Remark 8 (Inexact Updates). The local optimization problems in
Algorithm 1 are strongly convex, hence they can be efficiently
solved by several iterative algorithms (with linear rate). While
computing the exact solutions x̄ki would require an infinite
number of iterations, the convergence in Theorem 2 still holds
if xi is updated with an approximation x̂ki of x̄ki , provided that
the errors eki := x̄ki − x̂ki are norm summable, i.e., (∥eki ∥)k∈N ∈ ℓ

1,
for all i ∈ I (the same proof applies, since the condition on ek
in Theorem 1 would be satisfied, by equivalence of norms). For
example, assume that x̂ki is computed via a finite number jki ≥ 1 of
steps of the projected gradient method, warm-started at xk, with
i
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Algorithm 2 Fully-distributed v-GNE seeking via accelerated PPPA

Initialization: · Choose acceleration:
Overrelaxation: set γ > 0, ζ = 0, η = 0;
Inertia: set γ = 0, ζ > 0, η = 0;
Alternated inertia: set γ = 0, ζ = 0, η > 0;

· For all i ∈ I, set x−1i = x0i ∈ Ωi, x−1i,−i = x0i,−i ∈ Rn−ni , z−1i = z0i = 0m, λ−1i = λ
0
i ∈ Rm

≥0.

For all k > 0: · (Alternated) inertial step: set η̃k = 0 if k is even, η̃k = η otherwise; each agent i ∈ I computes

x̃ki,−i = xki,−i + (ζ + η̃k)(xki,−i − xk−1i,−i ) x̃ki = xki + (ζ + η̃k)(xki − xk−1i )

z̃ki = zki + (ζ + η̃k)(zki − zk−1i ) λ̃ki = λ
k
i + (ζ + η̃k)(λki − λ

k−1
i )

· Communication: The agents exchange the variables {x̃ki , x̃
k
i,−i, λ̃

k
i } with their neighbors.

· Resolvent computation: each agent i ∈ I computes

x̆k+1i,−i =
1

1+τidi

(
x̃ki,−i + τi

∑N
j=1wi,jx̃

k
j,−i

)
x̆k+1i = argmin

y∈Ωi

(
Ji(y, x̆

k+1
i,−i )+

1
2ατi

y− x̃ki
2
+

1
2αdi

diy−∑N
j=1wi,jx̃

k
j,i

2
+

1
α
(A⊤i λ̃

k
i )
⊤y

)
z̆i

k+1
= z̃ki +

∑N
j=1 ν(i,j)wi,j(λ̃ki − λ̃

k
j )

λ̆k+1i = projRm
≥0

(
λ̃ki + δi

(
Ai(2x̆k+1i − x̃ki )− bi − (2z̆k+1i − z̃ki )

))
.

· Relaxation step: each agent i ∈ I computes

xk+1i,−i = γ x̆
k+1
i,−i + (1− γ ) x

k
i,−i xk+1i = γ x̆k+1i + (1− γ ) xki

zik+1 = γ z̆k+1i + (1− γ ) zki λk+1i = γ λ̆k+1i + (1− γ ) λki
t

(

c
1

P
C
r
o
C

(small enough) fixed step. Then, each agent can independently
ensure that ∥eki ∥ ≤ ε

k
i , for some (εki )k∈N ∈ ℓ

1, by simply choosing

jki ≥ log
(
εki (1− ρi)/∥x

k
i − x̂k,1i ∥

)
/ log(ρi), (19)

where x̂k,1i is the approximation obtained after one gradient step
and ρi ∈ (0, 1) is the contractivity parameter of the gradient
descent.2 We finally remark that x̄ki must be estimated with
increasing accuracy. In practice, however, when xki is converging,
∥xk+1i − xki ∥ → 0. Hence xki is a good initial guess for x̄ki , and the
computation of xk+1i often requires few gradient steps, see also
Section 7. □

5. Accelerations

Lemma 6 shows that Algorithm 1 can be recast (modulo the
change of variables z = V⊤m v) as

ωk+1
= T (ωk), (20)

where T := JΦ−1A. This compact operator representation al-
lows for some modifications of Algorithm 1, that can increase
its convergence speed. In particular, we consider three popular
accelerations schemes (Iutzeler & Hendrickx, 2019), which have
been extensively studied for the case of firmly nonexpansive
operators (Bauschke & Combettes, 2017, Def. 4.1), and also found
application in games under full-decision information (Belgioioso
& Grammatico, 2020; Scutari et al., 2014). Here we provide con-
vergence guarantees for the partial-decision information setup,
where T is only firmly quasinonexpansive. Our fully distributed
accelerated algorithms are illustrated in Algorithm 2. In the fol-
lowing, we assume that α ∈ (0, αmax], αmax as in Lemma 3, and
that the step sizes τ̄ , ν̄, δ̄ are chosen as in Lemma 5.

2 ρi can be taken independent of k: since ∇Ji(·, xi,−i) is µi strongly monotone
nd θi Lipschitz, for some µi ≥ µ, θi ≤ θ and for all xi,−i , the factor ρi =

θi−µi is ensured by the step 2/(θ + µ + 1/(ατ )+ d /α).

