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ABSTRACT
In recent decades, automatic test generation has advanced signifi-
cantly, providing developers with time-saving benefits and facilitat-
ing software debugging. While most research in this field focused
on search-based test generation tools for statically-typed languages,
only a few have been adapted for dynamically-typed languages.
The larger search-space, generated by the dynamic allocation of
types, causes standard search-based algorithms to not be as effi-
cient in this domain and requiring a different approach. Existing
algorithms like NSGA-II, MOSA and DynaMOSA have been em-
ployed to address this problem, but exploring different approaches
may yield better results. That is why this paper proposes a dif-
ferent procedure based on an adaptation of the particle swarm
optimization algorithm (PSO). The adaptation was evaluated using
the SynTest framework, showing that DynaMOSA achieves better
results than the presented approach, both when comparing the
PSO adaptation with and without DynaMOSA features, and when
comparing the base DynaMOSA algorithm with PSO adapted to
include DynaMOSA ingredients.

1 INTRODUCTION
Software testing consists in verifying that the code written behaves
as expected and can be trusted so that more functionalities can be
built upon it. Writing meaningful and useful tests normally con-
sumes precious time, which developers often prefer spending im-
plementing new features or optimizing existing ones [11]. Further-
more, with the increasing complexity of modern day applications,
designing tests that have high-coverage is becoming a complicated
task. Because of these reasons, in the past years there has been a
significant growth in the field of automated test cases generation
[3]. Such field focuses on creating applications that analyze the
code written and automatically generate meaningful test cases, sub-
stantially improving the developer’s workflow and reducing the
time spent debugging.

Currently, the main approaches used to generate tests are ran-
dom testing [4], symbolic execution [2], and search-based testing
[14]. The latter has been shown to achieve better results for most
situations [1, 8, 18] and the approach presented in this paper falls
under that category. The concept behind search-based testing is
to first generate test cases randomly, and then use meta-heuristics
algorithms to evolve them over generations. The evolutionary step
continues until the set of tests, which will eventually represent the
final test-suite, achieves high coverage of the program.

Despite significant advancements in this field over the past few
decades, most research has focused on statically-typed languages,
neglecting their dynamically-typed counterparts [12]. One of the
main challenges introduced by dynamically-typed languages is the
larger search space caused by the variables’ types flexibility. This
and other complications keep tools designed for statically-typed
languages from creating adequate solutions for both kinds [20].

Examples of algorithms that were adopted for this domain and
that are used as comparison for the implementation discussed in-
clude: NSGA-II [7] and DynaMOSA [16].
NSGA-II uses the dominance of solutions and crowding distance as

heuristics to select the parents used to generate the offspring for
the next generation. To adapt NSGA-II to the test-case generation
domain, three mutation operators and a custom crossover operator
were introduced on top of the basic algorithm [15].
Dynamic many-objective sorting algorithm [16] is an extension of
NSGA-II that was developed specifically for the automated test-case
generation domain. The algorithm introduces two main heuristics,
the first one being the dependency between conditional branches,
which are used to select only the solutions that cover conditionally
independent branches for the current generation. And the second
one being the preference criterion function, used to assign ranks
to the solutions based on a combination of branch distance and
approach level, the ranks are then used as a mean to select the
population for the next generation.

As previously mentioned, search-based test generation focuses
on using algorithms, mainly evolutionary and meta-heuristics, to
evolve a set of randomly generated tests. Various meta-heuristics
approaches have been tested and proven to be a good method to
generate test-cases [22]. Themain characteristic that makes them so
useful is the exploration of the search space, which is fundamental in
the test-case generation domain, especially for dynamically-typed
languages. Recent studies showed that DynaMOSA outperforms
other meta-heuristics also in different tools (EvoSuite, Pynguin)
and programming language (Java and Python) [13, 17].

This paper focuses specifically on an adaptation of the Particle
Swarm Optimization algorithm (PSO) [10] for search-based test
case generation. PSO is an optimization algorithm inspired by the
social behaviour of bird flocks. Initially it generates a population of
particles representing candidate solutions, then the position of each
particle is iteratively updated based on the best-known position
of the particle itself and the best global position of all particles.
The social behaviour of this algorithm allows PSO to efficiently
explore the search space and find optimal solutions for complex
optimization problems.

Some of the methods present in the base algorithm were altered
in order to adapt them to the test-case generation domain; this
includes the velocity and position update, which had to be adapted
to fit the new particles’ encoding.

To test the adapted algorithm, we have implemented and adapted
PSO within the SynTest framework1. SynTest is a framework
created to automatically generate JavaScript unit-level test cases, it
was chosen because it already contains implementations for both
NSGA-II and DynaMOSA and represents a good starting point to
write our adaptation.

To assess the performance of PSO, we have carried out an empir-
ical study on a benchmark containing popular JavaScript projects,
that were selected to create a good representation of the language’s
syntax and code styles.

To understand the quality of the results, the presented adaptation
is compared to DynaMOSA and to a basic version of PSO without
DynaMOSA features.

