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SUMMARY

Prilling is a spray solidification process of producing spherical beads, or prills, typically
for fertilizers like urea and ammonium nitrate. The process involves molten material
passing through perforated rotating containers, forming spiraling jets and breaking up
into droplets due to a Rayleigh-Plateau instability by surface tension. These droplets un-
dergo heat exchange with a cooling air stream and turn into solid prills. However, con-
trolling prill size and shape remains challenging due to complex fluid dynamics, thermal
effects, and non-Newtonian material properties. This research focuses on understand-
ing jet breakup under the influence of thermal effects and body forces related to gravity
and rotation (centrifugal and Coriolis forces). The overarching goal is to optimize the
prilling process for a desired narrow prill size distribution by predicting and controlling
the jet breakup process. A fundamental and holistic approach was taken based on a
combination of experiments, stability analysis and various types of numerical simula-
tions.

The study begins by exploring the dynamics of a spiraling liquid jet emitted from a
rotating orifice. Using experiments, linear stability analysis and a nonlinear slender-jet
model, the influence of the body forces from rotation and gravity on jet thinning and
breakup is quantified. Imposed mechanical vibrations within the nozzle modulate the
jet conditions at nozzle exit, enabling control over the jet breakup length and droplet
size. The findings reveal that spiraling jets behave similarly to straight jets under gravity,
where the body forces influence the thinning rate of the base jet and local base jet condi-
tions control the growth rate of unstable jet perturbations. This insight opens pathways
for more precise control mechanisms in various jet-based industrial applications.

In pursuit of alternative control mechanisms, temperature modulation at the nozzle
is investigated. Thermal excitation induces flow perturbations within the jet through
Marangoni stresses related to the spatial variation in the temperature-dependent surface
tension coefficient. The flow perturbations may subsequently also trigger a Rayleigh-
Plateau instability through capillary stresses related to the spatial variation in jet cur-
vature. A proposed ’thermal modulation strength number’ quantifies the interplay of
surface tension gradients and background random noise perturbations that is inherent
to every setup. Numerical simulations demonstrate that stronger thermal modulation
shortens the jet length and produces more uniform droplets, offering a promising alter-
native to mechanical vibration methods. This thermal control method presents a signif-
icant innovation in that it reduces the reliance on mechanical components, making the
process more robust.

In jet breakup studies, it is often assumed that the jet radius at the nozzle exit equals
the nozzle radius, but this oversimplifies the dynamics of jets with nonuniform veloc-
ity profiles at nozzle exit. Here we consider a long nozzle with a Poiseuille flow profile
sufficiently far upstream of the nozzle exit. At nozzle exit, the jet velocity adjusts rapidly
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VIII SUMMARY

due to inertial, viscous, and capillary stresses, related to the transition from a no-slip
condition inside the nozzle to a free-slip condition at the jet/air interface. Using the
Computational Fluid Dynamics (CFD) software OpenFOAM, 2D numerical simulations
were conducted of the axisymmetric flow within the nozzle and laminar jet outside the
nozzle. The simulations were in good agreement with experiments reported in litera-
ture. The results show that the viscous stresses near the nozzle exit cause jet expansion
at low Reynolds numbers, while conservation of mass and momentum dictates that the
jet must contract at high Reynolds numbers. The transition happens at Re ≈ 14.4, where
the Reynolds number is based on nozzle diameter and bulk velocity. For practical appli-
cations like prilling, a careful consideration of the upstream flow conditions and nozzle
geometry is crucial, as they influence jet contraction, optimal perturbation frequencies,
and the resultant droplet size distribution.

To bridge theory and practice, the developed slender-jet model is applied to indus-
trial prilling scenarios with a melt flowing through a perforated container. The shape of
the curved meniscus of the melt within the rotating container is estimated using ana-
lytical methods which also gives the pressure and velocity distribution along the perfo-
rated container wall. Despite simplifying assumptions such as neglecting upstream flow
dynamics and inter-jet interactions, the model effectively estimates prill size distribu-
tions. Future work should incorporate effects of upstream turbulence, nozzle clogging,
jet-airflow and jet-jet aerodynamic interactions for more accurate industrial-scale pre-
dictions. Enhancing the fidelity of the model through detailed CFD simulations could
improve the prediction accuracy and reliability of the process.

Overall, this thesis advances understanding of jet breakup dynamics in prilling through
theoretical, numerical, and experimental approaches. It highlights critical aspects such
as the role of rotation, thermal modulation and nozzle design. While significant progress
has been made, future research should explore alternative perturbation mechanisms,
improve model robustness, and bridge the gap between laboratory experiments and
industrial-scale processes. This work lays a foundation for innovative control strategies,
enhancing the applicability of prilling to a broader range of materials and industrial pro-
cesses. Beyond fertilizer production, the findings are applicable to various industries,
including pharmaceuticals, inkjet printing, and spray cooling technologies. By refining
jet stability and droplet formation mechanisms, these industries can benefit from en-
hanced precision and efficiency of their processes.



SAMENVATTING

Prillen is een sproei-solidificatieproces voor het produceren van bolvormige kralen, of
prills, meestal voor meststoffen zoals ureum en ammoniumnitraat. Het proces omvat
gesmolten materiaal dat door geperforeerde roterende containers stroomt, waarbij spi-
raalvormige stralen ontstaan die uiteenvallen in druppels door een Rayleigh-Plateau-
instabiliteit veroorzaakt door oppervlaktespanning. Deze druppels ondergaan warmte-
uitwisseling met een koelende luchtstroom en stollen tot vaste prills. Het beheersen van
de prillgrootte en -vorm blijft echter een uitdaging vanwege complexe stromingsdyna-
mica, thermische effecten en niet-Newtonse materiaaleigenschappen. Dit onderzoek
richt zich op het begrijpen van straalbreuk onder invloed van thermische effecten en
krachten gerelateerd aan zwaartekracht en rotatie (centrifugaal- en Corioliskrachten).
Het overkoepelende doel is om het prillenproces te optimaliseren voor een gewenste
smalle prillgrootteverdeling door het straalbreukproces te voorspellen en te beheersen.
Een fundamentele en holistische aanpak werd gevolgd, gebaseerd op een combinatie
van experimenten, stabiliteitsanalyse en verschillende soorten numerieke simulaties.

Het onderzoek begint met het verkennen van de dynamica van een spiraalvormige
vloeistofstraal die uit een roterende opening wordt uitgespuwd. Door middel van expe-
rimenten, lineaire stabiliteitsanalyse en een niet-lineair slanke-straalmodel wordt de in-
vloed van krachten door rotatie en zwaartekracht op het dunner worden en breken van
de straal gekwantificeerd. Mechanische trillingen die in de nozzle worden opgewekt,
moduleren de straalomstandigheden bij de nozzle-uitgang, waardoor controle over de
straalbreuklengte en druppelgrootte mogelijk wordt. De bevindingen tonen aan dat spi-
raalvormige stralen zich vergelijkbaar gedragen met rechte stralen onder invloed van
zwaartekracht, waarbij de krachten de dunnerwordingssnelheid van de basisstraal beïn-
vloeden en de lokale basisstraalomstandigheden de groeisnelheid van instabiele straal-
verstoringen beheersen. Dit inzicht opent nieuwe mogelijkheden voor meer precieze
controlemechanismen in diverse straalgebaseerde industriële toepassingen.

In de zoektocht naar alternatieve controlemechanismen wordt temperatuurmodula-
tie bij de nozzle onderzocht. Thermische excitatie veroorzaakt stromingsverstoringen
binnen de straal door Marangoni-spanningen, gerelateerd aan de ruimtelijke variatie in
de temperatuurafhankelijke oppervlaktespanningscoëfficiënt. De stromingsverstorin-
gen kunnen vervolgens ook een Rayleigh-Plateau-instabiliteit veroorzaken via capillaire
spanningen, gerelateerd aan de ruimtelijke variatie in de straalcurvatuur. Een voorge-
steld ‘thermisch modulatie-sterktenummer’ kwantificeert de wisselwerking tussen op-
pervlaktespanningsgradiënten en achtergrondruisverstoringen die inherent zijn aan elke
opstelling. Numerieke simulaties tonen aan dat sterkere thermische modulatie de straal-
lengte verkort en meer uniforme druppels produceert, wat een veelbelovend alternatief
biedt voor mechanische trillingsmethoden. Deze thermische controlemethode vormt
een belangrijke innovatie doordat ze de afhankelijkheid van mechanische componen-
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ten vermindert, waardoor het proces robuuster wordt.
In studies over straalbreuk wordt vaak aangenomen dat de straalradius bij de nozzle-

uitgang gelijk is aan de mondradius, maar dit vereenvoudigt de dynamica van stralen
met niet-uniforme snelheidsprofielen bij de nozzle-uitgang. Hier beschouwen we een
lange nozzle met een Poiseuille-stroomprofiel ver stroomopwaarts van de nozzle-uitgang.
Bij de nozzle-uitgang past de straalsnelheid zich snel aan door traagheids-, viskeuze en
capillaire spanningen, gerelateerd aan de overgang van een no-slip-conditie binnen de
nozzle naar een free-slip-conditie aan het straal/lucht-grensvlak. Met behulp van de
Computational Fluid Dynamics (CFD)-software OpenFOAM werden 2D-numerieke si-
mulaties uitgevoerd van de as-symmetrische stroming binnen de nozzle en de laminaire
straal buiten de nozzle. De simulaties kwamen goed overeen met experimenten die in
de literatuur worden gerapporteerd. De resultaten tonen aan dat viskeuze spanningen
nabij de nozzle-uitgang straaluitzetting veroorzaken bij lage Reynolds-getallen, terwijl
behoud van massa en momentum dicteert dat de straal moet samentrekken bij hoge
Reynolds-getallen. De overgang gebeurt bij Re ≈ 14,4, waarbij het Reynolds-getal is ge-
baseerd op de monddiameter en de bulksnelheid. Voor praktische toepassingen zoals
prillen is een zorgvuldige beschouwing van de stroomomstandigheden stroomopwaarts
en de nozzle-geometrie cruciaal, omdat deze invloed hebben op straalcontractie, opti-
male verstoringsfrequenties en de resulterende druppelgrootteverdeling.

Om theorie en praktijk te overbruggen wordt het ontwikkelde slanke-straalmodel toe-
gepast op industriële prillscenario’s waarbij een smelt door een geperforeerde container
stroomt. De vorm van de gekromde meniscus van de smelt binnen de roterende con-
tainer wordt geschat met analytische methoden, die ook de druk- en snelheidsverdeling
langs de geperforeerde containerwand geven. Ondanks vereenvoudigde aannames zo-
als het negeren van stroomopwaartse stromingsdynamica en interacties tussen stralen,
schat het model effectief de prillgrootteverdeling in. Toekomstig werk moet de effecten
van stroomopwaartse turbulentie, verstopping van de nozzle en aerodynamische inter-
acties tussen straal-lucht en straal-straal integreren voor nauwkeurigere voorspellingen
op industriële schaal. Het verbeteren van de nauwkeurigheid van het model door gede-
tailleerde CFD-simulaties kan de voorspellingsbetrouwbaarheid van het proces vergro-
ten.

Al met al bevordert dit proefschrift het begrip van straalbreukdynamica bij het prillen
door middel van theoretische, numerieke en experimentele benaderingen. Het bena-
drukt kritieke aspecten zoals de rol van rotatie, thermische modulatie en nozzle-ontwerp.
Hoewel aanzienlijke vooruitgang is geboekt, zou toekomstig onderzoek alternatieve ver-
storingsmechanismen moeten verkennen, de modelrobuustheid moeten verbeteren en
de kloof tussen laboratoriumexperimenten en industriële processen moeten overbrug-
gen. Dit werk legt een basis voor innovatieve controlemechanismen, die de toepasbaar-
heid van prillen op een breder scala aan materialen en industriële processen verbete-
ren. Naast de productie van meststoffen zijn de bevindingen toepasbaar in diverse in-
dustrieën, waaronder de farmaceutische industrie, inkjetprinten en sproeikoelingstech-
nologieën. Door de stabiliteit van de straal en de druppelvormingsmechanismen te ver-
fijnen, kunnen deze industrieën profiteren van verbeterde precisie en efficiëntie in hun
processen.
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2 1. INTRODUCTION

1.1. BACKGROUND
The United Nations predicts that the global population will increase to 9.7 billion by
2050 [1]. As the population grows, economic conditions are expected to improve
as more people move to cities, leading to job creation. The population growth,
however, is putting pressure on the limited natural resources, such as land and
water, due to rapid urbanization and the growing demand for food. According to the
Food and Agriculture Organization (FAO) of the United Nations, approximately 821
million people, or one out of every nine people globally, are undernourished [2].

One facet that is at the core of this problem is the production and usage of
fertilizers. The use of fertilizers has become essential in agriculture as the nutrient
capacity of soil decreases after each harvest. Fertilizers contain nutrients that are
necessary for plant growth and are applied to the soil or the tissues of plants. The
market for fertilizers is growing globally due to the increasing demand for food and
the decreasing amount of arable land. This reduction in arable land is largely due
to rapid urbanization and industrialization, which have also affected the quality and
quantity of natural resources such as land, air, and water [3].

Sustainable farming practices are becoming increasingly popular, which is driving
the growth of the fertilizer market in recent years. The use of synthetic fertilizers,
which are derived from fossil fuels, has led to increased agricultural production on
limited arable land worldwide. However, their adverse effects on soil productivity
and environmental quality have led to a search for alternatives such as organic
fertilizers [4].

The research for alternative fertilizers also require the methods of fertilizer
production to be robust for producing high volumes of fertilizers irrespective of
their composition. Conventionally, the most common method to produce standard
fertilizers (e.g. urea and ammonium nitrate) is prilling. So it is important to
understand the physics involved within the process to be able to better control the
yield and optimize the design process to accommodate a variety of materials. In the
following subsection, the process of prilling will be introduced and the underlying
multiphysics problem will be formulated.

1.2. PRILLING
Prilling is a spray solidification process that is used for shaping large amounts of
bulk solids into spherical beads of around a millimeter in diameter, or so-called
“prills”. It is done by bringing the material to a molten state, showering it through
static or rotary shower heads and cooling the formed droplets back into solid state.
Originally used for the production of lead shot [5], prilling today is mostly used for
producing urea and ammonium nitrate fertilizers.

Fig. 1.1(a) highlights the different stages of the process. The melt is sprayed down
through the “prilling tower”, a tower in which heat-exchange occurs between air and
molten droplets in order to rapidly cool the droplets and form the prills. Fig 1.1(b)
shows a typical end-product of the prilling process – in this case NaOH prills.

The challenge of the prilling process is to have a uniform distribution of size and
shape within the end-product. In fluid mechanics principles, the size of a droplet
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Figure 1.1: (a) Illustration of the prilling process. (b) NaOH prills 0.5-1.2mm [5].

is largely dictated by the hole size through which it is generated whereas the shape
is expected to be spherical due to the minimization of free surface energy favoring
the lowest area-to-volume ratio. In reality, however, the prilling process is much
more complex and difficult to control, so the distribution of the size and shape is
not adequately uniform; there may be large non-spherical prills due to poor cooling
efficiency, or very small droplets that form “dust”, which have to be filtered to prevent
air pollution and dust explosion. Another major challenge in the prilling process is
the applicability to a larger variety of materials. While some knowledge is developed
for materials like urea and ammonium nitrate and the process is well-controlled, the
principles of the process are not robust enough to apply to new materials.

To overcome these challenges, it is essential to obtain an in-depth understanding
of the prilling process as a multiphysics problem. Fig. 1.2 shows which properties
are important at which stage of the process. These material and operational
properties will determine the timescale of physical events, such as droplet formation
and heat/mass transfer. It is key to understand the interplay of these timescales and
grouping these parameters into non-dimensional parameters so that the applicability
of prilling is extended to a larger set of materials while retaining the control over the
size and shape distribution.

In light of this introduction, we can formulate the underlying physical problem as
a study of jet breakup and droplet formation in the presence of:

• Thermal effects such as temperature-dependent viscosity, surface tension;

• Non-straight trajectory due to forces from non-inertial frame of reference (e.g.
centrifugal, Coriolis);

• Non-Newtonian effects.

After the droplets are formed, the physical problem can be formulated as the
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Cooling air properties:
o Viscosity, 𝜂𝑎(𝑇)
o Density, 𝜌𝑎 𝑇
o Air temperature, 𝑇∞
o Air velocity, 𝑈∞
o Heat transfer coeff., ℎ𝑤
o Cooling tower dimensions, 
𝑊𝑡𝑜𝑤𝑒𝑟, 𝐻𝑡𝑜𝑤𝑒𝑟

𝑊𝑡𝑜𝑤𝑒𝑟

𝐻𝑡𝑜𝑤𝑒𝑟

Melt properties:
o Viscosity, 𝜂(𝑇, ሶ𝛾)
o Density, 𝜌 𝑇
o Surface tension, 𝛾(𝑇)
o Melting point, 𝑇𝑚
o Feed temperature, 𝑇𝑓
o Thermal conductivity, 𝑘𝑐
o Heat capacity, 𝜌𝑐𝑝
o Heat of fusion, Δ𝐻°

Bucket/Process properties:
o Bucket dimensions, L, H
o Flow rate, 𝑄
o Orifice radius, R
o # of holes
o Rotational speed, Ω
o Gravity, g

H
Output: Prills
o Prill diameter, 𝑑𝑝
o Prill shape/sphericity, ψ

Figure 1.2: A schematic of the prilling process. The input parameters are categorized
as the material (melt) properties, cooling air properties and parameters
related to the operation, e.g., bucket geometry.

crystallization of a droplet that falls through a cooling medium (e.g., air) and loses
heat by means of forced convection and generates heat during crystallization.

1.2.1. CONTROLLING THE FORMATION OF DROPLETS

Controlling droplet formation from liquid jets presents a critical challenge relevant to
numerous applications across different scales. These range from serial femtosecond
X-ray crystallography [6, 7], where jet lengths are typically measured in microns,
to pharmaceutical production [8, 9], where lengths reach several millimeters, and
to prilling [5], where jets can extend up to tens of centimeters. A controlled and
predictable breakup process, however, is critical to all of these processes regardless of
their scale. In the absence proper modulation, achieved by applying small-amplitude
perturbations at specific frequencies, the resulting droplets are irregular and exhibit
a broad size range. Among these applications, prilling stands out as particularly
complex and less extensively studied.
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1.2.2. FUNDAMENTALS OF JET BREAKUP: RAYLEIGH-PLATEAU

INSTABILITY

The study of all processes involving jet breakup starts from the well-known Rayleigh-
Plateau instability, which manifests itself as a competition of radii of curvatures on a
cylindrical column of liquid.

Figure 1.3: The perturbations affect
the mean curvature which
has two contributions

It stems from the earlier works of Young
and Laplace, who underline the existence of
two radii of curvature in a column of liquid
and its effect on the pressure inside the
liquid:

∆p = γ
(

1

R1
+ 1

R2

)
(1.1)

where γ is the surface tension coefficient
in Nm−1. Eqn. (1.1) formulates the pressure
jump due to surface tension in between two
mediums across the interface.

Fig. 1.3 indicates the two contributions to
the curvature. The first contribution comes
from the local radius of the jet, namely R1 in
Fig 1.3. If you consider a cylindrical column
of liquid with radius R0, the pressure
difference across the interface would be
∆p = γ/R0 per Eqn. (1.1). When there
are axisymmetric sinusoidal perturbations
present, the contribution to the curvature
from the local radius will be lower in the
crest regions (i.e. lower pressure) and will
be higher in the trough regions (i.e. higher

pressure). The second contribution arises from the shape of the sinusoidal
disturbances on the jet radius along the axial direction, namely R2 in Fig. 1.3. This
contribution is negative in the trough regions and positive in the crest regions. The
interplay of the 2 contributions depends on the wavelength of the perturbations;
at some wavelengths, the 2 contributions exactly cancel each other and the jet is
stabilized, where other wavelengths lead to instability and subsequent breakup. In
what follows, we provide the analytical approach that determines which wavelengths
would be unstable.

Plateau analyzed the problem from the energy point of view that a jet is unstable
to any perturbation that reduces the surface area, thus postulating the role of surface
tension in the instability [10]. Rayleigh extended this by conducting stability analysis
on the linearized Euler equations [11], which start with equations of motion for an
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incompressible fluid in a frame of reference moving with the jet speed, U0:

∇·v = 0 (1.2a)

ρ

(
Çv

Çt
+ (v ·∇)v

)
= ∇·σ+ f (1.2b)

where σ is the viscous stress tensor and f is a general body force acting on the
fluid. In the simple case of a fluid with negligible viscosity and no body force,
we have σ = −pI and f = 0. So the combination of (1.2a) and (1.2b) will give
∇2p = 0. The pressure is perturbed as δp = ϵ0e−iωt F (r )cos(kz), where ϵ0 is the initial,
infinitesimally small perturbation amplitude, F (r ) is a non-dimensional function
of the radial position r within the jet, ω is the complex frequency, and k is the
wavenumber of the perturbation.

In the temporal stability analysis, by definition, where ωr is the angular frequency
and ωi represents the exponential growth rate of the perturbation. From the
linearized Euler equations, the following equation can be derived for F (r ):

Ç2F

Çr 2 + 1

r

ÇF

Çr
−k2F = 0

The solution is the zeroth order Kelvin function of the first kind F (r ) = I0(kr ) [12]
which is bounded at r = 0. Using the Laplace pressure and the kinematic condition
one arrives at the so called dispersion relation for ω2 [11].

ω2 =− γ

ρR3
0

(kR0)
[
1− (kR0)2] I1(kR0)

I0(kR0)
(1.3)

where R0 is the undisturbed jet radius. A perturbation is unstable when ωi > 0,
i.e., when the right-hand side of Eq. 1.3 is negative. The dispersion relation thus
indicates the existence of a cutoff wavelength for instability, that is, λ> 2πR0 for a
perturbation to be unstable. Indeed the fastest growing wavelength is about 9 times
the initial radius of the jet. The characteristic timescale of the growth is also revealed

in (1.3), that is the inertio-capillary timescale tc =
√
ρR3

0 /γ. This analysis has later

been extended by Rayleigh to include the effect of an ambient inviscid fluid [13].
Early experiments agreed quite well with the linear stability analysis [14, 15]. The

results verify the cutoff and fastest growing wavelengths, as shown in Fig. 1.4.
Lafrance included higher order terms in the perturbation analysis to estimate

the formation of satellite droplets and found good agreement between theoretical
analysis and experiments [16]. Chaudhary et al. consider the effect of the
perturbation amplitude and correlate this to the break up time [17].

The influence of viscosity has also been analysed by Rayleigh in [13] for the case
of Stokes flow. The dispersion relation takes then the form:

−iω= γ

2R0η

1− (kR0)2

1+ (kR0)2
[
1− (I0(kR0)/I1(kR0))2

] (1.4)

Equation (1.4) also reveals the viscocapillary timescale tv = ηR0/γ. The linear
stability analysis is unified for viscous jet with finite inertia by Chandrasekhar in
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Figure 1.4: The solid line is the dispersion relation given in (1.3), the dimensionless

growth rate ωi /
√
ρR3

0 /γ as a function of the dimensionless wavenumber

kR0 and the scattered data are from [14] and [15]

[18]. Viscosity slows down the growth of unstable waves and the fastest growth
occurs at longer wavelengths with increasing viscosity.