θi+µi+1/(ατi)+di/α i i i i

7

Proposition 1 (Overrelaxation). Let γ ∈ [1, 2). Then, for any ω0,
the sequence (ωk)k∈N generated by

(∀k ∈ N), ωk+1
= ωk

+ γ (T (ωk)− ωk), (21)

converges to an equilibrium (x∗, v∗,λ∗) ∈ zer(A), where x∗ =
1N ⊗ x∗ and x∗ is the v-GNE of the game in (1). □

Proof. The iteration in (21) is in the form (13), with γ k
= γ ,

ek = 0, for all k ∈ N. Then, the conclusion follows analogously to
Theorem 2. ■

Proposition 2 (Inertia). Let ζ ∈ [0, 1
3 ). Then, for any ω−1 := ω0,

he sequence (ωk)k∈N generated by

∀k ∈ N), ωk+1
= T (ωk

+ ζ (ωk
− ωk−1)), (22)

onverges to an equilibrium (x∗, v∗,λ∗) ∈ zer(A), where x∗ =
N ⊗ x∗ and x∗ is the v-GNE of the game in (1). □

roof (sketch). By following all the steps in the proof of Boţ,
setnek, and Hendrich (2015, Th. 5) (which can be done by
ecalling that an operator T is firmly (quasi)nonexpansive if and
nly if the operator 2T − Id is (quasi)nonexpansive (Bauschke &
ombettes, 2017, Prop. 4.2, 4.4), it can be shown that, if ζ ∈ [0, 1

3 ),
then (ωk)k∈N is bounded and ωk+1

− ωk
→ 0. Then, the proof

follows analogously to Theorem 2. ■

Proposition 3 (Alternated Inertia). Let η ∈ [0, 1]. Then, for any ω0,
the sequence (ωk)k∈N generated by{

ωk+1
= T (ωk) if k is even,

ωk+1
= T (ωk

+ η(ωk
− ωk−1)) if k is odd,

(23)

converges to an equilibrium (x∗, v∗,λ∗) ∈ zer(A), where x∗ =
1N ⊗ x∗ and x∗ is the v-GNE of the game in (1). □

Proof. For all k ∈ N, ω2k+2
= T (T (ω2k)+ η(T (ω2k)−ω2k)), which

is the same two-steps update obtained in (13) with γ 2k
= 1+ η,
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2k+1
= 1 (and B := Φ−1A, ek = 0). Therefore the convergence

f the sequence (ω2k)k∈N to an equilibrium (x∗, v∗,λ∗) ∈ zer(A)
ollows analogously to Theorem 2 (with a minor modification for
he case η = 1). The convergence of the sequence (ω2k+1)k∈N then
ollows by Theorem 1(i). ■

We note that, by Theorem 1, the convergence results in
ropositions 1 and 3 hold also in the case of summable errors on
he updates, as in Remark 8. Analogously to our analysis, provably
onvergent acceleration schemes could also be obtained for the
B algorithm in Pavel (2020): however, an advantage of our PPA
s that the bounds on the inertial/relaxation parameters are fixed
nd independent on (unknown) problem parameters.

.1. On the convergence rate

We conclude this section with a discussion on the conver-
ence rate of Algorithms 1 and 2. First, even under Standing
ssumption 2, the KKT operator on the right-hand side of (3) is
enerally not strongly monotone. Similarly, the operator A in (7)
s not strongly monotone and Algorithm 1 can have multiple fixed
oints. Therefore, one should not expect linear convergence. By
emma 6 and the proof of Theorem 1, we can derive the following
rgodic rate for the fixed-point residual in Algorithm 1:

1
k

∑k
i=0 ∥ω

k+1
− ωk
∥
2
≤ O(1/k).

his rate also holds for the iterations in (21), (22), (23); for
he case of general operator splittings (and differently from
ptimization algorithms), tighter rates for accelerated schemes
re only known for particular cases, and most works focus on
ere convergence (Boţ et al., 2015; Iutzeler & Hendrickx, 2019).
et, the practice shows that relaxation and inertia often result
n improved speed, see Belgioioso and Grammatico (2020) or
ection 7.
The same residual rate O(1/k) can also be shown for the

seudo-gradient method in Pavel (2020, Alg. 1). However, a major
ifference from Lemma 5 is that the upper bounds for the step
izes in Pavel (2020, Th. 2) are proportional to the constant µFa
n (8), which is typically very small (up to scaling of the whole op-
rator Fa), see Bianchi and Grammatico (2021) or also Section 7.1.
ost importantly, µFa vanishes as the number of agents increases

fixed the other parameters). In contrast, our algorithms allows
or much larger steps, which can be chosen independently of the
umber of agents. This is a structural advantage of the PPA, whose
onvergence does not depend on the cocoercivity constants of the
perators involved. Indeed, step sizes must be taken into account
f convergence is evaluated in terms of residuals.

We finally note that linear convergence can be achieved via
PPA for games without coupling constraints. For instance, Algo-
ithm 3 corresponds to the overrelaxed method in Algorithm 2,
nd can be derived, as in Lemma 6, by taking B = Φ−1NE ANE(x) in
13), where ANE(x) := Fa(x) + NΩ (x) and ΦNE := τ̄

−1
+Wn are

btained by removing the dual variables from A, Φ . By (9), as in
emma 7, it can be shown that ANE is restricted µFa

∥ΦNE∥
-strongly

onotone in HΦNE . Thus, recursively applying Theorem 1(iv), we
an infer the following result, which appeared in Bianchi et al.
2020) only limited to γ = 1.