The obtained results show that DynaMOSA performs slightly
better than the presented PSO adaptation, while the comparison

1https://www.syntest.org/



between PSO with and without DynaMOSA ingredients displays
relatively higher coverage for the algorithm with DynaMOSA fea-
tures. The outcomes of the experiment confirm the superiority of
the approach used by the DynaMOSA algorithm.

In order to independently replicate and validate the findings, ex-
periments, and results presented in the paper, a replication package
is made available in this GitHub repository.

2 BACKGROUND
The purpose of this chapter is contextualise this study and in-
troduce background concepts, namely single and multi-objective
optimization; numeric evolutionary optimization, including how
crossover and mutation work; how the NSGA-II optimization algo-
rithm evolves solutions over time; the adaptation of multi-objective
optimization to the test-case generation domain, including how
DynaMOSA works and how PSO explores the search space to find
better solutions in the numeric domain.

2.1 Numeric multi-objective optimization
In the mathematical field, optimization refers to the process of
maximizing or minimizing a function, known as the objective func-
tion, by iteratively selecting better input values for it. Optimization
problems can be divided in two different categories, single-objective
problems andmulti-objective problems. The first category consists of
problems that have only one objective function, while the second
includes problems with two or more objective functions.
When dealing with multi-objective problems, comparing two solu-
tions may not be as straightforward: given two inputs 𝑥1, 𝑥2 and
two objective functions 𝑓1, 𝑓2 that should be maximized, it might
happen that 𝑓1 (𝑥1) > 𝑓1 (𝑥2) and 𝑓2 (𝑥1) < 𝑓2 (𝑥2), thus we cannot
conclude whether 𝑥1 or 𝑥2 is a better solution. In multi-objective
optimization, the quality of the solutions is measured using the
dominance. Dominance, denoted as 𝑋 ≺ 𝑌 , indicates that solution
𝑋 is superior to at least one objective compared to 𝑌 , while being
at least as good for the remaining objectives. In other words, a
solution is considered dominant if it offers improved performance
in at least one objective without compromising performance in any
other objective. Dominance serves as a crucial concept for iden-
tifying non-dominated solutions in multi-objective optimization
problems.

2.2 Numeric evolutionary optimization
Evolutionary algorithms are computational optimization techniques
inspired by the process of natural selection. By emulating the princi-
ples of evolution, these algorithms generate and evolve a population
of candidate solutions iteratively, aiming to find optimal or near-
optimal solutions for complex problems. Through genetic operators
like mutation and crossover, the population continually improves
over successive generations. This iterative process allows evolu-
tionary algorithms to effectively explore solution spaces and find
solutions that may be difficult to discover through traditional meth-
ods.
In most evolutionary algorithms, the initial step involves encod-
ing the candidate solutions, converting them into vectors known as
chromosomes. These chromosomes are then utilized to produce an
offspring for the next generation, using crossover and mutation.

2.2.1 Crossover. Given two chromosomes 𝐶1 and 𝐶2 with length
𝑙 , the crossover operation selects a random index 𝑖 ∈ [0, 𝑙], then
swaps the parts of 𝐶1 and 𝐶2 after that index to create two new
children. e.g., 𝐶1 = [0.4, 0.2, 1.0, 0.7], 𝐶2 = [0.2, 0.5, 0.6, 0.3] and
𝑖 = 1 the crossover operation generates the two new chromosomes
𝐶3 = [0.4, 0.2, 0.6, 0.3] and 𝐶4 = [0.2, 0.5, 1.0, 0.7].

2.2.2 Mutation. The mutation operator is used to introduce diver-
sity in the generated population, it operates by randomly changing
a value in a chromosome with a certain probability. Given a chromo-
some𝐶 = [0.4, 0.2, 1.0, 0.7], the mutation operator has a probability
of 1/𝑙 , with 𝑙 being the length of the chromosome, of mutating each
value in the encoding. Thus if that condition is met at the second po-
sition of𝐶 , the resulting chromosome will be𝐶′ = [0.4, 0.9, 1.0, 0.7].

2.3 NSGA-II
Non-dominated Sorting Genetic Algorithm II is a multi-objective ge-
netic algorithm developed by Deb et al. [7]. The algorithm initially
generates a set of random solutions of size 𝑁 , then it iteratively
evolves them to find better test cases. To obtain fitter solutions,
it selects some of the existing tests as parents using binary tour-
nament selection, then it uses them to generate an offspring by
applying crossover and mutation. Once an offspring of size 𝑁 is
generated, two heuristics are used to select the fittest candidates
from the union of the current population and the offspring. (i) The
dominance of other solutions to the current one, where the tests
that are the least dominated have a higher chance of being chosen.
(ii) Crowding distance, a parameter that reduces the probability of
selecting two nearby solutions as parents. Meaning that the further
a non-dominated solution is to the others, the higher the chance it
has of being selected.
The 𝑁 fittest candidates are used as the population for the next
generation.

