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Abstract
Objective. To assess the viability of a physics-based, deterministic and adjoint-capable algorithm for
performing treatment planning system independent dose calculations and for computing
dosimetric differences caused by anatomical changes. Approach. A semi-numerical approach is
employed to solve two partial differential equations for the proton phase-space density which
determines the deposited dose. Lateral hetereogeneities are accounted for by an optimized
(Gaussian) beam splitting scheme. Adjoint theory is applied to approximate the change in the
deposited dose caused by a new underlying patient anatomy.Main results. The dose engine’s
accuracy was benchmarked through three-dimensional gamma index comparisons against Monte
Carlo simulations done in TOPAS. For a lung test case, the worst passing rate with (1 mm, 1%,
10% dose cut-off) criteria is 94.55%. The effect of delivering treatment plans on repeat CTs was
also tested. For non-robustly optimized plans the adjoint component was accurate to 5.7% while
for a robustly optimized plan it was accurate to 4.8%. Significance. Yet anOther Dose Algorithm is
capable of accurate dose computations in both single and multi spot irradiations when compared
to TOPAS. Moreover, it is able to compute dosimetric differences due to anatomical changes with
small to moderate errors thereby facilitating its use for patient-specific quality assurance in online
adaptive proton therapy.

1. Introduction

1.1. Online adaptive proton therapy (OAPT) and quality assurance
Proton therapy (PT) promises to improve on conventional photon based radiotherapy for curative cancer
treatments due to the characteristics of its dose-depth curve. The proton dose-depth curve shows
simultaneously lower doses achievable in organs at risk (OARs) and an increased target dose conformality
due to the presence of the Bragg peak (BP) (Paganetti 2016). Both target dose conformality and dose in
OARs can however be degraded by the presence of uncertainties. Typical examples of uncertainty sources are
the conversion of Hounsfield units (HU) in Computed Tomography (CT) scans to proton stopping powers,
the daily positioning of the patient in the treatment room or the short and long-term anatomical changes
occurring in the patient (Lomax 2008a, 2008b). To improve target coverage, clinical proton plans are
subjected to robust optimization (der Voort et al 2016). Robust optimization seeks to create plans that
perform well under a number of error scenarios such as range and patient set-up errors (Unkelbach and
Paganetti 2018). In doing so, robust optimization creates a high dose margin around the target in the
surrounding OARs (Van de Water et al 2016). While this makes treatments less sensitive to the included
range and setup errors, other scenarios (e.g. weight loss over the course of week long treatments) are too
complex to be modelled in a straightforward manner (Paganetti et al 2021).
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The workflow of OAPT would allow the reduction of the complexity and number of robust optimization
scenarios. In this workflow, a new daily CT scan of the patient is acquired, a new fully re-optimized treatment
plan is quickly created and thereafter safely delivered (Botas et al 2018). This workflow would avoid tumor
underdosage and would result in a lowering of the Normal Tissue Complication Probability (NTCP) through
the reduction of the necessary margins around the tumor down to the intra-fractional ones for a robustly
optimized plan (Paganetti et al 2021). Unfortunately, the computational expense of plan re-optimization
(Men et al 2010) and the time needed for the (mostly manual) plan quality assurance (QA) process (Barrett
et al 2009) have so far rendered this workflow practically infeasible.

Machine QA (ranging from daily to yearly) procedures entail a series of time-consuming measurements
meant to assess the constancy of beam properties and the correct functioning of its delivery system
(Arjomandy et al 2009, Li et al 2013). In addition patient-specific quality assurance (PSQA) must also be
performed, with the goal to assess whether the differences between the planned and delivered dose
distributions are within the clinically acceptable range of±3% (Gottschalk 2004) and to perform an
independent check of the patient-specific dose that the treatment planning system (TPS) computes (Johnson
et al 2019). Additionally, PSQA also functions as a redundant check of the machine function (Frank and Zhu
2020). Currently, PSQA is manually performed via dosimetric measurements which are infeasible in an
OAPT workflow. TPS independent dose calculations (IDCs) based on log-files (records of the delivered spot
positions and corresponding Monitor Units (MUs)) have been proposed as a solution for automating PSQA
(Li et al 2013). They have been shown to have similar accuracy to dosimetric measurements and could yield
clinically relevant metrics (Meier et al 2015, Meijers et al 2020). Such an approach has potential within the
time-constrained workflow of OAPT and could also increase clinical throughput (Meijers et al 2020) by
reducing the time spent on QA.

1.2. A hybrid independent dose computation approach
To perform fast, TPS independent and log-file based dose computations the interactions between the proton
beam and the patient must be modelled, ideally not only using a different implementation of the TPS dose
engine but using a different methodology altogether. The two methods that are likely to be employed by a
TPS are the Monte Carlo (MC) method and the analytical PB method. The MC method (e.g. TOPAS (Perl
et al 2012)) trades fast computation times for high computational precision (Zheng-Ming and Brahme 1993)
by solving the in-tissue proton balance equation (i.e. the Linear Boltzmann equation) using statistical
sampling methods. The analytical PB method (e.g. Bortfeld’s model (Bortfeld 1997)) trades high precision
for fast computation times by employing a series of approximations and fits to obtain the dose in the tissue of
interest. PB methods are still routinely used in TPS (Trnková et al 2016) despite their limitations being well
documented (Soukup et al 2005).

We previously presented a methodologically different approach based on a deterministic solution of the
Linear Boltzmann equation (Burlacu et al 2023). This approach, which will henceforth be referred to as Yet
anOther Dose Algorithm (YODA), is a hybrid numerical and analytical solution to a physics motivated
approximation of the same equation that MC methods solve. The method strikes a balance in terms of
accuracy versus speed. It is accurate with respect to MC methods due to the physical modelling of the
interactions between the proton beam and the patient and it is fast due to the partly analytical solution. An
additional advantage of this approach is the ease of applying the adjoint method. Given planning and repeat
CT images with delineated structures and a treatment plan the adjoint method computes an approximation
of the change in dose caused by delivering the treatment plan to the repeat CT image, thereby avoiding an
expensive re-computation. Such an approximation could be used for triggering a plan adaptation on the
given day.

The purpose of this work is to demonstrate and test YODA’s performance in real anatomies. Thus, YODA
is compared to TOPAS, disregarding nuclear interactions, in several irradiation sites. Moreover, the adjoint
engine’s capability of accurately computing dose changes due to anatomy changes is benchmarked using TPS
generated irradiation plans. This paper also documents the improvements brought to YODA, i.e. a more
stable and an order more accurate numerical integration method, a better elastic scattering model for the
proton beam, improved modelling in the Fermi–Eyges (FE) equation, a laterally optimized Gaussian beam
splitting scheme and RT DICOM clinical treatment plan reading, compared to the original documented
version (Burlacu et al 2023). The details of these changes next to the theoretical framework of YODA are
given in section 2. Section 3 presents the results and their discussion while section 4 presents the conclusions
and future outlook.
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2. Methods

2.1. Algorithm components
To model the 6-dimensional proton phase-space density in the patient the integro-differential Linear
Boltzmann equation, which all MC methods are based on, is simplified using physics based approximations.
The approximations employed, namely the continuous slowing down approximation, the energy-loss
straggling approximation, the small-angle Fokker–Planck (FP) approximation, together with the separation
of the proton phase-space density (Gebäck and Asadzadeh 2012) into

φ
(
r,Ω̂,E

)
= φFE

(
r,Ω̂

)
·φFP (z,E) , (1)

results in two partial differential equations (PDEs) that describe the proton phase-space density in an
in-depth heterogeneous and laterally homogeneous geometry. The first PDE is the one-dimensional FP
equation (Pomraning 1996),