Theorem 3. Let τ−1i > di for all i ∈ I, let γ ∈ (0, 2), and let
∈ (0, αmax], with αmax as in Lemma 3. Then, the sequence (xk)k∈N
enerated by Algorithm 3 converges to x∗ = 1N ⊗ x∗, where x∗ is

the unique Nash equilibrium of the game in (1), with linear rate:

(∀k ∈ N) ∥xk − x∗∥ΦNE ≤ (ργ )k∥x0 − x∗∥ΦNE ,

where ρ := max(1− γµFa , γ − 1), µ as in (8). □
γ ∥ΦNE∥+µFa
Fa

8

Algorithm 3 Fully-distributed NE seeking via PPPA

x̆k+1i,−i =
1

1+τidi

(
xki,−i + τi

∑N
j=1wi,jxkj,−i

)
x̆k+1i = argmin

y∈Ωi

(
Ji(y, x̆

k+1
i,−i )+

1
2ατi

y− xki
2

+
1

2αdi

diy−∑N
j=1wi,jxkj,i

2
)

xk+1i = xki + γ (x̆
k+1
i − xki )

Table 1
Comparison between our PPPA and projected pseudo-gradient methods.

FB (Pavel, 2020, Alg. 1) PPPA

Step sizes O
(

µFa

θFa
2
+ µFa

)
O(1)

Linear rate ρ (no
coupling constraints)

(1− κFa
2)

1
2 1− κFa

The best theoretical rate ργ̄ = 1 − 2µFa/(∥ΦNE∥ + 2µFa )
is obtained for γ̄ = 1 + ∥ΦNE∥/(∥ΦNE∥ + 2µFa ). We observed
in Bianchi et al. (2020, §5) that this rate compares favorably with
that of the state-of-the-art algorithms — please refer to Bianchi
et al. (2020), also for numerical results. For instance, in the
absence of coupling constraints, the FB algorithm in Pavel (2020,
Alg. 1) reduces to Tatarenko et al. (2020, Alg. 1), whose optimal
linear rate O((1− κFa

2)k/2) depends quadratically on the quantity
κFa := µFa/θFa < 1 (Tatarenko et al., 2020, Th. 7), where θFa :=
2max((di)i∈I) + αθ . Instead, ργ̄ ≤ 1 − κFa , for large enough τi’s
(since ∥ΦNE∥ + 2µFa ≤ max((di + τ−1i )i∈I) + 2αθ ), as shown in
able 1.

. Aggregative games

In this section we focus on the particularly relevant class
f (average) aggregative games, which arises in a variety of
ngineering applications, e.g., network congestion control and
emand-side management (Grammatico, 2017). In aggregative
ames, ni = n̄ > 0 for all i ∈ I (hence n = Nn̄) and the cost
unction of each agent depends only on its local decision and on
he value of the average strategy avg(x) := 1

N

∑
i∈Ixi. Therefore,

for each i ∈ I, there is a function fi : Rn̄
× Rn̄

→ R such that the
original cost function Ji in (1) can be written as

Ji(xi, x−i) =: fi(xi, avg(x)). (25)

Since an aggregative game is only a particular instance of the
game in (1), all the considerations on the existence and unique-
ness of a v-GNE and the equivalence with the KKT conditions in
(3) are still valid.

Moreover, Algorithms 1 could still be used to compute a
v-GNE. This would require each agent to keep (and exchange)
an estimate of all other agents’ action, i.e., a vector of (N − 1)n̄
components. In practice, however, the cost of each agent is only
a function of the aggregative value avg(x), whose dimension n̄ is
independent of the number N of agents. To reduce communica-
tion and computation burden, in this section we introduce a PPPA
specifically tailored to seek a v-GNE in aggregative games, that
is scalable with the number of agents. The proposed iteration is
shown in Algorithm 4, where the parameters α, β , and τi, δi for
all i ∈ I, v(i,j) for all (i, j) ∈ E have to be chosen appropriately,
and we denote

F̃i(xi, ξi) := ∇xi fi(xi, ξi)+
1
N∇ξi fi(xi, ξi). (26)

We note that F̃ (x , avg(x)) = ∇ J (x , x ) = ∇ f (x , avg(x)).
i i xi i i −i xi i i
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Algorithm 4 Fully-distributed v-GNE seeking in aggregative games via PPPA

Initialization: · For all i ∈ I, set x0i ∈ Ωi, s0i = 0n̄, z0i = 0m, λ0i ∈ Rm
≥0.

For all k > 0: · Communication: The agents exchange the variables {σ k
i = xki + ski , λ

k
i } with their neighbors.

· Local variables update: each agent i ∈ I computes

sk+1i = ski − β
∑N

j=1wi,j(σ k
i − σ

k
j )

xk+1i ← y s.t. 0n̄ ∈ αF̃i(y, y+ sk+1i )+ 1
τi
(y− xki )+ A⊤i λ

k
i +

∑N
j=1wi,j(σ k

i − σ
k
j )+ NΩi (y) (24)

zik+1 = zki +
∑N

j=1 ν(i,j)wi,j(λki − λ
k
j )

λk+1i = projRm
≥0

(
λki + δi

(
Ai(2xk+1i − xki )− bi − (2zk+1i − zki )

))
.

