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A B S T R A C T

Understanding behavior of human drivers in interactions with automated vehicles (AV) can aid the devel-
opment of future AVs. Existing investigations of such behavior have predominantly focused on situations in
which an AV a priori needs to take action because the human has the right of way. However, future AVs
might need to proactively manage interactions even if they have the right of way over humans, e.g., a human
driver taking a left turn in front of the approaching AV. Yet it remains unclear how AVs could behave in such
interactions and how humans would react to them. To address this issue, here we investigated behavior of
human drivers (N = 19) when interacting with an oncoming AV during unprotected left turns in a driving
simulator experiment. We measured the outcomes (Go or Stay) and timing of participants’ decisions when
interacting with an AV which performed subtle longitudinal nudging maneuvers, e.g. briefly decelerating and
then accelerating back to its original speed. We found that participants’ behavior was sensitive to deceleration
nudges but not acceleration nudges. We compared the obtained data to predictions of several variants of a drift-
diffusion model of human decision making. The most parsimonious model that captured the data hypothesized
noisy integration of dynamic information on time-to-arrival and distance to a fixed decision boundary, with
an initial accumulation bias towards the Go decision. Our model not only accounts for the observed behavior
but can also flexibly generate predictions of human responses to arbitrary longitudinal AV maneuvers, and
can be used for both informing future studies of human behavior and incorporating insights from such studies
into computational frameworks for AV interaction planning.
1. Introduction

Future automated vehicles (AVs) can potentially facilitate mobility,
boost economic growth, and improve public health (Clements and
Kockelman, 2017; Pettigrew, 2017). However, despite unprecedented
efforts into research and development of AVs, the existing technologies
struggle to provide intuitive and safe interactions of these vehicles
with human drivers, pedestrians, and cyclists (Milford et al., 2019).
Addressing this issue requires both technological developments and
understanding human behavior in interactions with AVs.

In the technical realm, the need for AVs to interact with human
drivers around them stimulated development of new kinds of motion
planning and control algorithms — interaction-aware controllers. Such
controllers set out to generate an optimal motion plan that takes
humans into account, typically with the help of a model that is used
to predict human behavior (e.g. Sadigh et al., 2018; Schwarting et al.,
2019; Jayaraman et al., 2020b; Fisac et al., 2019; Evestedt et al., 2016).

∗ Corresponding author.
E-mail address: a.zgonnikov@tudelft.nl (A. Zgonnikov).

One recurring notion in the literature on interaction-aware con-
trollers is that AVs could proactively influence the interaction instead
of just predicting human behavior and then reacting to it. For instance,
the controller proposed by Sadigh et al. (2018) generated emergent
behaviors in this vein: their simulated AV learned to back down at an
intersection to signal yielding and thereby influence the human driver
at the other end of the intersection to go first, helping to avoid a traffic
conflict. Sun et al. (2018) argued that AV designers should leverage the
opportunity to influence the interactions with humans and incorporate
the ‘‘courtesy’’ term in the AV optimization criteria. Such prosocial
AV behaviors are especially relevant given the often-overlooked ethical
challenge: The impact (both positive and negative) of even the most
mundane AV decisions could be amplified in case the presence of AVs
on the roads is scaled up (Himmelreich, 2018).

Understanding and quantifying impacts of proactive and courteous
AV behaviors on the individual humans and society in general nec-
essarily requires studying human behavior in interactions with such
vailable online 19 January 2024
071-5819/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
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AVs. However, engineering contributions proposing interaction-aware
controllers have at best demonstrated the feasibility of these controllers
in interactions with real humans (e.g. Sadigh et al., 2018; Schwarting
et al., 2019), but so far have stopped short of rigorous behavioral
experiments investigating human behavior when interacting with them.

Such detailed investigations of human-AV interactions exist in the
current literature, but have largely been a part of a separate line of
research within the fields of human factors and traffic psychology. In
these studies, the behavior of AVs is typically scripted; this enables
researchers to constrain the experiments and rigorously investigate
reactions of human traffic participants to AV behaviors of interest.
Existing human-AV interaction studies have explored a range of sce-
narios (AV interacting with human drivers (Imbsweiler et al., 2018;
Miller et al., 2022; Rettenmaier et al., 2021), pedestrians (Terwilliger
et al., 2019; Schmidt et al., 2019; Ackermann et al., 2019; Dey et al.,
2019), or cyclists (Ackermann et al., 2021) around them), types of
communication (explicit vs implicit Dey and Terken, 2017; de Winter
and Dodou, 2022; Lee et al., 2020; Rettenmaier and Bengler, 2021), and
specific means of communication (e.g. longitudinal Terwilliger et al.,
2019; Miller et al., 2022; Schmidt et al., 2019; Ackermann et al., 2019;
Tian et al., 2023, lateral Sripada et al., 2021; Miller et al., 2022, and
pitch Bindschädel et al., 2022 maneuvers of AV). As a result, there are
numerous insights that can guide AV design and implementation, for
instance, in regard to the optimal strategy of handling interaction with
a human (Schieben et al., 2019; Schmidt et al., 2019; Ackermann et al.,
2019). Still, these studies have mostly focused on scenarios in which
the human has the right of way and therefore the AV inevitably needs to
ake action. However, as argued above, AVs might need to interact with
umans even when the AV already has the right of way. Yet it remains
nclear how AVs could behave in such interactions and how humans
ould react to them.

In this paper, we aimed to pave way towards addressing this re-
earch gap. We investigated human behavior in a driving simulator
xperiment during interactions with a simulated AV. In the unprotected
eft turn scenario, the AV approached the intersection where the human
river was about to cross its path. The AV had the right of way yet
as pre-programmed to execute a ‘‘nudging’’ maneuver, as if it aimed

o help the human make a decision. We took inspiration in behavioral
conomics, where subtle changes in the design of an economic choice
ould help ‘‘nudge’’ humans’ decisions in the right direction (Thaler and
unstein, 2008). In this paper we use the term ‘‘nudge’’ when referring
o a specific AV maneuver involving short longitudinal deceleration
or acceleration), followed by acceleration (or deceleration) of the
ame duration that brings the vehicle back to its original speed. We
ocused on this specific maneuver because it can hypothetically help AV
roactively influence the behavior of the left-turning human (e.g. with
he purpose of reducing uncertainty about that human’s actions), while
ot deviating much from AV’s existing motion plan. In addition, our
xperiment included longer acceleration and deceleration conditions,
o understand whether more pronounced changes in AVs longitudinal
ynamics lead to stronger effect on participants’ decision making.