At this point, it is interesting to re-consider the timescales involved in the case of
a Newtonian liquid jet. As revealed in (1.3) and (1.4), one has the inertio-capillary
and visco-capillary timescales given as

tc =
√
ρR3

0

γ
tv = ηR0

γ
(1.5)

respectively. In addition, one of course has the advective timescale in the case
of a momentum driven jet ta = R0/U0 where U0 is the unperturbed jet speed.
The comparison of these timescales give rise to several non-dimensional numbers
and a regime map related to this. The ratio of the inertio-capillary timescale to
the advective time gives the Weber number, which can also be interpreted as a
characteristic ratio of dynamic pressure versus Laplace pressure variations during
breakup.

W e = t 2
c

t 2
a
= ρU 2R0

γ
(1.6)

The effect of viscosity on capillary jet breakup is measured with the Ohnesorge
number:

Oh = tv

tc
= η√

ρR0γ
=

p
W e

Re
(1.7)
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where Re = ρU0R0/η is the jet Reynolds number. In the case where gravitational
stretching of a (vertical) jet is significant, one has another timescale involved,
tg = √

R0/g . The Bond number is the nondimensional number that measures the
square of ratio of the inertio-capillary timescale to this inertio-gravitational timescale
which can also be interpreted as the characteristic ratio of hydrostatic pressure to
Laplace pressure variations during breakup:

Bo = ρg R0

γ/R0
= W e

F r 2 (1.8)

where F r =U0/
√

g R0 is the jet Froude number.

1.3. OBJECTIVES AND SCOPE OF THE RESEARCH
There has been some empirical know-how on the production of urea and ammonium
nitrate fertilizers, which are the most common ones. But the systems are not robust
enough when the fertilizers are enhanced with some polymers and/or minerals. So
a physical understanding of jet breakup of complex fluids needs to be obtained in
order to design systems that can accommodate different materials. The overarching
objective of this research is to identify the dimensionless numbers that would
describe the different physics within the process and investigate the different
regimes with respect to these dimensionless numbers, with a focus on predicting
and controlling the jet formation and breakup in the presence of thermal effects
and rotation. This would allow scalability and better control of the formation of
droplets/prills with the desired size in a prilling process.

In this Ph.D. study, the following research questions have been addressed:

1. What physical mechanism dictates the breakup of a jet and formation of
drops in the presence of jet rotation (i.e., a spiralling jet)? How can the
breakup of spiralling jets be modelled? What is the effect of the frequency
and amplitude of mechanical excitation of the jet on breakup? How can the
size distribution of the drops be controlled?

2. Can thermal excitation be used to force breakup of a straight jet? What is
the effect of the frequency and amplitude of thermal excitation of the jet on
breakup?

As mentioned earlier, the size of the formed drops strongly depends on the
initial (unperturbed) jet radius. This might not be equal to the nozzle radius
from which the jet is emitted. Dependent on the geometry and flow conditions
inside the nozzle, the jet may undergo a slight and rapid contraction over a
distance comparable to the nozzle radius, related to a change from a no-slip
wall condition inside the nozzle to a virtually free-slip condition at the jet/air
interface outside the nozzle [19]. Our third research question is therefore:

3. What physical mechanism is responsible for rapid jet contraction of a jet at
nozzle exit? More specifically, what is the influence of viscous and capillary
(surface tension) effects on jet contraction and on the transition from jet
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expansion at low jet Reynolds number to jet contraction at higher Reynolds
numbers?

In industrial prilling processes, typically a tapered and perforated prilling
bucket is used with a continuous feed of the melt towards the rotating bucket
and jets emitted from the bucket from thousands of holes. This leads to the
fourth and final research question:

4. How can the results obtained for a single spiralling jet be used to predict
the prill size distribution in an industrial prilling process?

To address these questions, a combined theoretical, numerical and experimental
approach has been undertaken. An in-house numerical model based on slender
jet approximation [20] has been developed. This approximation is based on the
disparity of the longitudinal and transverse length scales of the jets encountered
typically in the prilling process. In addition, a lab setup has been designed and
assembled to investigate the evolution of instabilities and formation of droplets from
a spiralling jet. Using the findings from numerical and experimental approaches, a
linear stability analysis has been conducted to understand the linear response of
spiralling jets to disturbances at different frequencies.

1.4. OUTLINE OF THE THESIS
The thesis is organized as follows. In Chapter 2, we address research question 1
and investigate the effects of non-straight trajectory on jet breakup. A lab scale
experimental setup has been built to form a jet emanating from a rotating orifice
and high-speed images have been obtained to analyze the capillary waves on the
jet. Also, an in-house numerical framework has been developed where the slender
jet approximation is used and the results are compared against the images from the
experiments. In Chapter 3, the research question 2 is addressed and the slender jet
model is extended with energy balance and thermal effects on the jet instabilities are
investigated. Also the concept of thermal modulation to control breakup is tested
and discussed. In Chapter 4, the research question 3 is addressed and the contraction
or expansion of Newtonian jets issued from round orifices is numerically analyzed
and discussed. In Chapter 5, research question 4 is addressed, and framework
is presented to use our findings for a single spiralling jet to predict the prill
size distribution in an industrial prilling process.Finally in Chapter 6, the research
questions are revisited with main conclusions and future research recommendations.
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2
CONTROLLING THE BREAKUP OF

SPIRALLING JETS: RESULTS FROM

EXPERIMENTS, NONLINEAR

SIMULATIONS AND LINEAR

STABILITY ANALYSIS

In this chapter, we experimentally and numerically study the dynamics of a liquid jet is-
sued from a rotating orifice, whose breakup is regulated by a vibrating piezo element. The
helical trajectory of the spiralling jet yields fictitious forces varying along the jet whose
longitudinal projections stretch and thin the jet, affecting the growth of perturbations.
We show that by quantifying these fictitious forces, one can estimate the jet intact length
and size distribution of drops formed at jet breakup. The presence of the locally varying
fictitious forces may render high-frequency perturbations, that would otherwise be stable
in the abscence of stretching, unstable, as observed similarly in the case of straight jets
stretching under gravity. The perturbation amplitude then dictates how strong the per-
turbation is coupled to the jet compared with random noise that is inherently present in
any experimental set-up. In the present study we exploit the slenderness of the jet to sepa-
rate the calculation of the base flow and the growth of perturbations. The fictitious forces
calculated from the base flow trajectory are then used in a nonlinear slender-jet model,
which treats the spiralling jet as a quasi-straight jet with locally varying body forces. We
show both experimentally and numerically that jet breakup characteristics (e.g. intact

This chapter have been published as "Y. E. Kamis, S. Prakash, W.-P. Breugem, and H. B. Eral. “Controlling
the breakup of spiralling jets: results from experiments, nonlinear simulations and linear stability analysis”.
In: Journal of Fluid Mechanics 956 (2023), A24" [1]. The experiments have been conducted by the second
author, S. Prakash, as part of his M.Sc. thesis project under supervision of Y.E. Kamis, W.-P. Breugem and
H.B. Eral
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length and drop size distribution) can be controlled by finite-amplitude perturbations cre-
ated by mechanically induced pressure modulations. Finally, we revisit the integrated net
gain approach developed for straight jets under gravity and we provide simple analogous
relations for spiralling jets.
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2.1. INTRODUCTION

Liquid jets with non-straight trajectories appear in many industrial applications, includ-
ing fibre spinning [2], centrifugal hydrogel synthesis [3] and homogenization [4], spin-
ning disc atomization [5, 6] and prilling [7, 8]. In spinning disc atomization and prilling,
the product yields are the droplets/prills formed under inertio-capillary breakup of a spi-
ralling jet, mainly due to a Rayleigh-Plateau instability. To better control the breakup and
drop formation process of a spiralling jet, one needs a thorough understanding of the jet
flow along a helical trajectory, i.e., how an instability evolves downstream and leads to
breakup, as well as experimental validation of the proposed theories and results. The ro-
tating nature of the spiralling jet makes it rather challanging to design setups where the
experimental conditions are precisely controlled. Wong et al. studied spiralling jets ex-
perimentally, where the jet was issued from an orifice on a rotating bucket that is drained
by hydrostatic pressure due to gravity and rotation [9]. They discuss the combined effect
of gravity and rotation on the exit velocity and provided observations on the breakup
modes corresponding to different nondimensional numbers. In a follow-up study, Par-
tridge et al. studied spiralling jets on a bigger setup and highlighted that for a larger
setup it is harder to predict the breakup characteristics as mechanical vibrations and air
resistance play a much bigger role [10]. In addition to experimental approaches, ana-
lytical models were also developed. Wallwork et al. studied spiralling jets extensively
in the inviscid limit, providing temporal and spatial linear stability analyses along with
it [11]. This was later extended to include viscous effects [12–14], non-Newtonian fluid
behaviour [15, 16] and Marangoni effects from surfactants [17]. In an extensive mathe-
matical study, Shikhmurzaev & Sisoev pointed out how a priori assumptions in the defi-
nition of the jet specific coordinate frame lead to an erroneous derivation of the base jet
trajectory equations and they laid out a curvilinear local coordinate framework without
any assumptions [18]. This approach was later applied by Li, Sisoev & Shikhmurzaev [19]
and Noroozi et al. [20] to study the trajectory and the base flow of a spiralling jet.

Comparison of the predictions from linear stability analyses with experiments revealed
their lack of ability to predict the jet behaviour at later stages of instability and the subse-
quent drop formation, stressing the necessity of a nonlinear modeling approach. How-
ever, full 3D simulations of the breakup of a spiralling jet would be computationally very
expensive and is not feasible yet. Li et al. [19] have used an arbitrary Lagrangian-Eulerian
based "end-code" where the prescribed base flow trajectory (and thus the locally varying
body forces in a curvilinear system describing the jet) are used to simulate the nonlinear
stages of the growth of perturbations. By exploiting the typically slender nature of the
spiralling jets, the nonlinear growth can be accurately simulated with a 1D slender jet
model [21] in which the spiralling jet is basically treated as a quasi-straight jet with lo-
cally varying body forces. The strength of the slender jet approach has been showcased
in several studies on nozzle driven jets; Driessen et al. showed droplet regime control
using multimode perturbations [22] and McIlroy & Harlen studied the effects of finite
perturbation amplitude on breakup characteristics [23]. The method proved useful also
in nonisothermal cases with the additional presence of thermo-capillary (Marangoni)
effects [24, 25].

The case of a spiralling jet bears many analogies to a straight jets under a non-negligible
gravity force, since the fictitious forces that dictate the trajectory of the jet have finite lon-
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gitudinal projections that stretch the jet along the flow direction. It is well-known that
the Rayleigh-Plateau instability is significantly altered by the presence of stretching [26].
In the context of gravity driven jets, the regimes are studied in both the viscous [27, 28]
and the inviscid limit [29]. On the one hand, stretching tends to damp the perturbations
when the timescale related to stretching is much faster than that of the inertio-capillary
growth [30]. On the other hand, stretching tends also to enhance perturbations through
thinning of the jet and the associated reduction of the inertio-capillary time scale along
the jet.

Previous studies on the effect of stretching in gravity-driven and spiralling jets have
mainly been on the linear stability analyses under infinitesimally small perturbations.
A full overview on the process from initial perturbation till jet breakup and beyond, in-
cluding further breakup or coalescence of detached drops, is missing. Here we present
results from a comprehensive study on the breakup of spiralling jets based on experi-
ments, non-linear slender-jet simulations, and linear stability analysis. Our prime in-
terest is in accurate estimation of the breakup of a spiralling jet and resultant drop size
distribution and to provide physical insights for practical applications of this complex
problem.

In §2.2 we provide details on the experimental setup used. In §2.3 we present the
non-linear slender-jet model, including details of the underlying mathematical frame-
work and a derivation of the base flow equations. Results for the jet breakup from the
experiments and the slender-jet model are discussed in §2.4. In the next section, we
demonstrate the analogy between a spiralling jet in the presence of fictitious forces and
a straight jet subject to gravity. This is used then in a linear stability analysis with an in-
tegrated gain approach [28, 29]. Furthermore, in analogy with a gravity-driven straight
jet, we show the existence of similarity solutions. Finally, in §2.6 we draw the main con-
clusions.

2.2. EXPERIMENTAL SETUP

The CAD model and the schematic of the experimental setup are shown in figure 2.1.
A fluid reservoir with a nearly constant pressure head delivers the fluid to the rotating
nozzle via an intermediate chamber. A rotary swivel joint is used to connect the station-
ary fluid chamber to the rotating nozzle. The swivel joint is spun with a stepper mo-
tor through a timing belt at the desired speed. A circular plate connected to the piezo-
actuator is embedded in the fluid chamber for a well controlled periodic perturbation
of the nozzle exit velocity at a desired frequency. The jet is visualised with the help of a
high-speed camera that is fixed in the lab frame of reference. The camera records at a
frequency of 2500 frames per second to capture consecutive breakup events. The pixel
size of the sensor is 11 × 11 µm2 and the scale factor was found to be of 53 µm/px which
corresponds to a magnification of 0.207. The exposure time of the camera is set to 75 µs
which limits the blurring of the jet to around 1.6 px. Since the Rossby number is close
to unity, the blurring due to streamwise motion and the rotation of the jet is similar.
Completely eliminating blurring was not possible so a compromise was made between
blurring and good contrast. The jet is illuminated from the back by a LED panel. The
velocity of the jet is determined at an estimated accuracy of 2% from the drop in liquid



2.2. EXPERIMENTAL SETUP

2

17

Experimental parameters

Rotating arm, L 7.48 cm
Nozzle radius, R0 400 µm
Nozzle exit velocity, U0 1.85±0.2 ms−1

Rotational speed, Ω 250 rpm (26.2 rads−1)
Density, ρ 997 kgm−3

Dynamic viscosity, η 0.9 mPas
Surface tension, γ 72 mNm−1

Piezoplate frequency 520-740 Hz
Piezoplate supply voltage 75-150 V
Piezoplate displacement 4.5-9 µm

Nondimensional parameters used in the simulations

Jet slenderness, ϵ= R0/L 5.4×10−3

Weber, W e = ρU 2
0 R0/γ 18.3

Ohnesorge, Oh = η/
√
ρR0γ 6×10−3

Reynolds, Re = ρU0L/η 1.5×105

Rossby, Rb =U0/(ΩL) 0.94
Froude, F r =U0/

√
g L 2.13

Table 2.1: Experimental parameters and corresponding nondimensional numbers used
in the simulations.
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Figure 2.1: Experimental setup. (a) Schematic of the setup. (b) CAD drawing of the piezo
actuator & plate, fluid discharge tank and the rotary elbow. (c) Photo of the
parts given in (b).

level of the fluid reservoir. Properties of the working fluid are given in table 2.1.
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2.3. COMPUTATIONAL MODEL
We performed a numerical study of the same flow geometry as considered in the exper-
iments. The flow within the jet is decomposed into a stationary base state and pertur-
bations that are imposed at the nozzle and evolve downstream along the jet. The jet
trajectory and base flow are coupled with each other and hence must be solved simul-
taneously. Using the knowledge of the trajectory and on how the jet velocity evolves
downstream, we can then consider the perturbations on the jet. In what follows, we first
present the mathematical framework in which we derive the governing equations in a
moving frame of reference and using curvilinear coordinates. Assuming a slender jet, we
then derive the equations for the base flow and compute from this the fictitious forces
acting on the flow along the jet trajectory. Finally, we derive the slender-jet model for the
flow perturbations.

2.3.1. MATHEMATICAL FRAMEWORK

In a frame of reference co-rotating with the nozzle at an angular velocity Ω = (0,0,−Ω),
the non-dimensional Navier-Stokes equations for the Newtonian liquid flow in the jet
read:

∇·u = 0, (2.1a)

Du

Dt
=−∇p + 1

Re
∇· (2D)− 1

Rb2Ω× (Ω×d)− 2

Rb
Ω×u+ 1

F r 2 g, (2.1b)

where g = (0,0,−g ) and D = (∇u+∇uT
)

/2 is the rate-of-strain tensor and d is the dis-
tance vector with respect to the rotating axis. The definitions and values of the nondi-
mensional numbers are provided in table 2.1. The mathematical framework we use is

D(s)
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Figure 2.2: (a) Schematic of the top view of the setup. (b) Close-up view of a section in
the jet showing the different coordinate frames.

very similar to what is described in detail in [18, 20], but briefly revisited here for com-
pleteness. Figure 2.2 shows a schematic of a curved jet. We start by describing a baseline
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[18], that is a spline which goes along the jet and staying inside it, using Cartesian basis
vectors on a frame rotating with Ω (see Figure 2.2a):

D(s) = X (s)x̂+Y (s)ŷ+Z (s)ẑ, (2.2)

where s is the arclength. From (2.2) the Frenet basis can be defined, i.e., a local orthogo-
nal basis defined at every point on the baseline:

T(s) = dD

d s
= X ′(s)x̂+Y ′(s)ŷ+Z ′(s)ẑ

(
X ′2 +Y ′2 +Z ′2 = 1

)
, (2.3a)

N(s) = dT

d s

∣∣∣dT

d s

∣∣∣−1
= X ′′x̂+Y ′′ŷ+Z ′′ẑp

X ′′2 +Y ′′2 +Z ′′2 , (2.3b)

B(s) = T×N, (2.3c)

where a prime denotes derivative with respect to s. The derivatives of the Frenet base
vectors are related to each other by the Frenet formulas:

d

d s

 T
N
B

=
 0 κ 0

−κ 0 τ

0 −τ 0

 T
N
B

 . (2.4)

Here κ(s) and τ(s) are, respectively, the local curvature and the local torsion of the
baseline, given by:

κ(s) =
√

X ′′2 +Y ′′2 +Z ′′2, (2.5a)

τ(s) = X ′(Y ′′Z ′′′−Z ′′Y ′′′)+Y ′(Z ′′X ′′′−X ′′Z ′′′)+Z ′(X ′′Y ′′′−Y ′′X ′′′)
(Y ′Z ′′−Z ′Y ′′)2 + (Z ′X ′′−X ′Z ′′)2 + (X ′Y ′′−Y ′X ′′)2 . (2.5b)

Let us now define the curvilinear coordinate variables, (s,r,φ), where s is again the
arc length variable, and (r,φ) are the polar radius and angle, respectively, on the plane
that is normal to the baseline at D(s). Notice from the definition of the Frenet basis (2.3)
that this is also the plane where N(s) and B(s) lie. So we can define an arbitrary point in
the jet with a position vector measured from the origin in the Cartesian and curvilinear
coordinates as follows:

d(x, y, z) = xx̂+ y ŷ+ zẑ, (2.6a)

d(s,r,φ) = D(s)+ r cosφN(s)+ r sinφB(s). (2.6b)

The free surface can be parametrically described as r = R(s,φ), with which the position
vector to the free surface takes the form:

d(s,R(s,φ),φ) = D(s)+R(s,φ)cosφN(s)+R(s,φ)sinφB(s). (2.7)

On the free surface one has the balance of stresses in normal and tangential direction:

n·
(
−p + 1

Re
2D

)
·n = − 1

W e
κfs, (2.8a)

ti·
(
−p + 1

Re
2D

)
·n = 0, i = s,φ, (2.8b)



2

20 2. CONTROLLING THE BREAKUP OF SPIRALLING JETS

where κfs is the curvature of the free surface. Here, the ambient phase is assumed to be
dynamically inert and the effect of air drag is neglected.

We will use the notation (s1, s2, s3) = (s,r,φ), to define the base vectors of the curvilin-
ear coordinate frame as:

ei = Çd

Çsi
(i = 1,2,3). (2.9)

Using 2.9, we can now express curvilinear base vectors in terms of the Frenet frame as
follows:  e1

e2

e3

=
 1− rκcosφ −rτsinφ rτcosφ

0 cosφ sinφ
0 −r sinφ r cosφ

 T
N
B

 . (2.10)

The metric of this basis, g , defined as gi j = ei ·ej, is given by:

g =
 (1− rκcosφ)2 + (rτ)2 0 r 2τ

0 1 0
r 2τ 0 r 2

 . (2.11)

Notice that the coordinate frame defined by (2.9) is not orthogonal as g13 and g31 are
not zero in the presence of torsion or outside the baseline (r ̸= 0) . Another aspect of
the curvilinear base is that two base vectors, namely e1 and e3, are not unit vectors since
g11 ̸= 1 and g33 ̸= 1. As a consequence, there is a change in magnitude when a vector
v = (v1, v2, v3) is projected onto the curvilinear base. For instance, the projection of the
velocity vector u on the curvilinear base is represented by: v1e1+v2e2+v3e3 = us e1/|e1|+
ur e2/|e2| +uφe3/|e3| where us , ur and uφ are the physical components of the velocity
using the normalized base vectors.

The inverse metric tensor (g i j ) is defined by g i k gk j = δi
j , where δi

j is Kronecker delta,

and is given by:

g−1 = 1

∆

 r 2 0 −r 2τ

0 ∆ 0
−r 2τ 0 (1− rκcosφ)2 + (rτ)2

 , (2.12)

with ∆= det(gi j ) = r 2
(
rκ(s)cos

(
φ

)−1
)2 the determinant of the metric tensor.

Using the metric and its inverse, we can express the gradient operator as follows [31]:

∇= g i j e j
Ç

Çsi
=

(
1

e2
1T

Ç

Çs
− τ

e2
1T

Ç

Çφ

)
e1 + Ç

Çr
e2 +

(
g11

r 2e2
1T

− τ

e2
1T

)
e3, (2.13)

with g11 = (1− rκcosφ)2 + (rτ)2 being the first element of the metric tensor given in
(2.11) and e1T = 1− rκcosφ is the tangential component of the local base vector in s-
direction, namely the first element of the transformation matrix given in (2.10).

Finally, the coefficients to connect the variations of the base state vectors (also known

as the Christoffel symbols of the second kind Γk
i j , such that Çei

Çs j = Γk
i j ek ) can be written

as:

Γk
i j =

g kl

2

(
Çgl j

Çsi
+ Çgl i

Çs j
− Çgi j

Çsl

)
. (2.14)



2.3. COMPUTATIONAL MODEL

2

21

The full expressions of each Christoffel symbol are provided in Appendix 2.C. From
here onwards, it is the tedious book keeping to determine the terms in (2.1a) and (2.1b)
in curvilinear coordinates. This was achieved by the help of the symbolic mathematics
module SymPy [32]. Some of the terms in the conservation equations in general curvi-
linear coordinates are provided in Appendix 2.C.

To pave the way for the slender jet approximation, one needs to acknowledge the ex-
istence of two disparate length scales existing in the problem. These are namely the
rotating arm, L, and the orifice radius, R0. We scale s with L and r with R0. The velocity
at the orifice, U0, is used for scaling the velocity in s-direction, so the advective timescale
becomes tadv = L/U0. Finally, the pressure is scaled with ρU 2

0 .

