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Abstract—In this work, we deal with the problem of recon-
structing a complete bandlimited graph signal from partially
sampled noisy measurements. For a known graph structure, an
efficient greedy algorithm is presented to partition the graph
nodes into disjoint subsets such that sampling the graph signal
from any subset leads to a sufficiently accurate reconstruction.
Furthermore, we consider a scenario where the graph is massive
and data processing centrally is no longer practical. To overcome
this issue, a distributed framework is proposed that allows us
to implement partitioning algorithms in a parallelized fashion.
Finally, we provide numerical simulation results on synthetic and
real-world data to show that our proposals outperform the state-
of-the-art.

Index Terms—Graph signal processing, sampling on graphs,
submodular optimization.

I. INTRODUCTION

Graph signal processing (GSP) is an emerging field that
studies graph-supported signals, extending the notion of time-
varying signals to signals on irregular domains like graphs
[1].

Due to the massive size of many real-world graphs, e.g., an
internet of things (IoT) sensor network, sampling all the data
points is often highly energy-consuming. Motivated by this
challenge, we focus on solving the following problem in this
work: given a graph structure, how to partition it into disjoint
subsets where noisy measurements are performed such that
the entire graph signal can be reconstructed by all subsets with
high accuracy on average. With such a partition, we can reduce
transmission energy by sampling representative subsets one by
one at each sampling round instead of transmitting readings
from every sensor.

Many works exist that focus on designing the “best” sam-
pling subset to reconstruct a graph signal [2], [3], [4], [5]. In
particular, [6] aims at finding one fixed-size sampling subset
based on the minimum mean square error (MSE) criterion.
A later work [7] concentrates on finding a partition with
the maximum number of disjoint subsets for a given MSE
threshold. Then [8] considers the problem that minimizes the
MSE of the worst subset for a fixed number of subsets. Several
greedy heuristics are proposed for these partitioning problems,
but none yields a performance guarantee.

In this paper, we formulate the problem as a submodular
welfare (SW) problem based on D-optimal design and present
a greedy algorithm that yields a 1

2 -approximation ratio. Then, a

distributed framework is proposed, which is helpful for large-
scale datasets. Numerical results on synthetic and real-world
graphs show the advancement of our methods. In particular,
we show that our presented algorithm outperforms the simul-
taneous iterative partitioning (SIP) algorithm proposed in [8],
which is considered the state-of-the-art.

II. BACKGROUND

A. Graph Signal Processing

A graph G = (N , E) is defined as a finite set of nodes
N = {v1, v2, . . . , vN} and a limited set of edges E [9],
which is a generic data representation form that is useful
for depicting the topological structure of data domains in
various applications, including social networks, transportation
networks, sensor networks, brain networks, etc. [1]. The
weight wij associated with node i and j usually represents the
similarity between the two vertices; a high weight suggests the
corresponding nodes are similar, while a zero weight means
that the pair of nodes are not connected.

Algebraic matrices, for example, the adjacency matrix and
the Laplacian matrix, can represent graphs. The (weighted)
adjacency matrix A of a graph G = (N , E) is simply given
by

Aij =

{
wij , if (i, j) ∈ E
0, if (i, j) /∈ E .

(1)

In this work, we assume that all the graphs are undirected.
Hence, their corresponding adjacency matrices are symmetric.
We also introduce the degree matrix D = diag (d1, . . . , dN ),
where

di =

N∑
j=1

wij . (2)

Once we obtain the adjacency matrix and the degree matrix
of a graph, its Laplacian matrix is given by

L = D−A = UΛU⊤, (3)

where the second equality shows its (spectral) eigen decompo-
sition: Λ = diag (λ1, λ2, . . . , λN ) is a diagonal matrix collect-
ing the eigenvalues (graph frequencies) λn and the orthogonal
matrix U = [u1,u2, . . . ,uN ] collects the eigenvectors (graph
frequency modes) un. Without loss of generality, we assume
the eigenvalues are placed in increasing order for convenience.
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By assigning a scalar value to each node, we can define a
signal on top of the graph, called a graph signal, defined as
x = [x1, x2, . . . , xN ]⊤, where the ith value corresponds to
node i. Based on the eigendecomposition of L, the Fourier
transform of x on the graph is defined as x̂ = U⊤x. We
say a graph signal x is K-bandlimited if x̂k = 0,∀k > K.
Apparently, for a K-bandlimited graph signal, x = UK x̂K ,
where UK stacks the first K columns of U and x̂K collects
the first K entries of x̂.