We hypothesized that, compared to AV moving with the constant
peed, the participants’ probability of taking the turn before the on-
oming AV would increase if that AV performs a deceleration nudge,
nd decrease for the acceleration nudge maneuver. In addition to
esting this hypothesis, we investigated the effect of the chosen AV
aneuvers on the time it took the participants to make a decision.
e then modeled human response to nudging movements of the AV,

uilding up on a previously proposed cognitive model of left-turn gap
cceptance (Zgonnikov et al., 2022). We assessed the model’s consis-
ency with the observed human behavior, as well as timing of human
esponses. Finally, we investigated the models’ predictions of human
ehavior in response to a variety of AV nudge maneuvers that were not
ncluded in the experiment, in order to exemplify how cognitive models
an help translate empirical findings into computational frameworks
2

or AV interaction planning.
2. Methods

2.1. Summary

We performed a driving simulator experiment in which participants
(𝑁 = 19) repeatedly made a left turn across path of an approach-
ing automated vehicle (Fig. 1). The experiment followed a 2 × 5
within-subject design, manipulating two independent variables, initial
time-to-arrival and acceleration profile of the AV. The dependent vari-
ables included the decision outcome (Go or Stay), response time, and
occurrence of a subjective negative reaction to AV behavior by the
participants. We quantified the statistical relationships between the
independent and dependent variables using mixed-effects (multilevel)
regression models. Finally, we designed and implemented multiple
variants of a generalized drift-diffusion model and fitted it to the
obtained data. All data and code required to replicate our findings,
as well as online supplementary information are publicly available at
https://osf.io/5hu7e/.

2.2. Experiment setup

This study was approved by the TU Delft research ethics committee.
Nineteen participants (16 M, 3F, age range 22 to 28, all had a driving
license) recruited at a university campus took part in the driving
simulator experiment, compensated by a e25 gift voucher.

The experiment setup and the task were based on the paradigm
reported by Zgonnikov et al. (2022); here we describe only the key
aspects of that paradigm and all the deviations from it. The hardware
included a 55-inch screen and a commercially available game controller
(Logitech G29) comprising a steering wheel and a set of pedals. The
software, running on a Windows-based desktop computer, was based
on the open-source driving simulator CARLA (Dosovitskiy et al., 2017).

The participants were instructed to drive as they would normally
drive in real traffic, following auditory instructions of a navigation
system that guided them through a virtual urban environment (a square
grid of roads). They had to complete 10 routes, each consisting of 24
left-turn and 6 right-turn trials. The right turns were filler trials and
were not analyzed. In the left-turn trials, the ego vehicle driven by
the participant approached the intersection where a truck was parked
in their lane, blocking the participant’s way. Once the participant
stopped behind the truck, the truck started driving forward, revealing
an oncoming automated vehicle that approached the intersection in
the opposite lane. The moment when the oncoming AV appeared in
the field of view of the participant was considered the start of the
interaction (𝑡 = 0). During the interaction, the participant had to decide
whether to turn left before or after the AV passes the intersection.

The participants were explicitly instructed that the oncoming vehi-
cles they will interact with during the experiment is fully autonomous.
The AV was a regular-sized sedan, and did not have any external
human-machine interfaces. Both the driver and the passenger seats of
the AV were empty. Besides the participant’s vehicle, oncoming AV,
and the truck initially blocking the participant’s view, there were no
other vehicles in the environment.

2.3. Conditions

The AV started its motion 80 meters away from the ego vehicle, and
was randomly assigned an initial speed of either 17.8 m/s or 14.5 m/s,
resulting in initial time-to-arrival (TTA0) of 4.5 s or 5.5 s, respectively.
We included two initial TTA values to investigate the participants’
reactions to AV maneuvers in situations with lower and higher baseline
probability of accepting the gap.

In all trials, AV moved with the initial speed for the first 0.25 s, but
its acceleration profile for 2 s after that was manipulated, resulting in
five acceleration conditions (Fig. 2, Table 1). We chose the timing of

acceleration changes to be consistent with the typical human response

https://osf.io/5hu7e/
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Fig. 1. Participants’ view of the task in the driving simulator. As the vehicle driven by a participant approached an intersection, the truck in the participants’ lane started moving
away, revealing the oncoming car. The participants had to decide whether to go (accept the gap and turn left before the oncoming car), or stay (reject the gap and turn left after
the oncoming car passes the intersection). Video recordings of example trials are available in online supplementary information at https://osf.io/5hu7e/.
Fig. 2. Left-turn interaction setup, evidence accumulation modeling approach, and the five AV behaviors used in the experiment. The acceleration, velocity, and TTA profiles are
schematic; the exact velocity and TTA profiles of the AV were dependent on the initial TTA value.
times in left-turn gap acceptance (on average 0.6 s Zgonnikov et al.,
2022): the manipulations had to start early enough in order to have
a chance of affecting the decisions. They also had to last long enough
and have acceleration magnitudes that are large enough, in order to
be noticeable by human participants: this was calibrated in a pilot
experiment while keeping acceleration/deceleration rates physically
plausible.

The Constant speed condition was a baseline, with AV approaching
the intersection sticking to its initial speed. In the Deceleration nudge
condition, after 0.25 s of driving with its initial speed the AV deceler-
ated briefly between 𝑡 = 0.25 s and 𝑡 = 1.25 s, resulting in the speed drop
of 4 m/s. Then the AV recovered back to its initial speed by accelerating
for another second (𝑡 = 1.25 s to 𝑡 = 2.25 s). The Acceleration nudge
condition represented the reverse situation: the AV first accelerated
3

Table 1
Investigated maneuvers of the automated vehicle: acceleration values (m∕s2) in the five
conditions. For the first 0.25 s of the interaction, as well as after 2.25 s, acceleration
was zero in all conditions.

Condition 0.25 s to 1.25 s 1.25 s to 2.25 s

Long acceleration 4 4
Acceleration nudge 4 −4
Constant speed 0 0
Deceleration nudge −4 4
Long deceleration −4 −4

for 1 s and then decelerated back to its initial speed. In the Long
acceleration/deceleration conditions, the AV accelerated/decelerated

https://osf.io/5hu7e/
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Fig. 3. Dynamics of time-to-arrival (TTA) of the oncoming vehicle over the course of the first 2.5 s of the trial for TTA0 = 4.5 s.
𝑝
n
a
b

for two seconds, which resulted in speed increase/decrease of 8 m/s by
𝑡 = 2.25 s. In all conditions, the AV had zero acceleration after 𝑡 = 2.25 s.

Note that different acceleration profiles which could potentially
result in similar TTA values after the end of the maneuver still produce
different TTA dynamics (e.g., acceleration nudge vs deceleration nudge,
Fig. 3). We hypothesized this difference over the course of the trial
would influence participants’ behavior and hence manipulated the
acceleration profile and not just the resulting TTA.

Each of the ten combinations of two initial TTA values and five
acceleration conditions was repeated 20 times for each participant,
randomly shuffled over the 10 routes the 19 participants completed
during the experiment. This resulted in 3800 recorded left-turn deci-
sions. In addition, 4 left turns per route included the AVs that either
appeared very close to the intersection moving very fast or far from the
intersection moving very slow. These extreme conditions were included
to ensure that participants take into account the AV kinematics rather
than defaulting to either Go or Stay decision; the data from these trials
was not analyzed.

2.4. Measures

The first dependent variable of interest was the decision outcome in
each trial (Go or Stay), determined based on whether the participant
drove through the intersection before or after the AV.