1DFP(φFP) =
∂φFP

∂z
− ∂S(z,E)φFP

∂E
− 1

2

∂2T(z,E)φFP

∂E2
+Σa (z,E)φFP = 0, (2)

with φFP = φFP(z,E) the proton FP flux that depends on the depth along the central axis of the beam z ∈ R
and on the beam energy E ∈ R, S(z,E) the proton stopping power, T(z,E) the energy straggling coefficient
and Σa(z,E) the macroscopic absorption cross section. The second equation is the FE equation (Eyges 1948,
Pomraning and Prinja 1999),

Υ(φFE) =
∂φFE

∂z
+Ωx

∂φFE

∂x
+Ωy

∂φFE

∂y
− Σtr (z)

2

(
∂2φFE

∂Ω2
x

+
∂2φFE

∂Ω2
y

)
= 0, (3)

with φFE = φFE(Ω̂,r) the FE flux, Ω̂= (Ωx,Ωy) ∈ R2 the direction cosines along the x and y proton velocity
axes, r = (x,y,z) ∈ R3 a point in physical beam-eye view space (with z the depth along the beam) and Σtr(z)
the energy spectrum (i.e. φFP) averaged macroscopic transport cross section.

By solving equations (2) and (3) the 6-dimensional proton phase-space density φ is obtained, which in
turn yields all clinically relevant metrics, such as the dose distribution or the NTCP.

2.1.1. The FP equation
The one-dimensional FP equation (2) is numerically solved using the Symmetric Interior Penalty Galerkin
(SIPG) (Rivière 2008) method in the energy domain and the three-stage, third-order accurate Singly
Diagonally Implicit Runge-Kutta (SDIRK) method (Kennedy and Carpenter 2016) in space (depth). The
energy domain is discretized into Ng intervals called groups. Within each group φFP is approximated as an
expansion around the first three group-centered Legendre polynomial basis functions resulting in a method
that is third order accurate in energy. The one-dimensional FP equation (2) is supplemented with global
boundary conditions in energy (BCE) and space (BCS),

BCE: φFP (z,E)

∣∣∣∣
E=Emax

= 0,
∂φFP (z,E)

∂E

∣∣∣∣
E=Emax

= 0,
∂φFP (z,E)

∂E

∣∣∣∣
E=Emin

= 0, (4)

BCS: φFP (0,E) = Ae
−
(

E−E0
σE

)2

, (5)

to ensure a unique solution. The energy boundary conditions are of the Dirichlet and Neumann type, while
the space boundary condition is a Gaussian function with amplitude A, nominal beam energy E0 and spread
σE. Gerbershagen et al (2017) showed that this is a realistic energy spectrum for protons that underwent
energy degradation. After discretizing the system in energy a so called semi-discrete system of equations is
obtained that is thereafter solved using the SDIRK3 method3.

2.1.2. The FE equation
The advantage of the FE equation (3) is its analytical solution via Fourier transforms (Gebäck and Asadzadeh
2012), namely

φFE

(
z,ρ,Ω̂

)
=

A2

4π2

exp
(
− |ρ|2

2ξ2(z)

)
ξ2 (z)

exp

(
− 1

2B(z)

∣∣∣Ω̂− θξ(z)

ξ2(z)
ρ
∣∣∣2)

B(z)
. (6)

3 When compared to the Crank-Nicholson method in our earlier work (Burlacu et al 2023), this method increased the accuracy of the FP
fluxes without degrading the speed of the algorithm.
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The solution from equation (6) is a Gaussian in the beam lateral coordinates ρ= (x,y) and in the angular
coordinates Ω̂= (Ωx,Ωy) with its depth-dependent FE coefficients, namely θ2(z) (variance of the angular

direction), ξ2(z) (variance of the lateral position), θξ(z) (covariance of the lateral position and angular
direction) (Gottschalk 2012), determined by the material path encountered along the central axis of the
beam. The solution φFE is obtained by imposing a boundary condition that is a product of two identical
double Gaussians, one in (x,Ωx) and one in (y,Ωy).

As shown in section 2.2, to obtain the dose in a physical region only the ξ2 coefficient is needed. This is
the second moment of Σtr and is computed as

ξ2 (z) = ξ2 (0)+ 2θξ (0)z+ θ2 (0)z2 +

zˆ

0

(z− z ′)
2
Σtr (z

′)dz ′ (7)

with ξ2(0), θ2(0) and θξ(0) constants based on the imposed double Gaussian boundary condition. The
quantity Σtr is the macroscopic transport cross section Σtr averaged over the depth-dependent energy
spectrum (i.e. φFP)4, namely

Σtr (z) =

ˆ
dEφFP (z,E)Σtr (z,E)

/ˆ
dEφFP (z,E) ,

with the macroscopic transport crossΣtr computed using the macroscopic elastic scatter cross sectionΣs via

Σtr (z,E) =

1ˆ

−1

dµΣs (z,E,µ)(1−µ) , with µ= cos
(
Ω̂ · Ω̂

′)
.

There are multiple elastic scatter models that can be used to compute Σs. In this work, the two models that
were investigated were the small-angle first Born approximation scatter model and Moliere’s model (Scott
1963). Moliere’s model provides improvements over the first Born approximation as it is valid for large
angles, does not assume that the nucleus has infinite mass and includes the contribution of electronic
screening of the nucleus. A comparison between these two models is shown in figure 1 where it can be seen
that Moliere’s model predicts an increased macroscopic elastic scatter cross section for all energies. This
implies a larger transport cross section Σtr which in turn implies a larger variance of the lateral position of
the FE solution that better matches the lateral profiles obtained from TOPAS.

2.2. Metric definition
The 6-dimensional phase-space density resulting from the individual solutions to the FP and FE equations
can be used to obtain all clinically relevant metrics. For example, to compute the dose it is useful to introduce
ΨFE as the angular integral of φFE, namely

ΨFE (r) =

ˆ

4π

dΩ̂φFE

(
Ω̂,r

)
=

A2

2πξ2 (z)
exp

(
−x2 + y2

2ξ2 (z)

)
, (8)

andΨFP as the energy integral of the Emultiplied S, T and Σa terms from the FP equation (2), namely

ΨFP (z) =

∞̂

0

dEE

[
−∂S(z,E)φFP

∂E
− 1

2

∂2T(z,E)φFP

∂E2
+Σa (z,E)φFP

]
. (9)

Then, if the CT image volume is given by the union of all of its Nv voxels (i.e. V =
⋃
Vk,k= 1, . . . ,Nv where

Vk is the volume of one voxel), the energy Ek deposited by the proton beam in a voxel Vk is given by

Ek =

ˆ
Vk

dVΨFE (r)ΨFP (z) .

The dose Dk in the same voxel k is given as

Dk =
Ek
mk

=
1

∆V

ˆ
Vk

dV
ΨFE (r)ΨFP (z)

ρk
,

4 In the original formalism, Σtr depends on the average depth-dependent beam energy Ea(z). It was found that weighing Σtr with the
depth-dependent energy spectrum yields more accurate lateral profiles that better match MC results.
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Figure 1. Comparison of the macroscopic elastic scatter cross section for protons in water computed by the small-angle first Born
approximation and Moliere’s model.

where∆V=∆x∆y∆z is the volume of a voxel k (constant for all voxels in the CT image) and ρk is the mass
density of voxel k. Thus, the total dose in a certain region of interest (ROI) of the CT image, identified by the
union of its corresponding voxels, is the sum of Dk over all k in the ROI.

