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Abstract

Implantable epiretinal prostheses aim to restore visual capability for patients suffer-
ing from diseases such as Macular Degeneration and Retinitis Pigmentosa by bypass-
ing damaged photoreceptors and electrically exciting Retinal Ganglion Cells (RGCs)
directly. Next-generation devices will require single-cell resolution, and bidirectional
capabilities to classify and selectively stimulate different cell types in the RGC pop-
ulation as to produce an image closer to healthy eye operation. The classification
process requires the capture of direct neural responses immediately following stimu-
lus. A significant challenge to overcome before the next generation of devices can be
realised is the stimulation artifact. Stimulation artifacts are large unwanted voltages
resulting from interactions between the stimulation current and the tissue-electrode
impedance that can last for tens to hundreds of milliseconds, saturating the record-
ing electronics and obscuring the direct responses. This work aims to develop a novel
stimulation artifact reduction method that can be implemented in high-resolution,
high channel-count brain-machine interfaces. The algorithm requires generating a
model of the tissue-electrode interface from discrete measurements in the time or
frequency domain, and constructing a stimulation waveform that maximally reduces
the duration of the residual artifact without the need for complex recording front-end
electronics. The proposed method also includes a trimming step that corrects for
small variations in the model parameters and stimulation currents. Using a custom
stimulation and recording test board, the algorithm was tested for 30 µm diameter
gold/polyurethane electrodes in saline solution. Anodic stimulation current pulses
of -100 to -500nA and 50 to 250 µs were successfully corrected for, resulting in an
average artifact recovery time of 124 µs at the stimulating electrode when measured
from the end of the anodic (working) phase. This corresponds to a mean 81% im-
provement from the next best conventional charge-balanced stimulation waveform,
and 79% improvement when compared to an active-discharge recovery method. Re-
covery times at non-stimulating electrodes remain largely unaffected. Future work
should focus on exploring alteration of the working phase for further artifact re-
duction, and reducing the computational cost of the algorithm for implementation
on-chip.
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Chapter 1

Introduction

1.1 Background
Over the past two decades, advancements in the areas of electrophysiology and
nanofabrication technologies, as well as a considerable increase in public interest,
have led to a rapid and concerted effort by the scientific community to develop the
next generation of closed-loop neuromodulation systems. Brain-Machine Interfaces
(BMI) have proven to be effective tools in many areas of medicine. Examples in-
clude the therapeutic treatment of conditions such as Parkinson’s Disease [1] and
epilepsy [2], the restoration of communicative abilities for patients with neurodegen-
erative conditions [3] and the control of external devices or prosthetics for paralyzed
patients [4]. In order to progress understanding of human physiology and stimula-
tion therapy, the next-generation of neural implants require higher spatial resolution
than ever, permitting large scale selective stimulation and recording of individual
neurons in a culture or tissue. One particular application that benefits immensely
from these advancements, and the focus of this work, is the epiretinal implant.

Fig. 1.1 demonstrates the typical location of an epiretinal implant on the inner
surface of the back of the eye. The retina consists of three distinct layers of cells.
Detailed from posterior to anterior, they are: the photoreceptors, which convert
incident light into electrical signals; interneurons, which integrate the electrical sig-
nals generated by the photoreceptors; and the retinal ganglion cells (RGCs), which
transport the electrical signals to the brain, and whose long axons form the optic
nerve [5].

Figure 1.1: Illustrative depiction of epiretinal implant location. Source: Stanford Artificial Retina
Project [6]

.
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CHAPTER 1. INTRODUCTION

Diseases such as Macular Degeneration or Retinitis Pigmentosa can cause degra-
dation of the photoreceptors within the retina, preventing the incoming light from
being transduced into electrical signals for the RGCs, and resulting in severe vi-
sion impairment. Among the retinal cells, RGCs are the only cells that can be
easily recorded by extracellular electrodes, so they provide a promising target for
closed-loop therapeutic intervention. When paired with an external camera and a
processing unit, an epiretinal implant aims to bypass the damaged photoreceptors
and interneurons, stimulating the RGCs directly to emulate healthy eye operation
[7].

A significant challenge that has limited the efficacy of previous generation epireti-
nal implants is the diversity of cell types in the retinal ganglion cell population.
Rather than a homogeneous lattice of a single cell type, the RGC layer is composed
of approximately 20 different cell types, all of which differ in population density, re-
sponse to normal visual stimulus and destination in the brain [6]. The soma of these
cells ranges from just tens to hundreds of micrometers [5]. Non-specific stimulation
of multiple RGC cell types results in a convoluted image perceived by the patient.
The goal of next-generation retinal implants is to utilise high-density, single-cell res-
olution bidirectional interfaces to classify the RGC cells, forming a dictionary of cell
types and locations; and subsequently use such dictionary to generate cell-type spe-
cific stimulation patterns that result in coherent image perception. Fig. 1.2 details
a block diagram of the proposed system.

Figure 1.2: Concept block diagram of cell-type specific resolution epiretinal implant and cor-
responding high-density electrode array. The different cell colours in the population (left) are
representative of different RGC cell types. Source: [7]

.

Based on the required channel pitch, which should be ∼ 60 µm to distinguish
between cells, it has been proposed that in order to effectively recreate useful visual
stimuli for the patient, a channel count of at least 104 is necessary such that a suf-
ficient area of the visual field is covered [7]. As a result of these extreme channel
counts, severe constraints on per-channel area, power consumption and computa-
tional complexity arise. Additionally, to successfully classify cell-types, direct neural
response action potentials (APs) immediately following stimulation, as opposed to
later network mediated responses, must be recorded. Some direct AP responses
appear less than 500 µs following stimulation (ex-vivo monkey retina [8]). Among
others, a significant hurdle to overcome before these devices become clinically feasible
is the presence of stimulation artifacts, which saturate sensitive recording electronics
and prevent the capture of these directly elicited action potentials [9].
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CHAPTER 1. INTRODUCTION

The aim of this work is to develop an understanding of the origin and nature of
stimulation artifacts, assess the efficacy of existing technologies and methods em-
ployed to combat the presence of stimulation artifacts, and develop an approach
to minimise stimulation artifacts in large scale high resolution brain-machine in-
terfaces. Specifically, how can stimulation artifacts be mitigated such that neural
responses can be reliably captured <500 µs post-stimulation, from up to 104 chan-
nels, including the stimulation channel, while maintaining strict constraints on power
consumption, chip area and computational complexity?

1.2 State of the Art

1.2.1 Stimulation Artifacts

Stimulation artifacts are large, slowly decaying voltage transients that appear in
the recording channels at and near the stimulating channel in an implanted micro-
electrode array.

Figure 1.3: Origin of the stimulation artifact: (A) Simplified diagram of a current-mode bidi-
rectional interface and linear tissue-electrode model with charge transfer resistance (RCT ), spread
resistance (RS) and double-layer capacitance (CDL); (B) a biphasic charge-balanced current stim-
ulus waveform; (C) interface voltage and residual error Vres due to charge balance error; (D)
depiction of amplifier output with infinite range (unlimited) and with a finite output range (lim-
ited), indicating saturation of the device.
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CHAPTER 1. INTRODUCTION

In a typical current-mode bidirectional stimulator (Fig. 1.3 (A)), charge-balanced
stimulation waveforms (Fig. 1.3 (B)) are often employed to minimise excess charge
accumulation at the interface. Such accumulation can result in irreversible faradaic
processes that may damage tissue, produce harmful chemical species or alter local
electrochemical properties [10]. Mismatches in the injected (QA) and removed (QB)
charge, along with losses due to interface non-linearities (QF ), result in a residual
charge (Qerr) that remains at the interface. During stimulation, a potential, VIF ,
accumulates at the interface (Fig. 1.3 (C)). After stimulation, a residual potential
remains, Vres, resulting from the stimulation charge imbalance. There are two parts
to the stimulation artifact: the direct artifact, which coincides with the stimulation
waveform and has the largest amplitude; and the residual artifact, a slow-decaying
component that persists after the stimulation pulse has terminated, resulting from
the remaining charge at the interface (Fig. 1.3 (D)) [9, 11].

Depending on the tissue properties, electrode characteristics and placement of
the electrodes, recorded neural responses of interest such as local field potentials
(LFPs) and action potentials (APs) can be as low as 10 µV [12]. As such, the
recording channels of neural interfaces need to be incredibly sensitive in order to
digitize and analyse these signals. Stimulation artifacts can be up to tens or even
hundreds of millivolts [13], so can result in significant non-linearity or saturation of
the input amplifiers, distorting and obscuring important neural data. To digitize
both the AP and artifact simultaneously, a dynamic range of up to 80dB is required.
In an example depicting 200 µs stimulation pulses for different amplitudes (Fig. 1.4
(A)), it can be seen that while the direct artifact lasts for only 400 µs, the residual
artifact can saturate the amplifier for up to 40 ms. Fig. 1.4(B-C) depict example
neural signals, and the same signals corrupted by artifacts, respectively.

Figure 1.4: Examples of recorded stimulation artifacts: artifacts from anode-first biphasic 200 µs
stimulation pulses of different current amplitudes [14]; (B) example neural signal trace; (C) neural
trace corrupted by stimulation artifacts. [15]

It is important to emphasize that a perfectly charge-balanced stimulation wave-
form will not result in zero residual artifact. A linear model was presented in Fig. 1.3
(A), but in reality the tissue-electrode impedance demonstrates a much more com-
plex impedance profile. Fig. 1.5 shows an Electrochemical Impedance Spectroscopy
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CHAPTER 1. INTRODUCTION

(EIS) measurement from a cortical implant in a rat at various points before and
after implantation. Although EIS is a linear measurement technique, the results
demonstrate how complex and time-varying the impedance can be [16]. A system-
atic investigation by Mena et al. identified how stimulation artifacts vary over a
number of parameters [8]. They showed that the magnitude and shape of the arti-
fact varies significantly both spatially and temporally, while also differing in shape
between the stimulating and recording electrodes.

Figure 1.5: Electrical Impedance Spectroscopy magnitude (A) and phase (B) of a Pt/Ir cortical
implant in a rat at various stages before and after implantation [16].

1.2.2 Artifact Mitigation

Fig. 1.6 presents a simplified overview of the bidirectional signal chain with the
general location and names of common stimulation artifact mitigation methods.

Figure 1.6: Simplified signal chain with location and types of stimulation artifact mitigation
techniques.

Artifact mitigation methods can be divided into three main groups: stimulation-
side mitigation, that takes place before the stimulation signal reaches the interface;
front-end techniques, which are employed prior to signal digitization, and back-end
processing techniques that address the artifacts in recorded data.

Stimulation-Side Mitigation

The first solution is to minimise artifact generation at the source. This involves at-
tempting to eliminate the root cause of the residual artifact, which is the remaining
charge at the interface following the stimulation pulse, or prevent the artifact from
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CHAPTER 1. INTRODUCTION

reaching the recording electrode all together. Common methodologies to achieve
this include precise charge balancing, differential stimulation topologies, stimulation
cancellation patterns and stimulation shaping.

Charge balancing is implemented by most stimulator topologies, but some sys-
tems take additional steps to ensure that the charge injection error is as small as
possible, such that the residual artifact is reduced. A common method is to em-
ploy an H-Bridge topology (Fig. 1.7(A)) that utilises a switch network to reuse
the same current source for both the anodic and cathodic phases of current mode
biphasic stimulation [17, 18, 19, 20]. Other implementations utilise separate anodic
and cathodic current sources, but provide methods to automatically calibrate the
current sources for precise matching [21], or actively measure and cancel the offset
at the interface following the primary stimulation pulse [22]. These methods can
produce very precise stimulation waveforms (0.01% mismatch) but as mentioned
in the previous section, the nature of the tissue impedance means that even per-
fect charge balancing will not result in elimination of the residual artifact completely.

Figure 1.7: Stimulation-side artifact mitigation techniques: A) H-Bridge current reuse topology
for precise charge balancing; B) complementary stimulation (electrode C) to cancel the artifact
produced by the primary stimulation (electrode S) at the recording electrodes (grey electrodes)
[23]; C) shaping of the stimulation pulse to reduce artifact length/magnitude.