2.3.2. JET TRAJECTORY & BASE FLOW

To obtain the leading order steady state equations for the spiralling jet trajectory, one
needs to consider the limit where the jet slenderness ϵ tends to zero, i.e. R0/L → 0. The
steady state jet base flow equations, namely, the mass conservation, the T-N-B projec-
tions of the momentum conservation and the arc length condition have the following
form:

d

d s

(
U R2)= 0, (2.15)

U
dU

d s
=− 1

W e

d

d s

(
1

R

)
+ 3

R2Re

d

d s

(
R2 dU

d s

)
− Z ′

F r 2︸ ︷︷ ︸
fgravity

+ X X ′+Y Y ′

Rb2︸ ︷︷ ︸
fcentrifugal

, (2.16)

(
U 2 − 1

RW e
− 3

Re

dU

d s

)(
X ′′2 +Y ′′2 +Z ′′2) = X X ′′+Y Y ′′

Rb2

− 2U
(
X ′Y ′′−Y ′X ′′)

Rb
− Z ′′

F r 2 , (2.17)

0 = X
(
Y ′Z ′′−Z ′Y ′′)+Y

(
Z ′X ′′−X ′Z ′′)

Rb2 − X ′Y ′′−Y ′X ′′

F r 2 + 2U Z ′′

Rb
, (2.18)

X ′2 +Y ′2 +Z ′2 = 1. (2.19)

These equations form a closed system for X (s), Y (s), Z (s), the Cartesian coordinates of
the baseline of the jet, and R(s), U (s), which express the local velocity and jet thickness.
The factor 3 in front of the 2nd term on the right hand side of (2.16) is the Trouton num-
ber that represents the ratio of extensional to shear viscosity. It appears naturally in the
asympotic expansion of the governing equations. In the inviscid limit (Re ≫ 1), which
approximately hold for our experiments, equation (2.16) can be combined in a single
integrand and readily integrated as:

U 2 + 2U 1/2

W e
p

C1
+ 2

F r 2 Z − 1

Rb2

(
X 2 +Y 2)+C2 = 0, (2.20)

where we used U R2 =C1 from (2.15), and C1 and C2 are integration constants. Note that
viscous resistances to bending and twisting are also neglected in this case.
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The rotation path of the orifice lies on the X Y -plane, as shown in figure 2.2(a). We
define X (0) = 1, Y (0) = 0, Z (0) = 0, X ′(0) = 1, Y ′(0) = 0 and finally Z ′(0) from (2.19),
i.e., the jet is issued in the X-direction. The nozzle velocity U0 and the radius R0, which
have been used for nondimensionalization, set the base flow boundary conditions as
U (0) = R(0) = 1 and hence C1 = 1. Combining all the prescribed boundary conditions in
(2.20) yields C2 = 1/Rb2 −2/W e −1.

We solve the system (2.15), (2.17)-(2.20), also known as the "string" equations, with the
prescribed boundary conditions and the nondimensional numbers given in table 2.1 us-
ing a fourth order Runge-Kutta method. The results are summarized in figure 2.3. The
base jet trajectory is in great agreement with the experiments, so it enables the quantifi-
cation of the projections of the body forces along the trajectory, namely, the centrifugal
force, fcentrifugal(s), and gravity force, fgravity(s), whose expressions are given at the right
hand side of (2.16). Figure 2.3 depicts the results from the base flow calculations. It is
apparent that with the parameters in our experiment, the gravity force is about an order
of magnitude smaller than the centrifugal force, which suggests that the torsion along
the arc length and distance travelled by the jet in the Z direction are negligibly small,
allowing to study the dynamics from 2D projections onto the X Y -plane.
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Figure 2.3: Results from the base flow computation. (a) Comparison of calculated jet
trajectory (red line) with a snapshot from an unperturbed jet experiment. (b)
The variation of the base state velocity, U (s), and jet radius, R(s), along the
jet. (c) The variation of the body forces acting along the jet due to rotation
fcentrifugal = (X X ′+Y Y ′)/Rb2 and gravity fgravity =−Z ′/F r 2.

2.3.3. NONLINEAR SLENDER JET MODEL

To be able to capture the dynamics close to breakup, e.g. the formation of main and
satellite droplets, nonlinear simulations are necessary. Once the longitudinal projec-
tions of the centrifugal and the gravity forces are accounted for, one can approximate
the nonlinear dynamics of the jet along the flow direction with an error of O(ϵ), provided
that the full free surface curvature is accounted for [19]. In other words, the 3D spiralling
trajectory of the jet can be represented as a quasi-straight jet with locally varying body
forces. This also amounts to the implicit assumption that that the wavenumber of the
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perturbations k (scales with R−1
0 ) is much larger than the curvature κ and the torsion τ

of the base jet trajectory (both scale with L−1) which is valid in the limit ϵ→ 0. To this
end, we implemented a slender jet approximation, detailed in [21, 25], which yields the
following unsteady 1D equations for the jet flow:

ÇA

Çt
+ Ç

Çs
(u A) = 0, (2.21a)

Ç (u A)

Çt
+ Ç

Çs

(
u2 A

)= Ç

Çs

[
A

(
K

W e
+ 3ϵ

Re

Çu

Çs

)]
+ A

[
ϵ
(

fcentrifugal + fgravity
)]

, (2.21b)

K = 2√
4A+ A2

s

+ 4A Ass −2A2
s(

4A+ A2
s
)3/2

, (2.21c)

where A = R2 is the normalized local jet cross-sectional area. Note that the full expres-
sion for the curvature is used (i.e., both radii of curvature instead of only the leading
order one in the expansion). This is key to the success of the slender jet framework [33,
34].

Note the inclusion of the ϵ parameter in front of the centrifugal and gravity force in
(2.21b) as they have been taken from (2.16) and are hence normalised with L instead
of R0. (2.21) form a closed system for the jet cross-sectional area A(s, t ) and jet veloc-
ity u(s, t ). The initial conditions are implemented as A(s,0) = R(s)2 and u(s,0) = U (s)
from the base flow computations detailed in §2.3.2. At the nozzle, we input the velocity
fluctuations as u(0, t ) = 1+εv cos(ωt ) on top of the Gaussian white noise which is men-
tioned in §2.4. A regularized capillary pressure is implemented to carry the simulations
beyond the pinchoff point [35]. A finite difference scheme on a staggered grid is used
for solving the system given in 2.21. The time integration is done explicitly by using a
three-step Runge-Kutta scheme with an adaptive time stepping. Except for velocities, a
central differencing scheme is used for evaluating the variables at their half step neigh-
bors. For velocities a higher-order total variation diminishing (TVD) van Leer scheme is
used. More details of the numerical method and validation can be found in [25].

Mechanical vibrations are naturally present in industrial applications of spiralling jets
such as in prilling, where the typical size of the rotating perforated bucket is on the order
of 50 cm. Even in small-scale laboratory experiments, one can never get fully rid of such
vibrations, and they might have a significant effect on the jet breakup. The time series
of such noisy perturbations are rather difficult to quantify, however, a good proxy is to
represent the vibrations by white noise and to characterize the noise strength in terms
of the natural (actuation-free) jet breakup length or breakup time [36].

To simulate the natural breakup in the slender jet framework, we add Gaussian white
noise to the nozzle velocity as follows:

u(0, t ) = 1+εv cos(ωt )︸ ︷︷ ︸
perturbation

+ W (∆t )︸ ︷︷ ︸
white noise

. (2.22)

The white noise is generated using standard random number generators in matlab and
its standard deviation scales as S∆t where S is a strength parameter and ∆t is the com-
putational timestep. This ensures that the forcing due to the white noise is uncorrelated
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with the timestep [25]. The strength parameter S is then calibrated using the observed
experimental natural (i.e., εv = 0) breakup length. In the present study we subsequently
used S = 300 in all simulations and the nondimensional timestep ∆t is adjusted dynam-
ically considering the stability restrictions based on the effects of advection, diffusion
and surface tension [31, 37].

The comparison of the simulation and experiments for the parameters listed in table
2.1 and in the presence of only background noise, is summarized in table 2.2.

Simulation Experiment

Breakup length, Lb 98.0 ± 6.0 95.4 ± 7.8
Drop projected area, Ap 6.7 ± 3.8 8.3 ± 5.4

Table 2.2: Mean and standard deviation of the breakup properties of natural (actuation-
free) breakup cases. The breakup length is expressed in terms of the nozzle
radius R0 and the drop projected area is represented in terms of R2

0 .

2.4. COMPARISON OF SIMULATIONS WITH EXPERIMENTS FOR

JET BREAKUP
Simulations and experiments have been conducted for the parameter settings listed in
table 1 and for three different actuation frequencies (ω). The strength of perturbations
was varied by varying the velocity perturbation amplitude (εv ) in the simulations and
the oscillation amplitude of the piezo-actuator (∆hpiezo) in the experiments. The simu-
lation results from the slender-jet model for the jet interface have been projected from
the curvilinear to the Cartesian frame using 2.7. Figure 2.4(a) shows the comparison of
a slender jet simulation and an experiment at ω = 0.7 and in figure 2.4(b) we show the
change in the mean intact length with respect to the perturbation amplitude at different
frequencies. Note that in figure 2.4(b) we shifted the axes for ∆hpiezo and εv as to give
a best match between simulations and experiments. The simulations and experiments
agree well in terms of trajectory and the jet shape. The presence of the background noise
brings in a threshold for the finite amplitude perturbations to overcome the noise and
control the breakup of the spiralling jet, which can be observed in figure 2.4(b). The er-
rorbars show the standard deviation around the mean for the time series of the jet intact
length, defined as the distance in s from the nozzle exit till the location at which pinch-
off takes place. This indicates how much the perturbations are coupled to the system,
namely, the less the intact length fluctuates, the more the finite amplitude perturbations
are coupled to the jet, hence better control.

To make the comparisons between simulations and experiments conveniently, we show
the spiralling jet in a space time plot in figure 2.5 (without actuation) and figure 2.6 (with
actuation) by stitching consecutive time images together. This also allows to inspect the
motion of the droplets after the pinchoff event, such as capillary oscillations and rota-
tion. The time difference between instants is ∆t = 0.8 ms, during which the orifice ro-
tates π/150 radians. By comparing figures 2.5 and 2.6 it is clear that jet actuation helps in
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Figure 2.4: (a) Comparison of the jet interfaces obtained from simulation (shown in red)
and from experiment at a perturbation frequency ω = 0.7. The piezoplate
displacement is 6 µm and the velocity amplitude in the simulation is 0.5% (b)
Mean and standard deviation of the jet intact length as function of piezoplate
displacement in the experiments and velocity perturbation amplitude in the
simulations.

achieving a regular jet breakup and reduces the fluctuation in the jet intact length. Also,
the comparison of the drop size distributions in figures 2.5(c) and 2.6(c) reveal a nar-
rower distribution around the mean projected drop area when the jet is actuated. Over-
all the agreement between the experiments and simulations is good. Figures 2.5 and 2.6
also allow for a qualitative comparison in terms of the late jet dynamics, formation of
satellite drops and droplet motion after pinch off.

For the unperturbed jets, the intact length of the jet fluctuates at a higher standard
deviation than their perturbed counterpart. The jets often emit filaments that are a few
wavelengths long which fragments into droplets after separating from the main jet. Due
to the thinning and stretching of the jet, the high-frequency perturbations which are ini-
tially stable and damped, may become unstable downstream. Therefore a larger window
of wavelengths is involved in the instability process as compared to the Rayleigh window
for straight jets in the absence of external forces.

In the presence of jet actuation, the jet intact length fluctuations are suppressed and
the jet regularly emits a filament which breaks up either at the forward/downstream end
or the rear/upstream end. For straight jets it is known that the location of the breakup
within a single filament depends both on perturbation frequency and amplitude [36].
If the breakup occurs at the forward end, the satellite drop merges with the main drop
that is following it, within a distance of a few wavelengths. Within a narrow window
of amplitudes at a given frequency, the breakup location shifts from the downstream
end to the rear end, which is the desired regime for applications such as continuous
ink jet printing as the satellite drop merges with the leading main drop [23]. The main
mechanism of merging is the momentum transfer during the finite time between the 2
successive pinchoff events, also known as the satellite interaction time [36]. In our sim-
ulations and experiments, the typical merging length relative to jet pinch-off in all cases
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Figure 2.5: Comparison between experiment and simulation for the natural (actuation-
free) breakup case. (a) Experiment. (b) Simulation. (c) Comparison of the
drop projected area normalized by the mean.

is about 2-3 wavelengths. The proportion of the main and satellite droplet volumes are
given in figure 2.7. The volumes are normalized with the jet volume over one perturba-
tion wave length at nozzle exit, which is conserved under wave length stretching down-
stream due to mass conservation. At a given frequency, the perturbation amplitude de-
termines where the droplets are formed, i.e., lower amplitudes result in droplets formed
further downstream. The proportion of the volumes of the main and satellite droplets
converge as they are formed further downstream. For a nozzle frequency of ω = 1.2,
which is initially outside of the Rayleigh window, one can see a larger variation in the
drop volume and location. This is attributed to the fact that the unstable frequencies
of the white noise gain enough to interfere with the imposed finite amplitude pertur-
bation. Therefore the jet volume enclosed by the imposed perturbation wave length at
nozzle exit becomes irrelevant and one can see the droplet volumes are exceeding the
volume expected from the imposed perturbation.

The fact that the droplets stay in the base jet trajectory in the experiments (see figure
2.6) verifies that it is a good approximation to assume that the jet trajectory is steady in
the rotating frame and to separate the calculation of the base flow and the drop forma-
tion. After the pinchoff, the droplets travel in a straight line with respect to the stationary
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Figure 2.6: Comparison between experiment and simulation in the presence of actua-
tion with ω = 0.9. (a) Experiments with a piezoplate displacement of 6 µm.
(b) Simulations with a velocity amplitude 0.5%. (c) Comparison of the drop
projected area normalized by the mean.

frame, preserving their linear momentum.

The satellite interaction time leads to another phenomenon in the context of spiralling
jets. With straight jets, the momentum transfer is always in the direction of the flow and
the satellite drop is either sped up or slowed down depending on the location of the first
pinchoff (forward or rear). When the spiralling jets are captured in stationary frame (fig-
ure 2.6), one can observe that the capillary oscillation of the droplets is superposed with
a rotation around principal axis. The curved nature of the trajectory results in slight vari-
ation of the tangential and the normal vectors from the front-end to the rear-end of the
droplets, which leads to a moment around the principal axis and breaks the symmetry
of the detached drop around the tangential direction. The locality of the forces along the
flow direction imposes a moment during the satellite interaction time, causing the drop
oscillations to be 3D in nature.

As the perturbations grow and the amplitude becomes finite, the shape deformations
of the jet are sufficiently large where the dynamics enter a nonlinear regime. The for-
mation of the main and satellite droplets is a nonlinear phenomenon by nature. The
evolution of the velocity perturbations deviates from its linear counterpart (i.e., normal
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Figure 2.7: Volumes of the main and satellite droplets obtained from the simulations
as a function of their location of first appearance. For each frequency three
points are shown, corresponding to different perturbation amplitudes (drops
are formed further downstream for smaller amplitudes).

mode), shown in figure 2.8 forω= 0.9, as the satellite droplets begin to form. It manifests
itself as the fluctuations take the form of triangular waves starting from the sinusoidal.
On the other hand the nonlinear growth rate is in agreement with the linear estimation
until very close to the breakup, which is partly due to the fact that the studied case is
close to the inviscid limit, where the time scale for axial momentum diffusion is large
compared to the inertio-capillary timescale during the early stage of the growth. In other
words, the jet is sufficiently deformed only very close to the breakup for viscosity to play
a role.
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Figure 2.8: Comparison of the linear and nonlinear evolution of the velocity perturba-
tions for ω = 0.9 at different velocity perturbation amplitudes at the nozzle,
with decreasing strength from top to the bottom. tb refers to the instant of
jet breakup. The dotted lines represent the envelope of the velocity perturba-
tions computed from the linear model detailed in §2.5.
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2.5. ANALOGY WITH GRAVITY-DRIVEN STRAIGHT JETS:
APPROXIMATE BASE FLOW SOLUTIONS, LINEAR STABILITY

& SELF-SIMILARITY
The agreement between the experiments and simulations demonstrates the validity of
modelling spiralling jets as quasi-straight and slender jets with locally varying pseudo
forces provided that epsilon is sufficiently small. These forces, and the variation thereof,
can be computed from the base trajectory of the jet as discussed in §2.3.2. Once the base
flow of the jet and the variation of the body forces have been accounted for, one can use
these to study the stability of this flow to perturbations. In this section we will linearize
the slender-jet model for a linear spatial stability analysis of the flow to infinitesimally
small perturbations imposed at nozzle exit. We will show that this analysis provides in-
sight in the dynamics underlying jet breakup and in the scaling behaviour for the spatial
growth rate and jet breakup.

To study how perturbations evolve along the jet, one needs to pay attention to the
disparate length scales present in this problem. In §2.3.2 where the base flow and the
trajectory was calculated in the limit ϵ→ 0, all lengths are expressed in terms of the ro-
tating arm L and the base flow equations represent the jet as a "string" whose thickness is
O(ϵL). When we consider capillary waves along the jet, their wavelengths are of the same
order as the jet radius so their growth should be expressed along s/(ϵL), i.e., in units of jet
radius instead of the rotating arm. Similarly, while the advective scale of the base flow is
tadv = L/U0, the relevant advective time time for the perturbations is R0/U0 = tadv/ϵ. In
what follows, we will express all the lengths in terms of the nozzle radius and the length
of the rotating arm L will only appear in the expression of the body forces. Furthermore,
we introduce an effective gravity ge ∼ O(Ω2L + g ) that measures the combined effect of
rotational and gravitational forces. Using this, we define the effective capillary length as
lc =

√
γ/ρge and an effective Bond number Boe = (R0/lc )2 = ρge R2

0 /γ. In terms of (We,
Rb, Fr) given in table 2.1, the latter can be expressed as:

Boe (W e,F r,Rb) =W e
( ϵ

Rb2 + ϵ

F r 2

)
. (2.23)

Using (2.23), one could follow the same line of gain analysis developed for straight jets
in [29]. For the given experimental case with the nondimensional numbers presented
in table 2.1, the variation of the body forces along the jet is minor, see figure 2.3(c). The
centrifugal forces are very close to their nozzle value throughout the entire jet and gravi-
tational forces, which would make the jet travel in the Z-direction and cause torsion, are
an order of magnitude smaller than the centrifugal forces. In this case, the spiralling jet
thus behaves like a gravity-driven straight jet with the gravitational acceleration replaced
by the initial centrifugal acceleration at nozzle exit, namely, U (dU /d s) = Boe /W e, as the
viscous and curvature effects decay rapidly after the nozzle exit. One thus has:

U (s) =
√

2Boe

W e
s +1, (2.24a)

R(s) =
(

2Boe

W e
s +1

)−1/4

. (2.24b)
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A comparison between the "free-fall" solution (2.24) and the solution of the base flow
equations (2.20) is given in figure 2.9.
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Figure 2.9: The comparison between the base flow solutions from (2.15), (2.17)-(2.20)
and the approximate "free-fall" solutions given in (2.24).

This assumption can be made a priori if W e ≫ Boe for W e large enough to stay in the
jetting regime [38]. The arc length s can be recast as a slowly varying dimension

ξ= s

s0
+1, s0dξ= d s, (2.25)

for large s0, where s0 =W e/2Boe is the variation scale [29, 30], such that (2.24) becomes:

U (ξ) =
√
ξ, (2.26a)

R(ξ) = ξ−1/4, (2.26b)

respectively.
We now consider perturbations to the base flow of the following form

(ũ, R̃) = (u(ξ),r (ξ))e
i
(
s0

∫ ξ
1 k(ξ′)dξ′−ωt

)
, (2.27)

where k = kr + iki is the complex wave number, kr = 2π/λ is the real wave number with
λ the perturbation wavelength (normalised with R0), −ki is the spatial growth rate andω
is the real perturbation frequency imposed at the nozzle. Plugging U + ũ and R + R̃ into
(2.21a)-(2.21c) and considering the terms linear in (ũ, R̃) up to O(1/s0) yields:

(kU −ω)r (ξ)+ kR

2
u(ξ) = O

(
1

s0

)
, (2.28a)(

kU −ω− 3ik2

Re

)
u(ξ)+ k

R2W e

(
k2R2 −1

)
r (ξ) = O

(
1

s0

)
, (2.28b)
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which is analogous to (2.16) in [29]. This approach is also known as the WKBJ method
[39], a perturbation method using expansions over the small parameter 1/s0 in this case.
This approach is well utilized and tested in [28, 29]. The variations of the amplitudes
(u(ξ),r (ξ)) and the base states only show up at higher orders, which means for large
s0 (i.e., W e ≫ Boe ), the length scale of base flow variations are small compared to the
perturbation wavelength. The dispersion relation is found form the non-trivial solution
of equations 2.28:

k2

2RW e

(
k2R2 −1

)− (kU −ω)2 + 3ik2

Re
(kU −ω) = 0. (2.29)

This equation governs the convective instability of a jet to infinitesimally small pertur-
bations at the nozzle exit at a given frequency ω. Note that the dispersion relation (2.29)
is identical to the one for a straight jet in the absence of body forces, except that here U
and R are the local values instead of the nozzle values.
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Figure 2.10: The local wavenumber (kr R0) and spatial growth rate (−ki R0) along the jet.
the dotted line indicates the upper boundary of the local Rayleigh window
of unstable perturbations.

The solution to the dispersion relation given in (2.29) is shown in figure 2.10. The local
wavenumber, kr , is the real part of the solution to the complex equation and it is de-
creasing from its nozzle value due to the thinning of the jet, also known as wavelength
stretching [30]. Based on the nozzle values, the frequency that has the maximum growth
rate at the nozzle is ωini ≈ 0.718. But as the body forces stretch the perturbed filaments,
their growth rate also changes locally which leads to different gains along the jet, shown
in figure 2.11(a). So a net-gain approach is preferable to study the most unstable fre-
quencies [28, 29]. The local gain along the jet is then expressed as follows:

G(ξ) = eS(ξ), S(ξ) = s0

∫ ξ

1
−ki (ξ′)dξ′, (2.30)

where s0 =W e/2Boe ∼ 0.5|dU /d s|−1
0 /(R0/U0) can be interpreted as the ratio of the initial

stretching time to the initial advective time.
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Figure 2.11: (a) Integrated gain for different frequencies of perturbation at the nozzle.
The dashed vertical line indicates the location ξ = 2.35 which corresponds
to the location of the mean jet intact length obtained from the experiments
in the absence of imposed perturbations, also given in table 2.2. (b) The
location to reach the gain necessary for breakup vs the frequency of pertur-
bation at the nozzle

Figure 2.11(a) shows the gain along the jet at different frequencies and for infinitesi-
mal amplitude, based on equation 2.30. The disturbances start to gain only when their
local wavelength enters the Rayleigh window, which is indicated by the dotted line in
figure 2.10. Quantification of the infinitesimal disturbances is a difficult practice both
experimentally and numerically. When the gain reaches a sufficiently high value, which
is assumed to be G ≈ e7 in [29], the transition to breakup occurs. The location of the
transition ξt for different values of threshold gain is given in figure 2.11(b). For our ex-
perimental case with the parameters given in table 2.1, the assumed transition gain of
St ≈ 7 agrees well with the average natural breakup length for the unperturbed case of
our experiments that is around 95 times the radius of the jet, see table 2.2. For the choice
of St ≈ 7, the frequency that gains the fastest is around ω≈ 0.9.