2.4 Multi-objective optimization for test-case
generation

Writing tests is commonly considered a time-consuming and effort-
intensive step in development, that’s why, in the past decades,
researchers have explored various techniques to automate this
process. Some approaches include random testing [4], symbolic
execution [2], and meta-heuristics, also known as search-based
testing [14]. Among these options, search-based testing was proven
to be more effective, achieving greater coverage and bug detection
[1, 8, 18].
Its procedure relies on randomly generating a set of test cases,
then using meta-heuristics algorithms to evolve it to a test-suite
that (possibly) achieves maximum coverage for our program. This
approach converts the test-generation issue to a multi-objective
optimization problem, where each conditional branch in the pro-
gram tested represents an objective, and the population of tests
is optimized towards covering more objectives. Each solution is
evaluated based on its coverage, where tests with a higher coverage
are more likely to be chosen to generate the offspring for the next
generation.

2.4.1 DynaMOSA. Dynamic many-objective sorting algorithm
[16] is an extension of NSGA-II that introduces the concepts of
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preference criterion and dynamic selection of the target branches to
cover.
Dynamic selection is based on the structural dependencies among
the branches, a conditional branch 𝑏2 is conditionally dependent
to a branch 𝑏1 when 𝑏2 can only be satisfied if 𝑏1 is satisfied. Af-
ter generating the initial solutions, DynaMOSA selects only the
branches that do not have conditional dependencies. These solu-
tions are inserted into a set 𝑈 ∗ and ranked using the preference
criterion function.
Such method assigns to each test an objective score based on the
branch distance and approach level of each uncovered target. The
approach level represents the number of control dependencies sepa-
rating the execution trace from the target, while the branch distance
represents the variable values evaluated at the conditional expres-
sion where the execution diverges from the target[16]. Solutions
with the lowest objective score for a given target are assigned rank
0. Solutions not selected by this method are ranked using NSGA-II
starting from rank 1.
Once all ranks are assigned, DynaMOSA creates a fixed-size set as
population for the next generation. The set is initially filled with
solutions of rank 0, if there are not enough solutions to fill the set,
the algorithm uses the solutions with rank 1, and so on until the
set is full.
Additionally, the algorithm maintains an archive to store the best
tests for each covered branch based on preference criterion. Once a
solution is found for an objective, that specific branch is excluded
from the search. This process saves computation time as the al-
gorithm only needs to compute a subset of all solutions. At each
iteration,𝑈 ∗ is updated including solutions dependent on the condi-
tional branches covered by the newly generated tests. This dynamic
selection of solutions is what givesDynaMOSA its name and allows
it to obtain faster results compared to its alternatives.

2.5 Particle Swarm Optimization
Particle Swarm Optimization [10] is an evolutionary algorithm in-
spired by the social behaviour of bird flocks. Its approach starts
by generating random particles over the search space, where each
particle represents a candidate solution. Then, it computes a veloc-
ity vector for each particle and uses it to iteratively update their
positions, moving them closer to our objective.

The new position is calculated as

𝑋𝑖𝑑 (𝑡 + 1) = 𝑋𝑖𝑑 (𝑡) +𝑉𝑖𝑑 (𝑡 + 1)
where 𝑋𝑖𝑑 (𝑡) represents the position of particle 𝑖𝑑 at time 𝑡 , and

𝑉 represents the velocity vector. The formula used to calculate the
velocity is the following:

𝑉𝑖𝑑 (𝑡 + 1) = 𝜔𝑉𝑖𝑑 (𝑡) +𝑐1𝑟1 (𝑃𝑖𝑑 (𝑡) −𝑋𝑖𝑑 (𝑡)) +𝑐2𝑟2 (𝑃𝑔𝑑 (𝑡) −𝑋𝑖𝑑 (𝑡))
Here𝜔 is the inertia weight constant and it is used to control the

speed and direction of the search. 𝑐1 is the cognitive coefficient and
determines the exploration of the current particle. 𝑐2 is the social
coefficient and regulates how much the particle should follow the
flock. 𝑟1 and 𝑟2 are random values; 𝑃𝑖𝑑 (𝑡) is the best solution found
by particle 𝑖𝑑 at iteration 𝑡 and 𝑃𝑔𝑑 (𝑡) is the best solution found by
all particles at iteration 𝑡 .

The original implementation of the algorithm that we just de-
scribed presents some limitations. Firstly, PSO was developed to
optimize a static set of objectives, which in the context of search-
based testing represents a drawback, since there exist structural
dependencies among targets that should be considered when de-
ciding which objectives to optimise [16]. Secondly, the algorithm
is meant to address numerical problems, thus we cannot apply it
directly to the context of test-generation without first adapting it.
The work presented in the next chapter explains how PSO was
adapted to be utilized for search-based test generation.

3 APPROACH
This section discusses the approach used to adapt PSO for its usage
in the test-generation domain. As explained in the previous section,
PSO was originally thought for numeric optimization problems,
and requires some adaptations to be used in this context. This
chapter first introduces the adaptations from single-objective to
multi-objective optimization using the method proposed by Coello
Coello et al. [5], then discusses the intuition behind the solutions
encoding and how they affect the velocity and position update of
the algorithm. Afterwards, it covers the problems that emerge from
the proposed adaptation, and introduces the changes needed for its
usage in the SynTest framework 1, finally it presents an alternative
implementation that was adapted to include DynaMOSA features.
The pseudo-code for the adaptation with DynaMOSA ingredients
can be found in algorithm 1, while the code for the position update
can be found in algorithm 2.