B. Submodular Function

Here we review some definitions related to submodular
functions.

Definition 1 (Submodularity). A set function f : 2N → R is
a submodular function iff for all A,B ⊆ N ,

f(A) + f(B) ⩾ f(A ∪ B) + f(A ∩ B).

An equivalent definition known as “diminishing returns” is
given by

f(A ∪ {k})− f(A) ⩾ f(B ∪ {k})− f(B),

for all A ⊆ B ⊆ N , k /∈ B and k ∈ N .

Definition 2 (Monotonicity). A submodular function f :
2N → R is monotone if

f(A) ⩽ f(B),

∀A ⊆ B ⊆ N .

Definition 3 (Normalization). A submodular function f is said
to be normalized if

f(∅) = 0.

III. SYSTEM MODEL

We consider the model y = x+w, where y,x,w ∈ RN , x
is a Gaussian K-bandlimited graph signal with zero mean and
covariance Λx = E[xx⊤] = UKΛx̂U

⊤
K with Λx̂ = E[x̂K x̂⊤

K ]
and w is a Gaussian noise vector with zero mean and covari-
ance Λw = E[ww⊤] = I.

Now consider the problem: given a partial noisy measure-
ment of the graph signal yS = Φy, where Φ ∈ {0, 1}|S|×N

denotes the sampling operator that samples the nodes S from
N , we are asked to reconstruct the entire graph signal. The
estimated signal x′ is denoted as x′ = ΨyS = ΨΦy,
where Ψ is the interpolation operator. The corresponding error
covariance matrix K is given by

K = E(x− x′)(x− x′)⊤. (4)

As shown in detail in [6], the error covariance matrix of the
optimal interpolation corresponding to subset S is given by

K =UK

(
Λ−1

x̂ +U⊤
KΦ⊤ΦΛ−1

w Φ⊤ΦUK

)−1
U⊤

K (5)

=UK

(∑
i∈S

ũiũ
⊤
i +Λ−1

x̂

)−1

U⊤
K , (6)

where UK = [ũ1 · · · ũN ]
⊤. According to (6), the error

covariance matrix K is totally impacted by S through the
middle factor, which we denote as K(S):

K(S) =

(∑
i∈S

ũiũ
⊤
i +Λ−1

x̂

)−1

. (7)

An often used scalarization to evaluate the quality of es-
timation is based on the log volume of the η confidence
ellipsoid [10]: log det{(Λ−1

x̂ +
∑

i∈S ũiũ
⊤
i )

−1}, which is
called the D-optimality criterion. Based on this, we define
another scalar function f(S) = log det{Λ−1

x̂ +
∑

i∈S ũiũ
⊤
i }−

log det{Λ−1
x̂ }, which is composed of minus the log volume

of the η confidence ellipsoid where the inverse operator is re-
moved compared to the D-optimal design, and a normalization
constant log det{Λ−1

x̂ } that guarantees f(S) = ∅. According
to [11], f(S) qualifies how informative the node signals are
when S is sampled. A larger function value indicates that set
S carries more information.

An important fact we will exploit later is that f(S) is a
normalized monotone submodular function. A proof can be
found in [12].