Second, we measured response time for each decision, that is, the
time the participant took to arrive to that decision, starting from the
moment the AV appeared in their field of view. The end of the decision
process was determined differently for Go and Stay decisions. For Go
decisions, we assumed that the end of the decision process was marked
by the onset of the first accelerator pedal press after the start of the
interaction (Zgonnikov et al., 2022). However, when preprocessing the
data, we found that only in 70% of the trials the onset of the pedal press
could estimate the response time: participants often started pressing
the accelerator pedal already while waiting for the truck to leave the
intersection, even before they could see the oncoming AV. In these trials
(representing 30% of all Go decisions) we therefore could not assess the
response time.

For Stay decisions, in natural driving there are no candidate markers
of the end of the decision like the accelerator pedal press for Go
decisions. For this reason, we asked the participants to press a button on
a steering wheel as soon as they decided to Stay. The time of the button
press was considered to mark the end of the Stay decision. However, in
11% of Stay decisions participants failed to press the button, resulting
4

in missing response time data. c
Finally, we measured participants’ subjective perception of the in-
teraction by asking participants to press a ‘‘negative rating’’ button
on the steering wheel ‘‘at any time when the AV behavior is confusing,
weird, or unintuitive’’. We opted for only measuring negative reactions
because we did not expect the investigated AV behaviors to induce
any strong positive reactions. In addition, having to keep in mind yet
another button to press could have further complicated the task for the
participants.

2.5. Exclusion criteria

We excluded 24 outlier trials with response times longer than 4 s
from all analyses. In addition, Go and Stay trials with missing response
times were excluded from statistical analyses of response times and
cognitive modeling (but included in statistical analyses of decision
outcomes and negative ratings).

2.6. Data analysis

Statistical analyses were performed using mixed-effects regressions
(logistic for decision and negative rating, linear for response time)
implemented in pymer4 (Jolly, 2018). Decision and negative rating
were coded as 0 (Stay/No rating) and 1 (Go/Negative rating). Dummy
coding was used for AV maneuver (Table 1), with Constant speed as
the reference category. To account for individual differences in baseline
values of dependent variables, the participant ID was included as a
random intercept in all regressions; regressions with random slopes
per participant failed to converge. For the response time regression,
we computed Type-III sum-of-squares ANOVA table using the Satterth-
waite approximation of degrees of freedom, correcting for multiple
comparisons with the Tukey method.

3. Results

We found that decision outcome was affected by both initial time
gap (TTA0) and the AV’s approach dynamics (Fig. 4a, Table 2). Com-
pared to the Constant speed condition, probability of a Go decision
increased in response to AV’s deceleration nudge (𝑏 = 0.5, 𝑧 = 3.4,

< 0.001). We found no evidence of an effect of AV’s acceleration
udge (𝑏 = −0.13, 𝑧 = −0.9, 𝑝 = 0.35) on the decision. Long acceleration
nd Long deceleration had a negative and positive effect on the proba-
ility of Go, respectively (Table 2). Across all acceleration/deceleration

onditions, decision outcome depended on TTA0: the larger the initial
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Fig. 4. Effect of condition and TTA0 on (a) decision outcome, mean response times in (b) Go and (c) Stay decisions, and proportion of trials with a negative rating in (d) Go
and (e) Stay decisions. The data was aggregated across all participants. Error bars represent 95% confidence intervals. Results of comparisons between conditions are indicated by
brackets: ***: 𝑝 < 0.001, **: 𝑝 < 0.01, *: 𝑝 < 0.05, ns: 𝑝 > 0.05; p-values were calculated based on mixed-effects models reported in the main text.
Table 2
Coefficients of the mixed-effects logistic regression describing the final decision as
a function of TTA0 and condition (with Constant speed as the reference category).
Participant ID was included as a random intercept.

𝑏 SE 𝑧 𝑝

(Intercept) −9.30 0.71 −13.10 <0.001
TTA0 1.82 0.10 17.74 <0.001
Long acceleration −0.78 0.15 −5.38 <0.001
Acceleration nudge −0.13 0.14 −0.94 0.35
Deceleration nudge 0.50 0.14 3.44 <0.001
Long deceleration 1.50 0.15 9.89 <0.001

time-to-arrival, the more likely the participants were to accept the gap
(𝑏 = 1.82, 𝑧 = 17.8, 𝑝 < 0.001)).

Analyzing response times, we found evidence for main effects of
ecision, TTA0, and acceleration condition, as well as an intricate
hree-way interaction between them (Fig. 4b,c, Table 3). Post-hoc
omparisons revealed that

• Go responses were substantially faster than Stay responses (𝛥 =
1.02 s, 𝑡 = 39.6, 𝑝 < 0.001).
5

• There was no evidence that Deceleration nudges differed from the
Constant speed condition in terms of response time (𝛥 = 0.001 s,
𝑡 = 0.1, 𝑝 ≈ 1 for Go decisions, 𝛥 = 0.05 s, 𝑡 = 1.2, 𝑝 = 0.74 for Stay
decisions).

• Similarly, there was no evidence of response time differences
between Acceleration nudge and Constant speed conditions (𝛥 =
0.04 s, 𝑡 = 0.73, 𝑝 = 0.95 for Go decisions, 𝛥 = −0.1 s, 𝑡 = −2.6,
𝑝 = 0.07 for Stay decisions).

• Long deceleration induced significantly longer Go response times
compared to Constant speed (𝛥 = 0.26 s, 𝑡 = 5.8, 𝑝 < 0.001),
although this was accounted mostly by trials with TTA0 = 5.5 s.
There was no evidence for a difference in Stay response times
between these conditions (𝛥 = 0.04, 𝑡 = 0.8, 𝑝 = 0.93), as well as
any differences in response time between Long acceleration and
Constant Speed (𝛥 = −0.04, 𝑡 = 0.7, 𝑝 = 0.96 for Go trials, 𝛥 = 0.08,
𝑡 = 2, 𝑝 = 0.28 for Stay trials).

• TTA0 positively affected Go response times in the Long deceler-
ation condition (𝑏 = 0.5, 𝑡 = 9.2, 𝑝 < 0.001), but we found no
evidence of this effect in other conditions, including the Constant
speed condition.
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Table 3
ANOVA table based on the mixed-effects linear regression describing response time as
a function of decision, TTA0, and condition.

SS MS df 𝐹 𝑝

Decision 5.27 5.27 1 19.54 <0.001
TTA0 11.79 11.79 1 43.73 <0.001
Condition 3.25 0.81 4 3.01 0.02
Decision: TTA0 0.03 0.03 1 0.10 0.75
Decision: condition 7.71 1.93 4 7.15 <0.001
Condition: TTA0 4.55 1.14 4 4.22 0.002
Decision:condition: TTA0 8.41 2.10 4 7.80 <0.001

Table 4
Coefficients of the mixed-effects logistic regression describing occurrence of the negative
rating as a function of TTA0 and condition (with Constant speed as the reference
ategory). Participant ID was included as a random intercept.

𝑏 SE 𝑧 𝑝

(Intercept) −6.53 0.95 −6.90 <0.001
TTA0 0.54 0.17 3.14 0.002
Decision −2.67 0.25 −10.60 <0.001
Long acceleration −0.15 0.37 −0.39 0.69
Acceleration nudge 0.50 0.34 1.46 0.15
Deceleration nudge 0.73 0.33 2.20 0.03
Long deceleration 3.42 0.30 11.26 <0.001

• Stay response times were positively affected by TTA0 in the
Acceleration nudge (𝑏 = 0.18, 𝑡 = 3.2, 𝑝 < 0.001), Constant speed
(𝑏 = 0.23, 𝑡 = 4.1, 𝑝 < 0.001), and Deceleration nudge (𝑏 = 0.21,
𝑡 =, 𝑝 < 0.001) conditions.