3.1 Adapting the algorithm to multi-objective
domain

The majority of the PSO approach remains unaffected by the addi-
tion of objective functions, with only the selection of the local (𝑃𝑖𝑑 )
and global (𝑃𝑔𝑑 ) best solutions requiring adjustments. This adapta-
tion draws from the approach described in "MOPSO: A Proposal for
Multiple Objective Particle Swarm Optimization" by Coello Coello et
al. [5].
To update 𝑃𝑖𝑑 , the current particle 𝑋𝑖𝑑 is compared to 𝑃𝑖𝑑 . If 𝑋𝑖𝑑 ≺
𝑃𝑖𝑑 , 𝑃𝑖𝑑 is updated with the value of 𝑋𝑖𝑑 ; otherwise, it remains
unchanged.
Selecting 𝑃𝑔𝑑 involves creating an archive 𝐴 that stores all non-
dominated solutions, where 𝑃𝑔𝑑 is chosen from 𝐴 using a weighted
probability approach. Each solution in 𝐴 has a probability of being
selected as 𝑃𝑔𝑑 inversely proportional to the number of particles it
dominates in the population.

3.2 Solutions encoding
Before explaining how the algorithm was adapted for this specific
domain, we need an appropriate encoding of the solutions. Given
an arbitrary program for which we are trying to generate tests, each
class in the program can be represented as a tree 𝐶 = ⟨𝑉 , 𝐸⟩. Each
vertex𝑚𝑖 ∈ 𝑉 symbolizes either a method or a variable computed
using a method of the class, where the root 𝑟 ∈ 𝑉 is always the class’
constructor. The vertices are connected through directed edges,
where vertices𝑚1 and𝑚2 have an edge 𝑒 (𝑚1,𝑚2) ∈ 𝐸, going from
𝑚1 to𝑚2, if𝑚2 is used inside𝑚1, thus representing a conditional
dependency between the methods. Given this representation of the
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program’s classes, we can now adapt it to represent the method
calls performed in each generated test.
A test 𝑇 is defined by a set of trees 𝐼 , where each 𝐼 ∈ 𝐼 represents
an instantiation of a class in the program tested. A tree 𝐼 has the
same characteristics as the previously described tree 𝐶 = ⟨𝑉 , 𝐸⟩,
but 𝐼 only contains the vertices of the methods called inside of 𝑇 .

3.3 Velocity computation
The encoding adaptation explained in the previous section intro-
duces complications for the PSO formula presented in 2.5, specifi-
cally for 𝑋𝑖𝑑 , 𝑃𝑖𝑑 and 𝑃𝑔𝑑 . Because particles now consist of classes
encoding instead of real numbers, we cannot use them directly to
compute the particle’s velocity for the next generation. To address
this problem, this implementation replaces the real values in the
formula with the objective score of the current test, introduced in
2.4.1, representing how far a test is from covering an objective.
"The distance is based on the number of control dependencies that
separate the execution trace from the target (approach level) and on
the variable values evaluated at the conditional expression where the
execution diverges from the target (branch distance)." [16]
This adaptation now yields a velocity vector 𝑉𝑖𝑑 (𝑡) consisting of
real values, where 𝑣𝑖 ∈ 𝑉𝑖𝑑 (𝑡) equals 0 if the particle covers the
conditional branch at dimension 𝑖 .
Even though the velocity computation was slightly changed, the
main concept of velocity from PSO still applies, high velocity val-
ues represent particles further from the desired objective, and low
velocity values represent particles close to the objective.

3.4 Position update
The encoding adaptation affects more than just the velocity update.
It also requires altering the position update formula seen in 2.5.
In the proposed approach, we maintain the core concept of the
standard PSO algorithm: updating the positions of particles that
are farther from the objective more than those that are closer to it.
By analyzing a particle’s velocity we can determine how far it is
from covering each objective. We can then use this parameter in
order to apply mutation to the generated test at different levels of its
trees 𝐼 , thus controlling how much it is altered in the next iteration.
If the velocity is high, the mutation step is performed at a higher
node of the tree, therefore changing all of the node’s descendants as
well. Similarly, if the velocity is low, the tree is mutated at a lower
level, thus keeping most of the test’s structure. The mutation of test
cases either adds, deletes or changes a statement. The method uses
uniform mutation with probability of 1/𝑛, where 𝑛 is the number
of statements in the test case to mutate [9].

3.5 Problems with described adaptation
Although the implementation explained in the previous section
is promising, SynTest1, the tool used to test this PSO adaptation,
lacks the necessary functionality to control the level at which each
particle can be mutated, instead it applies mutation at a random
level of the encoding.
To account for this problem, the position update adaptation ex-
plained in the previous section is slightly altered as shown in algo-
rithm 2. Instead of selecting the level of mutation, the method is
modified to randomly mutating the particle based on the velocity.