2.3. Accounting for lateral heterogeneities
As equations (2) and (3) show, the formalism presented is inherently unable to account for heterogeneities
located laterally to the central beam axis. To account for such cases, two modifications are introduced. First,
the deposited energy density is multiplied by a laterally-dependent density scaling. This is physically
motivated as the deposited energy is directly proportional to the local density. Second, each treatment plan
spot (i.e. pencil beam) is decomposed into several sub-spots (i.e. beamlets) that are placed on concentric
rings around the original spot position. The properties of the rings and of the beamlets on the rings are
optimized for best performance.

2.3.1. Lateral density scaling
The energy density in a voxel k is scaled by the ratio of the density ρck on the central beam axis at a depth that
corresponds to the voxel k and the density ρk of the voxel itself, namely

Ek =

ˆ

Vk

dV
ρk
ρck

ΨFE (r)DFP (z) , (10)

Using this scaling, the dose in voxel k becomes

Dk =
1

∆V

ˆ

Vk

dV
ΨFE (r)DFP (z)

ρck
. (11)

Thus, a pencil beam distributes laterally a dose proportional to the density along the central beam axis.

2.3.2. Optimized Gaussian beam splitting
On the boundary of the computational domain, the lateral dependence of the six-dimensional phase-space
density is described by

Ψz=0
FE (x,y) =

ˆ

4π

φFE

(
x,y,z= 0,Ωx,Ωy

)
dΩ̂=

1

2πσ2
s

exp

(
−
(
x2 + y2

)
2σ2

s

)
, (12)
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where σs is the spatial standard deviation or spread of the x and y symmetric Gaussian. For the purpose of
lateral beam splitting the original spot’s central axis is placed at the origin of a 2D lateral grid. Given the radial
symmetry of the Gaussian, placing sub-spots or beamlets on Nr + 1 concentric rings with radii ri around the
original spot location was chosen, in a similar manner to Yang’s method (Yang et al 2020). On a given ring i
the beamlets share the same weight wi and spread σi. The zeroth ring has a radius equal to zero and a single
beamlet that is placed at the origin of the 2D lateral grid. Thus, the approximated fluenceΨa

FE is written as

Ψa
FE (x,y) =

Nr∑
i=0

ni∑
k=1

wi

2πσ2
i

exp

(
− (x− xik)

2
+(y− yik)

2

2σ2
i

)
,

xik = ri cos

(
2π k

ni
+αi

)
,yik = ri sin

(
2π k

ni
+αi

)
, (13)

with ni being the number of sub-spots placed on ring i, (xik,yik) are the coordinates of a sub-spot with index
k on ring i and αi is a ring-dependent angular offset (meant to improve coverage for consecutive rings with
the same number of beamlets). Prior to the optimization the number of rings Nr, the number of points on
each ring ni and the ring offsets αi are specified. As opposed to Yang’s (2020) approach this formalism and
implementation is not restricted to a number of pre-defined schemes. In principle any number of beamlets
per ring and number of rings can be optimized. The optimization parameters (weights, spreads and ring
radii) are collected in a vector denoted by θ ∈ R3(Nr+1) with a structure of θ = (. . . ,wi, ri,σi, . . .). The
objective function of the optimization problem is defined as

J(θ) =

10σs¨

−10σs

dxdy
(
Ψa

FE −Ψz=0
FE

)2/ 10σs¨

−10σs

dxdy
(
Ψz=0

FE

)2
,

and is input into a scipy implementation of a trust-region constrained algorithm (Lalee et al 1998, Virtanen
et al 2020). The weights wi are bound constrained to be in the unit interval, namely
0⩽ wi ⩽ 1,∀i = 0, . . . ,Nr and are constrained such that

Nr∑
i=0

wi ni = 1,

in order to ensure particle number conservation. To further guide the highly degenerate solution space
towards useful splitting schemes, the ring radii are bound according to the initial spatial spread of the 2D
Gaussian σs such that 0⩽ ri ⩽ ri+1 ⩽ 2σs. This evenly distributes the rings in [0,2σs] and avoids optimal but
less useful configurations where all the rings are placed close to one another and the origin. Similarly, the
spreads of the rings σi are bound such that 0.3σs ⩽ σi ⩽ σi+1 ⩽ 0.8σs. The first ring should have the smallest
spread so that errors coming from the central axis are limited. In the case of a spot with an initial spread of
σs = 0.3cm figure 2 shows for three different splitting schemes the absolute difference betweenΨz=0

FE (x,y)
andΨa

FE(x,y) in the left column and the actual positions of the beamlets on the concentric rings together
with the optimized spreads (indicated by the circle radii) around each spot in the right column.

2.4. Metric change computation
Next to its dose computation capabilities, an advantage of YODA is the ease of applying the adjoint method.
This general mathematical framework approximates to first order the change in a metric as a function of the
change in all independent variables. Examples of possible independent variables are HU values in the CT
image or treatment plan spot characteristics such as mean energy, energy spread, position, MU value (or
equivalently the number of protons), angular spread and the spot size. Examples of metrics are the mean
dose to an OAR or NTCP values. The adjoint method is useful when the number of independent variables is
large (so that re-computing the metric for each new variable becomes prohibitively expensive) and their
change is relatively small (so that the first order adjoint approximation is accurate). Since CTs typically have
millions of voxels, this is likely always the case in radiotherapy. Examples of applications are computing dose
or NTCP differences caused by differences between planned and delivered spot MU values or isocenter
positions or by delivering yesterday’s treatment plan on today’s CT image. This section provides only the
main details of the adjoint method for the case when the independent variables that change are the HU
values of the CT image and the metric considered is the dose in a voxel Vk. Larger regions of clinical interest
are trivial generalizations of this case.

A given change in the HU values of the CT image implies two distinct changes in the deposited dose Dk in
the voxel k. One is a direct change, since a HU change in the voxel k implies, among others, a stopping power

6
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Figure 2. Left column: absolute normalized difference betweenΨ0
FE andΨa

FE using the optimized parameters. Right column:
corresponding physical optimized positions of the individual beamlets in the lateral plane. Points with the same color are on the
same ring, circle radii are σi on ring i.

change which can be directly inputted in the Dk change via equation (9). The other is an indirect change, as a
stopping power change somewhere along the proton beam path implies a proton flux change in the
considered voxel k. This change can only be known by re-solving for φ from the FP equation (2) and the FE
equation (3) with the new HU values. Thus, the change in Dk is written as,

δDk = δDk,dir + δDk,indir ,

where δ denotes a variation, δDk,dir denotes the part of δDk that can be directly computed and δDk,indir

denotes the part that would have to be re-computed.
The adjoint method removes from δDk the part δDk,indir that would have to be re-computed and in this

process computes a first order approximation to δDk. This is done by expressing δDk,indir as an inner product
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between two quantities. One is the change in the proton flux hφ caused by the change in the HU values and
the other is a vector denoted by r†, namely δDk,indir = ⟨hφ, r†⟩. The vector r† is identified as the right-hand
side of a new system called the adjoint system. This system is written as L†φ† = r† and its solution is called
the adjoint flux φ†. Using this together with the properties of the adjoint system δDk,indir is expressed as

δDk,indir = ⟨hφ, r†⟩= ⟨hφ,L†φ†⟩= ⟨Lhφ,φ†⟩=−⟨δLφFP,φ
†⟩

=

¨
dEdzφ† (z,E)

[
−∂φFP

∂z
+

∂ δSφFP

∂E
+

∂2 δTφFP

∂E2
− δEaφFP

]
, (14)

where δS , δT , δΣa are the changes in the stopping power, straggling coefficient and macroscopic absorption
cross section caused by the change in the voxel HU value. Thus, if there are NHU values for which the dose in
the voxel k is desired, re-computing would cost NHU FE and FP solutions. In contrast, the adjoint method
only performs two FE and FP solutions and NHU inner products. The construction of the right hand side r†

and of the adjoint operator L† is illustrated in our previous work (Burlacu et al 2023). This approach can be
advantageous for the time constrained cases when the changes in the CT image HU values are small enough.
For such cases, the adjoint method can provide significant time savings by avoiding an expensive
re-computation of the treatment plan on the new CT image.