Furthermore, self-similarity can be deduced from the dispersion relation. We will first
decompose the solution of the complex equation (2.29) as follows:

kr R(ξ) = ωR

U
=ωξ−3/4, (2.31a)

−ki R(ξ) = q (kr R,Oh)W e−1/2
l = q

(
ωξ−3/4,Oh

)
W e−1/2ξ−3/8, (2.31b)

where q is a non-dimensional function of the local wavenumber, the perturbation fre-
quency and the Ohnesorge number, and W el = W eξ3/4 is the local Weber number ob-
tained by using the base flow solutions (2.26). Looking into the convective behaviour of
the perturbations ofω> 1, one can see that the initial wavelength of these perturbations
are shorter than the lower boundary of the Rayleigh window (i.e. kr (ξ)R ≤ 1 as shown
with dashed curve in figure 2.10), so these perturbations do not gain (or even damped
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with higher viscosity) until the wavelength is stretched enough to enter the Rayleigh win-
dow. This motivates to do another rescaling on the flow direction, ξ, as:

θ = ξω−4/3, (2.32)

such that kr R(θ) = θ and instabilities grow for θ > 1. From here, we can express (2.31)
explicitly in terms of θ using the base flow solutions (2.26):

krω
−1/3 = θ−1/2, (2.33a)

−kiω
1/6W e1/2 = q

(
θ−3/4,Oh

)
θ−1/8 = p(θ,Oh), (2.33b)

where kr and ki are now scaled with parameters defined at nozzle exit. Using these
rescaled solutions, we can collapse the curves given in figure 2.10 onto a single curve.
We can also write the integral for the gain S(ξ) given in (2.30) in terms of an integral over
the similarity variable θ using (2.33b):

S(θ) = s0ω
7/6

p
W e

∫ θ

1
p(θ′,Oh)dθ′. (2.34)
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Figure 2.12: (a) Rescaled curves of the solution to the dispersion relation given in (2.29).
(b) The gain associated with the rescaled curve

For a threshold gain of St ≈ 7, we can then deduce the rescaled threshold distance
for jet breakup, θt , numerically from (2.34). This is shown in figure 2.13(a). In figure
2.13(b), the threshold distance, ξt = θtω

4/3, and the wavelength at breakup calculated

as λ(ξt ) = 2π
ω ξ

1/2
t are shown. The prefactor s0/

p
W e ∼ 0.5|dU /d s|−1

0 /
√
ρR3

0 /γ in (2.34)

can be interpreted as the ratio of the initial stretching time to the initial inertio-capillary
time.

As non-linear effects present in the experiments are a priori excluded from the linear
stability analysis, a direct quantitative comparison between the linear stability predic-
tions and the experiments or the nonlinear slender jet model would be flawed. Never-
theless, we made a quantitative comparison of the linear and non-linear predictions for
the evolution of the perturbations for the nondimensional numbers given in table 2.1. To
that end, we performed a small study where we compare the results from linear stabil-
ity analysis with the nonlinear slender jet model for 2 different perturbation amplitudes
and a range of frequencies.
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Figure 2.13: (a) The rescaled distance for transition to breakup, θt , based on (2.34) as a
function of frequency. (b) Transition distance, ξt , based on (2.30) and the
wavelength at the transition distance as a function of frequency calculated
as λ= 2π/kr (ξt ).
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Figure 2.14: Comparison of the breakup length from linear stability theory and from
nonlinear simulations for 2 different velocity fluctuation amplitudes, εv , as
a function of the imposed perturbation frequency. To ease the comparison,
the breakup length has been normalised with the minimum breakup length
at the most unstable frequency. Values for Lb,mi n are 91R0 from the linear
stability, and 90.6R0 and 52.7R0 from the nonlinear simulations for εv = 0.1%
and εv = 1%, respectively.

Results for the jet breakup length are given in figure 2.14 where the breakup length
Lb is normalized by the minimum breakup length, Lb,mi n . One can see that although
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the value of the most unstable wavelength do agree between the linear and nonlinear
predictions, the behaviour at other wavelengths differ significantly. At high frequencies
(i.e. short wavelengths) and εv = 1%, the nonlinear prediction for the jet breakup length
does follow the ω4/3 scaling, though slightly underestimating the breakup length. How-
ever at low frequencies (i.e., long wavelengths) there is a significant overestimation of
the breakup length by the linear analysis, as for ω→ 0 the perturbation wavelengths be-
come eventually large enough to be comparable to the streamwise variation scale of the
base flow. To correct for this, it would be necessary to include higher order terms in 2.28,
starting with terms up to O(1/s2

0) and increasing the order for smaller ω. In our study,
the focus is on the frequencies that are in the vicinity of the most unstable frequencies,
corresponding to the larger frequencies and smaller perturbation wavelengths for which
the local plane-wave approximation underlying (2.28) is valid.

2.6. CONCLUSION
We studied the breakup of a spiralling jet using experiments, simulations based on a
slender-jet model and a spatial linear stability analysis. The good agreement between
the experiments and simulations validates our ansatz that the spiralling jets can be ap-
proximated as quasi-straight jets with locally varying body forces given that the cross-
sectional scale of the jet (on the order of jet radius, R0) is much smaller than the longi-
tudinal scale at which the base flow varies (on the order of L). The locally varying body
forces are the longitudinal projections of the centrifugal and gravity forces along the jet.
For the given set of nondimensional parameters studied in our experiments, these lon-
gitudinal projections can be approximated by a constant effective gravity, and the base
flow solution can be treated as a freely falling jet by defining an effective Bond num-
ber. The effect of the wavelength stretching manifests itself as a reduction in the inertio-
capillary time scale along the jet due to thinning by the action of the effective gravity (i.e.
the longitudinal projections of the centrifugal and gravity forces). Self-similar solutions
for the convective linear stability have also been derived, from which a simple approx-
imation can be derived for the jet breakup length. Despite the number of assumptions
needed to proceed with this simplified approach, they are valid and relevant in many
processes, such as prilling of fertilizers, where the working liquids (e.g. molten urea)
have low viscosities.

APPENDIX

2.A. RELATIVE EFFECTS OF THE WHITE NOISE AND HARMONIC

COMPONENTS OF VELOCITY PERTURBATION
In this appendix, we assess the effect of varying the strength of the imposed white-noise
perturbations at nozzle exit on jet breakup. In figure 2.A.1, the Fourier transforms of the
nozzle exit velocity are given. One can see that for amplitudes greater than 0.1%, the
harmonic component is the main perturbation mechanism. The other frequency com-
ponents imposed by the white noise would influence the time series of the instantaneous
jet intact length.
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Figure 2.A.1: Frequency spectrum of the nozzle velocity u(0, t ) with respect to different
amplitudes for the harmonic component and the noise component. The
frequency of the harmonic component is ω= 0.9.

Figure 2.A.2 shows the mean jet intact length with respect to the amplitude of the im-
posed harmonic component at different levels of white noise intensity. In the absence
of the harmonic component, one can see that the fluctuations of the intact length are
much stronger. This is partly due to the fact that there is a wider window of unstable
wavelengths because of the streamwise component of the body force. The wavelengths
that are initially not long enough and thus stable will eventually get stretched and fall
into the instability window. When the amplitude of the harmonic component is weak,
the frequencies within the white noise have more time to be stretched and interfere with
the instability. When the amplitude of the harmonic component is strong, harmonic
perturbation will dominate the dynamics, which can also be seen by narrowing of the
errorbars at high amplitudes in figure 2.A.2.

2.B. OBTAINING p(θ)
We use the fact that the convective growth rate can be expressed in terms of temporal
growth rate given that we are above the critical wavenumber.

ki (ξ) = ωi,temp(ξ)

tIC (ξ)U (ξ)
(2.B.1)

The temporal growth rate can be deduced from the classical Rayleigh-Plateau instabil-
ity as:

ωi,temp(ξ) = kp
2

√
1−k2 + 9Oh2k2

2
− 3Ohk2

2
(2.B.2)

where k is the local real wavenumber. The local values of k, Oh, tIC and U are as
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Figure 2.A.2: Variation of the jet intact length with respect to different strengths of har-
monic and the white noise components. Here, the frequency of the har-
monic component is ω = 0.9 and ∆t is the adaptive computational time
step. The errorbars are one standard deviation of the intact length.

follows:

k(ξ) = ωξ−3/4, (2.B.3a)

Ohl (ξ) = Ohξ1/8, (2.B.3b)

tIC (ξ) =
p

W eξ−3/8, (2.B.3c)

U (ξ) = ξ−1/2. (2.B.3d)

When we substitute these into (2.B.2) and use (2.B.1) to evaluate ki (ξ), we end up with:

ki (ξ) = ωp
2W e

ξ−7/8

√
1−ω2ξ−3/2 + 9Oh2ω2

2
ξ−5/4 − 3Ohωp

2
ξ−5/8

 . (2.B.4)

Using the transformations given in (2.32) and (2.33b), we finally obtain p(θ) explicitly
as:

p(θ) =
√

1−θ−3/2

2
+ 9Oh2ω1/3

4
θ−5/4 − 3Ohω1/6

2
θ−5/8. (2.B.5)

When p(θ) can be explicitly integrated, (2.34) would then give an explicit equation to
solve for θt :

St = s0ω
7/6

p
W e

[P (θt )−P (1)] , (2.B.6)

where St ≈ 7 and P (θ) = ∫
p(θ)dθ.
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2.C. CHRISTOFFEL SYMBOLS, EXPRESSIONS IN LOCAL AND

FRENET FRAMES

Here we provide the intermediate expressions to define the local coordinate system and
the terms in the governing equations.

Using 2.9, one can represent the local base vectors in terms of the Frenet frame as
follows:

 T
N
B

=


1

1−rκcosφ 0 −τ
1−rκcosφ

0 cosφ − sinφ
r

0 sinφ cosφ
r


 e1

e2

e3

 . (2.C.1)

As mentioned in §2.3.1 and seen in (2.11), the local base vectors are not necessarily
unit. The magnitudes of the local base vectors should be used in order to express the
physical velocity u = (us ,ur ,uφ) vector from the contravariant vector v = (v1, v2, v3) as
follows:

us = v1|e1| = v1
√

(1− rκcosφ)2 + (rτ)2, ur = v2|e2| = v2, uφ = v3|e3| = v3r.
(2.C.2)

The Christoffel symbols of the second kind, whose compact form is given in (2.14), can
be written explicitly as follows:

Γ1
11 =

r

1− rκcosφ

(
κτsinφ−cosφ

dκ

d s

)
,

Γ2
11 =

(
1− rκcosφ

)
κcosφ− rτ2,

Γ3
11 =

rτ

1− rκcosφ

(
cosφ

dκ

d s
−κτsinφ

)
− (

1− rκcosφ
) κsinφ

r
+ dτ

d s
,

Γ1
22 = Γ2

22 = Γ3
22 = 0, Γ1

23 = Γ1
32 = 0, Γ2

23 = Γ2
32 = 0,

Γ1
33 = Γ3

33 = 0, Γ2
33 =−r, Γ3

23 = Γ3
32 =

1

r
,

Γ1
12 = Γ1

21 =− κcosφ

1− rκcosφ
, Γ1

13 = Γ1
31 =

rκsinφ

1− rκcosφ
,

Γ2
12 = Γ2

21 = 0, Γ2
13 = Γ2

31 =−rτ,

Γ3
12 = Γ3

21 =
κτcosφ

1− rκcosφ
+ τ

r
, Γ3

13 = Γ3
31 =− rκτsinφ

1− rκcosφ
.



(2.C.3)

The covariant terms in the conservation equations can be written in the general coor-
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dinates as follows:

Dv

Dt
=

(
Çv i

Çt
+ v j

(
Çv i

Çs j
+ vkΓi

j k

))
ei , (2.C.4a)

−∇p = g i j Çp

Çs j
ei , (2.C.4b)

(2D)i j = g k j
(
Çv i

Çsk
+Γi

kl v l
)
+ g ki

(
Çv j

Çsk
+Γ j

kl v l
)

, (2.C.4c)

1

Re
∇· (2D) = 1

Re

(
1p
∆

Ç

Çs j

(p
∆(2D)i j

)
+Γi

j k (2D)i j
)

ei . (2.C.4d)

One can then use the metric tensor (and its inverse) and the Christoffel symbols listed
in (2.11), (2.12) and (2.C.3) to compute the terms given above in (2.C.4a-2.C.4d). To com-
pute the projections in the Frenet frame one can use the transformation given in (2.C.1).

2.D. BENCHMARK FOR THE SLENDER JET SIMULATION

We validate our slender jet model that includes the longitudinal projections of the com-
puted body forces with the results of the arbitrary Lagrangian-Eulerian simulation pre-
sented in [19]. Their approach considers a boundary (a free parameter) between linear-
nonlinear evolution of the perturbation and this boundary is validated by convergence
of the breakup length over different choices of the linear-nonlinear boundary. Here we
compare the case where this boundary is directly set at the nozzle exit, corresponding to
Figure 3 in [19].
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Figure 2.D.1: Jet shapes from our slender jet model for the parameters W e = 10, F r = 5,
Rb = 1, Re = 50 and ϵ = 0.0172, for one droplet generation cycle. (a −d)
correspond to t = 0, 1.9, 3.9, 5.8. (e −h) correspond to t = 7.6, 7.9, 8.1, 8.5,
where t is measured from the beginning of the cycle. The frequency and
the amplitude of the radius perturbation are ω = 0.736 and εR = 0.04. The
results are in agreement the results of [19], Figure 3.
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The pinch-off location of the main drop in both our simulations and in [19] is 46-48
times the radius of the jet and the period of the drop generation cycle is 8.5 in units of
R0/U0, which corresponds to the period of the nozzle excitation 2π/ω.
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up dynamics and drop size distributions created from spiralling liquid jets”. In:
International Journal of Multiphase Flow 30.5 (2004), pp. 499–520.

[10] L. Partridge, D. C. Y. Wong, M. J. H. Simmons, E. I. Părău, and S. P. Decent. “Ex-
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3
ACTIVE CONTROL OF JET BREAKUP

AND DROPLET FORMATION USING

TEMPERATURE MODULATION

We demonstrated the significance of a mechanism to induce Rayleigh-Plateau instabil-
ity to control jet breakup. This could be by means of mechanical vibrations at a given
frequency and amplitude, that would modulate the pressure and the velocity at the noz-
zle. For a large scale process such as prilling, however, it is worthwhile to investigate
other means of perturbations. In this chapter, we numerically investigate the control of jet
breakup using temperature modulation at the nozzle with a specified frequency and am-
plitude. Our results show that temperature modulation does lead to instability through
capillary and Marangoni stresses, providing control of the droplet formation in terms of
intact length and resultant drop size distribution, which is otherwise irregular due to in-
evitable presence of background noise. For understanding the mechanisms underpinning
the breakup of a thermally modulated jet in the presence of noise, it is useful to decom-
pose the surface tension forces into a contribution from curvature-gradient forces and a
contribution from surface tension-gradient forces, associated with axial variations in the
jet curvature and the temperature-dependent surface tension coefficient, respectively. We
show that in the limit of slow axial heat diffusion and slow cooling to the ambient, as con-
sidered here, the breakup of a thermally modulated jet is governed by the ratio of the sur-
face tension-gradient force to the imposed random perturbation force at nozzle exit. This
so-called ’thermal modulation strength number’ depends on the amplitude and frequency
of the thermal modulation, the sensitivity of the surface tension coefficient to variations in
temperature, the Weber number and the strength of the Gaussian white noise added to the
nozzle exit velocity. We show that the thermal modulation strength number governs the
shift in breakup characteristics from forward to rear pinch-off for increasing modulation

This chapter have been published as "Y. E. Kamis, H. B. Eral, and W.-P. Breugem. “Active control of jet breakup
and droplet formation using temperature modulation”. In: Physical Review Fluids 6.10 (2021), p. 103903"
[1].
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strength as well as the nature of the instability. When thermal modulation is weak, the sur-
face tension gradient forces act only as a trigger and curvature-gradient forces soon take
over and grow exponentially downstream the jet due to inertio-capillary growth. When
thermal modulation is strong, the surface tension gradient forces not only act as a trigger,
but remain significant till breakup. The thermal modulation strength number is thus use-
ful to the design of thermal modulation in practical applications as a possible alternative
to often used mechanical excitation mechanisms to control jet breakup.
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3.1. INTRODUCTION

Controlling the formation of droplets from liquid jets is a fundamental challenge whose
relevance spans applications at a wide variety of scales, from serial femtosecond X-ray
crystallography[2, 3] where typical jet lengths are on the order of microns, to produc-
tion of pharmaceuticals[4, 5] where it reaches a few tens of millimeters, and to prilling[6]
where the jet lengths typically reach a few tens of centimeters. In all of these applica-
tions, understanding and controlling the breakup is essential. The resulting drop size
distribution should be predictable, narrow and monodisperse. If not modulated, it is ir-
regular with a wide distribution. Among aforementioned applications, control of droplet
formation in prilling is particularly challenging and underexplored. Prilling, a com-
monly used method for production of fertilizers and polymers, is an industrial scale pro-
cess involving break-up of molten polymeric jets and the crystallization of the droplets
formed thereafter. From a fluid mechanics and rheology point of view, the challenge
in prilling is to control the drop formation of a slender jet with rotational body forces,
non-Newtonian effects and heat transfer.

The study of all processes involving jet breakup starts from the well-known Rayleigh-
Plateau instability, which manifests itself as a competition of radii of curvatures on a
cylindrical column of liquid. Rayleigh considered the temporal linear stability of an in-
finite jet in the inviscid limit [7, 8]. This was extended by Chandrasekhar by considering
the viscous effects [9]. They showed that viscosity slows down the growth and increases
the wavelength at which the growth is fastest. In a lab frame of reference, however, the
instability grows in space as it is convected downstream. Keller et al. [10] have per-
formed a spatial analysis, and showed that the spatial growth can be approximated by
the temporal growth of disturbances on a single thread provided that the jet speed is
sufficiently high, i.e. the downstream motion of a thread has to be much faster than the
typical time of capillary growth so the jet can be regarded as infinite. Leib et al.[11] later
extended this analysis by accounting for the viscous effects. These studies are from the
standpoint of linear stability, where the effects of finite amplitude disturbances cannot
be captured. The non-linear slender jet model[12–14], based on a Taylor expansion of
the radial variable in the governing jet equations, provides a computationally efficient
alternative to the linear stability analysis and can be used to cover the whole instability
process till breakup. These studies concern a filament in a frame of reference moving
with the jet velocity and track the nonlinear evolution using the 1D slender jet model.
Eggers [12] and Papageorgiou [15, 16] considered the 1D slender jet model close to the
breakup and came up with scaling relations to describe the thinning process analytically
and showed that the pinchoff process is self-similar. Wilkes et al [17] implemented a 2D
FEM algorithm to study the formation of droplets from a tube and in a follow-up study,
Ambravaneswaran et al.[18] discuss the comparison between 1D and 2D models. The
main limitation of the 1D model is the inability to capture the overturning of the inter-
face profile very close to the pinchoff when the viscosity is low. However, concerning
the balance of inertial, viscous and capillary forces, 1D slender jet model does an excel-
lent job in capturing the nonlinear growth of disturbances in a computationally cheap
manner.

When we think of methods to provide a periodic disturbance to a stream, the most
commonly encountered methods in the literature are mechanical perturbations, which
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either perturb the upstream pressure [19] or the orifice of the jet using concentric piezo
elements [20, 21]. These mechanical perturbations manifest themselves as changes in
the local curvature, thus changes in the local Laplace pressure, which leads to instabil-
ities while being advected downstream. A possible alternative to mechanical excitation
of the jet is advocated here, which is through thermal modulation of the temperature-
dependent surface tension coefficient. Next to perturbations in the capillary stress (Laplace
pressure) this also results in in an additional stress compared to mechanical excitation:
the Marangoni stress related to axial variations in the temperature-dependent surface
tension coefficient [22].

The growth of infinitesimal perturbations on nonisothermal jets with thermocapillar-
ity has been studied both analytically and numerically. Xu&Davis[23], performed a linear
stability analysis on an infinitely long liquid cylinder subject to a linear temperature gra-
dient. They found that in the limit of high thermal diffusivity and high heat transfer to the
ambient, the disturbances vanish and the jet remains stable. Kuhlmann et al.[24] stud-
ied the temporal stability of a liquid bridge bounded by disks at different temperatures
and derived marginal stability curves for the critical temperature gradient that would
lead to instability. Mashayek et al.[25], considered nonlinear effects on a nonisothermal
thread. Considering a spatially periodic ambient temperature, they identify the criti-
cal Biot number at which flows due to capillary pressure and Marangoni stresses cancel
out exactly and a stable jet is obtained (i.e. marginal stability). They also study ther-
mal disturbances on the jet surface both with and without surface disturbances. When
only thermal disturbances are considered, they report a Marangoni instability and did
not observe thermal-capillary instability. Gao et al.[26], studied the effect of imposed
surface tension modulation on a non-Newtonian jet with a Carreau-Yasuda model using
slender jet formulation. Their study does not include the energy conservation, so the re-
laxation time of the variations of surface tension cannot be captured. Pillai et al.[27] were
the first to come up with the nonisothermal slender jet equations. They studied velocity
modulations on a slender jet with temperature-dependent surface tension and viscos-
ity, and subject to cooling. Faidley et al.[28], carried out the first experiments to test
the idea of thermal modulation at the nozzle. They reported agreement with Rayleigh’s
dispersion relation for an isothermal jet. However, at very high and low wavenumbers
the background noise dominated over the colored perturbations since the growth rate
at both limits are very low. The idea of using thermally induced perturbations to control
jet breakup drew attention in studies of continuous ink jet printing as well [29]. Heating
elements at the inlet have also been studied and utilized for alternative purposes as well.
Chwalek et al.[30] used asymmetric heating at the nozzle inlet as a method to deflect
microjets. Suryo et al.[31] numerically studied a pendant drop and demonstrated that
dripping can occur even in the absence of gravity by means of a line heater located at
the inlet.

Nonisothermal jet breakup bears many analogies with surfactant-laden jet breakup.
The presence of Marangoni stress in this case is due to the variation of surfactant con-
centration on the jet interface that gives rise to gradients in the surface tension coeffi-
cient. Ambravaneswaran et al. [32] extended the 1D slender jet equations in the pres-
ence of soluble surfactants to consider the effect of Marangoni stress on the evolution
of instabilities. Kamat et al. [33] showed that the presence of surfactants may give rise
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to formation of a sequence of microthreads close to the pinchoff which is not seen in
surfactant-free threads. Wee et al. [34] considered a viscous thread in the presence of
surfactants and derived a scaling relation that would make it possible to measure the
surface viscosity of a surfactant-laden drop by using the temporal evolution of the neck
thickness.