In addition to charge balancing, the stimulation/recording electrode placement
and stimulation magnitudes can be designed in such a way that the stimulation
artifact is cancelled or appears as a common mode source [23, 24, 25, 26]. Pu et
al. designed an optimal artifact cancellation algorithm that uses complementary
additional stimulating electrodes in an array to cancel artifacts for a given set of
recording electrodes (Fig. 1.7(B)). This method does not, however, eliminate the
artifact on the primary stimulating electrode [23].

Some of the less explored solutions involve altering the stimulation waveform
itself (Fig. 1.7(C)). For example, an approach by Kolodziej et al. [27] focuses on
producing a mathematical model of the tissue-electrode impedance and applying a
correction pulse to the end of the primary biphasic stimulation pulse to mitigate the
trailing artifact. Dura et al. developed an algorithm to convert stimulation pulses
into electrophysiologically equivalent high frequency pulse chains, the artifacts of
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which can be easily filtered at the recording side [28]; and Heffer et al. demonstrated
that stimulating at a higher frequency than the neural signals facilitates artifact re-
moval through efficient linear interpolation [29]. Finally, an insightful article by
Chu demonstrated that by treating the tissue-electrode interface like a communica-
tions channel, digital equalization algorithms can be implemented to pre-distort the
stimulation pulse, significantly reducing the artifact length [30].

Front-End Mitigation

Once the artifact has be reduced as much as possible at the source, it is necessary
to explore methods to prevent the artifact from corrupting recorded signals. It is
important to note that, unless a pulse modulation method, such as that by Dura et
al. discussed above, is implemented, the artifact occupies similar frequency ranges
as the neural signals of interest [9]. As such, simple passive filtering does not form
a complete mitigation strategy.

The goal of front-end mitigation is to prevent saturation of the recording analog
front-end (AFE) and restore normal operation as quickly as possible. The simplest
front-end mitigation method is to disconnect the AFE input during stimulation
(blanking, Fig. 1.8(A)) [31, 32, 33, 34, 35] or hold it at a predetermined value
(sample-and-hold) [36, 37].

Figure 1.8: Example of front-end mitigation techniques.

These methods are possibly the least costly to implement, both in area and
power consumption, and successfully prevent saturation of the AFE. However, they
do nothing to reduce the length of the artifact, so it is necessary to wait until the
interface discharges before reconnecting, which can take tens of milliseconds [12]. Ac-
tive discharging (Fig. 1.8(B)), normally implemented as a switchable low-impedance
path to ground or fixed potential, can be employed to remove the excess charge on
the interface, thereby reducing the recovery time following stimulation [13, 38, 39,
40]. The recovery time of the input stage can further be reduced by implement-
ing an adjustable high-pass filter (Fig. 1.8(C)), of which the cutoff frequency can
be temporarily raised during stimulation to decrease the magnitude of the artifact.
This method is known as pole-shifting [11, 41, 42, 43]. Similarly, the gain of the

7



CHAPTER 1. INTRODUCTION

input stage can also be temporarily reduced, sometimes to unity, for the duration
of the artifact [12, 44] to prevent saturation at the cost of signal resolution (Fig.
1.8(D)).

A more costly solution is to design the front end with a lower gain and higher
resolution ADC such that it achieves successful digitization of both the signal of
interest and the artifact [17, 45, 46, 47, 48, 49, 50], or implement a sigma-delta
topology to remove the need for an amplifier altogether [51, 52]. The benefit of
this method is that separation of the artifact and neural signal can be shifted to
the back-end digital domain, where there are many algorithms available. Of course,
higher resolution ADCs come at the cost of increased power consumption and chip
area.

Back-End Mitigation

If one of the methods detailed above is used to achieve digitization of all or part of
the artifact, then back end processing techniques can be used to recover the neuro-
logical signals from the recorded data.

One method is to simply detect the peaks in data associated with the artifacts
and interpolate between the start and end of each artifact to remove it (Fig. 1.9(A))
[29, 53, 54]. This is an appropriate method when the signal of interest is lower
frequency than the artifact, such as LFPs. On the other hand, multiple APs can
occur during a single artifact, so interpolating discards important data.

Figure 1.9: Back-end digital artifact removal methods: A) interpolation, B) artifact template
formation and subtraction, and C) signal decomposition.

Digital template subtraction algorithms (Fig. 1.9(B)) are much more versa-
tile. They involve generating a template of the artifact by averaging over multiple
stimulation pulses, from the stimulation parameters and an electrical model of the
interface, or through a polynomial fitting function. The artifact is then subtracted
from the recorded data to recover the neural data [8, 15, 55, 56, 57, 58, 59, 60, 61,
62]. To increase computational performance, Caldwell et al. pre-generate a dictio-
nary of templates based on different stimulation parameters and electrode locations.
The incoming data is matched with the closest template and subtracted as above
[63].

Finally, signal decomposition techniques (Fig. 1.9(C)) such as Principle Com-
ponent Analysis (PCA) [17], Independant Component Analysis (ICA) [64] and Em-
perical Mode Decomposition (EMD) [65, 64], along with adaptive noise cancellation
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[66] and other adaptive digital filtering methods [14, 20, 32, 48, 67, 68, 69, 70, 71]
can also be used to separate the artifact and signal.

Hybrid Mitigation

Some methods utilise a combination of analog front-end and digital-back end pro-
cessing to achieve stimulation artifact reduction. Such methods tend to be the more
sophisticated and ultimately better performing than any single-domain implementa-
tion. Two such methods are digital auto-ranging and analog template subtraction.

Figure 1.10: Hybrid digital-analog artifact mitigation techniques: A), B) digital auto-
ranging/tracking and C) ,D) analog template subtraction. The purple trace in the lower figures
represents a low-amplitude sinusoidal signal corrupted by a high-amplitude artifact.

To reduce the resolution requirements of the input ADC, some solutions employ
digital auto-ranging to track rapid signal changes indicative of an artifact and use
a control signal to scale the AFE range. Examples include the Track-and-Zoom
approach by Pazhouhandeh [72] and the Predictive Digital Auto-Ranging method
by Kim et al. [73]. These methods result in a faster artifact recovery and little to
no loss of signal data. Fig. 1.10 (A) and (B) depict a simplified circuit and input
range response to a signal corrupted with an artifact, respectively.

Another method that utilises both digital and analog domains is analog template
subtraction. Similar to the digital equivalent mentioned in the previous section, this
method subtracts a template from the input signal, but uses a feedback digital
to analog converter (DAC) to perform the subtraction prior to amplification, both
preventing saturation and recovering the neural signal. Because of the efficacy,
reduced ADC requirements and minimal digital processing, this is one of the more
popular methods in recent implementations [20, 56, 66, 74, 75, 76, 77, 78]. A
simplified schematic and response is detailed in Fig. 1.10 (C) and (D) respectively.

1.2.3 Comparison of Existing Technologies

Table 1.1 below summarises the methods discussed in the previous section, specifi-
cally pertaining to qualitative stimulator complexity, recording front-end complexity,
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computational complexity and overall efficacy. It can be seen that some implementa-
tions utilise multiple methods in parallel. The best results are achieved by the hybrid
methods, but at the cost of increased computational and front-end complexity.

Table 1.1: Comparison table of artifact mitigation strategies. A ’-’ sign indicates a negative effect
on the column aspect, whereas ’+’ indicates a positive effect.

Method Publications Simulator
Complexity

Recorder
Complexity

Computational
Complexity Efficacy

Precise
Balancing [17, 18, 19, 20, 21, 22] - - - +

Stim
Topology [23, 24, 25, 26] - - ++

Stimulator Waveform
Shaping [27, 28, 29, 30] - - - +

Blanking/
Sample-and-Hold [31, 32, 33, 34, 35, 36, 37] - +

Active Discharge/
Pole-Shifting [38, 39, 13, 40, 41, 42, 43, 11, 12, 44] - ++Front-End
Direct-ADC [17, 45, 51, 52, 46, 47, 79, 48, 49, 50] - -
Interpolation [29, 53, 54] - +
Template
Subtraction [15, 55, 8, 56, 63, 57, 58, 59, 60, 61, 62] - - ++

Signal
Decomposition [17, 64, 65, 64] - - - +++Back-End
Adaptive
Filtering [20, 67, 48, 14, 32, 68, 69, 70, 71] - - - +++

Auto-Ranging [72, 73] - - - - ++
Hybrid Template

Subtraction [74, 75, 20, 66, 56, 76, 77, 78] - - - - +++

Due to the diverse applications and nature of neural interfaces, the requirement
for stimulation artifact reduction varies from case to case. Of the almost 120 articles
reviewed, 74 provided no numerical measure of artifact improvement. However, for
those that do provide numerical results, there are two prominent measures: sup-
pression and recovery time.

Figure 1.11: Artifact suppression in decibels by paper, organised by primary mitigation category.
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Artifact suppression gives the decibel reduction in the magnitude of the artifact
before and after mitigation, and the performance of publications with focus on sup-
pression are summarised by Fig. 1.11. The most suppressive strategies are the back
end methods by Lim [67] and Limnuson [80] and the hybrid solution by Mendrela
[66].

Recovery time details the time from the end of stimulation waveform until the
input signal returns to a level from which neural data of interest can be distinguished
from the noise floor. As the neural data and technology varies from application to
application, so does the voltage threshold by which recovery time is determined. As
the epiretinal implant is most interested in fast-response direct APs, recovery time is
the metric of importance. Performance of publications with respect to recovery time
are detailed in Fig. 1.12. Lack of consistent aims and measures across publications
makes demonstrations of other parameters such as power-efficiency, noise, dynamic
range etc. of limited use. As such they are not depicted here.

Figure 1.12: Artifact recovery time in milliseconds by paper, organised by primary mitigation
category.

Twelve of the methods methods shown in Fig. 1.12 report recovery times less
than or equal to one millisecond (in some cases only ’<1ms’ was reported). Three
methods approach the performance required by the epiretinal implant. They are
the methods by Heffer [29], Nag [81] and Hottowy [39]. Heffer uses simple off-line
digital interpolation requiring full digitization, so alone is inappropriate for epireti-
nal implant application. Nag uses a differential stimulation and recording topology
with multiple amplifiers per channel to remove the artifact, limiting its usefulness in
a high-density array. Finally, Hottowy, which implements a combination of stimu-
lation waveform design and front-end methods, performed the best with a recovery
time of 55 µs. As such, it is of particular interest to our application.
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With limited comprehensive data, it is difficult to form an accurate comparison
of the methods and assess their feasibility. However, a simple test is to scale these
implementations up to the magnitude of channels which the epiretinal implant hopes
to achieve (10000) [7]. The best performing method (Hottowy), when scaled up,
would occupy 2800 mm2, which is evidently far too large to be placed within the
eye. The next best solutions are by Kim et al. These hybrid digital auto-ranging
AFEs consume much less area and the least power of any solution. In addition to
this they have a remarkable power efficiency factor (PEF) of 2.6, and 10.7 effective
bits of input resolution. However, when scaled up they still require 240 mm2 and
8 mW , not including the stimulation circuitry. This is still far in excess of what
would be appropriate for an epiretinal implant.

1.3 Approach
From the findings above, it is clear that the existing methods for stimulation artifact
reduction, while effective, are not well suited for scaling to the large high density
arrays necessary for the next generation of brain-machine interfaces. Many of the
strategies discussed employ front-end multiplexing to reduce the area required for
large scale micro-electrode arrays. However, for successful cell classification and
neural feedback, it is desirable to have simultaneous recording of as many channels
as possible. As such, it follows that increasing complexity on the recording side to
achieve artifact reduction is not the most viable way forward. It is necessary, there-
fore, to focus on improvements to the stimulator-side design to reduce the residual
artifacts. Healthy spiking of the retinal ganglion cells is relatively sparse in time, in
the order of Hz [82], so it is feasible that a few stimulator channels can be temporally
multiplexed without affecting therapeutic efficacy. The overhead on the AFE is then
minimal to implement blanking or unity gain switch to suppress the direct artifact.