Finally, we found that participants gave negative ratings over-
whelmingly to AVs that performed Long deceleration, and mostly in
Stay decisions (Fig. 4d,e, Table 4); more negative ratings were given in
the larger TTA0 condition (𝑏 = 0.54, 𝑧 = 3.1, 𝑝 = 0.002). Participants
perceived Deceleration nudge slightly more negatively than Constant
speed (𝑏 = 0.73, 𝑧 = 2.2, 𝑝 = 0.03).

Based on these findings, we conclude that

• Deceleration nudges increased the probability of Go decision.
There was no evidence they required more or less time for the
participants to make up their mind, compared to the Constant
speed condition. In a small fraction of Stay trials, Deceleration
nudges were negatively rated.

• Compared to Deceleration nudge, the Long deceleration maneu-
ver further increased the probability of going, but it caused
participants to spend significantly more time to arrive to a Go
decision, and induced by far the strongest negative reaction from
the participants.

• We found no evidence that the Acceleration nudge actually
pushed the participants towards staying, but it did make their
Stay decisions marginally faster. At the same time, Long accelera-
tion did reduce the probability of going, compared to the Constant
speed condition.

4. Cognitive process modeling

4.1. Basic drift-diffusion model

To gain a deeper insight into the experimental findings, we sought
a process-level explanation of the observed behavior through cogni-
tive modeling. We used the drift-diffusion modeling framework which
is based on the notion of evidence accumulation (Fig. 2, top-right
panel). Evidence accumulation models assume that humans integrate
relevant perceptual information over time. This accumulation is noisy
and happens until the amount of evidence in favor of either alternative
reaches a certain boundary. Evidence accumulation models, despite
their seeming simplicity, have been remarkably successful in explain-
ing a variety of behavioral effects, including intricate relationships
6

o

between the decision context, outcomes of the decision, and response
times (Gold and Shadlen, 2007; Ratcliff and Smith, 2004; Ratcliff et al.,
2016). For this reason, evidence accumulation has been one of the
dominant paradigms of modeling human decision making in cognitive
neuroscience and psychology over the past few decades.

The drift-diffusion model (Ratcliff, 1978; Ratcliff et al., 2016) is
one of the simplest evidence accumulation models that represents the
process of making a choice between two options as a random process
𝑑𝑥
𝑑𝑡

= 𝑠(𝑡) + 𝜖(𝑡), (1)

here 𝑠(𝑡) is the drift rate (the momentary evidence in favor of one
ption over the other, sampled from the environment at time 𝑡), 𝜖(𝑡)

is the diffusion rate (random noise), and 𝑥 is the evidence accumu-
ated by time 𝑡 as a result of the joint effect of drift and diffusion.
he accumulation process starts at an initial position 𝑥(0) = 𝑥0 and

continues until 𝑥 crosses either an upper decision boundary 𝑥 = 𝑏(𝑡)
r a lower boundary 𝑥 = −𝑏(𝑡) (each corresponding to one of the

choice alternatives). Finally, drift-diffusion models typically account
for cognitive processing not related to decision making (e.g. perceptual
and motor delays, premature responses) by adding non-decision time
to the response time produced by the evidence accumulation process.
Here, we hypothesized that non-decision time is normally distributed:
𝑡ND ∈  (𝜇ND, 𝜎ND).

Recently, drift-diffusion models have been applied to human deci-
ions in traffic, e.g. gap acceptance in pedestrian crossing (Pekkanen
t al., 2022; Markkula et al., 2023), unprotected left turns (Zgonnikov
t al., 2022), and overtaking (Mohammad et al., 2023). The key as-
umption of these versions of the model is that the drift rate tracks
he dynamically changing size of the gap, relative to a certain critical
alue. The decision boundary is usually assumed to be fixed (Ratcliff
t al., 2016; Pekkanen et al., 2022) but can also be collapsing over time
o reflect choice urgency (Zgonnikov et al., 2022; Drugowitsch et al.,
012).

.2. Candidate variants of a drift-diffusion model

Our experimental setup was similar to that of Zgonnikov et al.
2022), hence we used the left-turn gap acceptance model they pro-
osed as a basis for a cognitive process account of our findings. How-
ver, due to a number of changes introduced in our experiment com-
ared to theirs, we investigated several variants of that model as
otential candidate models. These variants differed based on their as-
umptions about three components of the model: (1) drift rate (whether
r not it includes a separate acceleration term), (2) initial bias of
he accumulator (starting at 𝑥 = 0 or with a bias towards one of

the options), and (3) decision boundary (whether it stays constant or
collapses over time). We then tested eight configurations of the model
resulting from all possible combinations of these three binary design
choices.

4.2.1. Drift rate: Without or with acceleration term?
The original left-turn gap acceptance model (Zgonnikov et al., 2022)

assumes that the drift rate in the drift-diffusion model (Eq. (1)) depends
on the dynamically changing distance 𝑑 and time-to-arrival TTA:

𝑠(𝑡) = 𝛼
(

TTA(𝑡) + 𝛽𝑑𝑑(𝑡) − 𝜃crit

)

, (2)

here 𝛼, 𝛽𝑑 , and 𝜃crit are free parameters. In Eq. (1), positive values of
he accumulator state 𝑥 are then associated with accumulated evidence
or the Go decision (so negative 𝑥(𝑡) means the decision maker leans
ore to the Stay decision at time 𝑡). Then intuitively, the larger the

ap to the oncoming vehicle (a weighted combination of TTA and 𝑑),
ompared to some critical value 𝜃crit, the more positive the drift rate
ecomes, and the more likely the decision maker is to arrive to the Go
ecision.

The study of Zgonnikov et al. (2022) only included constant-speed

ncoming vehicles. In our data however, most trials included the
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oncoming vehicle that varied its speed by accelerating or decelerating.
A model including a TTA-sensitive drift rate can potentially capture hu-
man behavior in response to such accelerating/decelerating AV simply
through the associated changes in TTA. However, one might also argue
that human decision makers can benefit from estimating acceleration
in addition to TTA. Indeed, previous studies have shown that a separate
term for acceleration in the drift rate can help a drift-diffusion model
better capture human responses to AV’s apparent yielding behavior
in a pedestrian crossing scenario (Giles et al., 2019; Pekkanen et al.,
2022). It is unclear though to what extent information on acceleration
is accumulated by humans on top of TTA in our scenario, given that it
involves a different kind of task, with larger distances, higher speeds,
and lower accelerations of the oncoming vehicle compared to Giles
et al. (2019), Pekkanen et al. (2022). Hence, we tested models with
two drift rate variants: Without acceleration term (Eq. (2)) and With
acceleration term:

𝑠(𝑡) = 𝛼
(

(TTA(𝑡) + 𝛽𝑑𝑑(𝑡) − 𝜃crit) − 𝛽𝑎𝑎(𝑡)
)

. (3)

Here the term 𝛽𝑎𝑎(𝑡) negatively contributes to the drift rate, reflecting
the assumption that positive acceleration of the AV would increase
the probability of reaching the lower boundary (Stay decision), and
negative acceleration would push the decision maker towards the upper
boundary (Go).