3. Results and discussion

3.1. Dose engine performance
The dose engine of YODA was benchmarked against TOPAS in several irradiation test-cases such as
homogeneous and heterogeneous water tanks, head and neck (H&N), prostate and lung CTs. TOPAS
simulations were performed using the em-opt4 physics list which is the most accurate modelling of
electromagnetic interactions available within TOPAS. Nuclear interactions were excluded from this
comparison as YODA does not currently account for nuclear interactions. In all TOPAS simulations the
number of protons per spot was set to 1.0× 108 and the maximum number of available cores (48) was used.
Using this physics list and number of cores, the run-times of TOPAS were in the order of hours. In all test
cases, a YODA spot was split according to a 1+ 6+ 6+ 12+ 12+ 24 Gaussian beam splitting scheme as this
was found to yield accurate results when compared to TOPAS. For this splitting scheme on average one spot
takes 2 s to compute. Additional speed-ups could be achieved in two ways. One is to address the main speed
limitation (memory access bandwidth) by implementing the algorithm on a graphics processing unit (GPU)
card. The second is to implement an adaptive energy grid on a per sub-spot level. Currently the energy grid is
divided into a fixed number of groups which results in the majority of the groups and thereby the system
solved at each step being empty. By adapting the energy grid to be finely discretized in the locations in energy
where the flux has significant values and coarse everywhere else significant speed-ups can be expected.

3.1.1. Simplified tank geometries
First, three tank-based tests, that are typical for benchmarking pencil beam algorithms, were performed. In
all three cases, a tank (of dimensions of 10× 10× 10 cm3) was irradiated with a spot with nominal energy
100 MeV, an energy spread of 1 MeV, a spot size of 0.3 cm, an angular spread of 1.0× 10−8 rad and a
correlation of 0. The first case, denoted by (a), is the one in which the tank is composed homogeneously of
water (0HU). In the other two cases, a half-plane slab is introduced in the tank between 2 and 3 cm in depth
in the upper-half of the x–y plane (with z being the depth). This is usually one of the most challenging
geometries for pencil beam algorithms. In one case, denoted by (b), the slab was composed of bone-like
tissue of 1000HU and in the other, denoted by (c), it was composed of air-like tissue of−1000HU. The tank
was created using an in-house DICOM CT scan writer and was composed of 100× 100× 100 voxels with a
voxel size of 0.1× 0.1× 0.1 cm3. Two-dimensional slices of the dose distributions of YODA and TOPAS can
be seen in figure 3. Integrated depth doses (IDDs) and lateral profiles at different depths along the original
spot axis can be seen in figure 4.

For these simple test cases, the visual agreement is excellent, as illustrated by both figures 3 and 4. This is
also reflected in the 3D gamma index pass rates shown in table 1 under the columns denoted by−1000HU,
0HU and 1000HU. The worst passing rate using the strict 1 mm, 1%, 10% dose cutoff is 98.22%. All passing
rates presented can be further improved by fine tuning the splitting scheme. One way of doing so is to
increase the number of rings. Another, is to take advantage of the underlying CT grid in the case of this
perpendicular propagating spot. If in the lateral beam eye view grid, one beamlet is placed per voxel and the
spread is contained to the voxel lateral dimensions, the error is bound to decrease without much increase in
computational cost.

Next to the simple geometries, a more challenging sliding slab experiment was also performed. In this
experiment, the slab is moved with respect to the central axis of the beam from−4 mm to 4 mm in
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Figure 3. Dose comparison between YODA and TOPAS in the three tank-based tests. The figures illustrate 2D dose slices along
the central beam axis for YODA in the left column and for TOPAS in the right column.

increments of 2 mm. As in the previous tests, the composition of the slab is set to either−1000 HU or 1000
HU and its depth is kept between 2 cm and 3 cm. To assess the accuracy of the dose algorithm across the
clinical energy spectrum, beam energies of 70 MeV, 160 MeV, 190 MeV and 230 MeV are tested. The beam
spread is set to 1.0 in TOPAS, which implies spreads of 0.7 MeV, 1.6 MeV, 1.9 MeV and 2.3 MeV. The
remaining beam characteristics are kept identical to the previous test cases, i.e. a spread of 0.3 cm, an angular
spread of 1.0× 10−8 rad and a correlation of 0. Figures 5–7 show the best, average and the worst cases of
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Figure 4. Dose comparison between YODA and TOPAS in the three tank-based tests. The figures illustrate IDDs and lateral
profiles along the central beam axis for both codes.

these tests. A full overview of the 120 test cases is presented in the tables 2–9 from appendix. Despite the
broad range of energies and challenging lateral heterogeneities encountered, the experiment shows that
YODA computes doses with high passing rates using the strictest gamma index criteria. In addition to the
conclusions drawn from table 1, the tables presented in appendix provide three main findings. One, more
beams do not necessarily imply a more accurate result. This is supported by table 9, where a simpler beam
splitting scheme of 1+6+6+12 often performs better than the more complex 1+6+6+12+12+24 one. This
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Table 1. Gamma index passing rates for different criteria and test cases.

Gamma index

Criteria Passing rates (%) for

mm % %—cutoff −1000 HU 0 HU +1000 HU H&N Prostate Lung 1 Lung 2

1 1 0 99.96 100 99.99 100 100 100 99.99
1 1 10 98.22 99.93 99.45 99.85 99.58 95.62 94.55
2 2 0 100 100 100 100 100 100 100
2 2 10 99.61 99.95 99.78 99.99 99.99 99.72 98.09
3 3 0 100 100 100 100 100 100 100
3 3 10 99.73 100 99.85 99.99 100 99.86 99.12

Figure 5. Best performing case for the sliding slab experiment. The slab, composed of 1000 HU, was positioned at 4 mm off the
central beam axis and the beam energy was 70 MeV. The figure displays in the left column, for both YODA and TOPAS, two
dimensional dose cuts along the central beam axis and IDDs and in the right column lateral profiles at the entrance, in the slab
and in the Bragg peak.

is likely due to the interplay of several factors. The chosen beam size, the underlying CT grid size (and the
projection of this in the beam-eye view coordinate system), the specific location on the rings of the
optimized sub-spots and the location of the heterogeneity itself all play a role in the accuracy of a given
scheme. Given this, and the fact that in a realistic treatment plan spots are placed in close proximity one to
another, it is likely that YODA will result in accurate and quickly computed doses using simpler beam
splitting schemes. Second, as already illustrated in table 1 and further illustrated in tables 4 and 5 the
accuracy of YODA with respect to TOPAS is slightly worse when air gaps are placed in the beam path. Such
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Figure 6. Average performing case for the sliding slab experiment. The slab, composed of 1000 HU, was positioned at 0 mm off
the central beam axis and the beam energy was 190 MeV. The figure displays in the left column, for both YODA and TOPAS, two
dimensional dose cuts along the central beam axis and IDDs and in the right column lateral profiles at the entrance, in the slab
and in the Bragg peak.

small differences can arise due to the inherent limitations of the FE modelling and the different modelling of
Coulomb elastic scattering in air between the two codes. Third, there is a slight degradation of accuracy
occurring towards the high part of the energy spectrum (effect that was not observed towards the low part of
the energy spectrum). This could be explained by a number of factors. The first one comes from differences
in the underlying data that the two codes use. The stopping powers were extracted from TOPAS using
increasingly coarse steps in energy towards the high side of the energy domain. This can cause slight range
differences, especially as the stopping power is linearly interpolated in the energy groups, which in turn can
result in range differences. Differences in stopping power imply differences in lateral scattering which
contribute to further differences. Moreover, the straggling coefficient is computed using an analytical
equation that could prove inaccurate for the high energy part of the domain. Despite these differences, the
gamma index pass rate using the strictest criteria and a splitting scheme of 1+6+6+12 does not fall below
≈95% for energies above 190 MeV for all the tested geometries.

