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Summary 
 
In this study, an attempt is made to better understand the effect coarsening of the parameter space has on the 
uncertainty representation of the response. Firstly, an HF ensemble of channelized reservoir models is 
constructed using a Multi-Point Statistic (MPS) approach. Several levels of coarsening are generated using a 
flow-based upscaling algorithm. A water injection strategy is simulated for each scale of the hierarchical 
ensemble. Dynamic analysis is performed on a reduced representation of the response uncertainty obtained via 
Multidimensional Scaling (MDS). We introduce an Uncertainty Trajectory (UT), which quantifies the 
coarsening effect in terms of deviation from the HF ensemble response uncertainty. The UT also includes the 
temporal behavior of the response uncertainty of each ensemble scale. The mean integrated distance from the 
HF ensemble UT can be used as a measure of dissimilarity in the flow behavior of consecutive coarser 
ensembles scales.  Reducing the number of HF flow simulations required for uncertainty quantification can be 
achieved via the proposed methodology and thereby greatly reducing the overall computational cost. 
 
 



Introduction

Development of oil- and gas reservoirs are expensive operations which require a thorough understand-
ing of the associated risks and uncertainties. Enhanced Oil Recovery methods as well as geothermal
energy production amplify this demand even more. Uncertainties arise from the under-sampling of the
subsurface which cause the estimation of geological parameters to be an underdetermined problem. A
reservoir modeling workflow is typically adopted which captures the heterogeneity and complexity by
representing the solution space with a large number of high-resolution reservoir models, denoted as a
High Fidelity (HF) ensemble. The spread in flow response of the HF ensemble depicts the associated
uncertainty in permeability and other fluid flow-related parameters. Common uncertainty quantification
techniques such as Monte Carlo (MC) methods require a lot of evaluations of the state of the HF en-
semble and can therefore become computationally expensive. A frequently used solution is coarsening
the HF ensemble until satisfactory grid resolution is reached which allows for a consistently large en-
semble to be evaluated for its flow response. It is however noted by several authors that certain biases
arise when using coarser representations in the uncertainty quantification process (Lødøen et al., 2005).
Other solutions exist which use proxy models in the form of streamline simulations in order to identify
a subset of HF models on which subsequent uncertainty quantification is performed (Scheidt and Caers,
2009). The previously mentioned research has contributed significantly to the modern reservoir model-
ing workflow, in particular the use of a distance-based (metric space) approach which allows for reduced
order modeling. This development has served as a major inspiration for this work.

In this study, an attempt is made to better understand the effect coarsening of the parameter space has on
the uncertainty representation of the response. Firstly, a HF ensemble of channelized reservoir models
is constructed using a Multi-Point Statistic (MPS) approach (Strebelle, 2002; Straubhaar et al., 2011).
Several levels of coarsening are generated using a flow based upscaling algorithm (White et al., 1987;
Holden and Nielsen, 2000). A water injection strategy is simulated for each scale of the hierarchical
ensemble. Dynamic analysis is performed on a reduced representation of the response uncertainty ob-
tained via Multidimensional Scaling (MDS) (Borg and Groenen, 2005). We introduce an Uncertainty
Trajectory (UT), which quantifies the coarsening effect in terms of deviation from the HF ensemble
response uncertainty. The UT also includes the temporal behavior of the response uncertainty of each
ensemble scale. The mean integrated distance from the HF ensemble UT can be used as a measure of
dissimilarity in the flow behavior of consecutive coarser ensembles scales. This is broadly explained in
the following sections and illustrated with examples.

Due to the general nonlinear nature of the problems solved in the petroleum industry, models with
seemingly different input parameters might have similar flow characteristics and therefore contribute in
different extent to the overall ensemble uncertainty (see figure 1 for illustration). Such redundancies
in the parameter space should be identified prior to expensive simulations and subsequent uncertainty
quantification techniques (Insuasty et al., 2017). The uncertainty quantification methodology proposed
in this work attempts to reduce the computational time by limiting the amount of HF ensemble eval-
uations and optimally use coarser information while converging to the same HF ensemble uncertainty
quantification results. Finally, an endeavor is made to understand the relative quality of the presented
uncertainty quantification methodology with respect to the most widely used MC analysis of the full HF
ensemble.