IV. PROBLEM FORMULATION

We can now formulate our partitioning problem as maxi-
mizing the sum of information contributions over all sampling
subsets:

maximize f (S1) + · · ·+ f (SP )
subject to S1 ∪ · · · ∪ SP = N

Si ∩ Sj = ∅,∀i, j, (8)

where N is the ground set of nodes. The problem of max-
imizing the sum of monotone submodular functions like (8)
is called an SW problem [13]. Our partitioning problem is
a special case of such problems where the functions for all
subsets are the same.

V. ALGORITHM

In [14], a simple greedy algorithm giving a 1
2 -approximation

is presented, where the performance guarantee holds for any
P . The idea is as follows: Initialize all subsets with the empty
set. Then, for each node, always add it to the subset which
benefits the most. This algorithm is shown in Algorithm 1.

Algorithm 1 Greedy Algorithm for Graph Partitioning
Input: ground set N
Output: partition {S1, · · · ,SP }

1: Sp ← ∅, p = 1, · · · , P
2: for i ∈ N do
3: j ← arg max

p∈{1,...,P}
f(Sp ∪ {i})− f(Sp)

4: Sj ← Sj ∪ {i}
5: end for
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VI. DISTRIBUTED PARTITIONING

To handle massive data, several distributed algorithms for
submodular maximization have been proposed recently [15],
[16], [17], where a single representative subset is found. In this
work, we propose a distributed framework for the partitioning
problem where disjoint representative subsets can be obtained
by parallelizing any serial partitioning algorithm.

The MapReduce style computing model [18] has proven
successful in many large-scale machine learning and data
mining algorithms [19], [20], [15]. The general idea of
MapReduce is to distribute the data to independent machines
and let all machines process their allocated data in parallel.
Based on this idea, we propose a distributed graph partitioning
framework. We distribute all nodes to M machines such that
each node is assigned to one of the machines. Then each
machine partitions its allocated nodes using Algorithm 1 or
any other algorithm so that we obtain M local partitions. In
the last step, we merge all local partitions obtained by the M
machines to get a global partition. This process is shown in
Algorithm 2. Here Sdp denotes the p-th representative subset
obtained by the distributed algorithm, Vm is the set of nodes
allocated to the m-th machine, and S(m)

p yields the p-th local
representative subset corresponding to the m-th machine.

Algorithm 2 Distributed Partitioning
Input: ground setN , partition size P , number of machines M
Output: partition {Sd1 , · · · SdP }

1: Phase 1: Distribute nodes into M disjoint sets V1, · · · ,VM
2: for m ∈ {1, · · · ,M} do in parallel
3: Phase 2: run some partitioning algorithm, resulting in

the output {S(m)
1 , · · · S(m)

P }
4: end for
5: Phase 3: Merge the partitions: Sdp ← S

(1)
p ∪ S(2)p ∪ · · · ∪

S(M)
p ,∀p = 1, · · · , P

In the remainder of this section, we derive a lower bound
for this distributed framework. To assist this derivation, the
following lemma is introduced first.

Lemma 1. For any disjoint subsets S1,S2, · · · ,Sl,

f(S1 ∪ · · · ∪ Sl) ⩽ f(S1) + · · ·+ f(Sl). (9)

Proof. Denote f (A | B) = f (A ∪ B) − f (B). Since f is
normalized, when A and B are disjoint, f(A∩B) = 0. Thus,

f(A | B) ⩽ f(A). (10)

Using the telescoping sum, we have

f(N ) = f (S1 ∪ · · · ∪ Sl) (11)
= f (S1) + f (S2 | S1) + · · ·+ f (Sl | Sl−1 ∪ · · · ∪ S1) .

(12)

Combining (10) and (12) leads to (9).

We are now ready to state the main theorem. Here we define
opt(P ) as the optimal value of (8) where P indicates the
number of subsets; accordingly, opt(M) is the optimal value

of the problem (8) if the number of subsets is equal to the
number of machines M .