3.1.2. CT based anatomies
In addition to the tank-based tests, three real CT images were also tested. The H&N scan was taken from the
CORT dataset (Craft et al 2014), the prostate scan was taken from the cancer imaging archive (Yorke et al
2019) and the lung scan was taken from the Holland Proton Therapy Center (Pastor Serrano 2023). The used
isocenter locations and gantry angles are not meant to be clinical and were chosen only due to their
simplicity of set-up in TOPAS.
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Figure 7.Worst performing case for the sliding slab experiment. The slab, composed of−1000 HU, was positioned at−4 mm off
the central beam axis and the beam energy was 230 MeV. The figure displays in the left column, for both YODA and TOPAS, two
dimensional dose cuts along the central beam axis and IDDs and in the right column lateral profiles at the entrance, in the slab
and in the Bragg peak.

In the H&N case, one spot was irradiated with the beam impinging along the y axis (i.e. at a gantry angle
of 0◦) with a nominal beam energy of 125 MeV with the isocenter being the center of the CT scan volume.
The two dimensional dose profile can be seen on the top row of figure 8 and the IDD and lateral profiles at
three depths can be seen at the bottom of figure 8. Good agreement is observed, as the 99.85% gamma index
pass rate from the H&N column of table 1 also shows. Figure 8 shows a discrepancy in the air region between
−440 mm and−340 mm. This is also the case for the lung and prostate cases visible figures 9 and 11. Two
possible reasons are differences in the modelling of air between the two algorithms or a slight mismatch in
the positioning of the beams with respect to the CT grid caused by the placement of the beam at the interface
of voxels. Given that the agreement is good in the clinically relevant region of the scan this discrepancy is
deemed acceptable.

The lung scan was irradiated with two spots where one beam goes from−x to+x and the other in the
opposite direction (i.e. at 90◦ and 270◦ gantry angles respectively). Both spots had a mean energy of
125 MeV, energy spread of 1 MeV, a spot size of 0.3 cm, an angular spread of 1.0× 10−8 rad and a correlation
of 0. This cases is denoted by Lung 1. Given the challenging anatomy, the results from figure 9 together with
the passing rate of 95.62% from the Lung 1 column of table 1 are very good. To further test YODA’s dose
engine performance, a second test for the lung was performed where the BP was moved towards a more
heterogeneous area by changing the beam energies. In this case, one beam had an energy of 105 MeV with a
spread of 0.84 MeV and the other an energy of 135 MeV with a spread of 1.08 MeV. This case was denoted by
Lung 2. Here too, despite the challenging heterogeneous anatomy, YODA performs well given that the worst
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Figure 8.H&N test case dose comparisons. The scan is irradiated by one spot of 125 MeV.

gamma index passing rate is 94.55% (as seen in column Lung 2 in table 1). Two dimensional profiles, IDD
comparisons and lateral profiles can be seen in figure 10. The lateral profiles from figure 9 show a consistent
lateral shift between YODA and TOPAS at the 14 mm,−1 mm and−38 mm depths. A reason for this could
be the initial location of the Gaussian split sub-spots on the CT scan surface. The spots are generally not
aligned with the CT grid (as such alignment is only possible in cases of perfectly perpendicular beams) and
therefore slight asymmetries could arise if spots are placed exactly at the interface of voxels. The accuracy can
be improved by fine-tuning the Gaussian beam splitting scheme in several ways. One is to include the
number of rings and the number of beamlets per ring into the optimization procedure itself. Another is to
consider alternative, non-concentric sub-spot arrangements. A metric for lateral heterogeneity could help in
guiding the optimization towards sparsely placing beamlets in areas of low heterogeneity and more densely
covering areas with high heterogeneity. Lastly, a progressive splitting scheme could also be employed,
whereby once a threshold of lateral heterogeneity has been reached, the beamlets encountering it are
re-consolidated and a new (finer) split occurs. Given that the parameters of such schemes can be
pre-optimized and tabulated the computational increase of such an approach could be kept minimal.
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Figure 9. Lung case 1 dose comparisons. The scan is irradiated by 2 opposing spots with mean energies of 125 MeV.

The prostate case set-up was identical to that of the lung with the only difference being the spot mean
energy of 165 MeV and the spot energy spread of 0.825 MeV. Here again the agreement is very good as seen
in figure 11 and by the high passing rate of 99.58% from the prostate column of table 1.

3.2. Dose change computations
In addition to the dose engine performance, the performance of the dose change computation was also
benchmarked. Given a specific volume within the CT scan denoted as ROI, the adjoint component is able to
cheaply and accurately compute the change in the dose deposited in the ROI (for small enough anatomical
perturbations). The speed of such an operation far exceeds that of plain re-computation as effectively, the
only computation necessary comes in the form of vector inner products. This could be employed in an
online re-adaptation trigger system where YODA assesses the effect of delivering yesterday’s plan on today’s
anatomy. The benchmark starts with the same simplified tank test-cases and thereafter moves toward more
realistic cases using RT plans for clinical RT structures on CT images.

3.2.1. Simplified tank geometries
In the case of the simple tank geometries, the adjoint component used a ROI defined as everything past the
depth of 60 mm in the tank. The composition of the half-slab was varied from−1000HU to 1000HU. The
mean dose deposited in the ROI was computed for each new geometry using two methods: re-computations
and adjoint computations. Figure 12 shows the mean dose deposited in the ROI as a function of the HU
composition of the slab. The two lines are close one to another around the value of 0 HU which was
considered the base case and they start to diverge towards the edges of the HU domain. The maximal relative
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Figure 10. Lung case 2 dose comparisons. The scan is irradiated by 2 opposing spots with mean energies of 105 MeV and 135 MeV.

error of 2.2% occurs at the−1000HU end of the HU domain. Based on these results, it can be concluded
that the adjoint component is capable of cheaply and accurately computing the change in the deposited dose
in the ROI for this test case.

3.2.2. Treatment plan tests
Four treatment plans for the gross tumor volume (GTV) were generated for two H&N patients (patients 1
and 2) in Raystation (Bodensteiner 2018). For both patients, one robustly and one non-robustly optimized
plans were created. The plans are not clinical and are only used for the purpose of creating conformal doses
around the target. Patient 1 had plans that contained roughly 1000 spots and patient 2 had plans with
roughly 300 spots. Both plans were split according to a 1+ 6+ 6+ 12 Gaussian beam splitting scheme. Each
patient had multiple repeat CTs (rCTs) which were registered to the planning CT (pCT) using the simple-itk
library (Beare et al 2018). The adjoint component computed the change in the GTV dose caused by the new
CT image. This is meant to simulate the situation of a daily re-adaptation trigger system where the effect of
yesterday’s plan is assessed on today’s anatomy. As long as the anatomical changes between the planning and
repeat CT images are not too large, the adjoint component is accurate and fast as it does not require
re-computing the original plan on the new image.