Given a particle𝑋𝑖𝑑 and the corresponding velocity vector𝑉𝑖𝑑 , with
values {𝑣0, 𝑣1, ..., 𝑣𝑛} ∈ 𝑉𝑖𝑑 , the method uses the approach shown
in algorithm 2: first, the vector is normalized to values in range
[0, 1] using the highest (𝑚𝑎𝑥_𝑣𝑖 ) and lowest (𝑚𝑖𝑛_𝑣𝑖 ) values of all
velocities (line 3); then, each value 𝑣 ′

𝑖
of the normalized vector 𝑉 ′

𝑖𝑑
is compared to a randomly generated number 𝑟 ∈ [0, 1] (line 6 and
7). The particle is then mutated if 𝑟 > 𝑣𝑖 (line 8).

3.6 DynaMOSA features
The previous section introduced an adaptation that presents a po-
tential threat. While mutating a particle based on its velocity is a
reasonable approach, the method lacks control over the resulting
mutation. As the presented adaptation relies on probability, there is
a chance that a particle might generate a test with lower coverage
in the next generation.
To address this concern, this section presents a further improve-
ment referred to as DynaMOSAPSO, which incorporates features
from DynaMOSA. Algorithm 1 outlines this adaptation, which can
be divided in three steps: (i) generating the mutated population 𝑃

(lines 5 to 9) following the same procedure explained earlier in this
chapter; (ii) merging the mutated population 𝑃 with the original
one 𝑃 (line 10) to create a set containing the original and mutated
population; (iii) feeding the new set to DynaMOSA (line 10).
The intuition behind this adaptation is to take advantage of the
search-space exploration quality of PSO, while maintaining the
test coverage. In the worst-case, where all particles are mutated
and their coverage is decreased for all conditional branches, Dy-
naMOSA will only select solutions from the original population,
preserving the previous generation’s coverage.
To differentiate the two implementations, from this point on we
will refer to the implementation without DynaMOSA features as
SearchBasedPSO and to the implementation with them as Dy-
naMOSAPSO. The pseudo code for SearchBasedPSO is not pro-
vided, but the implementation is the same as shown in algorithm
1, with the only difference being that the mutated population 𝑃 is
set directly as the next generation’s population, without applying
the DynaMOSA routine merging it with the original population,
as seen in line 10.

4 STUDY DESIGN
To evaluate the quality of the proposed implementation and be
able to compare it to other alternatives, we perform an empirical
analysis using the SynTest1 framework as our main testing tool.
This section discusses the different steps taken to perform such
analysis, including the description of the tool used and the system
on which the experiment was run.
First we introduce the research questions; then we discuss the
tools used to obtain the results; afterwards, we discuss the differ-
ent configurations we considered; and finally we explain how the
experiment was performed.

4.1 Research questions
As stated in section 3.6, the implementation without DynaMOSA
features is referred to as SearchBasedPSO, while the one that
includes them is called DynaMOSAPSO. To determine the quality
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Algorithm 1: PSO adaptation with DynaMOSA features
input :
𝑈 = {𝑢1, . . . , 𝑢𝑚} Set of coverage targets
Population size 𝑁
output :Generated test-suite

1 S← RANDOM-POPULATION(N);
2 while 𝑛𝑜𝑡 (𝑠𝑒𝑎𝑟𝑐ℎ_𝑏𝑢𝑑𝑔𝑒𝑡_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑) do
3 𝑆 ← ∅;
4 𝐴← GET-NON-DOMINATED-FRONT(S);
5 for 𝑋𝑖𝑑 ← S do
6 𝑃𝑖𝑑 ← SELECT-PBEST(𝑋𝑖𝑑);
7 𝐺𝑖𝑑 ← SELECT-GBEST(𝑋𝑖𝑑 , 𝐴);
8 𝑉𝑖𝑑 ← UPDATE-VELOCITY(𝑋𝑖𝑑 , 𝑉𝑖𝑑 , 𝑃𝑖𝑑 , 𝐺𝑖𝑑);
9 𝑆 ← 𝑆 ∪ UPDATE-POSITION(𝑋𝑖𝑑 , 𝑉𝑖𝑑);

10 S← MOSA(𝑆 ∪ S);
11 return S;

Algorithm 2: Update positions adaptation
input :
Current particle: 𝑋𝑖𝑑
Corresponding velocity 𝑉𝑖𝑑
output :Possibly mutated particle: 𝑋𝑖𝑑

1 𝑚𝑖𝑛_𝑣𝑖 ← MIN({𝑉0, . . . ,𝑉𝑁 });
2 𝑚𝑎𝑥_𝑣𝑖 ← MAX({𝑉0, . . . ,𝑉𝑁 });
3 𝑉 ′

𝑖𝑑
← MIN-MAX-NORMALIZATION(𝑚𝑖𝑛_𝑣𝑖 ,𝑚𝑎𝑥_𝑣𝑖 , 𝑉𝑖𝑑);