An analysis of the spatial development and non-linear breakup of a temperature-modulated
jet has not been reported yet in literature. To this purpose we have employed the slender-
jet model in the present study. Our objective is to gain insight in the underlying physical
mechanisms responsible for the initiation and breakup of a straight and Newtonian jet
that is thermally modulated at nozzle exit. We developed a 1D model within the frame-
work of a slender-jet approximation and studied the nonlinear spatial instabilities due
to the thermal modulation. The selected parameter space is motivated by typical con-
ditions in prilling applications. We studied the effects of the thermal modulation char-
acteristics (frequency and amplitude) as well as the thermal sensitivity of the surface
tension coefficient on breakup and the droplet size distribution.

Figure 3.1: Illustration of the temperature-controlled jet breakup where the temperature
at the nozzle, Tnozzle , is modulated to perturb the capillary stress, γ(T )κ and
the Marangoni stress, ∇sγ.

3.2. MATHEMATICAL BACKGROUND
The mass conservation, Cauchy momentum and energy equations for the case described
in Figure 3.1 are as follows:

∇·v = 0 (3.1a)

ρ

(
Çv

Çt
+ (v ·∇)v

)
=∇·σ (3.1b)

ρcp

(
ÇT

Çt
+ (v ·∇)T

)
= kc∇2T (3.1c)

where the total stress tensor for a Newtonian fluid is defined as σ = −pI +2η(T )D and
2D =∇v+ (∇v)T . Here, ρ, cp and kc represent the density, specific heat capacity and the
thermal conductivity of the liquid, respectively.

On the free surface one has the continuity of normal and tangential stresses, i.e. the
dynamic boundary condition:

σ ·n =−γ(T )κn+∇sγ(T ) (3.2)
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where n is the outward unit normal, ∇s = (I−nn) ·∇ is the surface gradient operator and
κ = ∇s ·n is the curvature of the free surface, respectively. The constitutive relations for
temperature-dependent surface tension and viscosity are approximated as:

γ(T ) = γ0 −β(T −Tm) (3.3a)

η(T ) = η0 exp(−α(T −Tm)) (3.3b)

where β [Nm−1 K−1] is the first order temperature dependency of surface tension (i.e.
dγ/dT =−β) andα [K−1] is a positive constant representing how rapidly viscosity changes
with temperature.

In addition to the dynamic boundary condition, one has the kinematic boundary con-
dition of the jet interface at r = R(z, t ) moving with the local radial velocity:

ÇR

Çt
+ v

ÇR

Çz
= u|r=R(z,t ) (3.4)

And finally, one has the heat transfer at the interface, given by:

−kc n ·∇T = hw (T −T∞) (3.5)

where hw is the heat transfer coefficient between the liquid jet and the ambient which is
at a temperature of T∞.

Here we adopt the slender jet approximation for an axisymmetric jet [13], in which it is
assumed that the radial variations are much weaker than axial variations in the velocity,
pressure and temperature. This forms the basis for a Taylor series expansion of the flow
variables in r:

v(z,r, t ) = v0(z, t )+ v2(z, t )r 2 + . . . ,

u(z,r, t ) =−1

2
v ′

0(z, t )r − 1

4
v ′

2(z, t )r 3 − . . . , (3.6)

p(z,r, t ) = p0(z, t )+p2(z, t )r 2 + . . . ,

T (z,r, t ) = T0(z, t )+T2(z, t )r 2 + . . . ,

where primes denote Ç/Çz. Inserting (3.6) in (3.1)-(3.5), and keeping only the terms that
are leading order in r will yield the non-isothermal slender jet equations

ÇR2

Çt
+ (vR2)′ = 0 (3.7a)

ρ

(
Çv

Çt
+ v v ′

)
=−(γ(T )κ)′+ Çγ

ÇT
T ′ 2

R
+3η(T )

(
v ′R2

)′
R2 +3

Çη

ÇT
T ′v ′ (3.7b)

ρcp

(
ÇT

Çt
+ vT ′

)
= kc

(
T ′′+ 2T ′R ′

R
− 2hw (T −T∞)

kc R

)
(3.7c)

where κ is the curvature given by:

κ= 1p
1+R ′2

(
1

R
− R ′′

1+R ′2

)
(3.8)
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Some details of the derivation regarding the interface conditions are discussed in Ap-
pendix 3.A.

The problem at hand is a multiphysics problem where capillary, thermocapillary, iner-
tial, convective and diffusive (both for momentum and energy) events take place simul-
taneously. So it is convenient to list the relevant timescales that results from the balance
of these events before nondimensionalization:

tIC =
√
ρR3

0

γ0
= Inertio-capillary time scale

tI TC =
√

ρR3
0

β∆T
= Inertio-thermocapillary time scale

tV C = η0R0

γ0
= Visco-capillary time scale

tA = R0

U0
= Advection time scale (3.9)

tT V C = α∆Tη0R0

γ0
= Thermo-visco-capillary timescale

tT D = R2
0ρcp

kc
= Thermal diffusive time scale

tTC = ρcp R0

hw
= Thermal cooling time scale

These seven timescales will yield six nondimensional numbers, namely:

W e = t 2
IC

t 2
A

, C a = tV C

tA
, Pe = tT D

tA

Bi = tT D

tT C
, Πγ =

t 2
IC

t 2
I TC

, Πη = tT V C

tV C
(3.10)

To make the system nondimensional, all spatial variables are expressed in units of R0,
all velocities in units of U0, so nondimensional time is expressed in units of advection
time tA = R0/U0. The characteristic stress is given by capillary stress, γ0/R0, and the
nondimensional temperature is expressed as:

Θ(z, t ) = T (z, t )−Tm

∆T
(3.11)

with ∆T = T f −Tm , where Tm is the melting point of the molten jet and T f is the feed
temperature of the jet. Hence, Θ = 0 at the melting point, Θ = 1 at the feed tempera-
ture, which is also the inlet temperature and finally Θ = Θ∞ < 0 for the ambient tem-
perature. Using these characteristics and with the definitions of the nondimensional
numbers given in (3.10), the nondimensional set of governing equations are as follows:

ÇR2

Çt
+ ÇvR2

Çz
= 0 (3.12a)
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ÇvR2

Çt
+ Çv2R2

Çz
= 1

W e

Ç

Çz

(
R2(τγ+τη)

)− Πγ2R

W e

(
1− 1p

1+R ′2

)
ÇΘ

Çz
(3.12b)

ÇR2Θ

Çt
+ Ç(vR2Θ)

Çz
= 1

Pe

Ç

Çz

(
R2 ÇΘ

Çz

)
− 2Bi R

Pe
(Θ−Θ∞) (3.12c)

where τγ and τη are the capillary and viscous stresses integrated over the cross-sectional
area, given by:

τγ = γ(Θ)K τη = 3C aη(Θ)
Çv

Çz

K = 1p
1+R ′2

(
1

R
+ R ′′

1+R ′2

)
Finally, the nondimensional form of the temperature dependent material properties be-
come:

γ(Θ) = 1−ΠγΘ (3.13a)

η(Θ) = exp(−α∆TΘ) (3.13b)

The resulting system of 1D unsteady equations (3.12) and (3.13) are solved for the con-
served variables R2, vR2 and ΘR2. We use a finite-difference scheme on a staggered grid
where the jet cross section and the temperatures are stored in cell centers, and the veloc-
ities are stored on cell faces, as shown in Fig. 3.2. The jet domain spans z ∈ [0,L] where

Figure 3.2: A schematic of the staggered grid

L = 300R0, with the following initial and boundary conditions:

R2(0, t ) = 1 vR2(0, t ) = 1+W (t )

ΘR2(0, t ) = 1+εT sinωt (3.14)

R2(z,0) = vR2(z,0) =ΘR2(z,0) = 1

where W (t ) is a Gaussian white noise term added on the jet velocity, which is described
in Sec.3.3.1. εT and ω represent the amplitude and the frequency of the temperature
modulation at the inlet. On the downstream end of the domain, convective open bound-
ary condition is used[35]. The time integration is done explicitly by a 3-step Runge-Kutta
scheme with adaptive time stepping. Except for velocities, a central differencing scheme
is used for evaluating the variables at their half step neighbors, but for velocities a higher
order total variation diminishing (TVD) van Leer scheme is used [36]. The singularity
at pinch-off is regularised in a similar fashion described in [37], so that the drop forma-
tion and merging phenomena can also be accounted for. In this scheme, a sufficiently
small (on the order of the grid size) cutoff radius, Rc , is selected beyond which the jet
does not thin further. Its effects vanish with smaller grid size. Grid independence stud-
ies were carried out and we validated that the regularization does not affect the breakup
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time nor the dynamics of the droplets that are formed. In figures that show the jet shape
(Figures 3.4 and 3.7), only the parts where R > Rc are shown to avoid confusion with the
beads-on-a-string structure seen in viscoelastic liquids [38].

In Appendix 3.B, we briefly discuss some benchmark studies using our code with re-
spect to 1D and 2D-axisymmetric cases from the literature.

3.3. RESULTS AND DISCUSSION

3.3.1. NATURAL BREAKUP OF A NONISOTHERMAL JET UNDER COOLING

The fate of an uncontrolled jet is an challenging topic on its own and has been addressed
experimentally and theoretically[39–41]. In their recent work, Ganan-Calvo et al.[40]
propose a universal scaling law from a time-averaged energy balance of the steady flow
of an isothermal jet and the perturbations thereon, and use experiments and simulations
to determine the universal fitting constants. In the framework of the slender jet approxi-
mation, an isothermal jet will remain stable (provided that external body forces are neg-
ligible and W e >W ec ) if no perturbation is numerically imposed. So to set the reference
case of an uncontrolled jet, we consider a jet with a Gaussian white noise added on top of
the nozzle exit velocity, as shown in Fig.3.3, with a standard deviation of A∆t where A is
a free parameter to set the strength of the noise. So the forcing (per unit volume) by the
random velocity fluctuation at the nozzle scales as ρ (Çv/Çt )noz ∼ ρU 2

0 A/R0 in dimen-
sional units. This way of implementing the random noise makes sure that the forcing
that results from the random fluctuations are uncorrelated with the time discretizations
as desired. The strength parameter A is adjusted such that the intact length is in agree-
ment with the experimental scaling law for the natural breakup of Newtonian jets[40]
and fixed at a value of A = 40 in all of the simulations.

Figure 3.3: Random velocity fluctuations imposed at the nozzle, the standard deviation
σ scales with A∆t where ∆t is the adaptive time step and A is a free constant
that adjusts the strength of the fluctuation

In the presence of ambient cooling, the stationary profiles of temperature and the ra-
dius of the jet will also be nonuniform. If the cooling rate is strong enough, the Marangoni
stresses due to the base state temperature profile will significantly accelerate the jet and
lead to breakup (even without background noise), analogous to gravity driven jets[42].

In the absence of the temperature modulation at the inlet, the jet is only perturbed
by the white noise, that is, the random velocity fluctuations at the inlet. This means the
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perturbation has a spectrum of frequencies without a dominant amplitude at any fre-
quency, so the breakup will consist of various frequencies superposed onto each other.
The result is an irregular variation of the jet intact length, which is the distance from the
inlet to the point of the first breakup. Figure 3.4 shows the variation of the intact length
over time for a jet that is only perturbed by the white noise (from here on referred to as
the reference case).

3.3.2. TEMPERATURE MODULATION AT THE INLET

The metrics of the control of jet breakup and droplet formation can be described in two
facets: 1) Controlling the intact length, hence controlling where the droplet formation
takes place and 2) controlling the mean and the spread of the drop size distribution.
The choices of the nondimensional numbers in our simulations are motivated by typi-
cal conditions for a molten urea jet in a prilling process [6, 43], which are listed in Table
3.1. Based on this we fixed 5 of the 6 nondimensional numbers given in (3.10): W e = 50,

Table 3.1: Fluid properties for molten urea[43] and the operating conditions for a typical
prilling process[6] used in the simulations

Fluid properties, Urea @ 135 ◦C

Melting point Tm ≈ 133 ◦C
Density ρ ≈ 1247 kgm−3

Dynamic viscosity η0 ≈ 3 mPas
Surface tension γ0 ≈ 66 mNm−1

Specific heat capacity cp ≈ 2.25 kJkg−1 K−1

Thermal conductivity kc ≈ 1.2 Wm−1 K−1

Thermal sensitivity of viscosity α≈ 0.02 K−1

Typical process conditions

Orifice radius R0 ≈ 700 µm
Jet velocity U0 ≈ 1 ms−1

Feed temperature T f ≈ 145 ◦C
Ambient temperature T∞ > 25 ◦C
Heat transfer coefficient hw ≈ 0.86 Wm−2 K−1

C a = 0.21, Pe = 1320, Bi = 0.5 and Πη = 0.1 as well as Θ∞ =−4 in all of our simulations.
We varied Πγ, i.e. the nondimensional form of the temperature sensitivity of the surface
tension coefficient, between Πγ ∈ [0.005,0.5] (with a typical value of 0.5 for urea). Fur-
thermore, we also studied εT ∈ [0.005,0.5] as modulation amplitude and ω ∈ [0.1,1.2] as
modulation frequency, respectively.

Figure 3.4 lays out an overall comparison between the reference case which has no
temperature modulation and a modulated case with εT = 0.05, ω= 0.7 and Πγ = 0.05. It
shows that when a temperature modulation is introduced on top of the noise, the time
series for the intact length changes significantly, where the intact length is defined as
the length measured from nozzle exit over which the jet remains intact (see Fig. 3.1).
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Figure 3.4: A comparison of the isothermal reference case (black) and a temperature
modulated case (red) for εT = 0.05, Πγ = 0.05 and ω = 0.7. Parts of the jet
where R < Rc are not shown to avoid confusion with the beads-on-a-string
structure seen in viscoelastic liquids.

The mean intact length gets shorter and the irregularity due to the noise is suppressed,
thanks to the finite amplitude perturbation that is imposed. The variance of the intact
length of the temperature modulated jet shows more of a periodic trend. When we look
at the shape of the jet at several instants, they show recurrence, hence better control in
terms of predictability of the location of the generated droplet stream.

Table 3.2: Average drop volumes with respect to the frequency of perturbation at the in-
let. The model parameters are εT = 0.05 and Πγ = 0.05.

Average drop volumes, normalized by R3
0

Frequency
at the inlet

ω

Avg. drop
volume
<Vd >

Volume of
a single thread
πR2

0λ≈πR2
0U0

2π
ω

0.1 29.05 197.4
0.7 27.57 28.20
0.9 21.01 21.93
1.2 17.23 16.45

Figure 3.5 shows how the intact length changes with respect to the modulation fre-
quencies. The results are in agreement with the presented results of nonlinear temporal
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Figure 3.5: The intact length as a function of modulation frequency and Πγ, the tem-
perature modulation amplitude is fixed at εT = 0.05. The gray shaded region
covers one standard deviation above and below the mean intact length for the
reference case (i.e. Πγ = 0)

analysis of a nonisothermal thread[25], since the Weber number in the simulations here
is above the critical Weber number[10, 11]. The frequency at which the fastest growth
takes place (i.e. shortest Lb) increases slightly with increasing Πγ.

Figure 3.6: Comparison of the drop size distributions of the isothermal reference case
and temperature modulated case shown in Fig. 3.4. (a) at the tip of the intact
jet, z = Lb , and (b) downstream, z = 280R0. The parameters for the perturbed
case are εT = 0.5, ω= 0.7 and Πγ = 0.05.

A more quantitative comparison of the drops generated from the two cases can be ob-
tained from Fig. 3.6. Each of the sharp drop in the intact length seen in Fig.3.4 represents
a droplet that is generated at the tip of the jet. For the temperature modulated case, the
size distribution of the droplets generated at the tip of the stream is bimodal, namely
there is a periodic generation of a main droplet followed by a satellite droplet whose vol-
ume ratio is governed by the perturbation frequency. The satellite and the main drops
merge after a certain distance downstream from the point where they are generated, as
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shown in Fig. 3.4. Whether the satellite drops merge with the main drop that precedes
or succeeds it depends on the location of the pinch-off within a single filament[44, 45].
The changes in the average drop sizes with respect to the frequency of modulation at
the inlet is given in Table 3.2. Note that thermal modulation is not sufficiently strong to
control jet breakup at the lowest frequency (ω= 0.1), which is also evident from Fig. 3.5;
the modulation is overwhelmed here by the presence of noise.
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Figure 3.7: Average intact and merging lengths of the jet with respect to the modulation
on the surface tension coefficient forω= 0.7. Insets show the two cases where
the pinch-off characteristic shifts from a) forward pinch-off to b) rear pinch-
off.

For isothermal jets, the shift in the pinch-off character is dependant on the amplitude
of the modulation where the rear pinch-off only occurs in a narrow window of ampli-
tudes[45]. In the case studied here, the modulation comes from a superposition of tem-
perature modulation and random velocity fluctuations at nozzle exit. The temperature
modulation is coupled to the liquid through the nondimensional number, Πγ, which
measures the sensitivity of surface tension to changes in temperature. Fig. 3.7 shows the
variation of the time-averaged intact length and merging length of the jet. The merging
length is defined from the tip of the jet where z = Lb to the point where uniform droplets
are formed (z = Lb +Lm) as shown in Fig. 3.1. As expected, for stronger modulations on
the surface tension coefficient (i.e. higher ΠγεT ), the average intact length decays. The
pinch-off character also shifts from forward to rear pinching.

For gaining physical understanding, it is useful to identify the important forces and
how they scale. The case studied here is motivated by a typical process, where Pe = 1320
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and Bi = 0.5 are fixed parameters. The large Pe and small Bi suggest that diffusion of
heat within the jet and loss of heat to the ambient are negligible (though they are in-
cluded in the computations). So the problem can be narrowed down to the competi-
tion of forcing due to background noise, fbg ∼ ρ (Çv/Çz)noz ∼ ρU 2

0 A/R0 and forcing due
to temperature modulation, ftm ∼ (1/R0)

(
Çγ/Çz

)
noz ∼ ΠγεTωγ0/R2

0 . Their ratio can be
written as a non-dimensional ’thermal modulation strength number’, M , defined as

M = ftm

fbg
∼ ΠγεT

W e

ω

A
(3.15)

This also explains the discrepancy between the average drop volume and the volume
of a single thread for the low frequency in Table 3.2. Except for ω= 0.1, the frequency of
temperature modulation dictates the average drop volumes but in the case ω = 0.1, the
instability due to temperature modulation grows slower than that of background noise
and the average drop size is dictated by the random background noise, which is closer to
the value that is obtained at the fastest growing frequency.

The modulation in temperature yields 2 disturbance mechanisms that are out of phase
with each other. The first one is due to the local change in surface tension coefficient,
which manifests itself as an axial variation in the capillary pressure. Cold regions cor-
respond to a higher surface tension coefficient and hence a higher capillary pressure at
similar curvature, which thus tends to drive the flow from cold to hot regions. The sec-
ond one originates from the gradient of surface tension coefficient along the jet, which
gives rise to Marangoni stresses that drive the flow from regions of low to high surface
tension coefficient, i.e. from hot to cold regions. The surface tension forces in the flow,
fst , can be grouped as follows

fst = −γÇκ
Çz︸ ︷︷ ︸

curvature
gradient

+ (
2

R
−κ)

Çγ

Çz︸ ︷︷ ︸
surface tension

gradient

(3.16)

If there is no surface perturbation initially, the gradient of the curvature is zero and the
forcing comes only from the terms related to the gradient of the surface tension coef-
ficient (second term on the RHS of Eq. (3.16)). The magnitude of the force is higher
for higher ΠγεTω (see Eq. (3.15)), which is the amplitude of the stress perturbations,
given in Fig.3.8. This is the reason for the shift in pinch-off character shown in Fig.3.7,
namely, even though the amplitudes of temperature modulation at the nozzle are identi-
cal for both cases, the amplitudes of the corresponding stress perturbations are an order
of magnitude different due to the different Πγ values.

This stress variation with a magnitude ofΠγεTω leads to surface variations later down-
stream, then a combination of capillary and Marangoni stresses act on the jet. In the
cases where heat diffusion is also significant (i.e. low Peclet number), for instance with
liquid metal jets, the temperature will tend to unify along the jet and the gradient of
the surface tension coefficient would disappear, making the curvature effects the only
driving force for the instability. The case studied here is at a high Peclet number, so the
disturbances due to temperature gradient remain finite. Their significance with respect
to the capillary growth depends on the value of ΠγεT (for fixed W e, A and ω). From Fig.
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Figure 3.8: Growth of the stress perturbations for different surface tension sensitivities,
(a) ΠγεT = 0.0025 (b) ΠγεT = 0.025 (c) ΠγεT = 0.25. The modulation fre-
quency, ω is fixed at 0.7

3.8, one can identify three different regimes. When ΠγεT is low (in Fig. 3.8a), the back-
ground noise is in charge of the instability that leads to breakup and the amplitude of
the curvature-gradient forces grows exponentially. With a moderate value of ΠγεT (in
Fig. 3.8b) the temperature modulation acts as a finite amplitude disturbance to initiate
the capillary breakup, in other words it triggers the capillary breakup of the jet with a
shorter intact length. The curvature forces start to grow close to the nozzle with a phase
difference with respect to the surface tension gradient forces, then take over the pro-
cess and grow exponentially. And finally at high values of ΠγεT (in Fig.3.8c) the surface
tension-gradient forces are hindering the exponential growth of curvature forces and re-
main on the same order of magnitude until the breakup, which is even shorter due to the
higher amplitude of forcing at the nozzle.

3.4. CONCLUSION
We numerically demonstrate that modulating the inlet temperature of straight jets can
be used for controlling the breakup and formation of the droplets. The temperature
modulation manifests itself as local perturbations in thermally-induced capillary and
Marangoni stresses. For deeper physical understanding we proposed to decompose the
surface tension forces into a contribution from curvature-gradient and surface tension
gradient forces. The ratio of the surface-tension-gradient force to the imposed random
perturbation force at nozzle exit can be expressed by the so-called thermal modulation
strength number, M . This number depends on the amplitude and frequency of the ther-
mal modulation and the sensitivity of surface tension to variations in temperature on
the one hand, and the Weber number and noise amplitude in the nozzle exit velocity
on the other hand, as expressed by Equation 3.15. Larger values of the thermal mod-
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ulation strength number provide a better control, shorter intact lengths and more uni-
form droplet streams. Correspondingly, with increasing modulation strength, the role of
thermal modulation shifts from being only a trigger for exponential growth of curvature-
gradient forces to the case where both curvature-gradient and surface tension gradient
forces are dominant until pinch-off. The thermal modulation strength number is thus a
useful criterion to the design of thermal modulation for controlled jet breakup in prac-
tice, in particular for determining the minimal required thermal modulation strength
for generating a uniform droplet stream. Natural extensions of the present work are case
studies of thermal modulation in the presence of non-negligible axial heat conduction
and/or cooling to the ambient.