From the stimulation-side artifact prevention methods discussed, stimulation
shaping has highest potential to shift the burden of complexity away from the
recording end and enable scaling to large arrays. Stimulation shaping introduces
an overhead only on computational complexity as long as the stimulation circuitry
is capable of arbitrary waveform generation. Stimulation shaping was also explored
by Chu [30] and Kolodziej [27]. The former used digital equalisation techniques to
generate a pre-distorted waveform, which resulted in a 73% reduction in artifact
length. The latter developed a fitted-model from discrete frequency data points,
which is then used to calculate a corrective pulse at the end of the stimulation
waveform. Both of these approaches presented promising results, but suffered from
model sensitivity, were not implemented outside of simulations, or did not consider
maintaining stimulation efficacy.

This work will progress along a similar trajectory as Kolodziej and Chu, develop-
ing a numerical model and using it to generate an optimized stimulation waveform,
while aiming to address the limitations that they encountered.
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1.4 Thesis Outline
Chapter 2 outlines the method and development of an algorithm for optimum stim-
ulation shaping to reduce the duration of the residual artifact. A numerical model
of the tissue-electrode interface is developed. The model is constructed in-situ us-
ing discrete measurements, then an algorithm generates an optimum stimulation
shape such that the residual artifact is reduced. We also consider how to maintain
stimulation efficacy while altering the waveform. To address errors in the model’s
prediction and the time-varying nature of the channel, we implement adaptive ’trim-
ming’ such that the effective reduction in residual artifact length is maintained. An
electrochemical test bench is also prototyped to validate the algorithm.

Chapter 3 presents the results of the algorithm testing. We begin by charac-
terising the stimulation artifact to assess linearity and time-invariance, which is a
crucial step in asserting the validity of the model. Next, the performance both in ar-
tifact reduction and computational complexity, relative to other standard methods,
is assessed for a number of different pulse widths and amplitudes. Specific relation-
ships between algorithm parameters and reduction performance are explored. The
computational complexity of the chosen algorithm is also measured with varying
operating conditions.

Finally, Chapter 4 presents a discussion of the results, exploring interesting find-
ings and limitations of the algorithm and test equipment. We conclude by presenting
recommendations for future work and implementation into the next generation of
brain-machine interfaces.
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Chapter 2

Algorithm Development

2.1 Measurement Setup
To characterise stimulation artifacts within the expected operating ranges of an
epiretinal device and drive the development of a novel artifact reduction algorithm,
we built the measurement setup depicted in Fig. 2.1.

Figure 2.1: Stimulation artifact test system: A) 45ml Phosphate Buffered Saline (PBS) solution,
B) Ag/AgCl reference/return electrode, C) 15 channel 30um electrode array, D) custom 16ch
bidirectional stimulation/recording test board PCB, E) Raspberry Pi 3B+ Single Board Computer,
F) battery power bank.

The proposed architecture is based on the Intan RHS2116 16-channel bidirec-
tional stimulation and recording IC, the relevant specifications of which are sum-
marised in Table 2.1. The chip is capable of 10 nA to 10 µA LSB 8-bit bipolar
stimulation on each channel. This facilitates stimulation within the ranges that
would be expected for single-cell stimulation (< 1 µA). For an estimated maximum
electrode impedance of 500 kΩ, and a maximum stimulation current of 5 µA, a
maximum artifact magnitude of ±100 mV is possible. This is well above the range
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of the AC amplifiers, and with an LSB resolution of ∼ 16 mV , artifacts recorded
with the DC channels would be poorly digitized. As such, the test board PCB also
features optional low-noise attenuators that reduce the input by a factor of approx-
imately 20, allowing large artifacts to be recorded with the high gain AC inputs,
while keeping the input-referred LSB to a reasonable value (LSBIN = 3.9 µV ). A
simplified schematic of the test board front end is depicted in Fig. 2.2. For reference,
Appendix A.1 details the schematics in their entirety.

Table 2.1: RHS2116 Stimulation and Recording IC Specifications [83]

Specification Value Units
Num. Channels 16 -
Max. Stim. Current 2.55 mA
Min. Stim. Current 10 nA
Max. Current Step 10 uA
Min. Current Step 10 nA
Stim. Voltage Comp. ±4.5 V
AC Amplifier Gain 192 V/V
AC Input LSB 0.195 uV
AC Input Range ±5 mV
DC Amplifier Gain 0.125 V/V
DC Input LSB 19.23 mV
DC Input Range ±4.5 V

A major benefit of using the RHS2116 IC is that the chip also features multiple
optionally configurable stimulation mitigation strategies such as active discharge,
pole-shifting and amplifier (output) blanking, providing a baseline to compare with
novel solutions. The custom-made test board interfaces with a Rasperry Pi 3B+ [84]
which provides the RHS chip with power and communication. Arbitrary stimulation
and recording sequences can be sent wirelessly from a PC running Matlab to the
Raspberry Pi, which are translated and executed by the Intan chip. Recorded data
is returned wirelessly back to the PC. By powering the setup from an USB power
bank and using wireless communication, the entire test setup can be electrically
isolated from the mains supply, mitigating a large amount of low-frequency noise.

Figure 2.2: Test system channel schematic diagram.
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The electrode arrays were microfabricated at the Fraunhofer Institute in Berlin,
Germany. They are flexible polyurethane/gold electrodes mounted to a rigid sub-
strate for our testing purposes. The array consists of 15 60 µm diameter electrode
openings in a ’plus’ pattern. There is a single central electrode, and 14 additional
electrodes mounted at various distances from the center electrode ranging from
240 µm to 840 µm in increments of 120 µm . While this is not entirely representa-
tive of the 30 µm pitch potentially required by an epiretinal implant, the electrode
impedance should be sufficiently comparable. The design and manufacturing steps
for the electrodes are detailed in Fig. 2.3.

Figure 2.3: 30 µm diameter polyurethane/gold electrodes: a) array design, b) zoomed in view of
electrode openings (red), c) fabricated array, d) process steps for manufacture of the electrodes.

2.2 Algorithm Design
The key steps of the proposed model-based stimulation artifact reduction algorithm
are presented in Fig. 2.4. The process involves first identifying and fitting a model of
the tissue electrode interface to discrete measured data (Fig. 2.4A). Next, the model
is used, along with constraints, to generate a stimulation waveform that reduces the
residual artifact (Fig. 2.4B). The final step involves observing the resulting residual
artifact and correcting for any remaining error during stimulation (Fig. 2.4C).
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Figure 2.4: Overview of the model-based adaptive stimulation method. A) an estimate of the
electrode model is formed; B) the model and stimulation constraints are used to construct an
optimum stimulation waveform that produces a response with minimum residual artifact; C) the
simulation waveform is executed with error correction for disturbances.

2.2.1 Electrode-Electrolyte Model

The model selected, and the method by which it is applied, is largely based on work
by Lario-Garcia et al [85]. A normal three element electrode model is depicted in Fig.
2.5a, where ZCPE is a Constant Phase Element (CPE) impedance, Re is the voltage-
dependent electrochemical resistance and RS is the tissue spreading resistance. We
neglect the electrochemical resistance as it is often much larger than the impedance
of the constant phase element (Fig. 2.5b) [27].
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(a) Three element electrode model (b) Electrode model assuming Re >> ZCPE

Figure 2.5: Tissue-electrode impedance models.

The total impedance of the electrode, Ze can thus be expressed by the expression

Ze ≈ Rs + ZCPE (2.1)

In the s-domain, the constant phase element impedance is given by

ZCPE(s) =
1

Asα
, 0 ≤ α ≤ 1, (2.2)

where A and α are constants of the model. If α = 0, the constant phase element
is equivalent to a pure resistance of value 1/A, whereas if α = 1 then it is equivalent
to a pure capacitance of value A. The response to a step input current, U(s), is
given by

Vstep(s) = Ze(s)U(s) =
Ze(s)

s
(2.3)

Taking the inverse laplace transform, we find the continuous-time representation

Vstep(t) = L−1
{
Rs

s

}
+ L−1

{
1

Asα+1

}
(2.4)

=

(
Rs +

1

A

tα

Γ(1 + α)

)
u(t) (2.5)

The discrete time step response, at sample n, given a sampling period Ts and
step current magnitude I0 is as follows

Vstep(nTs) = I0Rs +
I0
A

Tαs
Γ(1 + α)

nα (2.6)

where Γ is the mathematical gamma function. Extending this, we can represent
an arbitrary input current waveform as a series of current steps, as demonstrated
by Fig. 2.6.
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Figure 2.6: Arbitrary current signal represented as a function of discrete steps.

Given N current steps ∆I1 to ∆IN at samples n1 to nN , the electrode voltage
at sample m can be expressed by the following equation, provided that nN ≤ m (i.e
only prior steps contribute).

V (m) = I(m)Rs +
N∑
i=1

{
∆Ii
A

Tαs
Γ(1 + α)

(m− ni)α
}

(2.7)

For a fixed sampling rate, this can be simplified to

V (m) = I(m)Rs +
N∑
i=1

{∆IiK(m− ni)α} , (2.8)

where

K =
1

A

Tαs
Γ(1 + α)

Therefore, the parameters required to define the behaviour of the electrode model
are RS, K and α. These electrode model parameters can be generated in either the
time domain, using impulse response characteristics; or the frequency domain, with
Electrochemical Impedance Spectroscopy (EIS) measurements. Use of either method
is dependent on the particular application. For example, in some cases it may not
be possible to produce a sinusoidal waveform with sufficient amplitude, resolution
or width to conduct reliable EIS, so low amplitude pulses are used for identification
instead. On the other hand, current generation may be insufficiently stable to
produce a reliable impulse characteristic, so EIS is preferred. For comparison, we
implemented both methods, and the results are discussed below.

Time Domain (Impulse) Modelling

To generate the electrode parameters α, RS and K from time-series data, it is pos-
sible to fit Eq. 2.8 to a simple current step response. If it is feasible to measure
the voltage at the electrode directly, then this is a trivial process, and the exact
method to achieve this is discussed in the publication by Lario-Garcia [85]. How-
ever, low-power implantable devices often do not have a low-noise wide-band AFE.
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For example, the Intan RHS2116 has an input bandwidth of 0.1-20 kHz, but to
remove excess noise the bandwidth is limited to 100-15 kHz. As such, the recorded
voltage is distorted by the AFE transfer function, making direct fitting unfeasible.

The first step to overcoming this problem is to generate an impulse response
representation of the front-end, denoted here as hAFE[n]. This may be based on a
known filter transfer characteristic (e.g butterworth) or measured by driving a known
current input x[n] across a fixed resistance and measuring the resulting (resistance
normalised) voltage y[n]. With known input and output, the impulse response can
be calculated with

hAFE = (X ′X)−1X ′y,

where X is the convolutional matrix of the input current signal x[n]. An ex-
ample response of one attenuated channel is depicted in Fig. 2.7. While this is a
computationally heavy method, it should only need to be done once during device
commission, since the AFE transfer should remain relatively constant over time. It
should be noted that the inaccuracies in the current input step directly translate to
inaccuracies in the model. This issue is discussed further in Section 4.2.1.

(a) (b)

Figure 2.7: Example measurement of the impulse response for the channel 6 attenuated front-end:
(a) 20x 500nA 500µs pulse recordings (gray) and signal average (red), (b) calculated normalised
impulse response (Ts = 10µs).

Once the impulse response of each channel is known, the model step response
d[n] (calculated from Eq. 2.8) can be convolved with this and equated with the step
response of the electrode in solution as recorded by the amplifier s[n]. While there
are possible deterministic approaches to generating the model parameters based on
a known input, output and AFE impulse response; uncertainty in the front-end and
DAC current characterisation make this an impractical approach. Instead, an iter-
ative method is used.