Φ

L
4
4

L
T
M

a
h
f

Because of the partial-decision information assumption, no
gent has access to the actual value of the average strategy.
nstead, we equip each agent with an auxiliary error variable
i ∈ Rn̄, which is an estimate of the quantity avg(x)−xi. Each agent
aims at reconstructing the true aggregate value, based on the
information received from its neighbors. In particular, it should
hold that sk → 1N ⊗ avg(xk) − xk asymptotically, where s :=
col((si)i∈I). For brevity of notation, we also denote

σi := xi + si, σ := col((σi)i∈I). (27)

Remark 9. By the updates in Algorithm 4, we can infer an
important invariance property, namely that avg(sk) = 0n̄, or
equivalently avg(xk) = avg(σ k), for any k ∈ N, provided that the
algorithm is initialized appropriately, i.e., s0i = 0n̄, for all i ∈ I. In
fact, the update of σ , as it follows from Algorithm 4, is

σ k+1
= σ k

− βL n̄σ
k
+ (xk+1 − xk), (28)

where L n̄ := L ⊗ In̄. This update is a dynamic tracking for
the time-varying quantity avg(x), similar to those considered for
aggregative games in Belgioioso et al. (2021), Koshal et al. (2016)
and Gadjov and Pavel (2021). Differently from Gadjov and Pavel
(2021), here we introduce the error variables si, which allow us
to directly recast the iteration in (28) in an operator-theoretic
framework. □

Similarly to Section 4, we study the convergence of Algorithm
4 by relating it to the iteration in (13). First, let us define the
extended pseudo-gradient mapping

F̃ (x, ξ ) := col
((

F̃i(xi, ξi)
)
i∈I

)
, (29)

with ξ := col((ξi)i∈I) ∈ Rn, and the operators F̃a(x, s) :=
col(αF̃ (x, σ )+ L n̄σ , L n̄σ ),

Ã(ω) :=

⎡⎢⎣αF̃ (x, σ )+ L n̄σ

L n̄σ

0Em
b

⎤⎥⎦+
⎡⎢⎣ A⊤λ

0n
−Vmλ

V⊤m v− Ax

⎤⎥⎦+
⎡⎢⎢⎣

NΩ (x)
0n
0Em

NRNm
≥0

(λ)

⎤⎥⎥⎦ , (30)

where ω := col(x, s, v,λ) ∈ R2n+Em+Nm, and we recall that σ =
x+ s is just a shorthand notation.

Lemma 8. The mapping F̃ in (29) is θ̃-Lipschitz continuous, for some
θ̃ > 0. □

Proof. It follows from Lemma 2, by noticing that F̃ (x, ξ ) =
F ((x, (IN ⊗ 1N−1 ⊗ In̄)( N

N−1ξ −
1

N−1x))). ■

Finally, we will assume that the step sizes τ̄ := diag((τiIn̄)i∈I),
¯ := βI , ν̄ := diag((ν I ) ), δ̄ := diag((δ I ) ) are chosen
Nn (i,j) m (i,j)∈E i m i∈I

9

such that Φ̃ ≻ 0, where

˜ :=

⎡⎢⎢⎣
τ̄−1 − L n̄ −L n̄ 0 −A⊤

−L n̄ β̄−1 − L n̄ 0 0
0 0 ν̄−1 Vm

−A 0 V⊤m δ̄−1

⎤⎥⎥⎦ . (31)

emma 9. The matrix Φ̃ in (31) is positive definite if β−1 >
max((di)i∈I), ν(i,j)−1 > 2

√
(wi,j) for all (i, j) ∈ E , and τ−1i >

di + ∥A⊤i ∥∞, δ−1i > ∥Ai∥∞ +
∑N

j=1
√
wi,j for all i ∈ I. □

Theorem 4. Let dmin := min((di)i∈I) and

α̃max := min
(

4µλ2(L)
θ̃2

,
2
√
2(dmin)
θ̃

)
. (32)

et α ∈ (0, α̃max] and let the step sizes τ̄ , β̄, ν̄, δ̄ be as in Lemma 9.
hen, for all k ∈ N, the inclusion in (24) has a unique solution.
oreover, the sequence (xk, sk, zk,λk)k∈N generated by Algorithm 4

converges to an equilibrium (x∗, 1⊗ avg(x∗)− x∗, z∗,λ∗), where x∗
is the v-GNE of the game in (1). □

Proof. Similarly to Lemma 6, we first show that Algorithm 4 can
be recast as a PPPA, applied to find a zero of the operator Φ̃−1Ã.
Then, we restrict our analysis to the invariant subspace

Σ := {(x, s, v,λ) ∈ R2n+Em+Nm
| avg(s) = 0n̄}. (33)

A detailed proof is in Appendix B. ■

Remark 10. The update in (24) is implicitly defined by a strongly
monotone inclusion, or, equivalently, variational inequality (see
Appendix B). We emphasize that there are several iterative meth-
ods to find the unique solution (with linear rate) (Bauschke &
Combettes, 2017, §26) and that, as in Remark 8, convergence
is guaranteed even if the solution is approximated at each step
(with summable errors). □

Remark 11. If, for some i ∈ I, there exists a function ϕi such that
∇y ϕi(y, sk+1i ) = F̃i(y, y+ sk+1i ), then the update of xki in Algorithm
4 can be simplified as

xk+1i = argmin
y∈Ωi

(
ϕi(y, sk+1i )+ 1

2ατi

y− xki
2

+
1
α
(A⊤i λ

k
i )
⊤y+ 1

α

(∑N
j=1wij(σ k

i − σ
k
j )