Figures 13 and 14 show each of the CT images for patient 1 (image number 0 is the planning image), a
2D dose slice of the re-computed dose distribution on the CT image, the GTV dose computed via
re-computation and via the adjoint component and the relative error between these two results. In the case of
a non-robustly optimized plan, the adjoint component attains a maximal error of 5.5% as presented in
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Figure 11. Prostate case dose comparisons. The scan is irradiated by 2 opposing spots with mean energies of 165 MeV.

Figure 12. On the left the re-computed versus adjoint computed doses for the simplified tank geometries are displayed. On the
right, the error, in percentages, between these two quantities is displayed.
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Figure 13. Color-coded are the re-computed dose distributions from a non-robustly optimized plan, overlaid on the CT images of
Patient 1. Above each image, the mean dose to the GTV is stated based on the re-computation and on the adjoint method. The
relative difference is also given.

figure 13. In the case of the robustly optimized plan, the adjoint component attains a maximal error of 4.8%.
Thus, whether the plan is robustly or non-robustly optimized, the adjoint component is capable of avoiding
an expensive re-computation attaining an acceptable error.

Figures 15 and 16 shows each of the CT images for patient 2 (image number 0 is the planning image), a
2D dose slice of the re-computed dose distribution on the CT image, the GTV dose computed via
re-computation and via the adjoint component and the relative error between these two results. In the case of
the non-robustly optimized plan, the adjoint component attains a maximal error of 5.7% and in the case of
the robustly optimized plan the adjoint component attains a maximal error of 1.3%. Here too the adjoint
component computes the dose to the GTV with acceptable errors and is thus capable of avoiding expensive
re-computations.
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Figure 14. Color-coded are the re-computed dose distributions from a robustly optimized plan, overlaid on the CT images of
Patient 1. Above each image, the mean dose to the GTV is stated based on the re-computation and on the adjoint method. The
relative difference is also given.
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Figure 15. Color-coded are the re-computed dose distributions from a non-robustly optimized plan, overlaid on the CT images of
Patient 2. Above each image, the mean dose to the GTV is stated based on the re-computation and on the adjoint method. The
relative difference is also given.
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Figure 16. Color-coded are the re-computed dose distributions from a robustly optimized plan, overlaid on the CT images of
Patient 2. Above each image, the mean dose to the GTV is stated based on the re-computation and on the adjoint method. The
relative difference is also given.
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4. Conclusions

In this work YODA and its performance in a variety of test cases was presented. YODA uses a hybrid
approach to solve a physics-based approximation to the same equations that MC methods solve. This
approach enables YODA to achieve TOPAS like performance with a significant speed-up. The lowest three
dimensional gamma index passing rates achieved using the strict criteria of 1 mm, 1%, 10% cut-off is 94.55%
in the Lung 2 case. YODA computes a treatment plan spot in 2 s while the same spot takes hours in TOPAS.
An adjoint computation depends on the size of the structure but is generally in the order of milliseconds to
tens of milliseconds on a single CPU. A typical commercial TPS plan re-evaluation is in the order of minutes
to tens of minutes on multi-core CPUs or GPUs (Nystrom et al 2020). If YODA’s speed would be further
improved (e.g. via a GPU implementation), YODA could be used as a patient-specific quality assurance tool
by tapping into the data stream between the TPS and the delivery machine to quickly re-construct the dose to
be delivered. Alternatively, the logfiles could be used after treatment to re-construct the actually delivered
dose to the patient. A multi-treatment site patient cohort study is necessary to validate the accuracy of YODA
versus commercial TPS calculations in a wide variety of settings. Additionally, nuclear interactions must be
accounted for. However, given that the dose engine contained in Eclipse (AcurosPT) is accurate with criteria
of 2 mm, 2% in heterogeneous cases (De Martino et al 2021) and the various speed and accuracy
improvements still achievable in YODA it can be concluded that this engine could compete with/replace
other commercial dose algorithms and is certainly capable of TPS independent dose calculations.

Next to performing TPS independent dose calculations, YODA can leverage the adjoint component to
accurately compute dose changes caused by small enough anatomical changes. Such a feature, to the best of
the authors’ knowledge, has not been integrated into a dose algorithm before. This component could be used
in a time constrained re-adaptation trigger system where on the given day YODA avoids re-computing the
old treatment plan on the new CT image if the CT image is deemed anatomically close enough to the original
one. This performance was illustrated via four treatment plans where a maximal error of 5.7% was achieved
for a non-robustly optimized plan and 4.8% for a robustly optimized plan. Alternatively, if log-files were
available during treatment delivery YODA would be capable of halting erroneous deliveries in near real-time
(i.e. below energy layer switching times) by converting spot position differences into anatomical changes and
ultimately into dosimetric changes via the adjoint component.
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Appendix. Additional results

This appendix presents the results of the sliding slab experiment.

Table 2. Overview of the sliding slab experiment results. The table presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes, the gamma index settings and the gamma index pass rates.

Energy (MeV) Slab value (HU) Slab shift (mm) Split scheme
Gamma settings
(mm, %, %) Gamma pass rate (%)

70 −1000 −4 1, 6, 6, 12 1, 1, 0 99.99
70 −1000 −4 1, 6, 6, 12 1, 1, 10 98.11
70 −1000 −4 1, 6, 6, 12, 12 1, 1, 0 99.99
70 −1000 −4 1, 6, 6, 12, 12 1, 1, 10 96.86
70 −1000 −4 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
70 −1000 −4 1, 6, 6, 12, 12, 24 1, 1, 10 97.19

70 −1000 −2 1, 6, 6, 12 1, 1, 0 99.99
70 −1000 −2 1, 6, 6, 12 1, 1, 10 93.80
70 −1000 −2 1, 6, 6, 12, 12 1, 1, 0 99.99
70 −1000 −2 1, 6, 6, 12, 12 1, 1, 10 93.97
70 −1000 −2 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
70 −1000 −2 1, 6, 6, 12, 12, 24 1, 1, 10 95.10

70 −1000 0 1, 6, 6, 12 1, 1, 0 99.99
70 −1000 0 1, 6, 6, 12 1, 1, 10 96.42
70 −1000 0 1, 6, 6, 12, 12 1, 1, 0 99.99
70 −1000 0 1, 6, 6, 12, 12 1, 1, 10 96.48
70 −1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
70 −1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 96.33

70 −1000 +2 1, 6, 6, 12 1, 1, 0 99.99
70 −1000 +2 1, 6, 6, 12 1, 1, 10 96.94
70 −1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.99
70 −1000 +2 1, 6, 6, 12, 12 1, 1, 10 96.65
70 −1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
70 −1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 97.78

70 −1000 +4 1, 6, 6, 12 1, 1, 0 100.00
70 −1000 +4 1, 6, 6, 12 1, 1, 10 99.69
70 −1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.99
70 −1000 +4 1, 6, 6, 12, 12 1, 1, 10 98.18
70 −1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 100.00
70 −1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 99.72
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Table 3. Overview of the sliding slab experiment results. The table presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes, the gamma index settings and the gamma index pass rates.