APPENDIX

3.A. A NOTE ON THE DERIVATION OF THE SLENDER-JET

MODEL IN THE PRESENCE OF MARANGONI STRESSES

AND AMBIENT COOLING
Considering an axisymmetric jet, Equations (3.1b) and (3.1c) for the axial momentum
balance and energy balance, respectively, read:

ρ

(
Çv

Çt
+u

Çv

Çr
+ v

Çv

Çz

)
=−Çp

Çz
+ 1

r

Ç

Çr

(
rη(T )

Çv

Çr

)
+ Ç

Çz

(
η(T )

Çv

Çz

)
(3.A.1a)

ρcp

(
ÇT

Çt
+u

ÇT

Çr
+ v

ÇT

Çz

)
= kc

(
Ç2T

Çr 2 + 1

r

ÇT

Çr
+ Ç2T

Çz2

)
(3.A.1b)

At the jet free surface r = R(z, t ), the outward normal and tangential unit vectors are
given respectively by

n = 1p
1+R ′2

 1
0

−R ′

 t = 1p
1+R ′2

R ′
0
1


where R ′ = ÇR/Çz. The dynamic and thermal interface conditions, Eqs. (3.2) and (3.5) re-
spectively, can then be written as:

p − 2η(T )

1+R ′2

[
Çu

Çr
−

(
Çu

Çz
+ Çv

Çr

)
R ′+ Çv

Çz
R ′2

]
= γ(T )κ (3.A.2a)

η(T )p
1+R ′2

[
2

(
Çu

Çr
− Çv

Çz

)
R ′+

(
Çv

Çr
+ Çu

Çz

)
(1−R ′2)

]
= dγ

dT

[
R ′ ÇT

Çr
+ ÇT

Çz

]
(3.A.2b)

− kcp
1+R ′2

(
ÇT

Çr
−R ′ ÇT

Çz

)
= hw (T −T∞) (3.A.2c)

Inserting the radial expansions given by Eq. (3.6) into Eqs. (3.A.1) yields up to O(r 2):

ρ

(
Çv0

Çt
+ v0v ′

0

)
=−p ′

0 +η(T )
(
4v2 + v ′′

0

)+2
dη

dT
T ′

0v ′
0 +O(r 2) (3.A.3a)

ρcp

(
ÇT0

Çt
+ v0T ′

0

)
= kc

(
4T2 +T ′′

0

)+O(r 2) (3.A.3b)
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Note that the next lowest order in Eqs. (3.A.1) is O(r 2), therefore Eqs. (3.A.3) also cap-
ture the full equations at O(r ). In line with the procedure detailed in [13], the interface
conditions (3.A.2) can be used to eliminate the variables p0, v2 and T2.

The normal stress condition (3.A.2a) will yield up to O(r 2)

p0 +η(T )v ′
0 = γ(T )κ+O(r 2) (3.A.4)

which can be used to eliminate p0 in Eq. (3.A.3a).
When it comes to eliminating v2 and T2, there appears a peculiarity with the left and

right hand sides being at seemingly different orders. The referee correctly underlines this
peculiarity for the heat transfer condition at the interface, given in Eq. (3.A.2c), but the
same is also apparent in the tangential stress balance given in Eq. (3.A.2b), and its justi-
fication is either overlooked or not explicitly provided in the works related to surfactant-
laden breakup by Ambravaneswaran, Wee, Basaran and others[32, 34, 46, 47]. Up to
O(r 2) the tangential stress balance reduces to

η(T )

(
−3v ′

0R ′− 1

2
v ′′

0 R +2v2R

)
︸ ︷︷ ︸

O(r )

= dγ

dT
T ′

0 +O(r 2) (3.A.5)

In the absence of a mechanism that induces a Marangoni stress (e.g. tangential temper-
ature or surfactant gradients), the right hand side of (3.A.5) will vanish and an expression
for v2 is obtained without any inconsistencies with the order of terms. In the presence
of Marangoni stresses, however, we require that Çγ/Çz matches with the left hand side
of O(r ) for consistency and hence Çγ/Çz (thus dγ/dT ) should be sufficiently small. So if
one proceeds with solving (3.A.5) for v2 one will arrive at

v2 = 1

2η(T )R

dγ

dT

ÇT

Çz
+ 3

2
v ′

0
R ′

R
+ v ′′

0

4
(3.A.6)

This is precisely the expression used in [32, 34, 46, 47] to close the 1D system as well as
the works by Furlani where they considered surface tension modulation at the inlet [48,
49]. Note that in [48, 49] the surface tension gradient is fixed, so there is no additional
balance equation for the surfactant concentration or thermal energy.

Looking at the physical side, this approach implicitly assumes that the tangential stress
difference at the interface caused by the Marangoni stress is not too large. In cases where
the Marangoni stress is not small, then the slender jet approach would not be useful
as the viscous boundary layer within jet due to the high tangential stress could not be
captured [50].

Along similar lines, one could justify the same choice in the heat transfer boundary
condition. Up to O(r 2) the heat transfer boundary condition at the interface reduces to:

−kc
(
2T2R −R ′T ′

0

)︸ ︷︷ ︸
O(r )

= hw (T0 −T∞)+O(r 2) (3.A.7)

If we proceed with solving for T2, we get

T2 =−hw (T0 −T∞)

2kc R
+ T0R ′

2R
(3.A.8)
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This expression is also obtained and used in the studies by Pillai et al [27], Furlani [29]
and several others concerning nonisothermal melt spinning processes [51, 52]. This
time, the physical explanation is related to the thermal boundary layer, namely, if the
cooling to the ambient is too large (Bi ≫ 1), then a thermal boundary layer would arise
within the jet and the slender jet approach would be unable to capture the radial varia-
tion of the temperature near the jet edge.

3.B. VALIDATION OF THE NUMERICAL MODEL
In this section we provide some comparison against full 2D-axisymmetric simulations in
the field of nozzle-driven jet breakup and the breakup of periodic filaments in a moving
frame of reference.

In their recent study, McIlroy et al. [45] discussed the effect of the amplitude of ve-
locity disturbances on the breakup characteristic of an isothermal jet. They observed
a narrow window of amplitudes for which the filaments breakup on the upstream end
rather than the downstream end (i.e. inverted pinching). This phenomenon is also dis-
cussed in our present paper with respect to the amplitude of the thermal perturbation
(see Section 3.3.2). A comparison with a full 2D-axisymmetric solution for certain cases
is also provided in [45], so we chose this work as a relevant benchmark case to test our
code. Figure 3.B.1 shows our results for the case described in Section C of [45]. Results
are in very good agreement with the 1D and 2D-axisymmetric results presented in [45].
The shift in the breakup characteristic from inverted pinching to downstream pinching
is captured with our code as well.

Figure 3.B.1: Free surface profiles from our 1D model with the regularization scheme.
Our results are in near perfect agreement with the 1D and 2D-axisymmetric
simulations shown in Fig. 11 of McIlroy et al. [45] . The model parameters
are W e = 338, Oh = 0.122, kR0 = 0.7. The amplitude of velocity perturba-
tions are (a) εv = 0.1 and (b) εv = 0.15. Shift from inverted pinching back to
downstream pinching is reproduced with our code as well.

In addition to this, we provide a comparison with respect to another full-axisymmetric
simulation from the literature by Mashayek et al. [25] where they consider nonisother-
mal breakup of liquid jets. Specifically, we ran a few simulations for the case described
in §3.1 of [25] and tabulate the results in Table 3.B.1. While for low Biot number the
agreement is excellent, for the high Biot numbers there is a discrepancy, which is due to
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the same reasons mentioned in Appendix 3.A. Nevertheless, we were able to observe the
shift from capillary breakup to thermocapillary breakup discussed in [25] (that happens
around Bi ≈ 1.37 according to their results) in between our cases, namely Bi = 0.1 to
Bi = 10. The resultant filament shapes for the two Biot numbers are shown in Fig. 3.B.2.

Table 3.B.1: Tabulated comparison of the case described in §3.1 of [25]

Bi = 0.1 Bi = 10

Mashayek et al. Our code Mashayek et al. Our code

Breakup time, tb 26.82 26.23 23.99 29.05
Main drop radius 1.878 1.878 1.862 1.856

Satellite drop radius 0.474 0.473 0.656 0.694

Figure 3.B.2: Filament shapes from the case described in §3.1 of [25].
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4
CONTRACTION BEHAVIOUR OF

NEWTONIAN LIQUID JETS ISSUED

FROM A CIRCULAR NOZZLE

In the studies of jet breakup in the preceding chapters, it was implicitly assumed that the
undisturbed jet radius at nozzle exit is equal to the nozzle radius. However, jets with a
nonuniform velocity profile leaving round orifices undergo complex dynamics that make
them expand or contract rapidly over a distance of a few nozzle radii till the velocity
reaches a uniform plug flow profile. This has implications for jet breakup as the base jet
radius sets the length scale of the capillary stresses responsible for breakup. In this chap-
ter, we study the complex interplay of inertial, viscous and capillary stresses responsible
for the rapid adjustment of the Newtonian base jet at nozzle exit, related to the change
in the no-slip condition for the flow inside the nozzle to a free-slip condition at the jet/air
interface outside the nozzle.
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4.1. INTRODUCTION

The shape of the interface of a liquid emanating from a circular orifice into ambient air
has been a benchmark problem for decades that reveals fundamental insights about the
rheological behaviour of the working liquid. The radius of the jet that emanates from
such orifice evolves spatially downstream in a non-monotonic manner, caused by the
interplay between inertia, viscous forces, surface tension and body forces such as grav-
ity. In the cases where the flow is in the direction of a dominant body force (e.g., gravity),
the interface can be estimated using a "free-fall" approach that satisfies mass conserva-
tion, since viscous and surface tension effects decay rapidly downstream compared to
the spatial variation scale of the flow due to gravitational effects [1]. The jets are then
subject to thinning starting immediately after the nozzle, until the local inertio-capillary
timescale is sufficiently small for surface tension forces to cause the breakup of the jet.

When the body forces are negligible compared to other forces such as inertial, viscous
and capillary forces, the prediction of the shape of the liquid-air interface becomes an
intricate problem that concerns the interplay of these forces. Depending on the flow
conditions and the rheological properties of the working liquid, the jet may expand or
contract after leaving the nozzle. Furthermore, the jet interface may contain an inflec-
tion point, meaning that an initially contracting jet may end up in a radius that is larger
than the orifice far downstream. One factor that becomes increasingly important with
more complex rheology is the flow history upstream the nozzle. One of the well-known
phenomena in this regard is the die-swell observed in viscoelastic liquids, where normal
stress differences would then cause the swelling of the jet after the nozzle exit [2].

Although the normal stress differences inherently vanish for Newtonian jets, it is known
that the Newtonian jets do also expand at low Reynolds numbers, while they contract at
high Reynolds numbers as sketched in Fig. 4.1 [3–5]. Provided that the nozzle is suf-
ficiently long and the flow is in the laminar regime, the flow sufficiently far upstream
of the nozzle exit takes a parabolic profile corresponding to Poiseuille flow. The rapid
adjustment of the jet when leaving the nozzle, relates to a change in the no-slip condi-
tion for the flow inside the nozzle to a free-slip condition at the jet/air interface outside
the nozzle. The aim of the present study is to unravel the underlying physical mecha-
nisms for the rapid jet adjustment of a Newtonian jet with an initially parabolic profile
far upstream of the nozzle exit, with a particular focus on the transition from expand-
ing to contracting jets at increasing Reynolds number. We have conducted a CFD study
using OpenFoam and analysed the jet adjustment by means of an integral streamwise
momentum balance for the flow inside the nozzle and the jet.

The prime motivation for the present study is related to jet breakup such as in prilling
applications [6]. In modelling jet breakup and formation of drops it is often assumed
that the initial jet radius is equal to the nozzle radius and that the initial velocity dis-
tribution of a non-agitated jet is uniform. This is generally not completely true in real
applications, dependent on the flow conditions upstream of the nozzle (including pos-
sible clogging effects), the properties of the working fluid (density, viscosity), and the
nozzle geometry (such as the shape of the nozzle entrance and the size and length of the
nozzle). Furthermore, while viscous effects might be negligible inside the jet because of
the typically high Reynolds number, this will generally not be true for the flow inside the
nozzle from which the jet emanates. For high Reynolds number jet flows of a Newtonian
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fluid with an initially parabolic velocity profile, Harmon [3] predicted a rapid contraction
of the jet by approximately 13.4%. When jet breakup is forced under a given harmonic
perturbation by the capillary-inertial Rayleigh-Plateau instability, this would imply also
the formation of drops with a smaller radius by the same percentage as compared to a
jet that does not undergo any significant jet contraction or expansion [7]. This is a signif-
icant effect and underlines the importance to better understand and model the rapid jet
adjustment at nozzle exit in order to improve predictions of, e.g., prill size distribution
in prilling applications [6].

The remainder of the chapter is structured as follows. In Section 4.2 a polynomial
equation is derived for the jet contraction ratio using an integral mass and momentum
balance. The numerical method and computational setup are explained in Section 4.3.
The results from the numerical simulations are presented and discussed in Section 4.4.
Finally, the main conclusions and a closing discussion are given in Section 4.5

r

x

r=Ri(x)

R

r=0

x=0

x=LP

x=-LUD

R

LUD LP

�ow Plug 
�ow

PlugPoiseuille

Poiseuille

Figure 4.1: Schematic of the problem. LU D is the distance over which the Poiseuille pro-
file is altered by upstream diffusion. LP is the distance measured from the
nozzle where the flow becomes uniform, i.e., plug flow.

4.2. DERIVATION OF POLYNOMIAL EQUATION FOR JET

CONTRACTION RATIO
The set of equations for an incompressible liquid at steady state are as follows:

∇·u = 0, (4.1a)

ρ∇·uu =−∇p +∇·τ+ρg, (4.1b)

where τ= µ
[∇u+∇uT

]
is the deviatoric stress tensor for a Newtonian fluid and µ is the

dynamic viscosity. We consider a flow which has a fully developed Poiseuille profile be-
yond a distance LU D upstream of the nozzle and plug flow beyond a distance LP down-
stream of the nozzle. In the region x < −LU D the steady unidirectional velocity field is
described by the Hagen-Poiseuille equation for a Newtonian fluid and the parabolic ve-
locity profile in the tube is given by:

u(r ) =−d p

d x

R2

4µ

(
1− r 2

R2

)
, (4.2)
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where −d p/d x is the streamwise pressure gradient that drives the flow and R is the tube
radius. The bulk velocity Ub within the tube is half the maximum velocity at the center-
line:

Ub = u(0)

2
=−d p

d x

R2

8µ
. (4.3)

The integral mass and momentum fluxes across the plane x = −LU D are given by, re-
spectively:

ṁU D =
∫ R

0
ρu(r )2πr dr = ρπR2Ub , (4.4a)

ṀU D =
∫ R

0
ρu(r )22πr dr = ρ 4π

3
R2U 2

b . (4.4b)

From x = LP onwards, the flow is assumed to retain plug flow characteristics with a
jet velocity U j , provided that the stretching due to gravity is negligible. The mass and
momentum fluxes sufficiently far downstream then become:

ṁp =
∫ χR

0
ρU j 2πr dr = ρπ(

χR
)2 U j , (4.5a)

Ṁp =
∫ χR

0
ρU 2

j 2πr dr = ρπ(
χR

)2 U 2
j . (4.5b)

Mass conservation dictates that the mass fluxes given by Eq. (4.4a) and Eq. (4.5a) must
be equal to each other, yielding Ub = χ2U j . Likewise, in the inertia-dominated regime
(i.e., when gravity, viscous and capillary forces are negligible), the momentum fluxes
given by Eqs. (4.4b) and (4.5b) must be equal, which implies that χ = p

3/2 ≈ 0.866 [3]
and thus a jet contraction of approximately 13.4%.

Between these planes (x ∈ [−LU D ,LP ]) the flow is altered by the combination of inertia,
viscous diffusion and surface tension. The integral momentum balance upstream of the
nozzle exit plane is obtained from integrating Eq.(4.1b) over the region x ∈ [−LU D ,0]:

Ṁ0 − ṀU D = ρgπR2LU D −
∫ R

0

(
p|x=0−p|x=−LU D

)
2πr dr +

∫ 0

−LU D

τxr 2πRd x|r=R , (4.6)

where we used that for a Newtonian fluid,
∫ R

0 τxx |x=02πr dr = 2µ Ç
Çx

(∫ Ri
0 u2πr dr

)
= 0

since u(0,R) = 0 and
∫ Ri

0 u2πr dr =πR2Ub is constant in x.
Beyond the nozzle exit at x = 0, one has the stress boundary conditions at the free

surface denoted by Ri (x):

p(x,Ri (x)) = patm +n ·τ ·n+γκ, (4.7a)

t ·τ ·n = 0, (4.7b)

where n is the outward unit normal vector at the interface, t is the unit tangent vector
along the interface, γ is the surface tension coefficient and κ is the curvature of the free
surface given by:

κ= 1

Ri R ′
i

d

d x

 Ri√
1+R ′2

i

 (
R ′

i (x) ≡ dRi

d x

)
. (4.8)
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The integral momentum balance for the region downstream of the nozzle can be ob-
tained by integrating Eq. (4.1b) over the region (x ∈ [0,LP ]). Using the interface condi-
tions given by Eqs. (4.7a) and (4.7b), the following result is obtained:

ṀP − Ṁ0 = ρgVc +
∫ R

0
p2πr dr |x=0−

∫ χR

0
p2πr dr |x=LP +

∫ LP

0
γκR ′

i 2πRi d x︸ ︷︷ ︸
Fcap

+
∫ LP

0
patmR ′

i 2πRi d x +
∫ LP

0

[
(n ·τ ·n−τxx )i ·R ′

i + (τxr )i
]

2πRi d x︸ ︷︷ ︸
Fvi sc

(4.9)

where Vc = ∫ LP
0 πRi (x)2d x is the volume of the contraction region. Note that we again

used that
∫ R

0 τxx |x=02πr dr = 0 for a Newtonian fluid. Thus the direct contribution from
streamwise viscous stresses to the jet contraction ratio is equal to zero, contrary to expla-
nations in literature that attribute viscous effects on the jet contraction ratio to this term
[4]. However, viscous stresses do affect the flow upstream of the nozzle exit plane and
the pressure distribution within the nozzle exit plane. This indirect effect constitutes the
viscous contribution to the jet contraction ratio. The 4th and 5th terms of the integral
momentum balance of the contraction region given in Eq. (4.9) represent the capillary
forces, Fcap , and viscous forces acting on the free surface, Fvi sc , respectively.

When Eq. (4.8) is plugged into Eq. (4.9), we obtain the following expression for the
capillary force Fcap :

Fcap =
∫ LP

0
γκR ′

i 2πRi d x = 2πRγ
[
χ−cosϕ

]
(4.10)

To determine the viscous force exerted by the free surface, one has to use the normal
and tangential vectors of the free surface Ri (x) given by:

n = 1(
1+R ′2

i

)1/2

 1
0

−R ′
i

 , t = 1(
1+R ′2

i

)1/2

R ′
i

0
1

 (4.11)

Using these expressions, we obtain the following relations valid at the free surface
Ri (x):

n ·τ ·n = τr r −τxx R ′2
i

1−R ′2
i

, (4.12a)

t ·τ ·n = τxr −τxx R ′
i +

(
τr r −τxr R ′

i

)
R ′

i

1+R ′2
i

= 0. (4.12b)

Solving (4.12b) for the shear component, τxr , yields:

τxr = (τxx −τr r )
R ′

i

1−R ′2
i

. (4.13)
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Combining the expressions given in (4.12a) and (4.13) to derive Fvi sc , reveals that the
viscous force contribution by the free surface is actually zero.

With Fvi sc = 0, the summation of the integral momentum balances given by Eq. (4.6)
and Eq. (4.9) is given by:

ṀP − ṀU D = ρg
[
Vc +πR2LU D

]+ [
p|x=−LU D−patm

]
πR2

+
∫ 0

−LU D

τxr |r=R 2πRd x +γπR
[
χ−2cosϕ

]
(4.14)

The expression is nondimensionalized using R as the length scale, Ub as the velocity
scale (thus R/Ub as time scale), pressure is normalized by ρU 2

b and the viscous shear
stress byµUb/R. Plugging the expressions for the momentum fluxes ṀU D and ṀP , given
respectively by (4.4b) and (4.5b), into (4.14) and dividing both sides by ρπR2U 2

b , one
obtains:

1

χ2 − 4

3
= 1

F r 2

[
Vc

πR3 + L̃U D

]
+

[
p̃|x̃=−L̃U D

−p̃atm

]
+ 4

Re

∫ 0

−L̃U D

τ̃xr |r̃=1d x̃ + 1

W e

[
χ−2cosϕ

]
, (4.15)

where Re = ρUb2R/µ is the Reynolds number, W e = ρU 2
b R/γ is the Weber number and

F r =Ub/
√

g R is the Froude number. When gravity and surface tension effects are negli-
gible, the first and last term at the right-hand side vanish. When in addition the Reynolds
number is high, Poiseuille flow can be assumed everywhere in the nozzle up to the noz-
zle exit plane and the second and third term at the right-hand side cancel out. This
case is the inertia-dominated regime mentioned before, for which χ =p

3/2. For lower
Reynolds numbers, when viscous effects cannot be neglected, the flow immediately up-
stream of the nozzle exit will deviate from perfect Poiseuille flow and the second and
third term will not cancel out anymore. In the remainder of our present study, we will
neglect gravity and focus on the viscous and surface contributions to the jet contraction
ratio.

Equation (4.15) can be rearranged into a polynomial form in χ as follows:

Aχ3 +Bχ2 +Cχ+D = 0. (4.16a)

In the limit of F r →∞, the coefficients read:

A = 1

W e
, B = K̃ − 2cosϕ

W e
+ 4

3
C = 0, D =−1, (4.16b)

K̃ = p̃|x̃=−L̃U D
−p̃atm + 4

Re

∫ 0

−L̃U D

τ̃xr |r̃=1d x̃.

where K̃ constitutes the viscous contribution from the flow upstream of the nozzle
exit to the jet contraction ratio. A similar derivation of the integral momentum balance
was provided before by Joseph [8], albeit expressed in a different form. He proposed the
following correlation for K̃ :
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K̃ =− K1

Re2/3
, (4.17)

with K1 a constant. When gravity and surface tension effects are negligible, the fol-
lowing expression for the jet contraction ratio can then be derived from Eqs. (4.16a) and
(4.16b):

χ=
1
2

p
3√

1− 3
4

K1
Re2/3

, (4.18)

where K1 = 1.97 was selected by Joseph [8] to fit the point χ(Re = 14.4) = 1.