4.2.2. Initial state of the accumulator: Without or with bias?
Zgonnikov et al. (2022) only measured response times in Go but not

Stay decisions. Here we addressed this limitation, and measured Stay
response times, which we found to be substantially longer compared
to Go response times. We hypothesized this could have resulted from
initial bias in the accumulation process which can reflect the presence
of a default option. In our experiment, participants were instructed to
turn left on every trial, so they might have been cognitively predisposed
towards Go which would then explain shorter response times in Go
decisions. The cognitive modeling approach enabled us to test this
explanation by including an initial bias in the model and examining
if this would allow the model to better describe the data.

In one version of this model component, the initial bias 𝑥(0) = 𝑥0 is a
ree parameter expressed as a fraction of the decision boundary value,
aking values between −1 (extreme bias towards Stay) and 1 (extreme
ias towards Go). In the second version, there is no initial bias, that is,
ccumulation always starts at 𝑥(0) = 0 (which was also the case for the
odel reported by Zgonnikov et al. 2022).

.2.3. Decision boundary: Constant or collapsing?
Zgonnikov et al. (2022) emphasized the positive effect of TTA0 on

o response times as one of their main findings: the longer the time
udget drivers have, the more time they are taking to make the Go
ecision, despite having more clear evidence in favor of Go. In terms
f cognitive processes, Zgonnikov et al. (2022) explained this effect by
aving the decision boundary in the drift-diffusion model collapsing
ith TTA(𝑡)

(𝑡) = ±𝑏0∕(1 + 𝑒−𝑘(TTA(t)−𝜏)). (4)

his collapsing boundary requires three free parameters to provide
lexibility in the boundary baseline value at 𝑡 = 0 (𝑏0), rate of collapsing
𝑘), and characteristic scale of TTA at which collapsing occurs (𝜏).
espite its relative complexity, this boundary was shown to be essential

or capturing the behavior observed by Zgonnikov et al. (2022), as the
odel with a constant boundary could not capture Go response times

ncreasing with TTA0. However, in our study we did not find evidence
or a relationship between TTA0 and Go response times in all conditions
ut one (Long deceleration). For this reason, we aimed to test two
ersions of the decision boundary in our models: the constant boundary
𝑏(𝑡) ≡ ±𝐵) and the collapsing boundary (Eq. (4)).
7

f

.3. Model fitting and evaluation

We performed model selection between eight variants of the model
ased on qualitatively assessed fit to our data, as well as comparison of
ayes Information Criterion (BIC) values. The simplest model including
o acceleration term, no initial bias, and constant boundary (Model 1)
s characterized by 6 free parameters, while the most complex model
ith acceleration term, initial bias, and collapsing boundary (Model 8)
as 10 free parameters. The model reported by Zgonnikov et al. (2022)
as 8 free parameters, and here is represented as Model 3.

We aimed to investigate whether models can describe the behavior
f the ‘‘average’’ participant, and therefore fitted each model to the
ata obtained from all 19 participants disregarding participant IDs.
itting the model to individual participant’s data is also possible and
an provide additional insights into potential individual differences in
ognitive processes, but deserves a separate investigation beyond the
cope of this work.

To evaluate how well the models generalize to unseen conditions,
e fitted the models to a subset of the data that included only Constant

peed, Long acceleration, and Long deceleration conditions (thereby ex-
luding the two nudge conditions). We performed posterior predictive
hecks on the same three conditions, as a way of confirming whether
odels did in fact fit the data used for parameter estimation. We

hen evaluated models’ generalization to the two unseen conditions
Acceleration nudge and Deceleration nudge). Go and Stay trials with
issing response times had to be excluded at this stage, because they

annot be handled by the existing model fitting frameworks.
After excluding trials with missing response time data and the hold-

ut conditions, the models were fitted to the remaining 1782 trials (out
f 3776 trials with non-outlier RTs). The models were then evaluated
n the dataset without the missing response time data (therefore, data
stimates in Fig. 5 are slightly different from those in Fig. 4) but
ith the held-out nudge trials, which in total amounted to 2987 trials.
odel fitting was performed via differential evolution optimization of
ayesian Information Criterion as implemented in pyddm, a framework
or drift-diffusion model fitting in Python (Shinn et al., 2020).

.4. Modeling results

We found that all candidate models captured the following qualita-
ive patterns we observed in human behavior (Figs. 5 and S1 in online
upplementary information):

• Probability of Go increased with TTA0, and increased monotoni-
cally as the AV dynamics became more assertive (lowest p(Go)
in the Long acceleration condition, highest p(Go) in the Long
deceleration condition).

• Go response times were much shorter than Stay response times.
• Go response times were substantially longer in Long deceleration

at TTA0 = 5.5 s, compared to other conditions.
• Stay response times increased with TTA0 in the two nudge condi-

tions and the Constant speed condition.

Despite the qualitative similarities, the models did differ in their
bility to parsimoniously describe the data, as quantified by BIC (Ta-
le 5). The presence of initial bias had the strongest effect on BIC, with
odels including a free bias parameter consistently having substan-

ially lower BIC than their counterparts without the bias parameter.
nclusion of the acceleration term in the drift rate or a more flexible
oundary had almost no effect on descriptive capacity of the model,
nd even led to higher BIC values due to the added complexity in
erms of the number of parameters. Upon inspection of fitted model
arameters, the values of 𝛽𝑎 for models with the acceleration term and
for models with collapsing boundary turned out to be very small

online supplementary information Table S1), further indicating that
hese extensions do not benefit the model. For this reason, in what

ollows we focus on three candidate models: the simplest one (Model
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Fig. 5. Behavior of three candidate models compared to participants’ behavior. The simplest model, Model 1, has no initial bias, no acceleration term, and constant boundaries.
The model with the lowest BIC, Model 2, has initial bias, no acceleration term, and constant boundaries. The most complex model, Model 8, has initial bias, acceleration term,
and collapsing boundaries. The models were fitted to the subset of data including only the Long acceleration, Constant speed, and Long deceleration trials, while the Acceleration
nudge and Deceleration nudge conditions were held out to test generalization of the models to unseen scenarios. The data depicted here excludes the trials with missing response
times (mostly Go trials), hence lower probabilities of Go compared to Fig. 4a. Other tested models are illustrated in online supplementary information (Figure S1).
Table 5
Eight tested model configurations with their number of free parameters (𝜅) and resulting Bayes Information
Criterion (BIC) values (lower values correspond to models more consistent with the data, accounting for the
number of free parameters). Model 2 is highlighted as the model with the lowest BIC value; the fitted parameters
of Model 2 were 𝛼 = 0.55, 𝛽𝑑 = 0.005, 𝜃crit = 6.8, 𝐵 = 1.3, 𝜇ND = 0.19, 𝜎ND = 0.17, 𝑥0 = 0.67.