Important ingredients of the analysis

In this section, we will describe all important definitions and methods used in our study.

Governing equations for forward simulation

The conservation of mass, in general form, is written as

Fc =
∂

∂ t

(
φ ∑

p
xcpρpSp

)
+∇ ·∑

p
xcpρpvp +∑

p
xcpρpqp = 0, c = 1, . . . ,nc (1)
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Figure 1 Top left two images depict the facies, and hence permeability, distribution of two particular en-
semble members. Bottom left shows the projected distances using MDS and a simple Euclidean distance
between the permeability fields of each ensemble member. Right part of the figure displays the incredible
similar flow characteristics of two seemingly different realizations. Modified from de Hoop (2017).

where φ represents the porosity, xcp is the molar mass fraction of component c in phase p, ρp is the
density, Sp is the saturation, and qp is the source term of the p-th phase respectively, vp is the velocity
of the p-th phase.

In this work, water injection into a dead oil reservoir is investigated and the governing equations can be
simplified accordingly (Aziz and Settari, 1979)

∂ (ρpφSp)

∂ t
+∇ · (ρpvp)+ρpqp = 0, p ∈ {o,w} (2)

The Darcy velocity of the p-th phase is given by

vp =−
kr,p

µp
K∇(Pp−ρpg), p ∈ {o,w} (3)

where kr,p is the relative permeability, µp is the viscosity and Pp is the pressure of the p-th phase re-
spectively, K is the permeability tensor and g is the directional gravitational acceleration defined as g∇z.
The governing equations are discretized and solved using the Automatic Differentiation General Purpose
Research Simulator (ADGPRS) developed at Stanford University (Voskov, 2012; Zaydullin et al., 2014;
Garipov et al., 2018).

Distance-based modeling and MDS

Distance-based methods and the use of a metric space in the reservoir modeling workflow have been
investigated by several authors, see the works of Suzuki and Caers (2008), Caers et al. (2010), Scheidt
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and Caers (2009), and Park and Caers (2007) for details. Distance-based modeling formulates the vari-
ability between the ensemble members in terms of a distance, which measures the dissimilarity between
any two members X,Y ∈ Rn as a scalar value d(X,Y) ∈ R. When this distance is chosen such that it
qualifies as a metric, the resulting set of models and associated distances, (M,d), is referred to as a
metric space. Reducing the dimensionality and complexity of the modeling task in a metric space can
be easily achieved when a distance is chosen such that it has a large correlation with the purpose of the
modeling effort (Caers et al., 2010). For example, a simple Euclidean distance between the permeability
fields of each ensemble member, as shown in figure 1, incorrectly displays the dissimilarity between two
ensemble members when their water production per well is concerned. If a distance is chosen which
incorporates characteristics of the desired property, e.g. water production per well, much better results
are obtained in terms of the predicted dissimilarity between each ensemble member.

One of the most common dimensionality reduction algorithms is MDS (Borg and Groenen, 2005). In
MDS, the square symmetric distance matrix D, obtained by taking the distances of a particular property
between each ensemble member, is projected onto a Cartesian hyperplane (after double centering it
around a origin) of dimension Nreduced = Nm << NM, where NM is the size of the ensemble M. More
specifically, the required steps and corresponding equations are given in the Appendix, as also described
in Borg and Groenen (2005) chapter 12.