4 𝑋𝑖𝑑 ← 𝑋𝑖𝑑 ;
5 for 𝑣 ′

𝑖
← 𝑉 ′

𝑖𝑑
do

6 r← RANDOM-NUMBER-IN-RANGE(0,1);
7 if r > 𝑣 ′

𝑖
then

8 𝑋𝑖𝑑 ← Mutate(𝑋𝑖𝑑);

9 return 𝑋𝑖𝑑

of the presented approach we perform an empirical analysis in
order to answer the following questions:

4.1.1 RQ1. How does DynaMOSAPSO perform compared to the
default SearchBasedPSO implementation?

4.1.2 RQ2. How does the DynaMOSAPSO perform compared to
the original DynaMOSA algorithm?

4.2 Benchmark
SynTest1 is a state of the art framework created to automatically
generate JavaScript unit-level test cases, it is used in this paper as
the primary tool to test our implementation. The framework was
chosen because it already contains implementations for NSGA-II
and DynaMOSA, and represents a good starting point to write our
adaptation.
In order to determine the quality of the presented algorithm, we
make use of a benchmark built by the SynTest1 team and designed

specifically for this purpose. The benchmark consists of five pop-
ular JavaScript projects: Express 2, Commander.js 3, Moment.js 4,
JavaScript Algorithms 5 and Lodash 6.

This set of projects depicts a good representation of the syntax
and the different code styles present in the JavaScript language,
making it a great tool to evaluate our adaptation.
A more in depth description of the benchmark and explanation
of why it is an appropriate choice to test the implementation can
be found in chapter 4 of "Guess What: Test Case Generation for
JavaScript with Unsupervised Probabilistic Type Inference" [20].

All of the files from Moment.js and one file from Express were
removed from the version of the benchmark used in this paper as
they were giving errors for the presented algorithms. Even though
less files are used for comparison, the benchmark is still considered
a valid representation of the JavaScript language.

4.3 Configurations
To test SearchBasedPSO, the algorithm was executed using a sim-
ple objective manager that tries to optimize all possible objectives,
this algorithm will be referred as PSO in results table 1. While to
test DynaMOSAPSO, a structural-uncovered objective manager
was used, which takes into account only conditionally independent
objectives at each generation.
In order to answer RQ1 and RQ2, we tested the following two con-
figurations using SynTest framework:
(i) DynaMOSAPSO vs PSO
(ii) DynaMOSAPSO vs DynaMOSA

4.3.1 Parameters. Here we report the parameters used for the sake
of replicability: the population size was set to 50 for all configura-
tions; even though the article published by Piotrowski et al. [19]
mentions that a population of 50 may not be optimal for PSO, run-
ning preliminary studies with population sizes of 50, 100, 150, 200
and 250 did not rise significant differences in the results. Thus, to
keep the comparison as fair as possible, we decided to use the same
population size for all configurations. The default mutation rate of
the system is 1/𝑛 where 𝑛= "statements in test case", although for
PSO the rate was adapted as explained in section 3.5 to 𝑖/𝑛, where
𝑖= a random number proportional to the velocity of each particle,
with 𝑖 ∈ [0, |𝑉𝑖𝑑 |]. The search time was set to 60 seconds, while the
crossover probability used was 0.7 for all configurations.

4.3.2 Hyperparameters. Hyperparameters are often fine-tuned us-
ing optimization methods, in order to find the best combination for
the current domain. Unfortunately, the presented implementations’
hyperparameters can’t be optimized because of time constraints.
The full benchmark takes ~45 minutes to run for one run, running
the full experiment for one configuration takes (45 min × 10 runs) /
(60 min) = ~7.5 hours of consecutive runs to finish and we would
need to run it for each possible combination of hyperparameters
and for the three PSO configurations. That is why we decided to
use the hyperparameters that have been shown to work best for
2https://expressjs.com/
3https://tj.github.io/commander.js/
4https://momentjs.com/
5https://github.com/trekhleb/javascript-algorithms
6https://lodash.com/
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the numeric approach of the algorithm, which in the case of PSO
are: 𝜔 = 0.5, 𝑐1 = 0.25 and 𝑐2 = 0.25.

4.4 Experiment protocol
Because the metrics used by the benchmark are time-based, using
different machines to evaluate different algorithms would produce
incomparable results. Thus here we provide a description of the
system used for the evaluation process of the different algorithms.
The experiment was performed on a system with 2 AMD EPYC
7H12 processors (64 cores, 128 threads, 3.3GHz each) with 512GB
of RAM where 100 cores ran in parallel.

Because of the stochastic nature of SynTest, no two runs of the
benchmark can be directly compared, as one algorithm could have
had a more favorable initial population than the other, thus leading
us to false conclusions. One option to solve this issue could be to
use the same seed for the random generation, so that the algorithms
start with the same set of tests. Although, this approach presents
a complication too, since the set could be more favorable for the
evolution of one approach compared to the other.
In order to perform a legitimate comparison, the benchmarkwas run
ten times for each configuration, storing the final coverage achieved
and coverage over time for each file, and computing the average of
the ten runs for the two parameters. Once all results were obtained,
we applied the unpaired Wilcoxon signed-rank test [6] with a 0.05
threshold, which gives us an understanding of how different two
data distributions are. In addition, we apply the Vargha-Delaney
𝐴12 statistic [21] to determine the difference in magnitude between
the two data distributions.