Without acceleration term With acceleration term

No initial bias With initial bias No initial bias With initial bias

Constant boundary
Model 1
𝜅 = 6
BIC = 5050

Model 2
𝜅 = 7
BIC=4610

Model 5
𝜅 = 7
BIC = 5063

Model 6
𝜅 = 8
BIC = 4620

Collapsing boundary
Model 3
𝜅 = 8
BIC = 5072

Model 4
𝜅 = 9
BIC = 4622

Model 7
𝜅 = 9
BIC = 5090

Model 8
𝜅 = 10
BIC = 4638
1), the most complex one (Model 8), and the model providing the best
trade-off between model performance and complexity, as measured by
BIC (Model 2). The behavior of Models 3, 5, and 7 is similar to Model
1; Models 4 and 6 are similar to Models 2 and 8 (online supplementary
information Figure S1).

Models without the initial accumulator bias (e.g., Model 1) captured
decision probabilities better than models with the bias, but overes-
timated Go response times by approx. 0.3 s (a substantial difference
given the mean Go response times about 0.6 s). These models however
yielded implausible estimates of non-decision time (𝜇ND close to 0,
𝜎ND approx. 0.25 s) which hints at model misspecification. In contrast,
models with the initial bias towards the Go decision (e.g., Models 2 and
8) closely captured Go response times, but underestimated the effect of
Long acceleration (Long deceleration) in the lowest (highest) TTA0 on
probability of Go. These models revealed strong initial bias towards the
Go decision (65% to 69% of the initial boundary value). Interestingly,
predictions of all models overestimated Stay response times in the
Deceleration nudge condition (by approx. 0.3 s to 0.4 s depending on
the model, with the average response time in this condition being 1.6 s).
Overall, given much lower BIC for models with the initial bias, we
conclude that Model 2 (drift-diffusion model with no acceleration term,
initial bias, and constant boundary) provides the most parsimonious
8

and plausible explanation of our data among the eight tested models.
Crucially, it captured all qualitative relationships between AV motion
dynamics and decision outcomes and response times without ‘‘seeing’’
any data from the nudge conditions, with the only quantitative discrep-
ancy in these conditions being overly long Stay response times in the
Deceleration nudge condition.

For a more detailed picture of the behavior of the model and its
fit to the data, we analyzed full response time distributions generated
by Model 2. We found that the model closely matched 19 of the 20
experimentally measured response time distributions (Fig. 6). Particu-
larly notable is the model’s ability to capture the bimodal response time
distribution observed in Go response times in the Long deceleration
condition at TTA0 = 5.5 s. Because in this condition the early TTA
cue favors the Go decision, majority of Go decisions were made within
the first second of the trial. But there were relatively rare cases in
which, due to noise, the initially accumulated evidence favored the Stay
decision. In such trials, the stronger late-coming evidence (acceleration
cue in combination with increasing TTA) pushed evidence towards the
Go decision after all, which altogether takes a much longer time than
a typical decision, resulting in the second mode in the distribution.

Interestingly, Model 2 predicted that the response time would also
be bimodally distributed in Stay decisions for Deceleration nudges at
TTA0 = 5.5 s. The likely reason for this atypical distribution in the

model is that it predicted the participants to be less likely to commit to
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Fig. 6. Full response time distributions produced by Model 2 compared to the data. Similar to Fig. 5, Acceleration nudge and Deceleration nudge conditions were withheld during
model parameter estimation.
their Stay decisions during the initial phase of the Deceleration nudge
(as evidence in favor of Staying at TTA0 = 5.5 s would be low, further
owered by AV’s deceleration). Then, as the TTA started decreasing
fter the AV started accelerating in the latter phase of Deceleration
udge, the evidence in favor of Staying would increase again, leading to
n increase in the likelihood of arriving to the Stay boundary around 2 s
n the decision. This however did not match the unimodal distribution
bserved in the data, suggesting that participants often committed
o the Stay decision early on, despite the evidence supporting Stay
ecision being comparatively low at that time.

Taken together, our modeling results strengthen the existing notion
hat noisy accumulation of evidence coming from relevant dynamic
erceptual variables (distance and TTA) is a key mechanism underlying
uman tactical decisions in traffic (Pekkanen et al., 2022; Zgonnikov
t al., 2022; Markkula et al., 2023; Mohammad et al., 2023). They also
ighlight that changes in acceleration of the oncoming vehicle could be
rocessed via their effect on TTA rather than independently.

. Using the drift-diffusion model to predict human responses to
ew AV maneuvers

Importantly, our model can take arbitrary longitudinal dynamics of
he oncoming vehicle as an input (TTA(𝑡), 𝑑(𝑡), 𝑎(𝑡)), and therefore does

not rely on the exact configuration of the AV maneuvers used in the
experiment. The model, even if fitted to a limited dataset like ours, can
then generate testable predictions of human left-turn decision-making
not only for different initial values of 𝑑 and TTA (which is what most
existing left-turn gap acceptance models can do), but also for arbitrary
approach dynamics of the oncoming AV.

Here we illustrate the model’s flexibility by simulating it under the
conditions not included in our experiment. We explored the predictions
of the model (using Model 2 with the parameters fitted to our data;
see the caption of Table 5) for new initial conditions 𝑑 = 90 m and
TTA = 6 s and a multitude of variations of the deceleration nudge
maneuver. We independently varied the duration (0.1 to 2.5 s) and
the magnitude (0.5 to 5 m∕s2) of the initial deceleration, which was
immediately compensated by acceleration of the same duration and
magnitude. Similar to the experiment, the maneuver was initiated at
9

0.25 s after the start of the interaction.
The key prediction of the model is that increasing the duration and
magnitude of AV’s deceleration nudge increases the probability of the
Go decision by the human (Fig. 7a) and simultaneously increases the re-
sponse times in both Go and Stay decisions (except for extreme nudges,
see below). This prediction is to be tested in future experiments.

Importantly, although somewhat unintuitively, the predicted prob-
ability of Go did not reach 100% even for extreme deceleration nudges,
peaking at 98% in the scenario with the strongest nudge (the oncoming
vehicle slowing down from 15 m/s to 2.5 m/s in 2.5 s). One would
expect human drivers to choose Go 100% of the time if the oncoming
vehicle almost comes to a full stop, even if they initially inclined to
Stay; yet the model still predicts a fraction of Stay decisions. This can
be explained by the scope of the model being limited to just the first
decision resulting from evidence accumulation and not affording the
possibility of a subsequent change-of-mind. In our simulations, even
for strongest nudges the Stay boundary is occasionally reached; this
typically happens early on in the accumulation process. In the current
version of the model, this means that the Stay decision is finalized, and
the evidence accumulation is terminated. However, in real interactions
the drivers presumably continue accumulating evidence, and could
change their mind after an initial Stay decision in case the new evidence
favors the Go decision. Addressing this limitation would allow the
model to account for finer details of human left-turn behavior, but
requires substantial further research and is therefore not covered in this
paper.

Overall, our simulations of the model estimate the expected con-
sequences of deceleration nudge maneuvers with varying magnitude
and duration. This exemplifies how the model can generate testable
quantitative predictions of human behavior for arbitrary AV approach
trajectories.