)⊤y),
s in Lemma 6. For scalar games (i.e., n̄ = 1) this condition
olds for all i ∈ I. Another noteworthy example is that of a cost
i(xi, avg(x)) = f̄i(xi)+(Qi avg(x))⊤xi, for some function f̄i and sym-
metric matrix Qi, which models applications as the Nash–Cournot
game described in Koshal et al. (2016) and the resource allocation
problem considered in Belgioioso and Grammatico (2017). In this
case, ϕ (x , s ) = f̄ (x )+ (Q (s + x ))⊤x − N−1x⊤Q x . □
i i i i i i i i i 2N i i i
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emark 12. Inertial/relaxed versions of Algorithm 4 can be stud-
ied as in Section 5; further, linear convergence can be established
for aggregative games without coupling constraints, based on the
restricted strong monotonicity of F̃a (see the proof of Lemma 11
n Appendix B), as in Theorem 3. □

. Numerical simulations

.1. Nash–Cournot game

We consider a Nash–Cournot game (Pavel, 2020, §6), where
firms produce a commodity that is sold to m markets. Each

irm i ∈ I = {1, . . . ,N} participates in ni ≤ m of the markets,
nd decides on the quantities xi ∈ Rni of commodity to be
elivered to these ni markets. The quantity of product that each
irm can deliver is bounded by the local constraints 0ni ≤ xi ≤ Xi.
oreover, each market k = 1, . . . ,m has a maximal capacity

k. This results in the shared affine constraint Ax ≤ r , with
= col((rk)k=1,...,m) and A = [A1 . . . AN ], where Ai ∈ Rm×ni is

the matrix that expresses which markets firm i participates in.
pecifically, [Ai]k,j = 1 if [xi]j is the amount of product sent to the
th market by agent i, [Ai]k,j = 0 otherwise, for all j = 1, . . . , ni,
= 1, . . . ,m. Hence, Ax =

∑N
i=1 Aixi ∈ Rm is the vector of the

uantities of total product delivered to the markets. Each firm i
ims at maximizing its profit, i.e., minimizing the cost function
i(xi, x−i) = 10−3 ∗ (ci(xi)−p(Ax)⊤Aixi). Here, ci(xi) = x⊤i Qixi+q⊤i xi
is firm i’s production cost, with Qi ∈ Rni×ni , Qi ≻ 0, qi ∈ Rni .
Instead, p : Rm

→ Rm associate to each market a price that
depends on the amount of product delivered to that market.
Specifically, the price for the market k, for k = 1, . . . ,m, is
[p(x)]k = P̄k -χk[Ax]k, where P̄k, χk > 0.

We set N = 20, m = 7. The market structure (i.e., which
firms are allowed to participate in which of the m markets) is
defined as in Pavel (2020, Fig. 1); thus x = col((xi))i∈I ∈ Rn

and n = 32. The firms cannot access the production of all the
competitors, but they are allowed to communicate with their
neighbors on a randomly generated connected graph. We select
randomly with uniform distribution rk in [1, 2], Qi diagonal with
diagonal elements in [1, 8], qi in [1, 2], P̄k in [10, 20], χk in [1, 3],
Xi in [5, 10], for all i ∈ I, k = 1, . . . ,m.

The resulting setup satisfies all our theoretical assump-
tions (Pavel, 2020, Section VI). We set α = αmax ≈ 0.7 as in
Lemma 3 and we choose the step sizes as in Lemma 5 to satisfy
all the conditions of Theorem 2.

We compare the performance of Algorithm 1 versus that of
the pseudo-gradient method in Pavel (2020, Alg. 1), which is to
the best of our knowledge the only other available single-layer
fixed-step scheme to solve GNE problems under partial-decision
information. In Pavel (2020, Alg. 1), we choose the parameter c
that maximize the step sizes τ , ν, σ , provided that the conditions
in Pavel (2020, Th. 2) are satisfied. This results in very small step
sizes, e.g., τ ∗ ≈ 10−5.

The results are illustrated in Fig. 1, where the two Algorithms
are initialized with the same random initial conditions. Pavel
(2020, Alg. 1) is extremely slow, due to the small step sizes; and
our PPPA method shows a much faster convergence. According
to our numerical experience, the bounds on the parameters are
conservative, and in effect we observe faster convergence for
larger step sizes. For Pavel (2020, Alg. 1), the fastest convergence
is attained by setting the step sizes 104 times bigger than the
theoretical bounds; for larger steps, convergence is lost.

We repeat the simulation for different numbers of agents (and
random market structures). Differently from Algorithm 1, the up-
per bounds for the step sizes in Pavel (2020, Alg. 1) decrease when
N grows (see Section 5.1), resulting in a greater performance

degradation, as shown in Fig. 2 (with theoretical parameters for

10
Fig. 1. Distance from the v-GNE for our PPPA (Algorithm 1) and the FB algorithm
in Pavel (2020, Alg. 1), for different parameters (the solid line for the theoretical
step sizes).

Fig. 2. Variation of the number of iterations #N needed to reach a precision of
∥xk− x∗∥ ≤ 10−2 for different values of the number of agents N (in logarithmic
scale): our PPPA (Algorithm 1) versus the FB method in Pavel (2020, Alg. 1).

Fig. 3. Number of iterations needed to reach a precision of ∥xk − x∗∥ ≤ 10−2 ,
with different acceleration schemes and parameters.

our PPPA, and steps 103 times larger than their upper bounds
for Pavel, 2020, Alg. 1).

Finally, we apply the acceleration schemes discussed in
Section 5 to Algorithm 1, with parameters that theoretically en-
sure convergence. The impact is remarkable, up to halving the
number of iterations needed for convergence, as shown in Fig. 3.