Starting with parameters RS = 0, K = 0 and α = 0.5, Eq. 2.8 is used to
generate the corresponding model step response, d[n]. This is then convolved with
hAFE to generate predicted voltages for three evenly-spaced intervals yp[n1], yp[n2]
and yp[n3]. The choice of n1, n2 and n3 depends on the sampling rate, and should
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be chosen so that the dynamics of s[n] are sufficiently covered. Rs is scaled such
that the first predicted output value yp[n1] equals s[n1] (Fig. 2.8a). Next, K is
incremented/decremented iteratively until yp[n2] is close to s[n2] (Fig. 2.8b), and
finally α is also adjusted until yp[n3] is close to s[n3] (Fig. 2.8c). For each parameter
change, the corresponding value of yp[n] must be recalculated. The process is re-
peated until all three values are within the allowable error margins. Fig. 2.8 shows
an example of the iterative fitting approach.

(a) Rs scaling. (b) K increment/decrement. (c) Alpha increment/decrement.

Figure 2.8: Iterative impulse-based model fitting process.

Dynamic adjustment of the K and α parameter step sizes were implemented to
significantly reduce the computational cost of the fitting process. Also, since only
three measurements are required, down-sampling was used to reduce the cost of the
convolution steps. Additionally, the overall performance of the model was improved
by repeating the fitting process at multiple current amplitudes, and taking the mean
of each resulting parameter. The performance of this method is summarised in
Section 3.2.

Frequency Domain (EIS) Modelling

An alternative method is to fit the model to measured data in the frequency domain.
This can be done by performing Electrochemical Impedance Spectroscopy (EIS) to
measure the impedance magnitude and phase spectra. As for the time-domain
approach, it is required to first characterise the front-end response such that it
can be accounted for during the fitting process. For this, we measure the AFE
transfer function while applying a sinusoidal current input (same as used for EIS)
to a linear resistor at its input. Fig. 2.9a demonstrates the frequency response of
an attenuated channel front-end. In the frequency domain, it is trivial to account
for the AFE transfer to refer measurements to the input of the AFE; the magnitude
and phase are divided and subtracted from EIS measurements, respectively.
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(a) Frequency response of the AFE. (b) AFE-compensated EIS measurement of a 47k resistor.

Figure 2.9: Mean/standard deviations of EIS measurement process for 100-9kHz sweep (N=10).

Fig. 2.9b depicts an example front-end compensated EIS measurement of a 47k
resistor. The details of the the acquisition of the EIS data is not particularly impor-
tant, since there are many well-established on-chip EIS methods. Though unused
for this work, even the Intan RHS2116 has in-built EIS measurement capability.

Fig. 2.10 shows an EIS sweep for the 30um gold/PU electrode that will be used
fit our model.

Figure 2.10: Mean/standard deviation EIS Characterisation of the 30um Electrode for 100-9kHz
sweep (N=10).

Recall, the electrode model can be expressed as

Ze = Rs +
1

Asα
= Rs +

1

A(j2πf)α
(2.9)
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This function is linear in the complex plane, so we can make a linear fit of
the electrode EIS data with respect to the real and imaginary components. The
gradient of the model in the complex plane is independent of both Rs and A, so
we conduct a binary search of α in the range [0,1], calculating the gradient of the
model impedance at each step, and equating that with the linear EIS fit. For our
application, We need to resolve α to three decimal places, so we use 10 iterations to
provide 1/1024 precision. It is then trivial to calculate A, which scales magnitude
of the model in the complex plane, and Rs which shifts the impedance model along
the real axis. Fig. 2.11a depicts the recorded EIS data points in the complex plane,
the linear fit of the EIS data and corresponding fitted model data points. Fig. 2.11b
demonstrates the resulting fit with respect to impedance magnitude and phase.

(a) Complex-plane representation of model fitting. (b) Magnitude and phase comparison of the resulting fit.

Figure 2.11: EIS-based electrode model fitting.

2.2.2 Artifact Reduction

The model described above can be used to design stimulation waveforms that opti-
mally reduce residual artifact duration.

Pre-requisites

Assessment of in-vitro stimulation efficacy of different waveforms is out of the scope
of this work, therefore it is important to establish which parameters will and will not
be changed such that a reasonable assurance of efficacy is maintained. We define
the depolarising (anodic) phase of a stimulation waveform as the ’working’ phase,
since it is what typically elicits neural responses in retina (but the opposite can be
implemented), and set the following guidelines for the artifact reduction algorithm:

1. The width of the working phase will not be altered.

2. The magnitude of the working phase will not be altered.

3. The working phase will be the only anodic phase.

This essentially means that any corrective shaping must lie to either side of the
working phase, and that the corrective pulses must have positive magnitude. The
implications of allowing alteration of the working phase for artifact reduction is
discussed in Section 4.3.1.
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Matrix Form

Equation 2.8 can be expanded and expressed as

V (m) = (∆I1 + ...+ ∆IN)Rs +K(∆I1(m− n1)
α + ...+ ∆IN(m− nN)α) (2.10)

This can then be arranged in matrix form, whereM voltages at samplesm1,m2,...,mM

can be calculated from N current steps at samples n1,n2,...,nN .


Vm1

Vm2

:
VmM

 =


Rs +K(m1 − n1)

α Rs +K(m1 − n2)
α .. Rs +K(m1 − nN)α

Rs +K(m2 − n1)
α Rs +K(m2 − n2)

α .. Rs +K(m2 − nN)α

: : :
Rs +K(mM − n1)

α Rs +K(mM − n2)
α .. Rs +K(mM − nN)α




∆In1

∆In2

:
∆InN


given that for any i, j, mi ≥ nj, to assert causality. This matrix equation can be

written as

V = Z∆I (2.11)

It follows that in addition to calculating the voltages resulting from current steps,
the matrix can be inverted to calculate the current steps required for an arbitrary
voltage output.

∆I = Z−1V (2.12)

If N = M (i.e Z is square), then it is possible to construct any arbitrary wave-
form. To apply this to artifact reduction, we simply need to calculate the current
steps required to force the voltage to zero after the pulse. Fig. 2.12 describes this
situation.
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(a) Uncorrected current pulse (b) Modelled uncorrected voltage response

(c) Calculated current with two corrective phases (d) Modelled voltage with two corrective phases

(e) Calculated current with ten corrective phases (f) Modelled voltage with ten corrective phases

Figure 2.12: Matrix inversion for stimulation artifact reduction of a −500nA, 250 µs pulse
(TS = 10 µs).

Fig. 2.12a depicts a simple monophasic −500nA, 250 µs width current pulse,
and 2.12b shows the corresponding predicted model voltage. Two ’corrective’ phases
are added of identical width before and after the working phase, resulting in two
degrees of freedom (current steps) at n1 = 0 (t = 0 µs) and n2 = 50 (t = 500 µs)
by which to correct for the residual artifact. The ’correction points’ in Fig. 2.12b,
calculated from the working phase, are the two points we want to force to zero, and
will denote Ve. These points should be after the end of the pulse and are chosen by
simply adding a delay of 80 samples from the correction inputs (m1 = 80 m2 = 130).
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To calculate the required current of each correction phase, we solve the following
matrix equation

[
−Ve(0)
−Ve(1)

]
=

[
Rs +K(m1 − n1)

α Rs +K(m1 − n2)
α

Rs +K(m2 − n1)
α Rs +K(m2 − n2)

α

] [
∆In1

∆In2

]
As it is, solving this matrix would result in the correctly zeroed output, but to

ensure that the working phase remains the same and that the current at the end
of the waveform is zero, the added current must be removed again. We account for
this by subtracting each current step at the end of the correction phase.

[
−Ve(0)
−Ve(1)

]
= K

[
(m1 − n1)

α − (m1 − n1 − 25)α (m1 − n2)
α − (m1 − n2 − 25)α

(m2 − n1)
α − (m2 − n1 − 25)α (m2 − n2)

α − (m2 − n2 − 25)α

] [
In1

In2

]
Note that since the correction points are beyond the end of the pulse, the Rs

terms have cancelled. Inverting the matrix and solving, we get the current depicted
in Fig. 2.12c and the zeroed output 2.12d.

This is basically a model-based asymmetrical triphasic waveform. To produce a
better result, we need to add more degrees of freedom, as depicted in Fig. 2.12e and
Fig. 2.12f. However, this requires an inversion of a much larger matrix, which can
be computationally expensive. Also, the nature of the model means that to force all
points to zero very large oscillating currents are required that can dwarf the working
phase current. This is obviously not implementable, has multiple anodic phases, and
limiting the current would only result in sub-optimal performance. Since an explicit
solution is not ideal, an iterative approach is considered instead.

Iterative Form

The iterative approach forces the residual artifact to zero one sample at a time,
calculating each corrective phase sequentially. This avoids the need for large matrix
inversions and allows for easier implementation of constraints such as quantization,
current saturation and voltage limiting. Fig. 2.13 summarises the steps necessary for
artifact correction of an anodic working phase (Fig. 2.13a) using 10 pre-correction
phases (before the working phase), and 5 post-correction phases (after the working
phase). Each correction phase is 20 µs long.

The pre-correction phases are calculated one at a time to force the long-term
residual voltage to zero (Fig. 2.13b). Constraints on the maximum current output
mean a voltage error may still remain after each step. However, subsequent phases
are able to account for this in a way that the matrix approach was unable to.
Calculation of the post-correction phases proceeds in a similar fashion to correct for
the short-term residual artifact (Fig. 2.13c). As the corrective phases have mutual
interaction, multiple cycles are required to achieve convergence (Fig. 2.13d).
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Figure 2.13: Steps in the iterative artifact correction algorithm for 10 pre-correction and 5
post-correction phases, indicating current (left) and predicted voltage artifact (right): (a) the
uncorrected working (anodic) pulse, (b) pre-correction phases are added, (c) post-correction phases
are added, (d) process is repeated until waveform converges.

It is often a desirable to constrain the interface voltage, since large voltages can
result in faradaic processes and shorter implant lifetime. This is trivial to implement
with the proposed scheme, since for each corrective phase, the modelled peak voltage
at the end of the phase can be calculated. If the voltage exceeds a predetermined
limit, then the corrective current amplitude is recalculated such that it is within
limits.

(a) Model-generated current waveform. (b) Modelled electrode voltage.

Figure 2.14: Sequential model-based stimulation artifact correction of a −500nA, 25 sample
(250µs) pulse with a 0.05V upper voltage constraint.
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Fig. 2.14 depicts an example optimised current waveform (Fig. 2.14a), and pre-
dicted voltage response (Fig. 2.14b) for a −500nA, 250µs anodic working phase, and
a maximum voltage limit of 0.05V . The reduction performance and computational
cost of this method are detailed in Chapter 3. An example MATLAB implementa-
tion of the shaping algorithm is listed in Appendix A.2.

Trimming

Tissue-electrode non-linearities are excited as the voltage across the interface de-
viates from equilibrium. However, given the low currents required to excite single
cells (< 1µA), the effects of these non-linearities should be minimal (this assump-
tion is investigated in Section 3.1). As such, the linear model used above should be
sufficient to characterise the general behaviour of the system. However, it is still
inevitable that deviations in the model due to small non-linearities or inaccurate
current output will result in a (small) residual error. To compensate for these er-
rors, we introduce a ’trimming’ step (Fig. 2.15). Intuitively, trimming provides a
feedback path that effectively linearises the system.

(a) Algorithm corrected voltage response.
(b) Magnified image of the corrected waveform. The post-
correction phase is trimmed until the short-term error (red
cross) is within threshold.

(c) The pre-correction phase is trimmed until the peak
error (yellow cross) is within threshold.

(d) Fully trimmed waveform, the entire residual artifact
is now within allowable thresholds.

Figure 2.15: Example of trimming steps for corrected pulse.

First, short term errors are compensated for by trimming the magnitude of all
post-correction phases up or down accordingly until the the voltage lies within pre-
determined limits (Fig. 2.15b-c). Secondly, the maximum or minimum remaining
residual voltage is identified and the pre-correction phases are trimmed up or down
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to compensate until no point of the tail exceeds the thresholds (Fig. 2.15c-d).