The dimension Nm of the hyperplane required to accurately replicate the original D, depends on the
magnitude of the eigenvalues in equation 11 and typically Nm attains one or two when production data
from wells are used in the computation of D. More generally in geoscience problems Nm can range from
one till six (Caers et al., 2010) dimension(s). Note that since both D = DT and CM = CT

M,

(−1
2

CMD(2)CM)T =−1
2

CT
M(D(2))T CT

M =−1
2

CMD(2)CM (4)

and therefore the eigenvalue decomposition in equation 11 is equal to the Singular Value Decomposition
(SVD) when all eigenvalues are greater than zero, which is generally true for D in geoscience applica-
tions (Caers et al., 2010). This allows for efficient computation of Xm when very large ensemble sizes
are concerned and Nm << NM such that a mere truncated SVD is required.

Figure 2 illustrates a synthetic flow response and projection via the outlined MDS procedure. Similar
flow responses are projected in proximity on the Nm = 2 dimensional plane after applying MDS. There-
fore, they can be clustered accordingly and the full response can be accurately represented, in this simple
synthetic example, by three representative realizations one from each cluster respectively.

Hierarchical ensemble

The two-dimensional “geologically-realistic” fluvial reservoir models used in this work, representing
the HF ensembles, are generated using two different methods. Firstly, the Improved Parallel Multiple-
point Algorithm Using a List Approach (IMPALA) (Straubhaar et al., 2011) implementation of MPS in
JewelSuiteTM. Secondly, the semi-process based software Flumy (Grappe et al., 2016). The training im-
age used for the MPS simulations is taken from Strebelle (2002). Examples of the resulting permeability
fields of several HF ensemble members as well as the well configuration are shown in figure 3.

After establishing the HF ensemble, a hierarchical coarsening is achieved by using global upscaling, a
flow-based upscaling algorithm (White et al., 1987; Holden and Nielsen, 2000). A similar technique was
applied in Aliyev and Durlofsky (2017) for optimization with uncertainties. This upscaling algorithm
finds the single-phase steady-state pressure solution and consecutively uses the fine-scale pressures and
fluxes to obtain the coarse scale transmissibility values. Directly upscaling of transmissibility results in a
better coarser representation of the fine-scale pressure field (Chen et al., 2003). Single-phase flow-based
upscaling methods can yield a satisfactory representation of the fine-scale pressures, when simulations
of water injection into oil reservoirs are concerned (Chen and Durlofsky, 2006). For a comprehensive
explanation of the global upscaling technique, as well as several other methods, the reader is referred
to Durlofsky (2005). Note that besides the transmissibility, also the coarse-scale well indices can be
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Figure 2 Illustrating the resulting MDS projection on a synthetic production data set (left graph). Sim-
ilar production curves will be projected in proximity on the reduced dimensional space (middle figure).
Any type of clustering or grouping will identify similar responses and allow for a reduced set of models
required for converging to the full ensemble uncertainty characteristics. This is illustrated in the right
graph where only three realizations are used in the computation of the reduced quantiles.

Flumy MPS

Producer

Injector

Figure 3 Examples of the generated permeability fields (in log10 [mD]) using Flumy and MPS. The
color bars indicate the magnitude of the permeability.

computed in flow-based upscaling approach.

Hierarchy of Uncertainty Trajectories

The dynamic behavior of the response uncertainty is evident also in the MDS projections. The particular
time interval of the response, used in computation of the square symmetric distance matrix D, has a large
effect on the resulting MDS projection. This observation has led to the construction of an integrated
MDS projection, where each projection is stacked subsequently in time in order to better describe the
dynamic behavior of the uncertainty in time. Figure 4 displays the integration of MDS projections
in time. Each particular projection Xi, where i = 1,2, . . . ,Nt and Nt is the number of time-slices, is
computed and positioned at its respective position in time.