4.3. NUMERICAL METHOD AND COMPUTATIONAL SETUP
To evaluate the contributions of the different terms at the right-hand side of Eq. (4.15)
for the jet contraction ratio, we made use of the open source codes OpenFOAM and
the rheoTool extension to simulate this problem. The solver rheoInterFoam uses the
Volume-of-Fluid method with non-Newtonian properties for both phases. In this study,
both phases are assumed to be Newtonian with the density and the viscosity of the ambi-
ent gas being sufficiently small to ensure negligible dynamical effect. Namely the density
and viscosity ratios are taken as ρa/ρ = 5e −3 and ηa/η= 1e −7, respectively. The com-
putational domain and the boundary conditions are detailed in Fig. 4.2. All coordinates
given in Fig. 4.2 are normalized by the nozzle radius, R.

A(-5,0) O(0,0)

D(0,1)C(-2.5,1)

G(15,0)

E(-2.5,4) F(15,4)

B(-5,1)

Figure 4.2: Computational setup

The incompressible Navier-Stokes equations were solved in cylindrical coordinates for
the flow geometry shown in Fig. 4.2. The simulations were 2D, assuming axisymmetry of
the flow in the azimuthal direction. The simulations were carried out in time-dependent
fashion with a first-order implicit Euler scheme. The time step was dynamically adjusted
to ensure numerical stability. A sufficiently fine computationally mesh of 116000 cells
was used to resolve the flow. Mesh refinement was applied near the nozzle wall and
around the nozzle exit plane, see Fig. 4.3. A free-slip boundary condition is used for the
centerline. A no-slip condition is imposed at BD , the nozzle wall. A parabolic Poiseuille
flow is imposed at AB , the upstream entrance of the nozzle. A convective outflow bound-
ary condition is used at the downstream boundary of the domain. To ensure a pinned
contact line at the nozzle exit, Dirichlet boundary condition is used at C D , the outer wall
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nozzle

nozzle

Figure 4.3: The mesh over the computational domain

of the nozzle, where the Volume-of-Fluid function is set to be zero such that ambient
phase is enforced. C E , EF and FG are sufficiently far from the nozzle and have zero gra-
dient boundary conditions for velocity, pressure and the Volume-of-Fluid function. The
initial condition of the simulation is a Poiseuille profile for the velocity inside the nozzle
and (initially) straight jet. The simulations were run until convergence was reached for
the jet shape and velocity distribution.

We have conducted a total of 10 simulations. The dimensionless numbers of the sim-
ulations are listed in Table 4.1 and were taken after the experiments reported by Goren
and Wronski [9]. This serves both to validate the simulations with the available experi-
mental data for the jet shape and to use the simulation for an in-depth study of the flow
dynamics.

4.4. RESULTS AND DISCUSSION

Figure 4.4 depicts the results for the normalised jet radius as function of the streamwise
distance along the jet for all ten simulations. The comparison with the experimental data
of Goren and Wronski [9] is generally good, in particular for the cases with Re = 4.2 and
Re = 11.8. We speculate that the small deviations from the experimental data observed
for the other cases might be related to uncertainty in the precise values of the governing
dimensionless numbers. For instance, the slight overprediction of the jet thickness for
Re = 7.2 suggests that the Reynolds number was slightly higher in the experiment.

Figure 4.4 shows that sufficiently far downstream, the jet expands for Re up to 14, while
for Re of 14.8 and higher the jet contracts. This suggests a transition Reynolds number
of Re ≈ 14.4 for the jet contraction behavior. Interestingly, for Reynolds numbers in the
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Table 4.1: Governing dimensionless numbers of the simulated cases, based on the exper-
iments of Goren & Wronski [9]. Note that gravity effects have been neglected
in their analysis, hence no Froude number is given.

Case # Re = ρUb 2R
µ W e = ρU 2

b R
γ C a = µUb

γ

1 4.2 16.1 7.66
2 7.2 45.8 12.7
3 10.1 88.5 17.5
4 11.8 118.2 20
5 14 164.2 23.5
6 14.8 182 24.6
7 16.6 225.6 27.2
8 18 262.9 29.2
9 24 458.6 38.2

10 47.4 1733.8 73.2

range of 10.1 until 14, the jet first contracts towards a local minimum and then expands
to a value higher than the initial radius far downstream. A similar behavior is observed
for Re = 14.8 until 24, though the jet does not expand beyond the initial value in these
cases. For the highest investigated Reynolds number, Re = 47.4, the jet gradually con-
tracts. The jet contraction/expansion behavior for intermediate Reynolds number sug-
gests competing influences of viscous stresses (responsible for jet expansion) and iner-
tial flow effects (responsible for jet contraction).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08
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Figure 4.4: Numerical results for the jet radius normalised with the nozzle radius for the
cases listed in Table 4.1. The dots are experimental data from Goren & Wron-
ski [9].
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Figure 4.5(a) presents results for the jet contraction ratio. This has been obtained
from the simulations in two different ways: (1) by directly measuring the equilibrium
radius far downstream from the obtained jet radius profiles, and (2) by computing χ

from Eq. (4.16a) with the coefficient B calculated numerically from the expression given
in Eq. (4.16b). The two methods give nearly the same value for the jet contraction ra-
tio, which validates our derivation of the integral momentum balance from which χ was
determined. Good agreement is obtained with the experimental data from Goren and
Wronski [9]. The correlation for the jet contraction ratio proposed by Joseph [8], given by
Eq. (4.18), provides a good fit to the data down to Re ≈ 12, below which the jet contrac-
tion ratio levels off to a value somewhat above 1.1, while the correlation diverges towards
infinity for Re → 0.
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Figure 4.5: (a) Jet contraction ratio as function of Reynolds number. The data points
show the results obtained from the simulations, the experiments of Goren
and Wronski [9], and reconstructed from the integral momentum balance.
(b) Simulation results for the final jet radius, R∞/R = χ and the contact angle
ϕ (in degrees, see Fig. 4.1 for definition) as function of Reynolds number.

Figure 4.5(b) depicts the numerical results for the final jet radius far downstream and
the contact angle at the nozzle (see Fig. 4.1 for definition), R∞/R =χ andϕ, respectively,
as function of the Reynolds number. One can observe the non-monotonic jet behaviour
for the Reynolds numbers between 8 and 14. In this range, the resultant jet radius is still
larger than the nozzle radius (i.e., χ > 1) but the contact angle is negative, meaning the
jets are initially contracting but eventually expanding to reach their final radii.

Figure 4.6 depicts the pressure, radial and axial velocity distribution across the jet
for Re = 4.2,10.1,24, corresponding to an expanding, contracting/expanding and con-
tracting jet, respectively. With increasing Reynolds number, axial pressure variations
decrease in magnitude in units of ρU 2

b , as expected. Radial velocity perturbations are
localized at the nozzle exit plane. Normalised with Ub , the radial velocity perturbations
decrease in magnitude with increasing Reynolds number and spread out further down-
stream related to streamwise advection by the higher axial velocity. Finally, the axial
velocity distribution shows an increasing downstream flow development length with in-
creasing Reynolds number.

Fig. 4.7 depicts the centerline velocity as function of streamwise distance for each in-
vestigated Reynolds number. The velocity has been normalized with the bulk velocity
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Figure 4.6: Color plots of (a) pressure in units of ρU 2
b (b,c) radial and axial velocity, re-

spectively, in units of Ub , for Reynolds numbers of 4.2, 10.1 and 24.
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Figure 4.7: Centerline velocities at different Reynolds numbers. The inset shows the
variation of the upstream diffusion length, LU D , and the velocity relaxation
length, LP , as a function of Reynolds number.

upstream in the nozzle, Ub . At all Reynolds numbers the centerline velocity decreases
monotonically from a distance on the order of one nozzle radius upstream of the nozzle
exit to an equilibrium value sufficiently far downstream. At the highest Reynolds num-
ber, Re = 47.4, the equilibrium value is about 1.2, which is still significantly below the
value of 4/3 (≈ 1.33) expected in the inertia-dominated regime.

The decrease in the streamwise centerline velocity in the nozzle exit plane implies the
local presence of a compressional axial viscous stress, τxx = 2µÇu/Çx < 0. Mass conser-
vation dictates that this must be accompanied by a radially outward velocity gradient
(as indeed observed from Fig. 4.6b) and hence the local presence of an extensional ra-
dial viscous stress at the centerline, τr r = 2µÇv/Çr > 0. The reverse situation is encoun-
tered near the nozzle edge, where τxx > 0 immediately downstream of the nozzle edge.
In this case, mass conservation requires that Ç(r v)/Çr < 0 immediately downstream of
the nozzle edge. As observed from Fig. 3, for sufficiently low Reynolds number, the jet
expands monotonically downstream, so v > 0 near the nozzle edge. Combined with
Ç(r v)/Çr < 0, this implies the local presence of a compressional radial viscous stress im-
mediately downstream of the nozzle, τr r < 0 (as indeed observed from Fig. 4.6b). From
Eq. (4.12a) we thus find that for low Re, the normal viscous stress acting on the free sur-
face is negative immediately downstream of the nozzle edge, n ·τ ·n < 0. From Eq. (4.7a)
and assuming that surface tension is negligible, we then find that the pressure must lo-
cally decrease to maintain equilibrium with the atmospheric pressure of the ambient
gas. This can only be accomplished by expansion of the jet, which will reduce the lo-
cal drop in the pressure and reduce the magnitude of the compressional normal viscous
stress acting on the jet interface.

The above reasoning provides a conceptual explanation for the monotonic jet expan-
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sion observed for low Re. The change from a no-slip to a free-slip condition for the flow
leaving the nozzle, generates axial viscous stresses, which through mass conservation are
responsible for a compressional radial stress at the jet interface, by which the interface
is pushed outwards to maintain stress equilibrium with the ambient gas at atmospheric
pressure. At higher Re, inertial effect come into play and the jet first undergoes a con-
traction when leaving the nozzle. The conceptual picture for the Stokes regime breaks
down in this case as local flow acceleration (near the nozzle edge) and flow deceleration
(near the centerline) will likely influence the pressure distribution inside the jet down-
stream of nozzle exit.

The compressional axial viscous stress near the centerline of the nozzle exit plane
and the extensional axial viscous stress near the nozzle edge are responsible for a more
blunted velocity profile immediately upstream of the exit plane with respect to parabolic
Poiseuille flow. This will both affect the streamwise pressure gradient and the wall shear
stress at the nozzle wall. To quantify the streamwise extent of the affected nozzle region,
we define the "upstream diffusion length", LU D , as the position x =−LU D where the cen-
terline velocity is within 1% of the centerline velocity of homogeneous Poiseuille profile.
Similarly, we also introduce the "downstream velocity relaxation length" as the position
x = LP where the centerline velocity and the velocity at the interface become equal (i.e.,
plug flow). The numerical results for LU D /R and LP /R are shown in the inset of Fig. 4.7
as function of Re. Interestingly, over the investigate Re-range, the variation in the length
scales is approximately linear in Re and given by, respectively:

LU D /R ≈−7.2×10−3Re +0.75 (4.19a)

LP /R ≈ 0.15Re +1.05 (4.19b)

While at the very low Reynolds numbers, the ratio LU D /LP is O(1), the ratio quickly
drops with increasing Re and will eventually approach zero for high Re in the inertia-
dominated regime.

In the inset of Fig. 4.8 the normalised deviation of the centerline velocity at nozzle
exit from Poiseuille flow, (2Ub −u(0,0))/2Ub , is shown as function of Re. Interestingly,
the deviation of the centerline velocity from Poiseuille flow can be parameterized by
2Ub −u(0,0) ≈ α2UbRe−2/3 with α ≈ 0.36. This motivated us to rescale the centerline
velocity profiles of Fig. 4.7 according to: (u(x,0)−u(0,0))Re2/3/2Ub . The profiles of the
normalised centerline deficit velocity are depicted in Fig. 4.8. Scaled in this manner
the centerline velocity upstream and downstream of the nozzle till x/R ≈ 0.25 shows a
nearly perfect collapse for all investigated Re. The observed self-similarity indicates that
the centerline velocity upstream of the nozzle exit can be written as:

u(x,0) = 2Ub
[
1−Re−2/3(α− f (x/R))

]
, (4.20)

where f (x/R) is the self-similar profile depicted in Fig. 4.8 for x/R < 0. From this
expression we can also derive the following expression for the axial viscous stress at the
centerline:

τxx (x,0) = 4µUb

R
Re−2/3 f ′(x/R), (4.21)
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Figure 4.8: Normalised centerline deficit velocity with respect to the centerline velocity

at nozzle exit, (u(x,0)−u(0,0))Re2/3/2Ub , shown as function of streamwise
distance and Re. (inset) Deviation of centerline velocity at nozzle exit from
Poiseuille flow, as function of Re.

where f ′ < 0 is the derivative of f with respect to x/R and O(−1).
From the simulation data we can directly evaluate K̃ in Eq. (4.16b), i.e., the contribu-

tion from viscous effects to the jet contraction ratio. To further analyse this, we write K̃
as:

K̃ = Pexc +Texc (4.22)

Here Pexc is referred to as the integral excess pressure and Texc as the integral excess
stress, defined as, respectively:

Pexc =
∫ 1

0

(
p̃|x=−L̃U D

−p̃atm −∆p̃ H
)

2r̃ d r̃ (4.23a)

Texc = 4

Re

∫ 0

−L̃U D

(
τ̃xr |r̃=1−τ̃H

xr |r̃=1
)

d x̃ (4.23b)

where ∆p̃ H = (16/Re)L̃U D is the non-dimensional pressure drop over the nozzle in
case of homogeneous Poiseuille flow inside the nozzle, and τ̃H

xr =−4 is the correspond-
ing non-dimensional wall shear stress. Note that

∫ 1
0 ∆p̃ H 2r̃ d r̃ = − 4

Re

∫ 0
−L̃U D

(
τ̃H

xr |r̃=1
)

d x̃
is the force balance between the driving pressure gradient and the wall shear stress for
homogeneous Poiseuille flow. When axial viscous stresses are significant in the region di-
rectly upstream of the nozzle exit plane, the flow will not be homogeneous anymore. The
axial viscous stresses will partially decouple the pressure gradient from the wall shear
stress and this suggests a less strong pressure drop than for homogeneous Poiseuille
flow, thus a negative integral excess pressure is expected. Similarly, the extensional axial
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stress near the nozzle wall will cause an increase in the magnitude of the wall shear stress
with respect to homogeneous Poiseuille flow, thus also a negative integral excess stress
is expected.
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Figure 4.9: Pressure distributions close to the nozzle exit for (a) Re = 4.2, (b) Re = 10.1, (c)
Re = 14.8 and (d) Re = 24. The dashed line denotes the homogenous pressure
drop expected from the Poiseuille profile.

Figure 4.9 show the pressure variation along the centerline, the wall and at the free
surface of the jet. While upstream inside the nozzle, the pressure profile follows the ho-
mogenous Poiseuille profile, the centerline and the wall pressure distributions deviate
from that closer to the nozzle exit. One can thus also note the radial pressure gradient
that arises at the nozzle exit plane, which is an adjustment of the flow to the sudden
change from no-slip to free-slip condition from the nozzle wall to the jet interface.

The contributions from the integral excess pressure and integral excess stress to the
viscous term K̃ in the polynomial equation for χ are shown in Figure 4.10(a) as a func-
tion of the Reynolds number. As proposed by Joseph [8] and shown in Eq. (4.17), K̃ scales
with Re−2/3 for Re > 10. Note that for Re < 10 the Weber number also goes down (see Ta-
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ble 4.1), making the surface tension influence bigger on the flow. This is highlighted
in Figure 4.10(b) where the contraction ratio is computed from the integral momentum
balance given in Eq.(4.16) with and without the surface tension terms. One can note that
the largest deviation occurs in the lower Reynolds numbers (hence lower Weber num-
bers) where capillary effects are more significant. This is also consistent with the relation
given in Eq. (4.18), and depicted in Fig. 4.5(a), which agrees well with the computed and
observed contraction ratio above Re > 10. We observe from Fig. 4.10(a) that the integral
excess pressure is the dominant contribution to K̃ for Re ≳ 10, while the integral excess
stress is the dominant contribution for Re ≲ 10. Finally, the sign change in the integral
excess pressure at low Reynolds
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Figure 4.10: (a) K̃ , Pexc and Texc as a function of Reynolds number (b) The contraction
ratio computed from integral momentum balance with and without the sur-
face tension terms, compared against the results of Goren & Wronski [9]

4.5. CONCLUSION
We presented simulations of a laminar axisymmetric jet of a Newtonian liquid issued
from a long circular nozzle into a gaseous environment. After the experiments of Goren
& Wronski [9], ten cases have been selected with different Reynolds numbers. Our nu-
merical results for the spatially varying jet radius are in good agreement with the experi-
ments. Non-monotonic behavior is observed for the jet radius as function of streamwise
distance for Re ≈ 10−14, where the jet first contracts directly after nozzle exit but then
expands towards a final diameter beyond the initial jet radius. Whereas the jet contracts
towards a smaller equilibrium radius for Re ≳ 14, a monotonic expansion is found for
Re ≲ 10. Our results suggest that the expansion of the jet for small Re originates from a
compressional radial viscous stress at the jet interface immediately downstream of noz-
zle exit.

Self-similar behavior is found for the axial centerline velocity, which holds not only
within the nozzle but even outside the nozzle up to x/R ≈ 0.25 for the present range
of Re investigated. The self-similar solution implies that the associated compressional
axial stress at the centerline scales with Re−2/3 when normalized with µUb/R. The stress
reduces to zero in the upstream direction at a distance of ≈ 0.75R from the nozzle exit
plane. This thus indicates the extent of the region within the nozzle that is affected by
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the sudden change from a no-slip to a free-slip flow boundary condition at the nozzle
exit.

We derived a polynomial equation for the jet contraction ratio χ using integral mass
and momentum balances. The coefficients of the equation have been evaluated from
the numerical simulation data. The jet contraction ratio computed from this equation
is in very good agreement with the actual contraction ratio directly obtained from the
simulations as well as the experimental data of Goren & Wronski [9]. From this equation
we also found that surface tension has a non-negligible influence on the jet expansion
for Re ≲ 10, and is responsible for a less strong expansion compared to the sole effect of
viscosity. At Re = 4.2 the increase in the equilibrium jet radius, relative to the initial jet
radius, drops from approximately 15% to about 10%.

The normalized viscous contribution to the polynomial equation for the jet contrac-
tion ratio, scales with Re−2/3 for Re ≳ 10, in agreement with the scaling originally pro-
posed by Joseph [8]. The decomposition of the viscous contribution into an integral ex-
cess pressure and an integral excess stress shows that both are negative (except at Re =
4.2). While the excess viscous stress is dominant over the excess pressure for Re ≲ 14, the
opposite holds for Re ≳ 14. The deviation of the simulation data from Joseph’ correla-
tion for the viscous contribution is, at least partially, attributed to a surface tension effect
and the direct influence thereof on the pressure inside the jet, which was neglected by
Joseph.

A logical extension of the present work would be to investigate if a self-similar solu-
tion exists for the entire flow field within the nozzle. The self-similar solution found for
the axial centerline velocity suggests that this is indeed possible. The Re−4/3 scaling ob-
served for the integral excess stress in Fig. 4.10a further hints in this direction. From the
self-similar solution for the flow field in the nozzle, a correlation may be derived for the
viscous contribution to the jet contraction ratio for Re ≲ 10 for which the correlation of
Joseph breaks down. It is also recommended to further explore the influence of the We-
ber (or Capillary) number as we found that surface tension has a non-negligible on the
lower Re range in the experiments of Goren & Wronski [9].

The findings of the present study have significant implications for the breakup of thin
liquid jets in prilling applications. In studies of jet breakup it is often implicitly assumed
that the flow within the base jet is uniform and that the jet radius is constant and equal to
the radius of the nozzle from which the jet is issued. The present work shows that the up-
stream flow conditions and nozzle geometry matter. For a long nozzle with a parabolic
velocity profile sufficiently far upstream, the jet significantly contracts at the Reynolds
numbers typical for prilling applications. Since a jet breaks up at a length scale propor-
tional to the base jet radius, this thus has consequences for the optimal perturbation
frequency for jet breakup and the resultant droplet and prill size distributions. For prac-
tical applications, it is therefore highly recommended to study upstream flow and nozzle
geometry effects on the base jet flow.
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5
APPLICATION TO INDUSTRIAL

PRILLING PROCESSES

The prilling process involves strongly coupled multiphysics phenomena, including thin
jets of a molten substance emitted from a perforated rotating bucket (from here on named
"priller"), the breakup of the jets into drops, and prill formation by rapid cooling and crys-
tallization of the drops as they fall down the prilling tower. In chapter 1, we identified
four main research questions that were motivated by the process of prilling, where the first
three research questions were addressed in chapters 2,3 and 4, respectively. We developed
theoretical and computational tools for studying the dynamics of isothermal spiralling
and nonisothermal straight jets in a computationally cheap manner, from which we gain
detailed insight in , respectively, the influence of rotation and thermal perturbations on
jet breakup. In chapter 2, an experimental setup to study the dynamics of spiralling jets
was presented and control the breakup of spiralling jets using perturbations was studied
by means of experiments and simulations. The spiralling jet simulation based on the non-
linear slender jet framework, isolates the jet dynamics from all the flow history upstream
the nozzle, and assumes a given nozzle exit velocity and a velocity perturbation with a
given amplitude at a single dominant frequency or with a white noise spectrum. The suc-
cess of the slender jet framework in reproducing the dynamics observed in the experiments
detailed in chapter 2, encourages the thought of using this modelling approach for pre-
dictions of the process output (prill size distribution) in an industrial prilling process. In
this chapter we will discuss the first steps of using the existing model for some industrial
scale case studies and discuss the limitations of the existing modelling approach along
with recommendations for improvement.

This chapter is based on a presentation by Y. E. Kamis in 14th European Congress of Chemical Engineering
and 7th European Congress of Applied Biotechnology in Berlin, 2023
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5.1. SIMULATION TOOLS DEVELOPED WITHIN THE THESIS
In chapters 2 & 3, an in-house simulation tool based on the slender jet approximation is
presented and utilized. In chapter 2, this model was extended with a preliminary routine
for estimating the base flow trajectory of the spiral jet. The background of this model is
briefly repeated here for convenience.