Fig. 2.16 demonstrates correction of a −500nA, 250µs working pulse before and
after the trimming process.

(a) (b)

Figure 2.16: Example correction of a −500nA, 250µs working pulse before and after trimming:
(a) stimulation current, (b) recorded voltage response.
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Chapter 3

Results

In the following chapter, the performance of the model fitting methods and the
stimulation shaping algorithm are presented. To prevent the unpredictable effects
of amplifier saturation corrupting results, all tests are performed with the attenuated
front end (A ≈ 1/20). In an actual on-chip implementation, blanking or gain shift-
ing would be used to prevent saturation from the direct artifact. The RHS chip can
implement amplifier (output) blanking (called fast-settle [83]), which could be used
to suppress the direct artifact and better simulate a real-world application. How-
ever, this feature resulted in unstable output even in the presence of no stimulation
current, hence it was not used. This is discussed further in Section 4.2.2.

3.1 Artifact Characterisation
The proposed method assumes a linear, time-invariant (LTI) electrode-tissue inter-
face. This is justified by the low stimulation current used (< 1 µA), which ensures
mostly non-faradaic charge transfer. These assumptions have been validated exper-
imentally.

3.1.1 Linearity

To assess artifact linearity, we use the same method as Chu et al. [30]. A 250 µs,
200 − 1200nA pulse is applied (Fig. 3.1a) to the electrode in solution and a nor-
malised input-output relationship is determined (Fig. 3.1b). Using the maximum
amplitude (A0) pulse response (y0) as the baseline, the input scale factor, αn,in and
output scale factor (αn,out) are calculated as

αn,in =
An
A0

, αn,out =
< y0, yn >

|yn|2
, (3.1)

where || is the L2 norm and <,> is the inner product. We validated the linearity
of our 30 µm electrodes by observing the relationship between αn,in and αn,out,
and plotting the percentage deviation from a nominal slope of 1 (Fig. 3.1c). The
linearity of the output DAC was also verified as a baseline measurement, using a
linear resistor as load.
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(a) Artifact amplitude variation. (b) Normalized input-output rela-
tionship. (c) Non-linearity percentage.

Figure 3.1: Artifact linearity assessment.

The artifact input-output relationship tracks that of the DAC very closely, indi-
cating that the non-linearity of the artifact is minimal in the given range, and that
the small deviation from ideal linearity is due to the DAC instead.

3.1.2 Additivity and Time-Invariance

Further important aspects of the LTI assumption are additivity and time-invariance.
To test both of these, the response to a biphasic 250 µs, ±1 µA pulse is compared
to the ’ideal’ response, calculated by summing the responses to two shifted and
inverted monophasic pulses of the same amplitude.

ybi,ideal(t) = ymono(t)− ymono(t− 250µs) (3.2)

The resulting waveform, when compared to the ideal calculation, is depicted in
Fig. 3.2a. There is some variation in the tail of the artifact, which is likely due
to small differences in the calibration of the positive and negative current sources
(discussed further in Section 4.2.1).

(a) (b)

Figure 3.2: Artifact time invariance effects: (a) short-term time-invariance/additivity, (b) artifact
variation for 0-1000s time range.

As discussed in 1.2.1, the long term impedance profile of an implanted electrode
can vary greatly. Fig. 3.2b depicts the longer term stability of the electrode in PBS
solution from 0 to 1000s. Each waveform is the average of 5 consecutive pulses to

31



CHAPTER 3. RESULTS

negate noise effects. The artifact varies an insignificant amount within this time
frame, which is expected as the electrochemical environment (temperature, con-
centration) should remain relatively constant. In a less stable environment (e.g.
in-vivo), artifact stability could present a problem with a static algorithm, so this
accentuates the requirement for the trimming step, which accounts for these small
variations.

3.1.3 Spatial Variation

We also investigated the variation of the stimulation artifact from electrode to elec-
trode (Fig. 3.3). The electrode response is recorded at the stimulating electrode,
and at electrodes 240-840 µm from the stimulating electrode, in steps of 120 µm,
for identical stimulation magnitude and pulse width.

Figure 3.3: Stimulation artifact measured at the stimulating electrode (d=0) and surrounding
electrodes (d=240, 360, 480, 600, 720 and 840 µm).

The gradual slope of the decay between 240 and 840 µm is due to increasing tissue
resistance, while most of the attenuation at neighbouring electrodes comes from the
additional electrode impedance. It is important to note that the magnitude of the
artifact at the non-stimulating electrodes 240 µm away is still ∼25% that of the
stimulating electrode. This suggests that artifacts at adjacent electrodes need to be
taken into account when assessing the artifact reduction algorithm.

3.2 Artifact Modelling
We determine the accuracy of the proposed model in Section 2.2.1 by predicting the
response to a randomly generated current waveform and comparing it to the recorded
voltage (see Fig. 3.4a for the performance of both time-domain and frequency-
domain approaches).
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(a) (b) (c)

Figure 3.4: Example randomly generated input current testing for each model fitting method:
(a) randomly generated input current, (b) impulse model fit recorded (blue) and predicted (red)
output voltage, (c) EIS model fit recorded and predicted output voltage.

A 200 nA, 500 µs step input was used for the impulse fitting procedure, and the
frequency-domain method was implemented on EIS measurements from 700Hz to
5kHz. In both cases, the model successfully predicts the voltage at the electrode
interface, as the calculated post-AFE voltage tracks that of the recording. We repeat
the measurement, fitting and random stimulation tests 50 times for each method, at
a rate of once per minute, recording the parameter spreads (Fig. 3.5a-c) and mean
square voltage error (Fig. 3.5d) of the resulting prediction.

(a) (b)

(c) (d)

Figure 3.5: Repeat (N=50) impulse parameter fitting and random stimulation tests: parameter
spread for (a) Rs, (b) K, and (c) α. (d) Mean-squared error between measured and predicted
stimulation response.

33



CHAPTER 3. RESULTS

The two methods appear to produce different parameter sets. This is likely because,
with a bandwidth of 700-5kHz, the EIS method captures more of the low-frequency
and less of the high-frequency behaviour than the impulse fitting procedure. Another
interesting observation is that the frequency-domain fitted parameters appear to
’settle’ after the first few measurements. It could be that the larger, low-frequency
sinusoidal stimulation required for EIS alters the electrochemical conditions slightly.
Despite the differences in parameters, the MSE performance of both methods are
comparable.

3.3 Artifact Reduction

3.3.1 Test Criteria

The developed algorithm was tested for working phases of [100:100:500] nA and
[50:50:250] µs for a total of N=25 tests. For each test scenario, (i) the artifact
recovery time at the stimulating electrode (Fig. 3.6b), (ii) the recovery time at
an adjacent electrode (d=240 µm, Fig. 3.6c), and (iii) the DC voltage accumulated
after 50 consecutive pulses with an interpulse delay of 1ms (Fig. 3.6d) are measured.
The interpulse delay is set to account for the refractory period of neurons.

(a) (b)

(c) (d)

Figure 3.6: Assessment of model-based reduction algorithm: (a) generated current waveform, (b)
evaluation of the correction algorithm at the stimulating electrode, (c) evaluation of the resulting
waveform at the non-stimulating electrode, and (d) accumulated DC voltage after 50 consecutive
pulses, measured with an external oscilloscope.

Recovery time is measured as the time from the end of the working (anodic)
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phase, until the time that the residual voltage drops below ±20 µV (approximately
twice the input-referred peak-to-peak noise). The DC accumulated voltage is mea-
sured by connecting an external oscilloscope during the pulse train execution. The
above measurements are repeated for both the trimmed and untrimmed correction
waveforms. The correction algorithm parameters used for testing are detailed in
Appendix A.3.

3.3.2 Comparative Methods

For comparison, the tests are also run using different waveform shapes and artifact
reduction methods. As a baseline, we measure the recovery time for monophasic
(Fig. 3.7a), anode-first biphasic (Fig. 3.7b), cathode-first biphasic (Fig. 3.7c) and
triphasic (Fig. 3.7d) waveforms. The cathodic phase for the biphasic scenarios is
of equal and opposite magnitude to the anodic phase, and the cathodic phases of
the triphasic scenario are half the magnitude of the anodic phase, as conventionally
used for charge balancing.

(a) (b)

(c) (d)

Figure 3.7: Example of standard comparative waveform voltage responses: (a) monophasic,
(b) biphasic anode first, (c) biphasic cathode first and (d) triphasic. Inset figures demonstrate
measurement of recovery time (from end of working anodic phase), where the dashed lines are the
recovery thresholds.

Active-discharge recovery, in combination with a triphasic waveform, is also
tested by making use of the ’charge recovery’ functionality of the Intan IC, which
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shorts the input to ground through a low impedance path (∼ 1 kΩ) [83]. We adjust
the discharge period for each test to identify the minimum possible recovery time
(Fig. 3.8a), which is used for comparison (Fig. 3.8b).

(a) (b)

Figure 3.8: Active discharge comparative artifact recovery method: (a) multiple discharge periods
are tested, (b) the discharge period of maximum reduction is selected for comparison.

3.3.3 Performance Comparison

Recovery Time (Stimulating Electrode)

Figure 3.9: Recovery time from end of working phase, at the stimulating electrode, for each
reduction strategy.

The untrimmed model-based algorithm presents a mean 50% improvement over the
active-discharge recovery method and 55% improvement over the best traditional
stimulation waveform (triphasic). The addition of a trimming step results in a 79%
and 81% improvement over active-discharge and triphasic strategies respectively.
The mean recovery time for the model-based control method, with trimming, is
124 µs. At low amplitudes, the untrimmed model successfully predicts and removes
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the residual artifact, and little to no improvement is achieved by trimming. How-
ever, at larger amplitudes (> 400 nA), the performance of the untrimmed model
deteriorates significantly due to increasingly nonlinear behaviour. The trimming
step successfully linearises the system and corrects for these errors.

Recovery Time (Non-Stimulating Electrode)

Figure 3.10: Recovery time from end of working phase, at the non-stimulating electrode
(d=240 µm), for each reduction strategy.

At the non-stimulating electrode, the untrimmed algorithm is an average of 84%
more effective than the active-discharge method, which is the worst performing
method, and 39% better than the triphasic waveform. The trimming step degrades
performance slightly at larger amplitudes, but on average it is still 83% and 34%
better than active-discharge and triphasic methods, respectively. The mean trimmed
recovery time at the non-stimulating electrode is 151 µs.

37



CHAPTER 3. RESULTS

Pulse Train Voltage Accumulation

Figure 3.11: DC voltage accumulation after 50 pulses, with 1ms interpulse delay, for each reduc-
tion strategy.

The algorithm results in increased charge accumulation after a train of 50 consecutive
pulses when compared to the other mitigation strategies. While still being an im-
provement over a simple monophasic waveform, the untrimmed and trimmed meth-
ods are 20% and 11% worse respectively when compared with the next best (tripha-
sic) waveform. The maximum accumulation of the trimmed method is 14.7 mV .
This is expected as we are minimizing the artifact at the output of the AC-coupled
AFE, which is not necessarily the same as mitigating DC charge at the input of the
AFE. This is explored further in Section 4.1.2.

3.4 Algorithm Cost

3.4.1 Chip Area

The proposed algorithm has minimal impact on chip area consumption of the record-
ing front-ends, only requiring an additional blanking switch to avoid saturation due
to the direct artifact. However, arbitrary current-mode waveform generation is re-
quired to perform stimulation shaping with moderate resolution (this work used the
8-bit DAC of the Intan chip). As an example, the design by Noorsal et al. uses
0.2 mm2 for each DAC (multiplexed to 4 channels) [86]. Both of the parameter
fitting methods will require a single high dynamic range (DR) recording front-end
to measure step and sinusoidal voltage responses. However, as parallel model-fitting
is not necessary, a single high-DR channel can be multiplexed to many electrodes.
Both fitting methods will also make use of the existing arbitrary waveform DACs at
no extra cost for the stimulator area.