In the integration process, allowing for any orthogonal transformation ensures a continuous represen-
tation of the uncertainty trajectory. Uncertainty trajectories are then build for the full hierarchical en-
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Figure 4 The integration procedure of the MDS projections in time is depicted in the left image. The
interval of the flow response of the ensemble, used in the computation of the square symmetric dissimi-
larity matrix D, exhibits a strong effect on the resulting MDS projections. The right figure displays the
continuous uncertainty trajectory of the full ensemble, showing the more stable behavior near the end
of the simulation time.

semble. This is depicted in figure 5 where uncertainty trajectories for each scale of the full hierarchy is
shown, plotting merely two trajectories for illustration purposes. The coarsening effect is clearly visible
in the uncertainty trajectories. Deviation from the HF trajectory, fairly monotonic as one would expect,
generally shows an inward trend. This can be explained by a reduction of the variance in the flow re-
sponse when coarsening, therefore reducing the relative distances between the coarser flow responses
and resulting MDS projections. The flow responses used in this example can be found in the Appendix.
The average integrated deviation from the finest uncertainty trajectory for all the properties used in fig-
ure 5 is shown in figure 6. The same trend is visible for each property, where property refers to the type
of flow response used in computation of the square symmetric matrix of dissimilarities D in the MDS
procedure.

Clustering of trajectories

Since clustering algorithms such as k-median and k-medoids are invariant to orthogonal transformations
(Kaufman and Rousseeuw, 2009), Orthogonal Procrustes can be used to align each coarser trajectory
with the HF trajectory, without changing the clustering results (Zhang, 2000). This allows for a measure
of similarity in the temporal behavior of the uncertainty, in particular the similarity between the finest
and respective coarser ensembles response uncertainty, and therefore attempts to describe the coarsening
effect.

For completeness, the definition of Orthogonal Procrustes in terms of the singular value decomposition,
as described by Zhang (2000) and originally Schönemann (1966), is

P = (Xf
i )

T Xc
i = UΣΣΣVT (5)

where Xf
i is the MDS projection coordinate matrix of the i-th time-slice corresponding to the HF en-

semble, while Xc
i corresponds to the respective coarser ensembles in the established hierarchy. The

columns of U and V contain the left- and right singular vectors whereas ΣΣΣ corresponds to the matrix of
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Figure 5 Illustration of four different flow responses and their resulting uncertainty trajectories for
the hierarchical ensemble. Note that only two trajectories of the full set are displayed. Modified from
de Hoop (2017).
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Figure 6 Average integrated deviation from the HF uncertainty trajectory for the four properties used in
figure 5.

singular values. The orthogonal matrix describing the optimal rotation between the two MDS projection
coordinate matrices is consequently obtained via

Ropt = VUT (6)

such that ||Xc
i Ropt−Xf

i ||2F is minimized.
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Deviation from the finest uncertainty trajectory after optimal rotation w.r.t the HF trajectory reveals the
relative similarity in response uncertainty between each ensemble scale. When uncertainty trajectories
of coarser models follow the HF trajectory “closely”, any clustering or model selection procedure per-
formed on the coarser ensemble response will result in a similar model selection on the HF ensemble
scale. This is illustrated by figure 7 where certain ensemble scales display very strong similarity in the
uncertainty trajectory, and therefore would result in the same model selection as one would obtain from
directly clustering on the HF ensemble response. Note, however, that this is not true at every point in
time. The trajectories of coarser models diverge for early to mid simulation times and ultimately, for
particular levels of coarsening, converge back to the HF trajectory.

This suggests that the coarser information can be used as a distance for a model selection or ranking
algorithm. The obtained subset of models is expected to represent the main characteristics of the full
ensemble and therefore should provide the uncertainty quantification of the full HF ensemble. The
idea of using proxy models or using coarser information for this purpose is not new, and the authors
recognize earlier work from Scheidt et al. (2011), Scheidt and Caers (2009), Caers et al. (2010) and
others. As illustrated by figure 7, caution should be taken when considering the time-interval over which
the distances are computed as well as the magnitude of coarsening.
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Figure 7 Depicting two members of each ensemble scale uncertainty trajectory after allowing an op-
timal rotation via orthogonal procrustes at each time-slice. Clearly visible is the devation from the
HF uncertainty trajectory for early to mid times while convergence is reached for almost all coarser
trajectories near the end time.