7.2. Charging of plug-in electric vehicles

We consider the charging scheduling problem for a group of
plug-in electric vehicles, modeled by an aggregative game (Gram-
matico, 2017). Each user i ∈ I = {1, . . . ,N} plans the charging of
its vehicle for an horizon of 24 hours, discretized into n̄ intervals;
the goal is to choose the energy injections xi ∈ Rn̄ of each time
interval to minimize its cost Ji(xi, avg(x)) = gi(xi) + p(avg(x))⊤xi,
where gi(xi) = x⊤i Qixi + c⊤i xi is the battery degradation cost, and
p(ξ ) = a(ξ + d) + b1n̄ is the cost of energy, with b a baseline
price, a the inverse of the price elasticity and d ∈ Rn̄ the inelastic
demand (not related to vehicle charging) along the horizon. We
assume a maximum injection per interval and a desired final
charge level for each user, resulting in the local constraints Ωi =

{y ∈ [0n̄, x̄i] | 1⊤n̄ y = γi}. Moreover, we consider the transmission
line constraints 0 ≤

∑
x ≤ c̄N .
n̄ i∈I i
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Fig. 4. Distance of the primal variable from the v-GNE. Our PPPA (Algorithm 4)
outperforms the FB algorithm in Gadjov and Pavel (2021, Alg. 1), in terms of
both communication rounds and performed projected gradient steps.

Fig. 5. Maximum (blue) and average (light blue) number of projected gradient
steps performed by the agents at each iteration in Algorithm 4, with guaranteed
accuracy of εk = 1/k2 .

Fig. 6. Number of iterations to reach a precision of ∥x−x∗∥ ≤ 10−2 for different
values of the algebraic connectivity, where λ2(L) = 1 indicates a complete graph
(all the graphs are doubly stochastic): our PPPA (Algorithm 4) versus the FB in
Gadjov and Pavel (2021, Alg. 1).

We set N = 1000, n̄ = 12. For all i ∈ I, we select with
uniform distribution ci in [0.55, 0.95], Qi ≻ 0 with diagonal and
off-diagonal elements in [0.2, 0.8] and [0, 0.05], respectively, γi
in [0.6, 1]; [x̄i]j = 0.25 with probability 20%, [x̄i]j = 0 otherwise.
We set [c̄]j as 0.04 if j ∈ {1, 2, 3, 11, 12}, as 0.01 otherwise
(corresponding to more restrictive limitations in the daytime);
a = 0.38, b = 0.6 and d as in Grammatico (2017). We check
numerically that Standing Assumptions 1, 2 hold, and let the
agents communicate over a randomly generated connected graph.
We implement Algorithm 4, by performing only a finite number
of gradient steps per iteration; each agent i uses the stopping
criterion in (19) to ensure an accuracy of εki = 1/k2. Fig. 4
compares the performance of Algorithm 4 and Gadjov and Pavel
(2021, Alg. 1) (which requires two rounds of communication per
iteration), with step sizes set to their theoretical upper bounds.
Notably, our PPPA significantly outperforms (Gadjov & Pavel,
2021, Alg. 1), even in terms of total projected gradient steps
required (for Algorithm 4, we consider the maximum among the
agents at each iteration). Interestingly, Fig. 5 shows that the max-
imum number of performed gradient steps at each iteration is 3
11
and decreases as the iteration converges, despite the increasing
accuracy required in the local optimizations (see also Remark 8).

Differently from our PPPA, the upper bounds for the step sizes
in Gadjov and Pavel (2021) are proportional to the quantity µÃ
in Gadjov and Pavel (2021, Lem. 4), hence they depend on λ2(L),
θ0, µ, θ (but not on N , cf. Sections 7.1, 5.1); in turn, we expect
these parameters to affect to a larger extent the convergence
speed for the FB method. In Fig. 6 we compare the two algorithms,
with N = 10, for different values of the communication graph
connectivity: in the considered range, the number of iterations
to converge varies by a factor 2 for Algorithm 4, by a factor 103

for Gadjov and Pavel (2021, Alg. 1).

8. Conclusion

Inexact preconditioned proximal-point methods are extremely
efficient to design fully-distributed single-layer generalized Nash
equilibrium seeking algorithms. The advantage is that conver-
gence can be guaranteed for much larger step sizes compared
to pseudo-gradient-based algorithms. In fact, in our numerical
experience, our algorithms proved much faster than the existing
methods, resulting in a considerable reduction of communication
and computation requirements. Besides, the operator-theoretic
approach facilitates the design of acceleration schemes, also in
the partial-decision information setup. As future work, it would
be highly valuable to relax our monotonicity and connectivity
assumptions, namely to allow for merely monotone game map-
pings and jointly connected networks, and to address the case of
nonlinear coupling constraints.

Appendix A. Proof of Theorem 1

For all k ∈ N, let zk := ωk
+ γ k(uk

− ωk), so that ωk+1
=

zk + γ kek. Consider any ω∗ ∈ C . We have, for all k ∈ N,

∥zk − ω∗∥2P
= ∥ωk

− ω∗∥2P − 2γ k
⟨ωk
− uk
| ωk
− ω∗⟩P + (γ k)2∥uk

− ωk
∥
2
P

≤ ∥ωk
− ω∗∥2P − γ

k(2− γ k)∥uk
− ωk
∥
2
P , (A.1)

where the inequality follows by Lemma 4.
(i) By (A.1), ∥zk − ω∗∥P ≤ ∥ωk

− ω∗∥P , and the conclusion
follows by the Cauchy–Schwarz inequality.