Theorem 1. If the nodes are distributed to the M machines
as V1, · · · ,VM uniformly at random in Phase 1, then for any
partitioning algorithm in Phase 2, we have

E

[
P∑

p=1

f(Sdp )

]
⩾

[
1−

(
1− 1

M

)M−1
]
· opt(M)

M
. (13)

Proof. By lemma 1, for any partition {S(m)
1 , · · · ,S(m)

P } of
Vm, we have

f(S(m)
1 ) + · · ·+ f(S(m)

P ) ⩾ f(S(m)
1 ∪ · · · ∪ S(m)

P ) (14)
= f(Vm),∀m = 1, · · · ,M. (15)

Since f is monotone,

f(S(1)p ∪ S(2)p ∪ · · · ∪ S(M)
p ) ⩾ f(S(m)

p ),∀m, p. (16)

Therefore,

P∑
p=1

f(Sdp ) =
P∑

p=1

f(S(1)p ∪ S(2)p ∪ · · · ∪ S(M)
p ) (17)

⩾ f(S(m)
1 ) + f(S(m)

2 ) + · · ·+ f(S(m)
P ) (18)

⩾ f(S(m)
1 ∪ S(m)

2 ∪ · · · ∪ S(m)
P ) (19)

= f(Vm),∀m. (20)

Taking the expectation on both sides, we obtain

E[
P∑

p=1

f(Sdp )] ⩾ E[f(Vm)]. (21)

Because every node in Vm is independently assigned with
probability 1

M , by the proof of the positive part of Theorem
1.6 in [21], we have

E[f(Vm)] ⩾

[
1−

(
1− 1

M

)M−1
]
· opt(M)

M
, (22)

and hence the result holds.

The following corollary is of interest when we have more
machines than sampling subsets, i.e., M ≥ P .

Corollary 1. If M ⩾ P and the nodes are distributed to the
M machines as V1, · · · ,VM uniformly at random in Phase 1,
then for any partitioning algorithm in Phase 2, we have

E

[
P∑

p=1

f(Sdp )

]
⩾

[
1−

(
1− 1

M

)M−1
]
· opt(P )

M
. (23)

Proof. We have to prove that when M ⩾ P , opt(M) ⩾
opt(P ). Without loss of generality, we assume M = P + 1.
Denote the optimal solution w.r.t. opt(M) by {V∗

1 , · · · ,V∗
M},

and the optimal solution w.r.t. opt(P ) by {S∗1 , · · · ,S∗P }. For
an arbitrary j = 1, · · · , P , we partition S∗j into Sj1 and Sj2.
By lemma 1 we have f(Sj1) + f(Sj2) ⩾ f(S∗j ) for any
partition {Sj1,Sj2}. Therefore,
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f(S∗1 )+ · · ·+f(Sj1)+f(Sj2)+ · · ·+f(S∗P ) ⩾ opt(P ). (24)

Since opt(M) is the optimal value for M disjoint subsets, we
have

opt(M) ⩾ f(S∗1 )+· · ·+f(Sj1)+f(Sj2)+· · ·+f(S∗P ), (25)

so the result holds.

VII. NUMERICAL RESULTS

In this section, we test the presented approaches on synthetic
and real-world graphs to show that signals can be accurately
reconstructed. Graphs in this section are generated by the
GSPBOX toolbox [22].

Fig. 1. Examples of graphs: the Minnesota road network with 2642 nodes(left)
and a graph generated by the stochastic block model with 100 nodes(right).

The parameters are set as follows: Λw = I, and Λx̂ = σxI,
where σx = 2. The objective values obtained are all normal-
ized by the factor P (log det{Λ−1

x̂ + 1
P I} − log det{Λ−1

x̂ })
since it is an upper bound of the problem (8). The proof for
this is trivial: P (log det{Λ−1

x̂ + 1
P I}− log det{Λ−1

x̂ }) is the
optimal value of the convex relaxed problem of (8), and since
the solution of the original problem lies in the feasible set of
the convex relaxed problem, we obtain the above upper bound.