In this study, we establish a quantitative rule via comparison of the uncertainty trajectories for the relative
quality of the coarse distance used in the MDS projection and subsequent model selection procedure. In
principle the procedure requires knowledge of the full HF ensemble to precisely quantify the quality of
clustering and subsequent uncertainty quantification with the subset of HF models. In practical applica-
tions this is generally not the case. The proposed quality check hinges on the correlations between the
fine- and coarser scale flow responses as well as a direct comparison via the uncertainty trajectories of
the subset of models. This seems to be sufficient for the models used in this work, but requires further
validation.

The rate of convergence to the full ensemble uncertainty quantification for coarser ensembles can be
used as an initial guess for the required number of clusters. Caution should be taken due to the variance
reduction when coarsening, and a smaller number of realizations is required to describe the coarser
uncertainty ranges (de Hoop, 2017). The convergence method for initializing the required number of
clusters is adapted from Scheidt et al. (2009). In this method, the misfit between the full ensemble
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(exhaustive set) and subset quantiles is given as follows (Scheidt et al., 2009)

εNK =
1

3Nt

Nt

∑
i

(∣∣Pfull
10 (ti)−Psub

10 (ti)
∣∣+ ∣∣Pfull

50 (ti)−Psub
50 (ti)

∣∣+ ∣∣Pfull
90 (ti)−Psub

90 (ti)
∣∣) (7)

where Nk represents the number of clusters, i.e. size of the subset of HF models, Nt is the number of
time-steps, and ti represents the i-th time step.

The actual model-selection procedure is similar to that as presented in Scheidt et al. (2009, 2011) and
a figure illustrating this can be found in the Appendix. Caution is advised, when considering the time
interval over which the distances are computed. This is illustrated in the previous section by the use of
uncertainty trajectories and the erroneous temporal behavior that can occur in coarser representations.
Note that when constructing the quantiles for the subset of flow responses, their probability is being
weighted by the size of the cluster which they represent.

Results

A larger ensemble consisting of 600 realizations with permeability fields as shown figure 3 is generated,
hierarchical upscaled and finally subjected to a water-flooding experiment using the well configuration
as shown in this same figure. For the flow simulations, a constant flow rate for the injection wells
of 500[m3/day] is used, the production wells are held at a constant bottomhole pressure of 100[bar],
whereas the original reservoir pressure is set to 200[bar]. The following field production data was
obtained, displayed in figure 8. The full ensemble response is plotted using a light gray color while
the quantiles, which are often used to describe uncertainty ranges, are displayed using red, green and
blue colors. It is evident that the uncertainty in permeability distribution results in a large spread in the
response uncertainty and therefore would serve as an ideal test case for the above outlined methodology.

Uncertainty trajectories are computed for each ensemble in the hierarchy, as described in the previous
section, and figure 9 shows deviations from the HF ensemble when coarsening. Similar trends in devi-
ation are seen compared to the smaller ensemble size used in the previous section (which has a much
smaller variability or spread in production data).

Deciding the required number of clusters for accurately representing the full ensemble uncertainty quan-
tification requires knowledge on the variance of the flow response of the full ensemble. A convergence
test is shown in figure 10, using the methodology adopted from Scheidt et al. (2009). The initial guess
for the required number of clusters can be based on such a test for the particular coarser ensemble scale
chosen for computation of MDS projection. The red line in figure 10 shows the misfit between the
coarse-scale subset and the full ensemble quantiles, as defined in equation 7. The blue line represents
the misfit between the full HF ensemble and the HF subset. Convergence of the red line is reached faster
for higher levels of coarsening. This is expected since the variance is greatly reduced in the coarser en-
semble scales and therefore less clusters are required to represent the characteristics of the full ensemble.
Convergence of the blue line is much smoother and well behaved for moderate to low levels of coars-
ening. This is also expected since the flow responses for these spatial scales more accurately mimic the
HF scale and therefore the distance used for computation of D and subsequent MDS procedure can be
considered of higher quality. Figure 11 displays three different comparisons of quantiles using different
coarser ensemble scales as well as number of clusters in computation of the subset quantiles.