6. Discussion

Future automated vehicles will face a technically and ethically
challenging problem: how to behave in seemingly non-safety-critical
interactions with humans when the AV clearly has the right of way. A
pedestrian who can unexpectedly start to jaywalk, or a driver trying to
merge onto a highway who might suddenly decide to take their chances

with a small gap in front of an AV — both of them can turn the situation
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Fig. 7. Model predictions: Decision outcome (a) and response times in Go (b) and
Stay (c) decisions as a function of duration and magnitude of a deceleration nudge.
Predictions were generated by simulating the behavior of Model 2 for 𝑑0 = 90 m and
TTA0 = 6 s.

from mundane to safety-critical in a fraction of second. Can AVs do
something to reduce uncertainty about future human behavior, but
without sacrificing much of its own plans? In this paper, we explored
the idea of AV subtly influencing the left-turning human driver by
adjusting its longitudinal motion. In a driving simulator experiment,
we found that human drivers were more likely to go in front of
the oncoming AV when that AV performed a deceleration nudge. At
the same time, acceleration nudge did not lead to a marked change
in human behavior. Our observations of participants’ decisions, their
timing, and the relationship between those and the AV dynamics were
explained by a generalized drift-diffusion model. The modeling results
suggest that human drivers integrate the noisy dynamic information
on time-to-arrival and distance to a constant boundary, with an initial
10
bias towards the Go decision. We believe that this model provides
a promising framework for quantifying human responses not just to
arbitrary nudges but a wide class of longitudinal AV behaviors in this
kind of interactions. The ability of the model to generate predictions
of human behavior in these interactions makes the model a potentially
useful tool for training and testing of AVs in virtual simulation environ-
ments, as well as guiding the development of AV interaction planning
frameworks.

6.1. Translating the concept of nudging to human-AV interactions in traffic

Our findings resonate with the recent literature on implicit human-
AV communication. This literature emphasized longitudinal motion
cues by AV as an important communication signal for humans that
make a decision whether or not to cross paths with that AV (Ackermann
et al., 2019; Rettenmaier et al., 2021; Terwilliger et al., 2019; Schmidt
et al., 2019; Dey et al., 2019; Beggiato et al., 2018; Tian et al.,
2023). Such studies however have so far focused almost exclusively
on overt yielding maneuvers: either constant deceleration to a full
stop, or prolonged deceleration to a low velocity (similar to our Long
deceleration condition). Exceptions include investigations of adversar-
ial AV movements that were deliberately designed to be confusing or
malicious (Schmidt et al., 2019; Rettenmaier et al., 2021). The novel
contribution of our paper to this body of literature lies in its focus on
deliberately subtle AV maneuvers. Such maneuvers have potential to
nudge other traffic participants without major changes in AV’s own
motion plan, potentially yielding benefits in interaction outcomes while
minimizing impact on AV occupants’ comfort.

Our work was loosely inspired by the idea of nudging from be-
havioral economics. Thaler and Sunstein (2008) define nudge as: ‘‘any
aspect of the choice architecture that alters people’s behavior in a predictable
way without forbidding any options or significantly changing their economic
incentives. To count as a mere nudge, the intervention must be easy and
cheap to avoid.’’ In this exploratory paper, we aimed to test the effect of
specific nudge-inspired AV behaviors on human decisions. Our results
present preliminary evidence that such behaviors could be a useful
strategy for proactively influencing behavior of human road users by
AVs. However, we believe that further steps along these lines should
necessarily involve generalizing our results through translating the
concept of nudging to the AV realm in a more rigorous and systematic
way. The reason for this is that many kinds of AV behaviors can be
conceptualized as nudges, not only the specific longitudinal dynamics
introduced here. For instance, in the context of the left-turn interaction,
a brief lateral maneuver, or even a mere headlight blink by a vehicle
that has the right of way can be considered a nudge. Future studies of
human responses to other kinds of nudges need to be accompanied by
relating them to theoretical frameworks of interactions in traffic (e.g.
Markkula et al., 2020) to ensure generalizability and applicability
of this concept in the real world. Computational cognitive modeling
studies like ours, in turn, have potential to contribute towards such
theoretical frameworks (Guest and Martin, 2021; Devezer and Buzbas,
2023).

6.2. Cognitive processes underlying responses to AV behaviors

This work not only investigated humans’ responses to AV nudges,
but also elucidated the cognitive mechanisms behind these responses.
There is mounting evidence that human tactical behaviors in traffic
interactions exploit the evidence accumulation mechanism (Giles et al.,
2019; Pekkanen et al., 2022; Markkula et al., 2023; Zgonnikov et al.,
2022; Mohammad et al., 2023), which has also been implicated in a
wide range of other safety-critical decision-making tasks (Boag et al.,
2023). Our results further reinforce evidence accumulation as the key
mechanism underlying humans’ judgments of gaps in traffic. We also
compared multiple variants of the drift-diffusion model to investigate
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the relative importance of several aspects of evidence accumulation for
explaining our results.

Based on a comparison of eight candidate models, we found that
collapsing boundaries do not play a major role in explaining our data.
This is in contrast to the study of Zgonnikov et al. (2022) who found
collapsing boundaries to be critical for explaining the positive effect of
TTA0 on Go response times they observed in left-turn gap acceptance
decisions. However, except for the Long deceleration condition, we did
not find any evidence for such relationship between TTA0 and Go re-
ponse times, hence the lack of support for collapsing boundaries. There
re two important differences between our experiment and modeling
pproach and those of Zgonnikov et al. (2022) which could explain
his discrepancy. First, their experiment included longer initial distance
onditions (90 m to 150 m, compared to 80 m in our study) which could
ave an impact on time pressure perceived by the participants, even
hough distance objectively does not influence the time budget for the
ecision. Second, Stay response times were not measured by Zgonnikov
t al. (2022). We believe that in our study these response times more
ightly constrained model fits, leading to more reliable estimation
f the boundary parameters. Likely due to a combination of these
wo differences, our conclusion on collapsing boundary contradicts
heir findings. Therefore, further research is needed to understand the
ole of collapsing boundaries in evidence accumulation during traffic
nteractions.

We also found that including a separate acceleration term in the
rift part of the model was not necessary for describing human re-
ponses to accelerating/decelerating maneuvers of the AV. The latter
ere described well already by simpler models integrating only dy-
amic TTA and distance cues. This suggests that our participants did
ot use acceleration motion cues over and above the variations in
TA. This is in contrast to previous studies on pedestrian crossing
ecisions (Giles et al., 2019; Pekkanen et al., 2022; Markkula et al.,
023; Tian et al., 2023) which emphasized the importance of indepen-
ent acceleration-related cues (namely, time derivative of TTA). This
ismatch could be explained by a) a relatively low visual fidelity of

ur driving simulator, and b) the longer initial distance we used (80 m
s larger than the distances typically investigated in pedestrian crossing
cenarios). Both these factors could have impaired visual perception of
cceleration in our participants, leading to their low reliance on rec-
gnizing AV acceleration/deceleration. Another potential explanation
s that acceleration cues might influence the evidence accumulation
rocess in a non-linear way. For instance, subtle and short maneuvers
ight not be consciously perceived by the decision maker (yet still

nfluence the decision via the perceived time gap), while stronger and
onger accelerations can give a salient, consciously perceived yield-
ng signal which strongly pushes the evidence accumulation process
owards one of the boundaries. Future studies might be able to disam-
iguate between these potential explanations by systematically varying
he strength of the acceleration cues. The latter however would require
ombining a large number of acceleration conditions with a large
umber of repetitions per participant, making it challenging to design
logistically feasible experiment.