3.4.2 Computational Cost

With respect to the model fitting algorithms, the frequency-domain (EIS) fitting
process is significantly less computationally expensive than the time-domain (im-
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pulse) method, provided EIS data is available. To achieve 10-bit precision for the
calculation of α, only 10 binary-search iterations are required. The calculations of
RS and K then only require a single computation each. On-chip EIS technologies
are prevalent, and while the assessment of EIS methods is out of the scope of this
work, we assume that its implementation is not an issue. It does, however, take
a minimum of 1/fmin seconds to complete the EIS measurement, which is a con-
cern when scaling up to many electrodes (discussed further in Section 4.3.2). The
impulse method is far simpler in terms of data acquisition, only requiring a single
low-amplitude step current input of 250 µs, but falls short in requiring accurate,
high time-resolution knowledge of the current output waveform and the impulse re-
sponse of the AFE, which are both difficult to acquire, especially for an integrated
device. Additionally, the fitting process requires many step iterations/convolutions
to be accurate, and while there is still room for optimisation, it will always require
more complexity than the EIS method.

The most computationally expensive aspect of this algorithm is calculation of
the stimulation waveform. The key metrics we use for measurement of the correction
algorithm complexity are shaping iterations, which are how many sweeps we need
to conduct for the stimulation shape to converge; and Model Voltage Calculations
(MVCs), which are how many times the model parameters are used to calculate
a single voltage from a single current delta (or vice-versa). A single MVC can be
described by Eq. 3.3.

V = ∆I(Rs +Knα) (3.3)

MVCs are significant as they involve calculating an integer n (number of sam-
ples) to the power of a fraction, α, which can be in the range 0-1. We can assume a
maximum width of n=100 samples, and limit the precision of alpha to steps of 0.01,
but that still may require computing 1001/100, which is non-trivial. Using Newton’s
method of calculating roots, to reach 1% precision, 65 iterations are required. How-
ever, to reduce computational cost, we can pre-compute and store a 100x99 lookup
table (LUT) for n = 1:100 and α = 0.01:0.01:0.99. Although floating point precision
was used during testing, given the required accuracy, it is feasible to encode all pa-
rameters into 16-bits without significant loss of performance. Each MVC therefore
requires a single LUT enquiry, two 16-bit multiplications and one 16-bit addition.

To understand how many MVCs are required per stimulation waveform shaping,
we first measure the performance of the model at each shaping iteration (Fig. 3.12).
For this we observe the residual mean-squared voltage prior to trimming, as this
is a good assessment of both the shaping algorithm and prediction of the actual
residual voltage. While up to 20 iterations are required to fully converge, as few as
5 iterations are needed to achieve minimal residue, and it is reasonable to assume
that a lower residual voltage will require fewer trimming iterations to correct.
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(a) (b)

Figure 3.12: Relationship between shaping iterations and untrimmed performance for correction
of a 500nA, 250µs anodic pulse: (a) effect of increasing iterations on the voltage response, (b)
MSE residual voltage with increasing shaping iterations.

To assess the performance over a range of operating parameters, we conduct Monte
Carlo tests with α, RS and K parameter variations of ±10%. We count the number
of shaping iterations until full convergence (Fig. 3.13a) and MVCs per iteration per
correction phase (Fig. 3.13b), when no voltage limit is applied.

(a) (b)

Figure 3.13: ±10% Monte Carlo (N=500) model parameter variation for 500 nA, 250 µs anodic
pulse with no-voltage limit: (a) shaping iterations (µ = 16.24), (b) Model Voltage Calculations
(MVCs) required per iteration per correction phase (µ = 3.018).

Fig. 3.14 demonstrates the case where a 100mV limit on the model voltage is
enforced. While it does not take longer to converge, since it has reduced degrees of
freedom, significantly more MVCs are required to determine the peak voltage at the
end of each phase.
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(a) (b)

Figure 3.14: ±10% Monte Carlo (N=500) model parameter variation for 500 nA, 250 µs anodic
pulse with a 100mV limit: (a) shaping iterations (µ = 16.05), (b) Model Voltage Calculations
(MVCs) required per iteration per correction phase (µ = 10.98).

Given 10 pre-correction phases, 5 post-correction phases, and 5 shaping iterations
to achieve minimal residue (from Fig. 3.12), to generate the optimum stimulation
waveform, the algorithm requires ∼ 225 MVCs (5 iterations x 15 phases x 3 MVC-
s/phase) for the unconstrained case, and ∼ 825 MVCs (5 iterations x 15 phases x
11 MVCs/phase) for the voltage constrained case.

The trimming step is of minimal computational cost as it can be implemented as a
simple up-down counter, adjusting the pre- and post-correction phases as necessary,
depending on the recorded residual artifact voltage.

3.4.3 Memory Requirements

For the following section, we once again assume that every key parameter or mea-
surement can be encoded into 16bits (2 bytes). EIS fitting requires ∼ 10 frequency
points, each consisting of a phase and magnitude, for both the electrode and front-
end, utilising 40 values (80 bytes) in total. Impulse fitting requires a 25 sample step
response for the AFE and test pulse, corresponding to 50 values (100 bytes) of mem-
ory for each channel. However, for both of the above methods, the measurements
need only be stored temporarily in RAM while the model is calculated, so are not
considered a permanent memory cost.

Three resulting model parameters are stored for each channel. Additionally,
given 10 pre-correction phases, 5 post-correction phases and one working phase, the
algorithm requires storage of 16 phase magnitudes and widths (64 bytes) for every
working phase configuration.
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Discussion and Conclusions

4.1 Algorithm Performance

4.1.1 Model Parameter Fitting

As observed in Section 3.2, the frequency-domain and time-domain model fitting
strategies result in differing α, K and RS parameters. However, we also observed
that both the EIS and impulse methods presented similar mean-squared error val-
ues when predicting the output of random current stimulation waveforms. This
implies that the relationship between the parameters, rather than the parameters
themselves, are of more importance. Since both methods produce similar results,
it is largely up to preference which method is selected for use. However, the in-
creased computational cost of the time-domain method along with the necessity to
accurately characterise the current output and the AFE step response make the
frequency-domain method preferable in most cases.

4.1.2 Artifact Reduction

The untrimmed algorithm performs well when compared to traditional stimulation
waveforms and the active-discharge artifact recovery method. However, its perfor-
mance deteriorates as the amplitudes increase. This is most likely due to the fact
that higher voltages result in more non-linear effects and less accurate balancing
as more charge is lost to faradaic processes. The trimming step, which corrects for
these small differences, effectively linearises the system and results in consistently
low (sub-250µs) recovery times across all tests, outperforming all other methods.
This suggests that the trimming process is crucial in any real-world implementation.

At the non-stimulating electrode we observed similar, or slightly better, recovery
times than that of the other methods. While we did not observe large improvements,
this serves to confirm that reducing the artifact at the stimulating electrode does
not degrade performance at the non-stimulating electrode, which is a very important
aspect to confirm before implementation in massively parallel high density arrays.

It is necessary to state that the results presented in this work are for a single
set of hand-crafted shaping parameters (correction phase widths, correction phase
counts, correction points etc.). A systematic design-space exploration could result
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in better performance, especially if higher time and current resolutions are possible.

4.1.3 Trimming

While effective at correcting for residual error in all test cases, the trimming method
employed in this work had some notable issues. Firstly, the pre- and post-correction
phases only incremented or decremented in unit steps. This meant that correction
for larger magnitude pulses, with larger errors, could take upwards of 20 iterations.
While this is a short settling time for a device that will be stimulating each channel
many thousands of times per day, convergence could be improved significantly by
implementing a smarter step algorithm (e.g. binary search) and trimming both the
pre-correction and post-correction phases simultaneously.

4.1.4 Voltage Accumulation

In regards to voltage accumulation, our method performed significantly worse than
the other comparative methods. There are a number of different possibilities as to
why this is the case. The larger induced voltages could result in more nonlinear ef-
fects and faradaic charge losses, but it is more likely that correcting for the artifact
at the output of the AC-coupled AFE does not necessarily mean correcting for the
artifact at the tissue-electrode interface. In the act of trimming, we are account-
ing for the impulse response of the front end, which may result in an unbalanced
waveform. Fig. 4.1 confirms this latter hypothesis by comparing the AC and DC
recorded artifacts before and after trimming.

Figure 4.1: Comparison of AC (on-chip) and DC (oscilloscope) voltage recordings for a corrected
-400 nA, 250 µs pulse before and after trimming. Inset figure is a zoomed-in view along the x-axis.

Before trimming, the DC voltage (light blue) returns close to zero, indicating
correct charge balancing, whereas the AC artifact (dark blue) takes some time to
settle. However, after trimming, the AC residual artifact (red) is now minimised,
whereas the DC voltage (yellow) has accumulated a notable positive offset (VOS,DC
in figure). The high-pass filter pole of the AC amplifier eliminates the offset at the
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output of the ADC.

Although we get some charge accumulation, removing the artifact as quickly as
possible from the input is much more important for our application. Recall from
Chapter 1 that healthy retinal ganglion cells are excited at a very low rate (<10
Hz), so high frequency pulse trains will not be used in an implant. Even if they were
used, with sub-µA currents, the accumulated voltage is still less than 15mV, which
is well below safe levels to prevent harmful effects [10].

4.1.5 Susceptibility to Parameter Error

It was observed that the fitted model parameters can deviate by a small amount
when using consistent measurement methods. We need to ensure that deviations
in the electrode parameters will not result in poor artifact removal. Using Monte
Carlo analysis, we observe the pre-trimming accuracy of the model-based algorithm
for parameter deviations of up to ±10%. The predicted model voltage fluctuates
during stimulation for different parameters, but the residual component remains
very stable (Fig. 4.2a). This makes sense, since with no current, the RS component
disappears, and K simply scales the residual component, so it has no effect on the
artifact’s length. Only α affects the decay rate. This is confirmed in the actual AC
voltage response (4.2b) where minimal variation is observed. Finally, in Fig. 4.2c the
mean-square residual voltage does not vary significantly from case to case. However,
there is a notable increase after the first tests, the cause of which is unclear, but
may be the result of stimulation-induced variations in steady-state electrochemical
conditions due to insufficient settling time between tests.

(a) (b) (c)

Figure 4.2: Monte Carlo ±10% variation in model parameters: (a) effect on the calculated
waveform, (b) the recorded voltage, and (c) the mean-squared residual voltage.

4.2 Test System Limitations

4.2.1 DAC Current Calibration

The impulse-based method for model-fitting relies on an accurate characterisation
of the AFE impulse response. Measuring this is not possible unless the test current
pulse is sufficiently square, or well calibrated. For the RHS2116, the DAC output was
nonlinear. When tested with a sinusoidal stimulation current and a linear resistor
as load (Fig. 4.3), notable glitches in the sinewave can be seen in the time domain
(Fig. 4.3a), likely due to changes in operating region. These appear as harmonics
in the frequency domain (Fig. 4.3b).
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(a) (b)

Figure 4.3: Channel 7 (a) voltage (b) FFT response to 1kHz 1.25 µA PDAC sinusoidal current
stimulation across a 1 kΩ resistor (SFDR = Spurious Free Dynamic Range).

One method of overcoming this (with a limited bandwidth amplifier) is to cal-
ibrate the charge injection of the DAC for different pulse widths and amplitudes
by stimulating across a capacitor of a known value (Fig. 4.4a). A lookup table of
’equivalent’ delivered current is created (Fig. 4.4b), which is used as the basis of
all DAC code to current conversions in this work. This may not be practical for
implementation on-chip, where a precision calibration method might be preferred,
as in the work by Greenwald et al. [21].

(a) (b)

Figure 4.4: Characterisation of the Positive DAC (PDAC) current, by measuring (a) charge
delivered during a constant pulse, and calculating (b) equivalent delivered current. Ts = 10us,
DAC ’setting’ = 500nA.