The results produced are presented in the following section in
the form of tables computed using the R programming language.

5 RESULTS
In this section, we analyze and discuss the results of the empirical
study presented in table 1. The comparison metric used is the per-
centage of branch coverage for the tested files. The first two columns
show the project and file names, while the remaining columns
display the branch coverage obtained for each algorithm and the
corresponding statistical data. The highest coverage achieved for
each file is highlighted in the aforementioned table.
Table 2 provides an overview of the results obtained from compar-
ing the average branch coverage. The #Win column indicates the
number of times the left configuration had a higher coverage than
the right one, #Lose denotes the times it had a lower coverage, and
#No Diff. represents the instances where the coverage was the same.
The columns are further divided into categories (Negligible, Small,
Medium and Large) based on the 𝐴12 effect size.
The following files have been excluded from the table because their
coverage was 0% across all tested algorithms, hence not providing
any additional information to the results: articulationPoints.js;
bellmanFord.js; bfTravellingSalesman.js; detectDirectedCy-
cle.js; detectUndirectedCycle.js; eulerianPath.js; floydWar-
shall.js; hamiltonianCycle.js and stronglyConnectedCompo-
nents.js. The reason behind the lack of coverage is that these files
require input parameters in the form of graphs, which are often
challenging to generate.

5.1 Results for RQ1
Table 2 provides an overview of the comparison betweenDynaMOSAPSO
vs SearchBasedPSO in terms of average branch coverage. We can
observe that the algorithmwithDynaMOSA features performed rel-
atively better than the basic adaptation. Out of 27 reported files, Dy-
naMOSAPSO achieved a higher coverage than SearchBasedPSO
in 6 files, a lower coverage in 1 file, and the same coverage in
the remaining 20 files. The average coverage for DynaMOSAPSO
across all reported files is of 54.87%, while for SearchBasedPSO it
is 53.89%. The file with the largest coverage difference between the
two algorithms is transform.js, where DynaMOSAPSO achieved
a higher average coverage of 12.50% than SearchBasedPSO.
From the results obtainedwe can conclude that applyingDynaMOSA
features to the basic adaptation improves the achieved coverage of
the algorithm.

5.2 Results for RQ2
When comparing DynaMOSAPSO and DynaMOSA, we observe
even more similarities in the results, withDynaMOSAPSO perform-
ing either as good or worse in all tested files. The two algorithms
achieved the same average coverage for 23 out of the 27 tested file,
DynaMOSA improved the coverage for four files, with help.js and
response.js resulting in a large difference in magnitude. The aver-
age coverage of the reported files is of 54.87% for DynaMOSAPSO
and 55.24% for DynaMOSA. The file with the largest coverage
difference between the two algorithms is breadthFirstSearch.js,
where DynaMOSA achieved a higher average coverage of 6.25%.
One possible interpretation of these results is that the initial phase
of theDynaMOSAPSO algorithm, which involves particle mutation,
may not generate better solutions in subsequent generations. This
step could potentially consume valuable search time, limiting the
number of iterations and preventing the algorithm from finding
better solutions.

6 THREATS TO VALIDITY
This section discusses the potential threats to the validity of this
paper. The benchmark used to evaluate the proposed adaptation
contains different open-source projects, written in JavaScript, hav-
ing varying sizes and applications. Such factor allows the results
obtained to be a valid representation of the proposed adaptation’s
quality.
Because DynaMOSA, NSGA-II and PSO initially generate a popu-
lation using random seeds, the evaluation was executed 10 times
for each algorithm. Once we obtained the final results, the average
was computed and used to draw conclusions. This step prevented
false comparisons between the results where one seed might have
generated a better starting point for one configuration compared
to another.

7 RESPONSIBLE RESEARCH
The topics discussed in this paper do not raise any significant ethical
concern, the tools 7 8 9 and adaptation presented 10 are open-source

7https://github.com/syntest-framework/syntest-core.git
8https://github.com/syntest-framework/syntest-javascript.git
9https://github.com/syntest-framework/syntest-javascript-benchmark.git
10https://github.com/Diego-Viero/syntest-core.git
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DynaMOSAPSO vs DynaMOSA DnyaMOSAPSO vs PSO
Benchmark File name DynaMOSA DynaMOSAPSO PSO p-value �̂�12 p-value �̂�12
Commander.js help.js 50.00% 48.48% 48.48% 0.005 0.2 (Large) 0.447 0.6 (Small)

option.js 50.00% 50.00% 38.89% 0.824 0.47 (Negligible) 0.022 0.78 (Large)
suggestSimilar.js 71.88% 71.88% 71.88% 0.582 0.44 (Negligible) 0.754 0.54 (Negligible)