A. Minnesota road graph

In this experimental setup, we use a real-world graph,
the Minnesota road map graph with N = 2642 nodes. The
parameters are set as follows: the number of disjoint subsets
P = 5, the bandwidth of the graph signal K = 20, the
number of machines for distributed implementation M = 4.
The partition obtained by Algorithm 1 is shown in Fig. 2(left).
The results of the presented approaches, along with the SIP
algorithm, are shown in the second column of Table I. We
remark here that the distributed version of each algorithm
shown in the table is implemented using Algorithm 2. In
Phase 1, nodes are distributed to the machines uniformly at
random; in Phase 2, we then use the Greedy or SIP algorithm
accordingly.

TABLE I
PERFORMANCE OF PRESENTED PARTITIONING TECHNIQUES

Normalized objective value
Minnesota Stochastic block model

Greedy 0.9999 0.8988 ± 0.0175
SIP 0.9847 0.6668 ± 0.0422

Distributed Greedy 0.9995 0.9091 ± 0.0182
Distributed SIP 0.9981 0.8880 ± 0.0173

B. Graphs produced by stochastic block model

We next test our results on 10000 realizations of a stochastic
block model with N = 100, where the intra-cluster edge
probability is set to 0.7, and the inter-cluster edge probability
to 0.3. P is set to 5, the bandwidth to K = 10, and the number
of machines to M = 4. The partition obtained by Algorithm 1
on one realization is shown in Fig. 2(right). The results of the
presented approaches and the SIP algorithm are shown in the
third column of Table I. Note that we denote by Mean ±
STD the mean and standard deviation of the results of these
realizations.

Table I shows that the presented algorithm outperforms SIP
and is near-optimal. In addition, our distributed framework
does not decrease the performance of these partitioning tech-
niques. In contrast, it even boosts SIP to a fairly significant
extent.

Fig. 2. The result of applying Algorithm 1 on the Minnesota road map
graph(left) and a random graph generated by the stochastic block model(right).

VIII. CONCLUSION

In this work, we have formulated the graph node partitioning
problem. We have shown that our problem formulation is a
particular case of an SW problem. A distributed framework
is proposed afterward, which allows to parallelize these algo-
rithms by distributing the nodes over some local machines.
We have tested our proposed methods on synthetic and real-
world graphs and showed that these methods are near-optimal
and outperform the state-of-the-art partitioning scheme. A
potential further work is to derive a tighter lower bound for
the distributed framework.
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[5] Guillermo Ortiz-Jiménez, Mario Coutino, Sundeep Prabhakar Chepuri,
and Geert Leus. Sparse sampling for inverse problems with tensors.
IEEE Transactions on Signal Processing, 67(12):3272–3286, 2019.

[6] Luiz FO Chamon and Alejandro Ribeiro. Greedy sampling of graph
signals. IEEE Transactions on Signal Processing, 66(1):34–47, 2017.

[7] Josefine Holm, Federico Chiariotti, Morten Nielsen, and Petar Popovski.
Lifetime maximization of an internet of things (iot) network based on
graph signal processing. IEEE Communications Letters, 25(8):2763–
2767, 2021.

[8] Roshni Chakraborty, Josefine Holm, Torben Bach Pedersen, and Petar
Popovski. Finding representative sampling subsets in sensor graphs
using time series similarities. arXiv preprint arXiv:2202.08504, 2022.

[9] Douglas Brent West et al. Introduction to graph theory, volume 2.
Prentice hall Upper Saddle River, 2001.

[10] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex
optimization. Cambridge university press, 2004.

[11] Lingya Liu, Cunqing Hua, Jing Xu, Geert Leus, and Yiyin Wang. Greedy
sensor selection: Leveraging submodularity based on volume ratio of
information ellipsoid. IEEE Transactions on Signal Processing, pages
1–14, 2023.

[12] Manohar Shamaiah, Siddhartha Banerjee, and Haris Vikalo. Greedy
sensor selection: Leveraging submodularity. In 49th IEEE conference
on decision and control (CDC), pages 2572–2577. IEEE, 2010.
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