(ii) By (γ k
∥ek∥P )k∈N ∈ ℓ1 and point (i), (ωk)k∈N is bounded. Let

c := supk∈N ∥ω
k
−ω∗∥P <∞ and ϵk := 2c(γ k

∥ek∥P )+ (γ k
∥ek∥P )2,

for all k ∈ N. Clearly, (ϵk)k∈N ∈ ℓ1. Moreover, for all k ∈ Nwe have

∥wk+1
− w∗∥2P

≤ (∥zk − w∗∥P + γ k
∥ek∥P )2

≤ ∥wk
− w∗∥2P − γ

k(2− γ k)∥uk
− wk
∥
2
P + ϵ

k, (A.2)

and the thesis follows by recursion.
(iii) It follows by (A.2) and the results in Combettes (2001,

Prop. 3.2(i)) and Combettes (2001, Th. 3.8).
(iv) By definition of resolvent, ωk

− uk
∈ B(uk); hence

⟨uk
− ω∗ | ωk

− uk
⟩P ≥ µB∥uk

− ω∗∥2P . (A.3)

By the Cauchy–Schwarz inequality, ∥ωk
− uk
∥P ≥ µB∥uk

− ω∗∥P .
Thus, (A.3) yields

∥ωk
− ω∗∥2P

= ∥uk
− ω∗∥2P + 2⟨uk

− ω∗ | ωk
− uk
⟩P + ∥ω

k
− uk
∥
2
P

≥ (1+ µB)2∥uk
− ω∗∥2P . (A.4)

If γ k
≤ 1, by the Cauchy–Schwarz inequality and (A.4), we have

∥zk−ω∗∥P ≤ (1−γ k)∥ωk
−ω∗∥P+γ

k
∥uk
−ω∗∥P ≤ (1− γ kµB

1+µB
)∥ωk
−

ω∗∥P . For γ k > 1, we can write

∥zk − ω∗∥2
P
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= (1− γ k)2∥ωk
− ω∗∥2P + γ

k(2− γ k)∥uk
− ω∗∥2P

+ 2γ k(1− γ k)⟨uk
− ω∗ | ωk

− uk
⟩P

≤ (1− γ k)2∥ωk
− ω∗∥2P

+ γ k(2(1+ µB)− γ k(1+ 2µB))∥uk
− ω∗∥2P (A.5)

≤ (max(1− γ kµB
1+µB

, γ k
− 1))2∥ωk

− ω∗∥2P , (A.6)

here the first equality follows by rearranging the terms in (A.1);
n the first inequality we used (A.3); the last inequality follows by
aking into account that the second term in (A.5) is nonpositive
f γ k

∈ (1, 1 + 1
1+2µB

] and can be upper bounded via (A.4) if
γ k
∈ [1 + 1

1+2µB
, 2). Finally, assume that ωk

∈ C , and choose
uk
= ωk. Then (A.6) implies ωk

= ω∗, hence C must be a singleton.
■

Appendix B. Proof of Theorem 4

Analogously to Lemma 6, it can be shown that Algorithm 4 is
equivalent to the iteration

ωk+1
∈ JΦ̃−1Ã(ωk), ω0

= ω̄0, (B.1)

where ω̄0 = (x0, 0n, 0Em,λ
0), for some x0 ∈ Ω , λ0

∈ RNm
≥0 , modulo

the transformation zk = V⊤m vk .
First, we show that the iteration in (B.1) is uniquely defined.

For all i ∈ I, let Fi(y, ϑk) := αF̃i(y, y+ sk+1i )+ 1
τi
(y− xki )+A⊤i λ

k
i +

N
j=1wi,j(σ k

i − σ
k
j ) + NΩi (y), where ϑk

= (xk, sk+1, sk,λk). We
note that F̃i is θ̃-Lipschitz, because F̃ is θ̃-Lipschitz by Lemma 8.
Then, by monotonicity of the normal cone, we have ⟨y − y′ |
Fi(y, ϑk)−Fi(y′, ϑk)⟩ ≥ (τ−1i −α

√
2θ̃ )∥y−y′∥2, for any y, y′ ∈ Rn,

or any ϑk. By the assumption on α, Fi is strongly monotone in
y for any ϑk, hence the inclusion in (24) has a unique solution,
for any ϑk (Bauschke & Combettes, 2017, Cor. 23.37). Therefore,
it also holds that dom(JΦ̃−1Ã) = R2n+Em+Nn and that JΦ̃−1Ã is
single-valued.

We turn our attention to the set Σ in (33). As in Remark 9,
for any ς ∈ Σ , JΦ̃−1Ã(ς ) ∈ Σ; hence Σ is invariant for (B.1).
Moreover, ω0

∈ Σ . Hence, in (B.1), it is enough to consider the
operator JΦ̃−1Ã|Σ , where B|Σ is the restriction of the operator B
o Σ , i.e., B|Σ (ω) = B(ω) if ω ∈ Σ , B|Σ (ω) = ∅ otherwise. By
nvariance and (16), it also follows that JΦ̃−1Ã |Σ= JΦ̃−1Ã|Σ |Σ .
Thus, the iteration in (B.1) is rewritten as

ωk+1
= JΦ̃−1Ã|Σ (ω

k), ω0
= ω̄0

∈ Σ . (B.2)

We show the convergence of (B.2) by studying the properties of
Ã |Σ . We start by characterizing the zero set.

Lemma 10. The following statements hold:

(i) If col(x∗, s∗, v∗,λ∗) ∈ zer(Ã |Σ ), then s∗ = 1N ⊗ avg(x∗)− x∗
and x∗ is the v-GNE of the game in (1).