As previously mentioned, the full HF ensemble response is inherently unknown in real life cases, there-
fore we can never with 100% certainty examine the quality of the model selection procedure and result-
ing subset statistics. However, when the uncertainty trajectory of coarser ensembles closely follow the
HF trajectory, a similar model selection is obtained on both ensemble scales. Comparison is made in
figure 12 between the full and subset statistics. The quality of the coarse distance is calculated using a
linear correlation in breakthrough times between the HF and coarser scales respectively. This is done
both for the full ensemble and the subset of models. A relative large decrease in correlation is paired with
a relative large increase in the mean integrated distance from the HF uncertainty trajectory. This result

ECMOR XVI 2018 – 16th European Conference on the Mathematics of Oil Recovery
3–6 September 2018, Barcelona, Spain



0 500 1000 1500 2000

Time, t [days]

0

2

4

6

8

O
il
p
ro
d
u
ct
io
n
,
N

p
[1
05
m

3
]

Nreal = 600, Nx×Ny = 200× 200

P10

P50

P90

0 500 1000 1500 2000

Time, t [days]

0

0.2

0.4

0.6

0.8

1

W
at
er

cu
t
[-
]

Nreal = 600, Nx×Ny = 200× 200

0 500 1000 1500 2000

Time, t [days]

0

100

200

300

400

500

600

O
il
ra
te

[m
3
/d

ay
]

Nreal = 600, Nx×Ny = 200× 200

0 500 1000 1500 2000

Time, t [days]

0

2

4

6

8

W
at
er

p
ro
d
u
ct
io
n
,
N

p
[1
05
m

3
]

Nreal = 600, Nx×Ny = 200× 200

Figure 8 Field production data obtained from forward simulations on the HF ensemble, consisting of
600 ensemble members.
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Figure 9 Uncertainty trajectory for the full hierarchical ensemble. All the 600 curves for each scale
are shown in the left plot. This is used in the computation of the mean integrated distance from the HF
trajectory. The right figure shows for clarification purposes, the deviation from the HF ensemble when
coarsening, similar to that in the example.

is obtained for both the full ensemble and the subset of models, indicating that for this particular case,
the selected subset of HF models accurately describes the overall variability of the full HF ensemble.

Considering that only the full coarse ensemble and the subset of coarse and HF flow responses are know,
the following approach is suggested. When a strong correlation exists (close to one) between the subset
of coarse and HF scale flow responses, the subset of coarse flow responses accurately predicts the full
coarse variance over time, and the deviation (mean integrated distance) from the HF-subset uncertainty
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Figure 10 Convergence rate between the full ensemble and subset quantiles. The red curve represents
the misfit between the coarse subset and coarse full ensemble quantiles for that particular scale. The
blue curve represents the misfit between the HF subset and the full HF ensemble, where the subset is
obtained via the coarse distance in flow response for that particular scale. The flow response chosen
to compute the coarse distance is field water cut. A more stable convergence rate, when increasing the
number of clusters, is obtained if large correlation exists between fine- and coarse-scale flow response.
This is logical since the distance used in the computation of the MDS projection is of high quality,
and therefore represents the characteristics of the HF ensemble more accurately. As a comparison, the
middle and right subfigure on the bottom row display convergence rate for random picking of model
representatives.

trajectory is small, a good model selection is obtained and full HF ensemble statistics can be deduced
accurately from this subset of responses. The uncertainty trajectory also serves as a check to verify if the
time interval on which the model selection is done, accurately represents the HF projection. The required
number of clusters is not well defined and depends on the desired accuracy and size of the full HF
ensemble. The difference in variance between the full coarse-scale flow response and the selected coarse-
scale subset of models should be a fairly good indicator of the ultimate number of clusters required.