The centerline trajectory is represented by the Cartesian coordinates, X (s), Y (s), and
Z (s), with s the arc length with respect to nozzle exit. X , Y , Z and s are all normalized
with the rotating arm, L, of the nozzle. The local jet velocity is denoted by U (s) and
normalized with the base jet velocity at nozzle exit, U0. The local jet radius is denoted
by R and is normalized with the based jet radius at nozzle exit, R0. Assuming that radial
(cross-stream) variations are much weaker than axial variations in the base flow, R0/L ≪
1, the following equations can be derived for the base jet:

d

d s

(
U R2)= 0, (5.1)

U
dU

d s
=− 1

W e

d

d s

(
1

R

)
+ 3

R2Re

d

d s

(
R2 dU

d s

)
− Z ′

F r 2︸ ︷︷ ︸
fgravity

+ X X ′+Y Y ′

Rb2︸ ︷︷ ︸
fcentrifugal

, (5.2)

(
U 2 − 1

RW e
− 3

Re

dU

d s

)(
X ′′2 +Y ′′2 +Z ′′2) = X X ′′+Y Y ′′

Rb2

− 2U
(
X ′Y ′′−Y ′X ′′)

Rb
− Z ′′

F r 2 , (5.3)

0 = X
(
Y ′Z ′′−Z ′Y ′′)+Y

(
Z ′X ′′−X ′Z ′′)

Rb2 − X ′Y ′′−Y ′X ′′

F r 2 + 2U Z ′′

Rb
, (5.4)

X ′2 +Y ′2 +Z ′2 = 1, (5.5)

where Re = ρU0R0
η , W e = ρU 2

0 R0

γ , Rb = U0
ΩL and F r = Up

g L
are the Reynolds, Weber,

Rossby and Froude number respectively. In the inviscid limit (Re ≫ 1) Equation (5.2)
can be integrated as:

U 2 + 2U 1/2

W e
p

C1
+ 2

F r 2 Z − 1

Rb2

(
X 2 +Y 2)+C2 = 0, (5.6)

where we used U R2 = C1 from Eq. (5.1), and C1 and C2 are integration constants. Note
that viscous resistances to bending and twisting are also neglected in this case. We define
X (0) = 1, Y (0) = 0, Z (0) = 0, X ′(0) = 1, Y ′(0) = 0 and finally Z ′(0) follows from Eq. (5.5).
By definition, also U (0) = R(0) = 1 and hence C1 = 1. Substituting all the prescribed
boundary conditions in Eq. (5.6) yields C2 = 1/Rb2 −2/W e −1.

The system of equations (5.1), (5.3)-(5.6), also known as the "string" equations, de-
scribe the steady state trajectory and the base flow (flow without the perturbations)
of the spiralling jet. This set of equations is solved using a fourth-order Runge-Kutta
method. Figures 5.1(a) and (b) show, respectively, the computed baseline trajectory and
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the base jet velocity and radius for W e = 18.2, Rb = 0.95 and F r = 2.16. The base jet tra-
jectory is in excellent agreement with the experiments, so it enables the quantification
of the projections of the body forces along the trajectory, namely, the centrifugal force,
fcentrifugal(s), and gravity force, fgravity(s), whose expressions are given at the right hand
side of (5.2). Figure 5.1(c) depicts the computed forces from the base flow calculations.
It is apparent that with the parameters in our experiment, the gravity force is about an
order of magnitude smaller than the centrifugal force, which suggests that the torsion
along the arc length and distance travelled by the jet in the vertical Z direction are neg-
ligibly small in this case, allowing to study the dynamics from 2D projections onto the
X Y -plane.
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Figure 5.1: Results from the base flow calculation for W e = 18.2, Rb = 0.95 and F r = 2.16.
(a) Comparison of calculated jet trajectory (red line) with a snapshot from an
unperturbed jet experiment with L = 7.48cm rotating arm at the nozzle exit
and R0 = 400µm. (b) The variation of the base state velocity, U (s), and jet
radius, R(s), along the jet. (c) The variation of the body forces per unit mass
(and normalised with U 2

0 /L) acting along the jet due to rotation fcentrifugal =
(X X ′+Y Y ′)/Rb2 and gravity fgravity =−Z ′/F r 2.

The calculated base flow trajectory and jet velocity and radius, are used as input for the
non-linear slender-jet model to simulate the streamwise evolution of a prescribed veloc-
ity perturbation at nozzle exit and the related breakup of the spiralling jet into main and
satellite drops. The slender-jet approximation is a well-established and validated ap-
proach to study jet instabilities, given that the jets are sufficiently "slender", i.e., radial
(cross-stream) variations are much weaker than axial variations in the perturbation flow.
This drops down to the requirement that ϵ = R0/L ≪ 1, consistent with the assumption
used for deriving the string equations for the base jet. One can find details and bench-
marks of this approach in [1–4]. The novelty of our approach in using this framework
for spiralling jets, is as follows. Once the longitudinal projections of the centrifugal and
the gravity forces are accounted for, one can approximate the nonlinear dynamics of the
jet along the flow direction with an error of O(ϵ), provided that the full free surface cur-
vature is accounted for [5]. In other words, the 3D spiralling trajectory of the jet can be
represented as a quasi-straight jet with locally varying body forces. This also amounts
to the implicit assumption that that the wavenumber of the perturbations k (scales with
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R−1
0 ) is much larger than the curvature κ and the torsion τ of the base jet trajectory (both

scale with L−1) which is valid in the limit ϵ→ 0.
The resulting set of 1D unsteady equations is as follows:

ÇA

Çt
+ Ç

Çs
(u A) = 0, (5.7a)

Ç (u A)

Çt
+ Ç

Çs

(
u2 A

)= Ç

Çs

[
A

(
K

W e
+ 3ϵ

Re

Çu

Çs

)]
+ A

[
ϵ
(

fcentrifugal + fgravity
)]

, (5.7b)

K = 2√
4A+ A2

s

+ 4A Ass −2A2
s(

4A+ A2
s
)3/2

, (5.7c)

where A = R2 is the normalized local jet cross-sectional area. Note that the full expres-
sion for the curvature is used (i.e., both radii of curvature instead of only the leading
order one in the expansion). This is key to the success of the slender jet framework [6, 7].

Note the inclusion of the ϵ parameter in front of the centrifugal and gravity force in
(5.7b) as they have been taken from (5.2) and hence are normalised with L instead of R0.
Equations (5.7)(a)−(c) form a closed system of equations for the jet cross-sectional area
A(s, t ) and jet velocity u(s, t ). The initial conditions are implemented as A(s,0) = R(s)2

and u(s,0) =U (s) from the base flow computations.
Mechanical vibrations are naturally present in industrial applications of spiralling jets

such as in prilling, where the typical size of the rotating perforated bucket is on the order
of 50 cm. Even in small-scale laboratory experiments, one can never get fully rid of such
vibrations, and they might have a significant effect on the jet breakup. The time series
of such noisy perturbations are rather difficult to quantify, however, a good proxy is to
represent the vibrations by white noise and to characterize the noise strength in terms
of the natural (actuation-free) jet breakup length or breakup time [8].

To simulate the natural breakup in the slender-jet framework, we add Gaussian white
noise to the nozzle velocity as follows:

u(0, t ) = 1+εv cos(ωt )︸ ︷︷ ︸
perturbation

+ W (∆t )︸ ︷︷ ︸
white noise

. (5.8)

The white noise is generated using standard random number generators in Matlab and
its standard deviation scales as S∆t where S is a strength parameter and ∆t is the com-
putational timestep. This ensures that the forcing due to the white noise, related to the
velocity change over a time step ∆t , is uncorrelated with the timestep [4]. The strength
parameter S is then calibrated using the observed experimental natural (i.e., εv = 0)
breakup length. In our study we used S = 300 in all simulations and the nondimensional
timestep ∆t is adjusted dynamically considering the stability restrictions based on the
effects of advection, diffusion and surface tension [9, 10].

A regularized capillary pressure is implemented to carry the simulations beyond the
pinchoff point [11]. A finite difference scheme on a staggered grid is used for solving the
system given in Eqs. 5.7(a)− (c). The time integration is done explicitly by using a three-
step Runge-Kutta scheme with an adaptive time stepping. Except for velocities, a central
differencing scheme is used for evaluating the variables at their half step neighbors. For
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advection terms, a higher-order total variation diminishing (TVD) van Leer scheme is
used. More details of the numerical method and validation can be found in [4].

The comparison of the simulation and experiments for the parameters listed in table
2.1 is shown in Figure 5.2. Results for jet breakup and drop projected area onto the XY-
plane in the presence of only background noise, are presented in Table 5.1. Overall the
experiments and numerical simulations are in good agreement.

Simulation Experiment

Breakup length, Lb/R0 98.0 ± 6.0 95.4 ± 7.8
Drop projected area, Ap /R2

0 6.7 ± 3.8 8.3 ± 5.4

Table 5.1: Mean and standard deviation of the breakup properties of natural (actuation-
free) breakup cases.
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Figure 5.2: (a) Comparison of the jet interfaces obtained from simulation (shown in red)
and from experiment at a perturbation frequency ω = 0.7. The piezoplate
displacement is 6 µm and the velocity amplitude in the simulation is 0.5% (b)
Mean and standard deviation of the jet intact length as function of piezoplate
displacement in the experiments and velocity perturbation amplitude in the
simulations.

5.2. KNOWLEDGE UTILIZATION AT INDUSTRIAL SCALE
We have demonstrated that the above mentioned approach is able to predict the dy-
namics of a single spiralling jet at laboratory scale and laboratory conditions. To ap-
ply our modelling framework to industrial prilling processes, one needs to look back at
the priller, which is the heart of the prilling process. A priller can be considered as a
collection of around 104 nozzles. A typical priller contains a slanted wall such that the
jets emitted from the bottom reach less far than the jets emitted from the top in order
to optimally exploit the space of the prilling tower. However, an important implication
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of this is that in the steady state operation, a distribution of physical parameters exists
along the wall of the priller. The working material will have a given density, viscosity and
surface tension (temperature dependency and non-Newtonian effects are neglected for
convenience). So the main causes of variations among the jets, are the varying geometric
parameters along the priller, namely the variation in the rotating arm along the priller,
and the nozzle radius distribution along the priller. The combination of these two fac-
tors is responsible for a variation of nozzle exit velocity along the priller. Fig. 5.3 shows
a sketch of a typical priller and the potential distribution of these parameters along the
priller wall. Associated with this is also a variation of the nondimensional numbers that
governing the dynamics of a spiralling jet:

W e(z) = ρU 2
0 (z)R0(z)

γ
Rb(z) = U0(z)

ΩL(z)
F r (z) = U0(z)√

g L(z)
(5.9)

z

L(z) R(z) pressure

Bucket wall

velocity

Figure 5.3: Sketch of a typical industrial priller, with an increase in the rotating arm and
hole size from bottom to top.

An estimation the total yield from a prilling process requires to integrate the yield from
the individual jets over the height of the priller. Figure 5.4(a) illustrates the distribution
of the liquid pressure directly upstream of the priller holes and the corresponding out-
ward velocity distribution. Using Eq. (5.9), this was used to compute the variation in the
governing non-dimensional numbers, which is depicted in Fig. 5.4(b). While the vari-
ation in Rb and F r is relatively small, W e varies by almost a factor two over the priller
height. This implies a significant change in the jetting and breakup dynamics, which
need to be considered for an accurate estimation of the total yield from the priller. Fig-
ure 5.5 illustrates the base jet trajectories across the height of the priller, computed from
the variation in governing dimensionless numbers. This can now be used as input for
the slender-jet model to calculate the breakup of the jets and subsequent drop forma-
tion. To limit the computational load, this is done only for a limited number of heights,
but sufficient to capture the variation in the jet breakup dynamics.

Here, the implicit assumption is that the dynamics of the jets at the same height are
identical and that the jets do not influence each other. So the spiralling jet simulation
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Figure 5.4: Variation in flow conditions at the exit holes of prilling bucket as function
of height along the priller. (a) Outward velocity and pressure at the priller
holes. (b) Variation in governing non-dimensional numbers, defined by Eq.
(5.9), as function of height. The × symbols mark the sampled heights in the
simulations to obtain an estimate of the total yield from the priller.
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Figure 5.5: Side and 3D view of the expected trajectories of the jets emerging from the
priller. The red region in the side view shows the vortex inside the priller
formed by the melt.

framework explained in Chapter 2 and briefly revisited in §5.1 of this chapter, is simply a
subroutine or a building block for a holistic approach of simulating the jet dynamics and
resulting prill size distribution from a priller. Figure 5.6 illustrates the breakup of spi-
ralling jets from a number of bucket holes at a given bucket height and time. Note that
the thermal effects and solidification/crystallization have not been taken into account
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in these simulations. Instead, an estimate of the solidification time is made following
the design procedure given in [12] and jet arc length is determined using the jet veloc-
ity and solidification time estimate. After running the simulations for all (or some) of

Figure 5.6: Top view of a transverse cross section of a priller with multiple jets

the cross-sectional rings of the priller, one can analyze the jet intact length and the drop
size distributions to get an estimate of the yield. Figure 5.7 shows a typical outcome of
the results of modelling a priller under a perturbation given by Eq.5.8 with ω = 0.8 and
εv = 0.1 using the slender-jet framework. One of the objectives of controlling prill pro-
duction is to eliminate the formation of dust as much as possible. How dust is defined,
may change depending on the working material, but one can analyze the model results
to estimate what percentage of the yield would be classified as dust, and change the op-
eration and/or perturbation parameters accordingly to achieve the desired levels.

5.3. LIMITATIONS AND RECOMMENDATIONS
The above explained approach for using the developed slender-jet model to estimate the
yield of a large scale prilling process with a priller that contains around O(104) nozzles,
relies on several assumptions, which need to be validated, otherwise an extension to the
existing model is necessary. The numerical model contains no information about the
upstream history of the flow at the nozzle, it takes a uniform plug flow as flow condition
at the nozzle exit with the addition of a sinusoidal perturbation and Gaussian white noise
(see Eq.(5.8)). In the case of a priller, however, the flow inside the priller is far from being
uniform. Typically, the prillers contain additional interior walls and structures related
to dealing with melts, and the flow inside the priller is sloshing and turbulent. The axial
hole length is not sufficiently long such that these upstream fluctuations are damped by
viscosity and for the flow inside the nozzle to reach a fully developed profile. To connect



5.3. LIMITATIONS AND RECOMMENDATIONS

5

97

0 20 40 60 80 100 120

30

40

50

60

70

80

90

1 7 12 18 23
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 5.7: Jet intact lengths and drop/prill size distributions obtained from different
cross sections at the priller.

the upstream part to the numerical tool developed here, one needs to carefully assess the
unsteady pressure and velocity profile near the nozzles in the priller, either by means of
measurements or detailed CFD. Incorporating such effects in our model will most likely
increase the fidelity of the approach described here.

Another assumption that is embedded in our approach, is that the priller is repre-
sented as an independent collection of nozzles, so this approach can be used indepen-
dently for the nozzles and then can be superposed. That means the nozzles and jets do
not interact with each other. This is hardly true, as clogging is a major issue in prilling
and it affects the performance of the priller, so the jets are indeed coupled through the
flow inside the priller. In addition, the jets can be influenced by the strong cooling air
flow inside the prilling tower and can be aerodynamically interacting with each other. In
the lab scale experiments with a single jet, we validated that the air drag has negligible
influence, but this needs to be further validated for the industrial scale with the pres-
ence of thousands of jets. If necessary, the model needs to be extended to account for
aerodynamic forces acting on the jets.
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6
CONCLUSIONS &

RECOMMENDATIONS

The research questions formulated in Chapter 1 have been addressed in several chapters
in this thesis. In this chapter we will revisit these research questions and summarize the
main findings of this thesis in an effort to answer them.

• What physical mechanism dictates the breakup of a jet and formation of drops
in the presence of jet rotation (i.e., a spiralling jet)? How can the breakup of
spiralling jets be modelled? What is the effect of the frequency and amplitude
of mechanical excitation of the jet on breakup? How can the size distribution of
the drops be controlled?

In Chapter 2, the operating window of these Rayleigh-Plateau modes for spiralling
jets were investigated. We show that spiralling jets can be modeled as "quasi-
straight jets" with a locally varying pulling force, similar to jets falling under grav-
ity. The model is validated with in-house experiments. This approximation holds
when the cross-sectional scale of the jet (approximately the jet radius) is signif-
icantly smaller than the longitudinal scale at which the base flow changes. The
locally varying body forces are the longitudinal components of the centrifugal and
gravity forces along the jet. In our studied nondimensional parameter set, these
longitudinal projections can be simplified as a constant effective gravity, allowing
the base flow solution to be treated as a freely falling jet through the definition of
an effective Bond number. The stretching of the wavelength results in a decrease
in the inertiocapillary time scale along the jet, caused by the thinning effect of
the effective gravity (i.e., the longitudinal projections of the centrifugal and grav-
ity forces). We also derived self-similar solutions for convective linear stability,
providing a straightforward approximation for the jet breakup length. Despite the
simplified nature of our approach and the necessary assumptions, these are valid
and applicable in various processes, such as the prilling of fertilizers, where the
working liquids, like molten urea, exhibit low viscosities.

• Can thermal excitation be used to force breakup of a straight jet? What is the ef-
fect of the frequency and amplitude of thermal excitation of the jet on breakup?
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Controlling the jet breakup and droplet formation requires a well-defined pertur-
bation on the jet conditions to invoke a Rayleigh-Plateau instability mode. Cre-
ating this perturbation is usually done either by piezo actuation systems where
the inlet boundary conditions are perturbed with a certain frequency and ampli-
tude, or by acoustic means where the entire jet is perturbed and the fastest grow-
ing Rayleigh-Plateau instability is invoked. In Chapter 3, we used numerical sim-
ulations to illustrate that adjusting the inlet temperature of straight jets serves as
a means to regulate the breakup and formation of droplets. The modulation of
temperature induces local perturbations in both thermally-induced capillary and
Marangoni stresses. To gain a deeper understanding, we propose breaking down
the surface tension forces into contributions from curvature-gradient and surface
tension gradient forces. The ratio of the surface-tension-gradient force to the im-
posed random perturbation force at the nozzle exit is quantified by the thermal
modulation strength number, denoted as M . This number is influenced by the
amplitude and frequency of thermal modulation, the sensitivity of surface ten-
sion to temperature variations, the Weber number, and the noise amplitude in
the nozzle exit velocity. Higher values of the thermal modulation strength num-
ber enhance control, resulting in shorter intact lengths and more uniform droplet
streams. As the modulation strength increases, the role of thermal modulation
shifts from being solely a trigger for the exponential growth of curvature-gradient
forces to a scenario where both curvature-gradient and surface tension gradient
forces dominate until pinch-off. Consequently, the thermal modulation strength
number proves to be a valuable criterion for designing thermal modulation to
achieve controlled jet breakup, especially in determining the minimum required
thermal modulation strength for generating a uniform droplet stream. Future ex-
tensions of this work could include studying thermal modulation in the presence
of non-negligible axial heat conduction and/or cooling to the ambient environ-
ment.

• What physical mechanism is responsible for rapid jet contraction of a jet at noz-
zle exit? More specifically, what is the influence of viscous and capillary (surface
tension) effects on jet contraction and on the transition from jet expansion at
low jet Reynolds number to jet contraction at higher Reynolds numbers? These
questions have been addressed in Chapter 4, where we presented simulation re-
sults for a laminar, axisymmetric jet of a Newtonian liquid issued from a long cir-
cular nozzle into a gaseous environment. We showed that the jet contracts for

Reynolds numbers, Re = ρUb 2R
η , smaller than about 14.4, while the jet expands be-

yond this threshold value. The numerical results are in good agreement with ex-
perimental data from Goren & Wronski [1]. A polynomial equation was derived for
the jet contraction ratio, χ= R∞/R, with coefficients that could be evaluated from
the simulation data. The solution for χ obtained from this equation is in good
agreement with the experimental data. From this equation it was also found that
surface tension effects on the jet contraction ratio cannot be neglected for Re ≲ 10
in the experiments of Goren & Wronski [1]. For small Reynolds number, we found
that the expansion of the jet is caused by a compressional radial viscous stress at
the jet interface immediately downstream of the nozzle exit. For large Reynolds
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number, when viscous and surface tension effects are negligible, our polynomial
equation recovers the classical result of Harmon [2] for the jet contraction ratio
based on conservation of the integral mass and momentum fluxes along the jet.

• How can the results obtained for a single spiralling jet be used to predict the prill
size distribution in an industrial prilling process?

Finally in Chapter 5, we discussed the first steps towards using the studied mod-
elling approach which is validated with lab scale experiments as a tool in an in-
dustrial scale prilling process. The main differences between a lab scale rotating
orifice and a prilling bucket is highlighted and a case study with a typical prilling
bucket is presented. One needs to pay special attention to the limitations of the
approach for an industrial scale modelling of the process. One limitation is that
the slender jet approach takes an "ideal case" as initial and boundary condition
which is not the actual case when one considers one of the many spiralling jets
emerging form the perforated bucket. The flow carries significant history from in-
side the bucket to the jet, which is not captured in the slender jet framework. An-
other limitation is the neglected jet-jet interactions with the slender jet approach
on a single jet. These interactions can be aerodynamic in nature, where one jet
may lead to wake region behind it, and the capillary instability of the succeeding
jet may be influenced by the existence of this wake region.

What has been covered in this thesis is only a fraction of the open questions and un-
addressed challenges in this problem. The prilling process is a coupled multi-scale and
multiphysics problem and controlling it is a challenging exercise. So there is more to be
done both from fundamental and applied research perspectives. From a fundamental
point of view, the natural breakup of liquid jets still needs further research. Jet breakup
is extremely sensitive to initial and boundary conditions (e.g. at the nozzle). The predic-
tions of jet breakup length and size of the droplets rely on linear and nonlinear stability
analyses where the base state is a stable cylindrical column and there is a perturbation
of known frequency and amplitude. In most practical cases, however, the initial con-
dition of the jet is not a liquid column and the liquid already carries disturbances from
upstream the nozzle. In this thesis, these unknown effects are mimicked by adding white
noise to the jet velocity - where the intensity of the noise is a free parameter and is tuned
using experimental results. There is still a lack of a comprehensive theory to predict the
jet breakup length and drop size distribution without having a known frequency and
amplitude.

From applied research point of view, different perturbation mechanisms are remain-
ing to be further explored, especially for large scale processes such as prilling. For a large
scale process of jet breakup where the perturbing components are large and have high
inertia, eliminating the necessity of large moving parts to actuate the jet breakup is an
important and promising concept. In Chapter 3, thermal excitation for a non-isothermal
jet is studied theoretically and numerically. In industrial processes, this can be achieved
by Joule heating or lasers. Thus a natural follow up of this work is to design a proof-of-
concept and study ways to make it a robust mechanism.
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Boğaziçi University, Istanbul, Turkey
Thesis: Stability of the non-isothermal Taylor-Couette flow of

a ferrofluid under external magnetic field
Promotor: Prof. dr. K. Atalık

2019–2023 Ph.D. researcher
Delft University of Technology, Delft, The Netherlands
Thesis: Breakup and droplet fromation of thin liquid jets in

prilling applications
Promotors: Dr. Ir. W. P. Breugem & Dr. Ir. H. B. Eral

2023–Present RD&I Engineer
Kreber BV, Vlaardingen, The Netherlands

107





SCIENTIFIC CONTRIBUTIONS

PUBLICATIONS
1. Y. E. Kamis, H. B. Eral, and W.-P. Breugem. “Active control of jet breakup and droplet forma-

tion using temperature modulation”. In: Physical Review Fluids 6.10 (2021), p. 103903

2. Y. E. Kamis, S. Prakash, W.-P. Breugem, and H. B. Eral. “Controlling the breakup of spiralling
jets: results from experiments, nonlinear simulations and linear stability analysis”. In: Jour-
nal of Fluid Mechanics 956 (2023), A24
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