Energy (MeV) Slab value (HU) Slab shift (mm) Split scheme
Gamma settings
(mm, %, %) Gamma pass rate (%)

70 1000 −4 1, 6, 6, 12 1, 1, 0 100
70 1000 −4 1, 6, 6, 12 1, 1, 10 99.86
70 1000 −4 1, 6, 6, 12, 12 1, 1, 0 100
70 1000 −4 1, 6, 6, 12, 12 1, 1, 10 99.31
70 1000 −4 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 −4 1, 6, 6, 12, 12, 24 1, 1, 10 99.86

70 1000 −2 1, 6, 6, 12 1, 1, 0 99.99
70 1000 −2 1, 6, 6, 12 1, 1, 10 99.30
70 1000 −2 1, 6, 6, 12, 12 1, 1, 0 100
70 1000 −2 1, 6, 6, 12, 12 1, 1, 10 98.67
70 1000 −2 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 −2 1, 6, 6, 12, 12, 24 1, 1, 10 99.37

70 1000 0 1, 6, 6, 12 1, 1, 0 100
70 1000 0 1, 6, 6, 12 1, 1, 10 99.19
70 1000 0 1, 6, 6, 12, 12 1, 1, 0 100
70 1000 0 1, 6, 6, 12, 12 1, 1, 10 99.12
70 1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 99.16

70 1000 +2 1, 6, 6, 12 1, 1, 0 99.99
70 1000 +2 1, 6, 6, 12 1, 1, 10 96.51
70 1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.99
70 1000 +2 1, 6, 6, 12, 12 1, 1, 10 97.09
70 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 97.28

70 1000 +4 1, 6, 6, 12 1, 1, 0 99.99
70 1000 +4 1, 6, 6, 12 1, 1, 10 98.79
70 1000 +4 1, 6, 6, 12, 12 1, 1, 0 100
70 1000 +4 1, 6, 6, 12, 12 1, 1, 10 97.51
70 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 100
70 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 97.87
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Table 4. Overview of the sliding slab experiment results. The table presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes, the gamma index settings and the gamma index pass rates.

Energy (MeV) Slab value (HU) Slab shift (mm) Split scheme
Gamma settings
(mm, %, %) Gamma pass rate (%)

160 −1000 −4 1, 6, 6, 12 1, 1, 0 99.98
160 −1000 −4 1, 6, 6, 12 1, 1, 10 97.86
160 −1000 −4 1, 6, 6, 12, 12 1, 1, 0 99.95
160 −1000 −4 1, 6, 6, 12, 12 1, 1, 10 97.29
160 −1000 −4 1, 6, 6, 12, 12, 24 1, 1, 0 99.97
160 −1000 −4 1, 6, 6, 12, 12, 24 1, 1, 10 97.33

160 −1000 −2 1, 6, 6, 12 1, 1, 0 99.98
160 −1000 −2 1, 6, 6, 12 1, 1, 10 97.06
160 −1000 −2 1, 6, 6, 12, 12 1, 1, 0 99.97
160 −1000 −2 1, 6, 6, 12, 12 1, 1, 10 96.53
160 −1000 −2 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 −1000 −2 1, 6, 6, 12, 12, 24 1, 1, 10 96.97

160 −1000 0 1, 6, 6, 12 1, 1, 0 99.98
160 −1000 0 1, 6, 6, 12 1, 1, 10 97.24
160 −1000 0 1, 6, 6, 12, 12 1, 1, 0 99.97
160 −1000 0 1, 6, 6, 12, 12 1, 1, 10 96.96
160 −1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.97
160 −1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 96.97

160 −1000 +2 1, 6, 6, 12 1, 1, 0 99.98
160 −1000 +2 1, 6, 6, 12 1, 1, 10 97.48
160 −1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.98
160 −1000 +2 1, 6, 6, 12, 12 1, 1, 10 97.45
160 −1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 −1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 97.36

160 −1000 +4 1, 6, 6, 12 1, 1, 0 99.98
160 −1000 +4 1, 6, 6, 12 1, 1, 10 97.96
160 −1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.98
160 −1000 +4 1, 6, 6, 12, 12 1, 1, 10 97.60
160 −1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 −1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 97.60
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Table 5. Overview of the sliding slab experiment results. The table presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes, the gamma index settings and the gamma index pass rates.

Energy (MeV) Slab value (HU) Slab shift (mm) Split scheme
Gamma settings
(mm, %, %) Gamma pass rate (%)

160 1000 −4 1, 6, 6, 12 1, 1, 0 99.99
160 1000 −4 1, 6, 6, 12 1, 1, 10 98.26
160 1000 −4 1, 6, 6, 12, 12 1, 1, 0 99.98
160 1000 −4 1, 6, 6, 12, 12 1, 1, 10 97.77
160 1000 −4 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 1000 −4 1, 6, 6, 12, 12, 24 1, 1, 10 97.75

160 1000 −2 1, 6, 6, 12 1, 1, 0 99.98
160 1000 −2 1, 6, 6, 12 1, 1, 10 97.75
160 1000 −2 1, 6, 6, 12, 12 1, 1, 0 99.98
160 1000 −2 1, 6, 6, 12, 12 1, 1, 10 97.66
160 1000 −2 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 1000 −2 1, 6, 6, 12, 12, 24 1, 1, 10 97.59

160 1000 0 1, 6, 6, 12 1, 1, 0 99.99
160 1000 0 1, 6, 6, 12 1, 1, 10 98.17
160 1000 0 1, 6, 6, 12, 12 1, 1, 0 99.98
160 1000 0 1, 6, 6, 12, 12 1, 1, 10 97.91
160 1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.98
160 1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 97.88

160 1000 +2 1, 6, 6, 12 1, 1, 0 99.99
160 1000 +2 1, 6, 6, 12 1, 1, 10 99.20
160 1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.99
160 1000 +2 1, 6, 6, 12, 12 1, 1, 10 98.99
160 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
160 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 99

160 1000 +4 1, 6, 6, 12 1, 1, 0 99.99
160 1000 +4 1, 6, 6, 12 1, 1, 10 98.88
160 1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.99
160 1000 +4 1, 6, 6, 12, 12 1, 1, 10 98.75
160 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.99
160 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 98.78
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Table 6. Overview of the sliding slab experiment results. The table presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes, the gamma index settings and the gamma index pass rates.

Energy (MeV) Slab value (HU) Slab shift (mm) Split scheme
Gamma settings
(mm, %, %) Gamma pass rate (%)

190 −1000 −4 1, 6, 6, 12 1, 1, 0 99.92
190 −1000 −4 1, 6, 6, 12 1, 1, 10 95.76
190 −1000 −4 1, 6, 6, 12, 12 1, 1, 0 99.86
190 −1000 −4 1, 6, 6, 12, 12 1, 1, 10 95.38
190 −1000 −4 1, 6, 6, 12, 12, 24 1, 1, 0 99.90
190 −1000 −4 1, 6, 6, 12, 12, 24 1, 1, 10 95.52

190 −1000 −2 1, 6, 6, 12 1, 1, 0 99.92
190 −1000 −2 1, 6, 6, 12 1, 1, 10 94.50
190 −1000 −2 1, 6, 6, 12, 12 1, 1, 0 99.91
190 −1000 −2 1, 6, 6, 12, 12 1, 1, 10 93.96
190 −1000 −2 1, 6, 6, 12, 12, 24 1, 1, 0 99.92
190 −1000 −2 1, 6, 6, 12, 12, 24 1, 1, 10 94.36

190 −1000 0 1, 6, 6, 12 1, 1, 0 99.93
190 −1000 0 1, 6, 6, 12 1, 1, 10 95.27
190 −1000 0 1, 6, 6, 12, 12 1, 1, 0 99.93
190 −1000 0 1, 6, 6, 12, 12 1, 1, 10 95.29
190 −1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.93
190 −1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 95.31

190 −1000 +2 1, 6, 6, 12 1, 1, 0 99.93
190 −1000 +2 1, 6, 6, 12 1, 1, 10 95.62
190 −1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.93
190 −1000 +2 1, 6, 6, 12, 12 1, 1, 10 95.65
190 −1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.93
190 −1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 95.64

190 −1000 +4 1, 6, 6, 12 1, 1, 0 99.94
190 −1000 +4 1, 6, 6, 12 1, 1, 10 95.77
190 −1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.94
190 −1000 +4 1, 6, 6, 12, 12 1, 1, 10 95.72
190 −1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.94
190 −1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 95.77
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Table 7. Overview of the sliding slab experiment results. The table presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes, the gamma index settings and the gamma index pass rates.