Conclusions

Understanding the temporal behavior of the response uncertainty across various ensemble scales is use-
ful when considering utilizing the coarser flow responses to obtain a subset of HF models which aim to
accurately represent the full HF ensemble. The proposed uncertainty trajectory attempts to do exactly
that. Combining the uncertainty trajectories with a correlation and variance check, provides valuable
information on the quality of the model selection and prediction of the full HF ensemble statistics. Fi-
nally, combining the convergence rate as a function of number of clusters on the coarse scale, additional
information on the number of clusters required to accurately represent the full ensemble statistics is
obtained.
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Figure 11 Comparison between full HF ensemble and HF subset quantiles, for different number of
clusters and coarse scale distances.
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Figure 12 General comparison of the full and subset statistics. Left image depicts the subset uncertainty
trajectories for each ensemble scale. The middle figures displays the variance of the full ensemble
(continuous line) and subset of models (circles) for each scale. Right image displays the correlation and
deviation from the HF scale for both the full ensemble (continuous line) and subset of models (circles).
Similar trends can be observed for both.

The reservoir models considered in this work are what is called “geologically young” (Galloway and
Hobday, 2012). This term holds for reservoirs which haven’t experienced a lot of diagenesis and burial
related transformation that affect the heterogeneity of the reservoir. This additional form of hetero-
geneity, typically expressed as fractured networks and pore-space related features, should be included
in further work. Including these features will increase the variability in flow response and therefore
increase the difficulty of representing the full HF ensemble statistics with a subset of HF models.

The dimensionality reduction method used in this work is a fairly simple one and newer and possibly
better algorithms exists. The same holds for the clustering algorithm, see e.g. affinity propagation
(Frey and Dueck, 2007) as an alternative for clustering, and kernel methods or Hessian LLE (Donoho
and Grimes, 2003) for the dimensionality reduction (projection of the square symmetric distance matrix
D). These newer methods might increase the linear separation and hence increase the quality of the
clustering, which hinges on linear distances between each data point (e.g. for k-medoids). Reducing the
number of HF flow simulations required for uncertainty quantification can be achieved via the proposed
methodology and thereby greatly reducing the overall computational cost.
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Appendix

Steps and equations required for obtaining the MDS projections, as described in Borg and Groenen
(2005) chapter 12:

1. Compute the square symmetric matrix of squared dissimilarities D(2), where (2) denotes the square
of the individual elements of the matrix D.

2. Compute the centering matrix CM, defined as

CM = IM−
1
M

11T (8)

where IM is the identity matrix of dimensions NM×NM, 1 is a vector of all ones with dimension
NM×1 and ·T denotes the transpose.

3. Double center the matrix D(2), using the computed centering matrix, such that

B =−1
2

CMD(2)CM (9)

4. Compute an eigenvalue decomposition of B, such that

B = QΛΛΛQT (10)

5. Ordering the eigenvalues as λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 ≥ λm+1 ≥ . . . ≥ λM and the eigenvectors
accordingly, such that ΛΛΛm and Qm contain the first m non-zero eigenvalues and associated eigen-
vectors respectively, the new coordinates of the projection onto the Nm = Nreduced dimensional
hyperplane, can be expressed as

Xm = QmΛΛΛ
1/2
m (11)

where the square root of a diagonal matrix is simply the square root of the individual diagonal
entries.

The flow responses used for the computation of D and following uncertainty trajectories in figure 5 are
displayed in the following figure.
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Figure 13 Example of flow responses of the HF ensemble, used for the example in the theory and methods
section.

The following figure is taken from (de Hoop, 2017) and illustrated the model selection procedure.
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Figure 14 Displaying the model selection procedure. Take distance for the particular property and
coarser ensemble scale in the top left figure. The color represents the end cumulative production and
displays a clear linear separation. Then, computation of the k-medoids clustering in the top right figure.
Simulate subset of HF representatives forward in time in the bottom left graph. Computation of the
subset statistics and compare with full ensemble in the bottom right. Modified from (de Hoop, 2017).
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