4.2.2 Saturation and Blanking

In practice, a blanking or gain-shifting method is required to prevent saturation due
to the direct artifact, however this may affect the practicability of the trimming
method. Blanking would zero the voltage after the stimulation pulse, but introduce
some small amount of charge injection from the switch, for which the trimming
phase should be able to account. It was intended to test this hypothesis, and use
the unattenuated channels (±5 mV ) for assessing the performance of the algorithm.
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The RHS2116 on-chip fast-settle feature can disconnect the output of the amplifier
on command [83], however it was found that doing so results in large instabilities,
even with no applied current (Fig. 4.5), that makes using this as a ’blanking’ method
impractical. Instead, testing was performed with the attenuated channels, so that
the direct artifacts could be accommodated without saturation. Since the trimming
process does not use information from the direct artifact anyway, this is equivalent
to performing ’blanking’ in software.

Figure 4.5: Instability of the ’fast-settle’ switch feature of the RHS2116 IC. The switch is enabled
for 25 samples from the 100 sample mark.

4.2.3 Time-Resoution

Communication speed was a major limiting factor in implementing more complex
waveforms. The RHS2116 is technically capable of 714 kSa/s operation. However,
we were only able to obtain 100 kSa/s with reasonable consistency, which corre-
sponds to a 10 µs sampling period. As it takes two sampling periods to set both the
polarity and amplitude of the current output, the resolution is effectively 20 µs. For
short recovery times (< 200 µs) there are limited degrees of freedom in the post-
correction phase. Moving to faster speeds may produce smoother and more accurate
correction, at the cost of increased computations to generate the waveform.

4.3 Recommendations and Future Work

4.3.1 Altering Working Phase

A very interesting area of future development would be to allow the shaping al-
gorithm to alter the working phase. The sharp edges on the anodic phase mean
there is a minimum time for the amplifier to settle, resulting in a lower limit to
recovery time. This would be avoided by blanking, but the effects of abrupt current
changes at the electrode interface would still be a problem. Allowing the algorithm
to alter the working phase to minimise the artifact, while iteratively scaling the
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resulting waveform to maintain a constant charge injection, may result in superior
performance. It could be possible that a well-shaped working phase removes the
requirement for the post-correction phase entirely, resulting in a near-zero recovery
time. However, assessing the stimulation efficacy of this method is outside of the
scope of this work.

4.3.2 Scaling Up

In Section 3.4, we summarised the cost of implementing the model-based artifact
reduction algorithm for a single channel. The proposed epiretinal implant, discussed
in Chapter 1, will have up to 104 channels. Any practical artifact reduction method
must be scalable to this channel count, within the constraints of chip area, memory
requirements, computation time and data acquisition time. For the following dis-
cussion, we assume the worst case, in which every channel is independent. However,
we have seen that small variations in model parameters do not produce significant
change in the resulting waveform, so it is reasonable that groups of electrodes may
share parameters if they are sufficiently similar.

An investigation by Shah et al. [87] showed that reconstruction of visual stim-
ulus using 10kHz stimulation (biphasic, 50 µs per phase), requires an integration
period of 400ms. This suggests that achieving integration times similar to the visual
circuitry of the brain (<100ms) requires upwards of 10 stimulating channels oper-
ating in parallel. Using the design by Noorsal [86] as a basis, we will require up to
∼ 2 mm2 of chip area for the DACs, which is feasible for an implanted retinal device.

Based on the long-term stability of the artifact, measured in Section 3.1.2, and
the minimal susceptibility to parameter variation, it is reasonable to assume that it
is sufficient to update the model parameters twice a day. Scaling up the modelling
processes to 10k channels requires 40s per day for EIS fitting (fmin = 500 Hz) and
10s per day for impulse fitting (25 µs pulse, two amplitudes).

As for computational cost, we find that for 10k unique channels, we require a
total of N*2.25e6 and N*8.25e6 MVCs per day for the non-voltage-constrained and
voltage-constrained algorithms, respectively, where N is the number of working phase
configurations (widths/amplitudes). This is significant, as each MVC requires a LUT
inquiry, two multiplications and an addition. In regards to memory usage, we require
a total of N*640kB for all channels. Both the computational and memory cost of the
algorithm are potentially infeasible for an ultra low power device implanted within
the eye. However, it is certainly possible that the optimum stimulation waveforms
may be computed remotely, and transmitted to the implant as required. For a 100us
working phase, an 8-bit DAC, 10 pre-correction phases and 5 post-correction phases
(20 µs each), the required data rate for a single waveform would therefore be

R = (16ph ∗ 8bit)/(100µs+ 15ph ∗ 20µs) = 320kbps (4.1)

A 1024 channel epiretinal implant design by Chen et al. [88] achieves a 2Mbps
data rate, indicating that streaming the stimulation waveforms is a viable approach.
The trimming method requires only minor alteration of the stimulation waveform
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based on the recorded residual artifact, which can be done on the implant itself.

Despite being technically feasible, the model-based artifact reduction algorithm
designed in this work is fundamentally a support algorithm, complementary to the
primary goal of the epiretinal implant, which is to provide visual capability to the
patient. As such, its overhead should be minimal. Therefore, a key focus in the
future development of this algorithm should be reducing the memory usage and
computational complexity by optimising the numbers of pre- and post-correction
phases required, and exploring ways to further reduce the iterations required for
waveform generation.

4.4 Conclusions
The aim of this work was to determine how stimulation artifacts can be mitigated
such that neural responses can be reliably captured <500 µs post-stimulation, from
up to 104 channels, including the stimulation channel, while maintaining strict con-
straints on power consumption, chip area and computational complexity. With a
mean recovery time of 124 µs, we have achieved this requirement, and managed to
improve upon conventional methods by an average of 79%. In the process, we found
that correcting the artifact can degrade charge balancing at the interface, resulting in
20% more voltage accumulation during pulse trains. However, with low stimulation
currents this is not an issue. Achieving even lower recovery times may be possible us-
ing this method, along with careful selection of algorithm parameters, and improved
time-resolution of the current output. In terms of cost, this method requires a small
amount of additional chip area due to the requirement of arbitrary current genera-
tion, and although much of the computational complexity and memory requirements
can be outsourced to an external device, the impact of implementing the algorithm
in its current form is far from negligible. Future work should focus on refactoring
the algorithm for implementation on-chip, exploring alteration of the working phase
shape as a method for further residual artifact reduction, implementing blanking to
deal with the direct artifact and further exploration and optimisation of the shaping
parameters to maximise artifact reduction while minimising overall cost.
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A.2 Artifact Reduction Algorithm - MATLAB Script

1 %% Sequent i a l A r t i f a c t Reduction Algorithm − General Form
2 % Rohan Brash
3

4 c l e a r a l l
5 c l o s e a l l
6

7 I_STEP = 10e−9;
8 I_MAX = 2.55 e−6;
9 I_MIN = −2.55e−6;

10

11 % Model Parameters
12 ALPHA = 0 . 6425 ;
13 RS = 4.8899 e+04;
14 K = 9.2256 e+03;
15

16 % Working pu l s e parameters
17 PULSE_AMP = −500e−9; % amps
18 PULSE_WIDTH = 25 ; % samples
19

20 % Pulse acqu i s i on parameters
21 PULSE_PREFIX = 50 ;
22 PULSE_SUFFIX = 150 ;
23

24 % Pre−c o r r e c t i o n parameters
25 PRE_CORR_PHASE_WIDTH = 2 ; % Width o f each pre−c o r r e c t i o n

phase
26 PRE_CORR_N_PHASES = 10 ; % Number o f pre−c o r r e c t i o n phases
27 PRE_CORR_WIDTH = PRE_CORR_N_PHASES∗PRE_CORR_PHASE_WIDTH; %

Total width o f the pre−c o r r e c t i o n phase
28 PRE_CORR_POINT = PULSE_WIDTH∗4 ; % Correct f o r one pu l s e

width a f t e r the end o f t r i p h a s i c
29 PRE_CORR_I_MAX = I_MAX; % Maximum al lowed pre−c o r r e c t i o n

cur r ent
30 PRE_CORR_I_MIN = 0 ; % Minimum al lowed pre−c o r r e c t i o n cur r ent
31 PRE_CORR_V_MAX = 0 . 1 ; % Maximum al lowed pre−c o r r e c t i o n

vo l tage
32 PRE_CORR_V_MIN = −1; % Minimum al lowed pre−c o r r e c t i o n

vo l tage
33 PRE_CORR_SKIP_FIRST = f a l s e ;
34

35 % Post−c o r r e c t i o n parameters
36 POST_CORR_PHASE_WIDTH = 2 ; % Width o f each post−c o r r e c t i o n

phase
37 POST_CORR_N_PHASES = 5 ; % Number o f post−c o r r e c t i o n phases
38 POST_CORR_WIDTH = POST_CORR_N_PHASES∗POST_CORR_PHASE_WIDTH;

% Total width o f the post−c o r r e c t i o n phase
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39 POST_CORR_POINT = PRE_CORR_WIDTH+PULSE_WIDTH+POST_CORR_WIDTH
+5; % Correct f o r 5 samples a f t e r the end

40 POST_CORR_I_MAX = I_MAX; % Maximum al lowed post−c o r r e c t i o n
cur r ent

41 POST_CORR_I_MIN = 0 ; % Minimum al lowed post−c o r r e c t i o n
cur r ent

42 POST_CORR_V_MAX = 0 . 1 ; % Maximum al lowed post−c o r r e c t i o n
vo l tage

43 POST_CORR_V_MIN = −1; % Minimum al lowed post−c o r r e c t i o n
vo l tage

44 POST_CORR_SKIP_LAST = true ;
45

46 % Maximum number o f complete c o r r e c t i v e i t e r a t i o n s
47 MAX_CORR_ITERATIONS = 100 ;
48 LIMIT_VOLTAGE = true ;
49

50 %% Set up requ i r ed s to rage
51

52 % Working pu l s e index / de l t a notat ion
53 ni_wp = [PRE_CORR_WIDTH;PRE_CORR_WIDTH+PULSE_WIDTH] ;
54 di_wp = [PULSE_AMP;−PULSE_AMP] ;
55

56 % Pre−c o r r e c t i o n pu l s e
57 ni_pre = ze ro s (PRE_CORR_N_PHASES+1 ,1) ; % Pre−c o r r e c t i o n

de l t a l o c a t i o n s
58 di_pre = ze ro s (PRE_CORR_N_PHASES+1 ,1) ; % Pre−c o r r e c t i o n

de l t a magnitudes
59

60 % Post−c o r r e c t i o n pu l s e
61 ni_post = ze ro s (POST_CORR_N_PHASES+1 ,1) ; % Post−c o r r e c t i o n

de l t a l o c a t i o n s
62 di_post = ze ro s (POST_CORR_N_PHASES+1 ,1) ; % Post−c o r r e c t i o n

de l t a magnitudes
63

64 %% Calcu la te i n i t i a l v o l t ag e s due to working pu l s e
65

66 ni = [ ni_pre ; ni_wp ; ni_post ] ;
67 di = [ di_pre ; di_wp ; di_post ] ;
68

69 f i g u r e ( )
70 formatFig ( g c f ) ;
71 g r id on
72 hold on
73 x l ab e l ( ’ Sample ’ ) ;
74 y l ab e l ( ’ Voltage [V] ’ ) ;
75

76 % Plot i n i t i a l model vo l tage ( f o r demonstrat ion only )
77 nm = 0 :PULSE_SUFFIX;
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78 vm = ze ro s ( s i z e (nm) ) ;
79 f o r j = 1 : l ength (nm)
80 f o r k = 1 : l ength ( n i )
81 i f nm( j ) >= ni (k ) && di (k )~=0
82 vm( j ) = vm( j ) + di ( k ) ∗(RS + K∗(nm( j )−ni ( k ) )^

ALPHA) ;
83 end
84 end
85 end
86 p lo t (nm,vm, ’ Color ’ , [ 0 , 0 . 4470 , 0 . 7 4 1 0 ] ) ;
87