Energy (MeV) Slab value (HU) Slab shift (mm) Split scheme
Gamma settings
(mm, %, %) Gamma pass rate (%)

190 1000 −4 1, 6, 6, 12 1, 1, 0 99.95
190 1000 −4 1, 6, 6, 12 1, 1, 10 95.92
190 1000 −4 1, 6, 6, 12, 12 1, 1, 0 99.94
190 1000 −4 1, 6, 6, 12, 12 1, 1, 10 95.89
190 1000 −4 1, 6, 6, 12, 12, 24 1, 1, 0 99.94
190 1000 −4 1, 6, 6, 12, 12, 24 1, 1, 10 95.90

190 1000 −2 1, 6, 6, 12 1, 1, 0 99.94
190 1000 −2 1, 6, 6, 12 1, 1, 10 95.76
190 1000 −2 1, 6, 6, 12, 12 1, 1, 0 99.94
190 1000 −2 1, 6, 6, 12, 12 1, 1, 10 95.87
190 1000 −2 1, 6, 6, 12, 12, 24 1, 1, 0 99.94
190 1000 −2 1, 6, 6, 12, 12, 24 1, 1, 10 95.81

190 1000 0 1, 6, 6, 12 1, 1, 0 99.95
190 1000 0 1, 6, 6, 12 1, 1, 10 96.15
190 1000 0 1, 6, 6, 12, 12 1, 1, 0 99.95
190 1000 0 1, 6, 6, 12, 12 1, 1, 10 96.12
190 1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.95
190 1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 96.10

190 1000 +2 1, 6, 6, 12 1, 1, 0 99.96
190 1000 +2 1, 6, 6, 12 1, 1, 10 97.30
190 1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.96
190 1000 +2 1, 6, 6, 12, 12 1, 1, 10 96.97
190 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.96
190 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 97.19

190 1000 +4 1, 6, 6, 12 1, 1, 0 99.96
190 1000 +4 1, 6, 6, 12 1, 1, 10 97.19
190 1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.95
190 1000 +4 1, 6, 6, 12, 12 1, 1, 10 97.04
190 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.96
190 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 97.18
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Table 8. Overview of the sliding slab experiment results. The table presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes, the gamma index settings and the gamma index pass rates.

Energy (MeV) Slab value (HU) Slab shift (mm) Split scheme
Gamma settings
(mm, %, %) Gamma pass rate (%)

230 −1000 −4 1, 6, 6, 12 1, 1, 0 99.42
230 −1000 −4 1, 6, 6, 12 1, 1, 10 96.88
230 −1000 −4 1, 6, 6, 12, 12 1, 1, 0 99.13
230 −1000 −4 1, 6, 6, 12, 12 1, 1, 10 92.42
230 −1000 −4 1, 6, 6, 12, 12, 24 1, 1, 0 99.09
230 −1000 −4 1, 6, 6, 12, 12, 24 1, 1, 10 91.72

230 −1000 −2 1, 6, 6, 12 1, 1, 0 99.60
230 −1000 −2 1, 6, 6, 12 1, 1, 10 95.56
230 −1000 −2 1, 6, 6, 12, 12 1, 1, 0 99.32
230 −1000 −2 1, 6, 6, 12, 12 1, 1, 10 94.40
230 −1000 −2 1, 6, 6, 12, 12, 24 1, 1, 0 99.09
230 −1000 −2 1, 6, 6, 12, 12, 24 1, 1, 10 90.98

230 −1000 0 1, 6, 6, 12 1, 1, 0 99.65
230 −1000 0 1, 6, 6, 12 1, 1, 10 96.62
230 −1000 0 1, 6, 6, 12, 12 1, 1, 0 99.39
230 −1000 0 1, 6, 6, 12, 12 1, 1, 10 96.35
230 −1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.15
230 −1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 92.85

230 −1000 +2 1, 6, 6, 12 1, 1, 0 99.65
230 −1000 +2 1, 6, 6, 12 1, 1, 10 96.89
230 −1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.40
230 −1000 +2 1, 6, 6, 12, 12 1, 1, 10 96.67
230 −1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.15
230 −1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 92.98

230 −1000 +4 1, 6, 6, 12 1, 1, 0 99.65
230 −1000 +4 1, 6, 6, 12 1, 1, 10 97.18
230 −1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.41
230 −1000 +4 1, 6, 6, 12, 12 1, 1, 10 96.73
230 −1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.16
230 −1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 93.05
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Table 9. Overview of the sliding slab experiment results. The table presents the beam energy, the slab HU value, the slab position with
respect to the central beam axis, the used Gaussian splitting schemes, the gamma index settings and the gamma index pass rates.

Energy (MeV) Slab value (HU) Slab shift (mm) Split scheme
Gamma settings
(mm, %, %) Gamma pass rate (%)

230 1000 −4 1, 6, 6, 12 1, 1, 0 99.65
230 1000 −4 1, 6, 6, 12 1, 1, 10 97.38
230 1000 −4 1, 6, 6, 12, 12 1, 1, 0 99.43
230 1000 −4 1, 6, 6, 12, 12 1, 1, 10 96.74
230 1000 −4 1, 6, 6, 12, 12, 24 1, 1, 0 99.19
230 1000 −4 1, 6, 6, 12, 12, 24 1, 1, 10 92.98

230 1000 −2 1, 6, 6, 12 1, 1, 0 99.64
230 1000 −2 1, 6, 6, 12 1, 1, 10 97.18
230 1000 −2 1, 6, 6, 12, 12 1, 1, 0 99.41
230 1000 −2 1, 6, 6, 12, 12 1, 1, 10 96.65
230 1000 −2 1, 6, 6, 12, 12, 24 1, 1, 0 99.17
230 1000 −2 1, 6, 6, 12, 12, 24 1, 1, 10 92.75

230 1000 0 1, 6, 6, 12 1, 1, 0 99.64
230 1000 0 1, 6, 6, 12 1, 1, 10 97.39
230 1000 0 1, 6, 6, 12, 12 1, 1, 0 99.40
230 1000 0 1, 6, 6, 12, 12 1, 1, 10 96.80
230 1000 0 1, 6, 6, 12, 12, 24 1, 1, 0 99.16
230 1000 0 1, 6, 6, 12, 12, 24 1, 1, 10 92.79

230 1000 +2 1, 6, 6, 12 1, 1, 0 99.61
230 1000 +2 1, 6, 6, 12 1, 1, 10 97.36
230 1000 +2 1, 6, 6, 12, 12 1, 1, 0 99.34
230 1000 +2 1, 6, 6, 12, 12 1, 1, 10 95.75
230 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 0 99.10
230 1000 +2 1, 6, 6, 12, 12, 24 1, 1, 10 91.95

230 1000 +4 1, 6, 6, 12 1, 1, 0 99.61
230 1000 +4 1, 6, 6, 12 1, 1, 10 97.56
230 1000 +4 1, 6, 6, 12, 12 1, 1, 0 99.32
230 1000 +4 1, 6, 6, 12, 12 1, 1, 10 95.65
230 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 0 99.08
230 1000 +4 1, 6, 6, 12, 12, 24 1, 1, 10 91.76
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