Express query.js 66.67% 66.67% 66.67% NA 0.5 (Negligible) 0.077 0.65 (Small)
request.js 32.61% 32.61% 30.43% 1.000 0.5 (Negligible) 0.025 0.75 (Large)
response.js 19.57% 18.48% 17.39% 0.026 0.205 (Large) 0.054 0.755 (Large)
utils.js 42.39% 41.30% 41.30% 0.693 0.45 (Negligible) 0.099 0.68 (Medium)
view.js 37.50% 37.50% 37.50% 1.000 0.5 (Negligible) 0.368 0.55 (Negligible)

JS Algorithms breadthFirstSearch.js 18.75% 12.50% 12.50% 0.398 0.4 (Small) 0.681 0.45 (Negligible)
depthFirstSearch.js 0.00% 0.00% 8.33% 0.681 0.45 (Negligible) 0.398 0.4 (Small)
kruskal.js 20.00% 20.00% 20.00% NA 0.5 (Negligible) NA 0.5 (Negligible)
prim.js 16.67% 16.67% 16.67% NA 0.5 (Negligible) NA 0.5 (Negligible)
Knapsack.js 57.50% 57.50% 57.50% NA 0.5 (Negligible) 0.368 0.55 (Negligible)
KnapsackItem.js 50.00% 50.00% 50.00% NA 0.5 (Negligible) NA 0.5 (Negligible)
Matrix.js 7.89% 7.89% 7.89% NA 0.5 (Negligible) NA 0.5 (Negligible)
CountingSort.js 57.14% 57.14% 57.14% 1.000 0.5 (Negligible) 0.368 0.45 (Negligible)
RedBlackTree.js 29.41% 29.41% 29.41% NA 0.5 (Negligible) NA 0.5 (Negligible)

Lodash equalArrays.js 83.33% 83.33% 79.17% 1.000 0.495 (Negligible) 0.037 0.74 (Large)
hasPath.js 100.00% 100.00% 100.00% NA 0.5 (Negligible) NA 0.5 (Negligible)
random.js 100.00% 100.00% 96.43% 0.167 0.4 (Small) 0.161 0.66 (Small)
result.js 80.00% 80.00% 80.00% 0.583 0.45 (Negligible) 0.368 0.55 (Negligible)
slice.js 100.00% 100.00% 100.00% NA 0.5 (Negligible) NA 0.5 (Negligible)
split.js 87.50% 87.50% 87.50% NA 0.5 (Negligible) NA 0.5 (Negligible)
toNumber.js 65.00% 65.00% 65.00% NA 0.5 (Negligible) 0.368 0.55 (Negligible)
transform.js 91.67% 91.67% 79.17% 1.000 0.5 (Negligible) 0.045 0.76 (Large)
truncate.js 55.88% 55.88% 55.88% 0.167 0.4 (Small) NA 0.5 (Negligible)
unzip.js 100.00% 100.00% 100.00% 0.368 0.55 (Negligible) 0.167 0.6 (Small)
Table 1: Average branch coverage of different algorithms tested using SynTest benchmark

Comparisons # Win # No Diff # Lose
Negl Small Medium Large Negl Small Medium Negl Small Medium Large

DynaMOSAPSO vs PSO - 1 - 5 16 3 1 - 1 - -
DynaMOSAPSO vs DynaMOSA - - - - 21 2 - 1 1 - 2

Table 2: Statistical results w.r.t. branch coverage

and accessible by everyone. A possible implication of this paper
would arise if SynTest developers choose to incorporate the pre-
sented adaptation as an optional module in the framework. In such
scenario, end users could select our algorithm to test their code,
relying on our adaptation to determine the quality of their software
and taking actions based on the produced results.
In terms of experiment reproducibility, all methods and tools used
are open-source and available online, although it is important to
note that while the reported results should provide an accurate rep-
resentation of the algorithm’s quality, the process of test generation
is stochastic and may not always yield identical results.

8 CONCLUSION AND FUTUREWORK
In this paper we presented two adaptations of the PSO algorithm,
one with DynaMOSA features (DynaMOSAPSO) and one with-
out (SearchBasedPSO), for search-based test case generation in
the context of dynamically-typed languages. DynaMOSAPSO was
compared both to SearchBasedPSO and to DynaMOSA, showing

that the DynaMOSA features applied to DynaMOSAPSO allow the
algorithm to obtain better results than the adaptation without them.
Furthermore DynaMOSA showed to still be a better approach than
the proposed DynaMOSAPSO algorithm, proving to be the best ap-
proach for test-case generation in the context of dynamically-typed
languages.

Due to time constraints, the proposed adaptation utilized the de-
fault hyperparameters of PSO for numeric problems. However, we
believe that conducting an optimization on these values could po-
tentially yield improved results. As mentioned in the study design
section, the experiment employed a population size of 50 particles;
While preliminary studies assessed various values, these experi-
ments focused solely on the lodash 6 repository of the benchmark.
Additionally, as outlined in 3.5, the current state of SynTest frame-
work 1 lacks control over the tree level at which mutation should
be applied. Therefore, the exploration of different population sizes
for this domain, the optimization of hyperparameters and the im-
plementation of a mutation function that can be applied at different
levels of the encoding’s tree is left as future work.
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