(ii) zer(Ã |Σ ) ̸= ∅. □

Proof. Let Vq := V ⊗ Iq, Lq := L ⊗ Iq = V⊤q Vq, for any q > 0;
ence, under Standing Assumption 3, we have

null
(
Lq

)
= null

(
Vq

)
= range(1N ⊗ Iq) (B.3)

ange(V⊤q ) ⊇ range
(
Lq

)
= null(1⊤N ⊗ Iq). (B.4)

(i) Let us consider any ω∗ = col(x∗, s∗, v∗,λ∗) ∈ zer(Ã |Σ ), and
et σ ∗ = x∗ + s∗; then we have

0n̄ ∈ αF̃ (x∗, σ ∗)+ L n̄σ
∗
+ NΩ (x∗)+ A⊤λ∗ (B.5a)

0n̄ = L n̄σ
∗ (B.5b)
∗
0Em = −Vmλ (B.5c)

12
Nm ∈ b+ NRNm
≥0

(λ∗)−Ax∗ + V⊤m v∗ (B.5d)

y (B.5c) and by (B.3), we have λ∗ = 1N ⊗ λ∗, for some
∗
∈ Rm; by (B.5b) and since ω∗ ∈ Σ , it must hold σ ∗ =

∗
+ s∗ = 1N ⊗ avg(x∗). It is then enough to prove that

he pair (x∗, λ∗) satisfies the KKT conditions in (3). By (B.5a)
nd by recalling that A⊤(1N ⊗ λ∗) = A⊤λ∗ and F̃ (x∗, 1N ⊗
∗) = F (x∗), we retrieve the first KKT condition in (3). We
btain the second KKT condition by left-multiplying both sides
f (B.5d) with (1⊤N ⊗ Im) and using that (1⊤N ⊗ Im)b = b, (1⊤N ⊗
m)Lm = 0 by (B.3) and symmetry of L, (1⊤N ⊗ Im)A = A and
1⊤N ⊗ Im)NRNm

≥0
(1N ⊗ λ

∗) = NNRm
≥0
(λ∗) = NRm

≥0
(λ∗).

(ii) Let us consider any pair (x∗, λ∗) satisfying the KKT condi-
ions in (3) (one such pair exists by Assumption 2). We next show
hat there exists v∗ ∈ REm such that ω∗ = col(x∗, 1N ⊗ avg(x∗)−
∗, z∗, 1N ⊗ λ

∗) ∈ zer(Ã |Σ ). Clearly, ω∗ ∈ Σ . Besides, ω∗ satisfies
he conditions (B.5a)–(B.5c), as in point (i). By (3), there exists
∗
∈ NRm

≥0
(λ∗) such that Ax∗ − b − u∗ = 0n. Also, NRNm

≥0
(1N ⊗

∗) =
∏

i∈I NRm
≥0
(λ∗), and it follows by properties of cones that

ol
(
u∗1, . . . , u

∗

N

)
∈ NRNm

≥0
(1N ⊗ λ

∗), with u∗1 = · · · = u∗N =
1
N u
∗.

ence (1⊤N ⊗ Im)
(
−Ax∗ + b+ col

(
u∗1, . . . , u

∗

N

))
= b− Ax∗ + u∗ =

m, or−Ax∗+b+col
(
u∗1, . . . , u

∗

N

)
∈ null(1⊤N⊗Im) ⊆ range(V⊤m ), by

B.4). Therefore there exists v∗ such that also the condition (B.5d)
s satisfied, for which ω∗ ∈ zer(Ã). ■

Next, similar to Lemma 3, we show restricted monotonicity of
he operator Ã |Σ .

emma 11. Let α ∈ (0, α̃max], with α̃max as in (32). Then Ã|Σ is
estricted monotone. □

roof. The operator Ã |Σ is the sum of three components,
s in (30). The third is monotone by properties of the nor-
al cones (Bauschke & Combettes, 2017, Th. 20.25), the second
ecause it is a linear skew-symmetric operator (Bauschke &
ombettes, 2017, Ex. 20.35) (and restriction does not cause loss
f monotonicity, by definition). For the first term, let (ω, u) ∈
ra(Ã |Σ ), ω := col(x, s, v,λ), ω∗ = col(x∗, s∗, v∗,λ∗) ∈ zer(Ã |Σ ),
= x+s, σ ∗ = s∗+x∗. By Lemma 10, s∗ = 1N⊗avg(x∗)−x∗. Then,

by Gadjov and Pavel (2021, Lemma 4), there is a µ̃ > 0 such that
⟨col(x − x∗, s − s∗) | F̃a(x, s) − F̃a(x∗, s∗)⟩ = ⟨x − x∗ | αF̃ (x, σ ) −
αF̃ (x∗, σ ∗)⟩+ ⟨σ − σ ∗ | L n̄(σ − σ ∗)⟩ ≥ µ̃∥col(x− x∗, σ −σ ∗)∥2 ≥
µF̃a∥col(x − x∗, s − s∗)∥2, where µF̃a := (3 −

√
5)µ̃/2 and the

ast inequality follows by definition of σ and bounds on quadratic
orms. ■

Finally, the preconditioning matrix Φ̃ is positive definite by
emma 9. As in Lemma 7, by Lemma 11, it holds that Φ̃−1Ã |Σ
s restricted monotone in HΦ̃ . In view of (B.2), the conclusion
ollows analogously to Theorem 2. ■
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