88 di_prev = di ;
89

90 mvc_count = 0 ;
91

92

93 %% Calcu la te Cor r e c t i v e Pul ses
94 f o r i t e r = 1 :MAX_CORR_ITERATIONS
95

96 % Calcu la te Pre−Cor r e c t i v e Pulse
97 i f i t e r > 1 | | ~PRE_CORR_SKIP_FIRST
98 ni = [ ni_pre ; ni_wp ; ni_post ] ;
99 di = [ di_pre ; di_wp ; di_post ] ;

100

101 ni_curr = 0 ;
102 i_curr = 0 ;
103

104 % Calcu la te the e r r o r vo l tage at the pre−c o r r e c t i o n
po int

105 nm_pre = PRE_CORR_POINT;
106 ve_pre = 0 ;
107 f o r k = 1 : l ength ( n i )
108 i f nm_pre >= ni (k ) && di (k ) ~= 0
109 ve_pre = ve_pre + di ( k ) ∗(RS + K∗(nm_pre−ni ( k

) )^ALPHA) ;
110 mvc_count = mvc_count+1;
111 end
112 end
113

114 f o r i = 1 :PRE_CORR_N_PHASES
115

116 % Pre−c o r r e c t i o n cur r ent up un t i l t h i s po int
117 i_curr = i_curr + di_pre ( i ) ;
118

119 % Calcu la te the c o r r e c t i o n cur rent de l t a
120 % Since the c o r r e c t i o n po int i s ( should be )

a f t e r the end o f
121 % the pulse , the Rs component i s neg l e c t ed .
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122 di_curr = −ve_pre /(K∗ ( (PRE_CORR_POINT−ni_curr )^
ALPHA−(PRE_CORR_POINT−ni_curr−
PRE_CORR_PHASE_WIDTH)^ALPHA) ) ;

123 mvc_count = mvc_count+1;
124

125 % We have a new cur rent magnitude
126 i_new = i_curr + di_curr ;
127

128 % Quantize and l im i t
129 i_new = round ( i_new/I_STEP) ∗I_STEP;
130 i_new = max(min ( i_new ,PRE_CORR_I_MAX) ,

PRE_CORR_I_MIN) ;
131

132 % Re−c a l c u l a t e new e f f e c t i v e cur rent de l t a
133 di_curr = i_new−i_curr ;
134

135 i f LIMIT_VOLTAGE
136 % Calcu la te the peak vo l tage at the end o f

the phase
137 n_peak = ni_curr + PRE_CORR_PHASE_WIDTH;
138 v_peak = 0 ;
139 f o r k = 1 : l ength ( n i )
140 i f n_peak > ni (k ) && di (k ) ~= 0
141 v_peak = v_peak + di ( k ) ∗(RS + K∗(

n_peak−ni ( k ) )^ALPHA) ;
142 mvc_count = mvc_count+1;
143 end
144 end
145

146 % Calcu la te the new peak vo ltage , and ad jus t
i f ou t s id e l im i t s

147 v_peak_new = v_peak + di_curr ∗(RS + K∗
PRE_CORR_PHASE_WIDTĤ ALPHA) ;

148 mvc_count = mvc_count+1;
149 v_adj = 0 ;
150 i f v_peak_new > PRE_CORR_V_MAX
151 v_adj = v_peak_new−PRE_CORR_V_MAX;
152 e l s e i f v_peak_new < PRE_CORR_V_MIN
153 v_adj = v_peak_new−PRE_CORR_V_MIN;
154 end
155

156 i f v_adj ~= 0
157 di_adj = −v_adj /(RS + K∗

PRE_CORR_PHASE_WIDTĤ ALPHA) ;
158 mvc_count = mvc_count+1;
159 i_new = i_new + di_adj ;
160 end
161
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162 % Quantize and l im i t
163 i_new = round ( i_new/I_STEP) ∗I_STEP;
164 i_new = max(min ( i_new ,PRE_CORR_I_MAX) ,

PRE_CORR_I_MIN) ;
165

166 % Re−c a l c u l a t e new e f f e c t i v e cur rent de l t a
167 di_curr = i_new−i_curr ;
168 end
169

170 % Update with the new cur rent
171 i_curr = i_new ;
172

173 % Update the c o r r e c t i o n po int vo l tage e r r o r
174 ve_pre = ve_pre+di_curr ∗K∗ ( (PRE_CORR_POINT−

ni_curr )^ALPHA−(PRE_CORR_POINT−ni_curr−
PRE_CORR_PHASE_WIDTH)^ALPHA) ;

175 mvc_count = mvc_count+1;
176

177 % Record cur rent and subt rac t de l t a from next
phase to ensure

178 % the f i n a l cur r ent i s always zero
179 ni_pre ( i ) = ni_curr ;
180 ni_pre ( i +1) = ni_curr+PRE_CORR_PHASE_WIDTH;
181 di_pre ( i ) = di_pre ( i )+di_curr ;
182 di_pre ( i +1) = di_pre ( i +1)−di_curr ;
183

184 % Update the t o t a l waveform
185 ni = [ ni_pre ; ni_wp ; ni_post ] ;
186 di = [ di_pre ; di_wp ; di_post ] ;
187

188 % Increment to next c o r r e c t i v e phase
189 ni_curr = ni_curr+PRE_CORR_PHASE_WIDTH;
190 end
191 end
192

193 % Calcu la te Pre−Cor r e c t i v e Pulse
194 i f i t e r < MAX_CORR_ITERATIONS | | ~POST_CORR_SKIP_LAST
195 ni = [ ni_pre ; ni_wp ; ni_post ] ;
196 di = [ di_pre ; di_wp ; di_post ] ;
197

198 ni_curr = PRE_CORR_WIDTH+PULSE_WIDTH;
199 i_curr = 0 ;
200

201 % Calcu la te the e r r o r vo l tage at the post−c o r r e c t i o n
po int

202 nm_post = POST_CORR_POINT;
203 ve_post = 0 ;
204 f o r k = 1 : l ength ( n i )
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205 i f nm_post >= ni (k ) && di (k ) ~= 0
206 ve_post = ve_post + di ( k ) ∗(RS + K∗(nm_post−

ni ( k ) )^ALPHA) ;
207 mvc_count = mvc_count+1;
208 end
209 end
210

211 f o r i = 1 :POST_CORR_N_PHASES
212

213 % Post−c o r r e c t i o n cur r ent up un t i l t h i s po int
214 i_curr = i_curr + di_post ( i ) ;
215

216 % Calcu la te the c o r r e c t i o n cur rent de l t a
217 % Since the c o r r e c t i o n po int i s ( should be )

a f t e r the end o f
218 % the pulse , the Rs component i s neg l e c t ed .
219 di_curr = −ve_post /(K∗ ( (POST_CORR_POINT−ni_curr )

^ALPHA−(POST_CORR_POINT−ni_curr−
POST_CORR_PHASE_WIDTH)^ALPHA) ) ;

220 mvc_count = mvc_count+1;
221

222 % We have a new cur rent magnitude
223 i_new = i_curr + di_curr ;
224

225 % Quantize and l im i t
226 i_new = round ( i_new/I_STEP) ∗I_STEP;
227 i_new = max(min ( i_new ,POST_CORR_I_MAX) ,

POST_CORR_I_MIN) ;
228

229 % Re−c a l c u l a t e new e f f e c t i v e cur rent de l t a
230 di_curr = i_new−i_curr ;
231

232 i f LIMIT_VOLTAGE
233 % Calcu la te the peak vo l tage at the end o f

the phase
234 n_peak = ni_curr + POST_CORR_PHASE_WIDTH;
235 v_peak = 0 ;
236 f o r k = 1 : l ength ( n i )
237 i f n_peak > ni (k ) && di (k ) ~= 0
238 v_peak = v_peak + di ( k ) ∗(RS + K∗(

n_peak−ni ( k ) )^ALPHA) ;
239 mvc_count = mvc_count+1;
240 end
241 end
242

243 % Calcu la te the new peak vo ltage , and ad jus t
i f ou t s id e l im i t s
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244 v_peak_new = v_peak + di_curr ∗(RS + K∗
POST_CORR_PHASE_WIDTĤ ALPHA) ;

245 mvc_count = mvc_count+1;
246 v_adj = 0 ;
247 i f v_peak_new > POST_CORR_V_MAX
248 v_adj = v_peak_new−POST_CORR_V_MAX;
249 e l s e i f v_peak_new < POST_CORR_V_MIN
250 v_adj = v_peak_new−POST_CORR_V_MIN;
251 end
252

253 i f v_adj ~= 0
254 di_adj = −v_adj /(RS + K∗

POST_CORR_PHASE_WIDTĤ ALPHA) ;
255 mvc_count = mvc_count+1;
256 i_new = i_new + di_adj ;
257 end
258

259 % Re−quant i ze and l im i t
260 i_new = round ( i_new/I_STEP) ∗I_STEP;
261 i_new = max(min ( i_new ,POST_CORR_I_MAX) ,

POST_CORR_I_MIN) ;
262

263 % Re−c a l c u l a t e new e f f e c t i v e cur rent de l t a
264 di_curr = i_new−i_curr ;
265 end
266

267 % Update with the new cur rent
268 i_curr = i_new ;
269

270 % Update the c o r r e c t i o n po int vo l tage e r r o r
271 ve_post = ve_post+di_curr ∗K∗ ( (POST_CORR_POINT−

ni_curr )^ALPHA−(POST_CORR_POINT−ni_curr−
POST_CORR_PHASE_WIDTH)^ALPHA) ;

272 mvc_count = mvc_count+1;
273

274 % Record cur rent and subt rac t de l t a from next
phase to ensure

275 % the f i n a l cur r ent i s always zero
276 ni_post ( i ) = ni_curr ;
277 ni_post ( i +1) = ni_curr+POST_CORR_PHASE_WIDTH;
278 di_post ( i ) = di_post ( i )+di_curr ;
279 di_post ( i +1) = di_post ( i +1)−di_curr ;
280

281 % Update the t o t a l waveform
282 ni = [ ni_pre ; ni_wp ; ni_post ] ;
283 di = [ di_pre ; di_wp ; di_post ] ;
284

285 % Increment to next c o r r e c t i v e phase
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286 ni_curr = ni_curr+POST_CORR_PHASE_WIDTH;
287 end
288 end
289

290 % I f we have converged , stop
291 i f max( di−di_prev ) <= I_STEP
292 break ;
293 end
294 di_prev = di ;
295 end
296

297 ni = [ ni_pre ; ni_wp ; ni_post ] ;
298 di = [ di_pre ; di_wp ; di_post ] ;
299

300 % Plot f i n a l model vo l t age ( f o r demonstrat ion only )
301 nm = 0 :PULSE_SUFFIX;
302 vm = ze ro s ( s i z e (nm) ) ;
303 f o r j = 1 : l ength (nm)
304 f o r k = 1 : l ength ( n i )
305 i f nm( j ) >= ni (k ) && di (k )~=0
306 vm( j ) = vm( j ) + di ( k ) ∗(RS + K∗(nm( j )−ni ( k ) )^

ALPHA) ;
307 end
308 end
309 end
310 p lo t (nm,vm) ;
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A.3 Algorithm Test Parameters

Parameter Description Value
pulse_width Width of the anodic (working) phase 50,100,150,200,250us

pulse_amp Amplitude of the anodic (working)
phase -100,-200,-300,-400,-500nA

corr_phase_width Width of each corrective phase 20us (2 samples)

num_pre_phases Number of pre-correction phases
(before the working phase) floor(pulse_width/corr_phase_width)

pre_corr_point When the pre-correction phases
force the voltage to zero 3*pulse_width

num_post_phases Number of post-correction phases
(after the working phase) ceil(num_pre_phases)/2

post_corr_point When the post-correction phases f
orce the voltage to zero 2*pulse_width + 50us

max_iterations Maximum number of shaping
iterations 10

v_max Maximum allowed model voltage None
v_min Maximum allowed model voltage None
i_max Maximum allowed correction current 2.55uA
i_min Minimum allowed correction current 0uA
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