Finally, we investigated the impact of including initial bias in the
ccumulation process, which has mostly been overlooked in previous
tudies on drift-diffusion modeling of driver behavior. The only pre-
ious study to model accumulation bias in traffic interactions is that
f Mohammad et al. (2023). They aimed to explain the previously
bserved effect of initial speed of the ego vehicle on overtaking de-
isions and response times (Sevenster et al., 2023). Mohammad et al.
2023) compared the constant and speed-dependent versions of the
ccumulation bias, finding that the bias in favor of the Go decision
hat increased with the initial speed of the ego vehicle provided a better
ccount of overtaking response times. Here, we aimed to answer a more
asic question of whether initial bias is present in left-turn decisions,
n which the ego vehicle has zero (or close to zero) momentum when
11

aking the gap acceptance decision. We found that models with the
initial bias towards the Go decision described our data consistently
better, being essential to capture the contrast between the fast Go
responses and slow Stay responses. This has implications for future
models of evidence accumulation in traffic. In the basic response time
modeling literature, initial bias is routinely treated as one of the
core parameters of the drift-diffusion model (Ratcliff and Smith, 2004;
Ratcliff and McKoon, 2008; Ratcliff et al., 2016), the practice which
we recommend to adopt when modeling human-AV interactions with
these models.

6.3. Limitations

In our evaluation of the candidate models, we used held-out con-
ditions (Acceleration nudge and Deceleration nudge) to test predictive
capacity of the models. This enabled us to evaluate the models’ pre-
dictive capacity on new observations in unseen scenarios (Yarkoni
and Westfall, 2017), but did not allow assessment of how well they
generalize to new observations in unseen participants. Both kinds of
generalization are relevant for the purposes of building a coherent
theory of human decision making in traffic. However, here we empha-
sized generalization to new scenarios (as opposed to new participants)
as we foresee the model being useful in evaluating human responses
to new dynamic maneuvers of the AV based on data including only
a limited set of such maneuvers. Generalization to new participants,
although perhaps equally important for such applications, is more
difficult to assess due to substantial individual differences in decision
outcomes and response times observed even in small samples of par-
ticipants (e.g. Zgonnikov et al., 2022). In this paper, we opted to focus
on the ‘‘average’’ participant to highlight behavioral patterns that are
present across our whole sample, while controlling for aggregation
bias by including random intercepts in our statistical models. This can
substantiate claims about out-of-sample generalization of our empirical
findings, but needs to be complemented with fitting per-participant
(e.g. similar to Zgonnikov et al. 2022) or hierarchical drift-diffusion
models to test whether the cognitive mechanisms discussed here apply
to individual participants.

An important limitation of our study is that, despite quantifying the
effect of AV nudges on drivers’ decision making, we cannot yet provide
informed recommendations on whether or not such nudges are actually
useful for implicit communication by AVs. The first reason for this is
that recent studies have highlighted detrimental effects of ambiguous
communication patterns by AVs (Miller et al., 2022; Rettenmaier et al.,
2021). Nudges in our study were ambiguous by design: for instance,
an AV performing a deceleration nudge in essence just sends a brief
yielding signal quickly succeeded by the signal of asserting priority.
Related to that, the second reason for caution in translating our results
into AV design is that the specific deceleration nudge we tested was
effective in terms of influencing the decision but was accompanied
by occasional negative subjective ratings by the participants (Table 4,
Fig. 4). Finally, besides ambiguity for the human road users interacting
with the AV, communicative maneuvers of the AV could be considered
undesirable by the occupants of the AV. Much research is needed to
understand to what extent the beneficial effects of AV maneuvers-as-
communication (including nudges) could be traded off with potentially
detrimental effects of such maneuvers on the comfort and trust of the
AV occupants as well as their willingness to use the AV.

A more fundamental potential limitation is the relative complexity
of our model variants compared to traditional evidence accumulation
models. The traditional strength of these models is that they capture
not just decision probabilities and mean response times, but also often
intricate relationships between decision outcomes and response times,
as well as full response time distributions (Ratcliff et al., 2016; Evans
and Wagenmakers, 2020). These models typically have just 3 to 5 free
parameters, hence one could argue that our model (the most successful
variant we identified has 7 free parameters) is overly complex and

might lack the ability to generate emergent behavior (e.g. due to



International Journal of Human - Computer Studies 185 (2024) 103224A. Zgonnikov et al.
having an explicit representation of characteristic gap values in its
parameters). However, most existing work on evidence accumulation
considered very specific, distilled tasks with stimuli characterized by
one (typically static) perceptual quantity (e.g., coherence in the random
dot kinematogram task, or angle in orientation discrimination tasks).
Our driving task, in comparison, is characterized by (a) complexity of
the perceptual information, (b) the interplay between different cues
available to the driver, and (c) the dynamic nature of the task (where
Go decisions must be made fast in order for the driver to still have
enough time to execute the decision). Previous work has shown that
even simple models are able to explain the decision probabilities in
such tasks, yet intricacies of response timing might require making
non-trivial assumptions that do not map directly to experimental ma-
nipulations (Zgonnikov et al., 2022). Here, we extended this work by
measuring response times in Stay decisions; as a result, in order to
describe our data, the model needs to provide a good match not just to
ten mean decision outcomes and response times (Fig. 5) but also to 20
continuous response time distributions (Fig. 6), at least one of which
turned out to be bimodal, and 8 of which are unseen during model
fitting. The fact that our 7-parameter model does so successfully with
only isolated discrepancies is striking, and, we believe, signifies great
potential of our approach for modeling human decisions in complex
dynamic scenarios.

6.4. Wider implications

We hope this work contributes to bridging empirical studies of
human behavior in interactions with AVs and development of AV inter-
action planning algorithms. Existing literature on interaction-aware AV
controllers shares some common limitations. First, the models used by
these controllers to predict human behavior are virtually never directly
compared to the very behavior they are supposed to predict (Siebinga
et al., 2022) (see Jayaraman et al. 2020a,b for a notable exception).
Second, human behavior when interacting with these controllers is
usually only demonstrated in a few hand-picked scenarios, rather than
systematically evaluated across variations of scenarios. These two lim-
itations can have implications for generalization of these controllers
outside of their testing environments, and exemplify the lack of link
between the existing literature on interaction-aware AV controllers and
the actual human behavior. On the other hand, despite providing valu-
able qualitative insights, most existing empirical research on human
behavior when interacting with AVs falls short of providing computa-
tional accounts of this behavior in the form of generative (as opposed
to statistical) human models (Haines et al., 2020). This obscures the
path to incorporating the obtained understanding of human behavior
into computational frameworks for AV interaction planning. Our work
exemplifies how insights from empirical research on human-AV inter-
actions can be translated into the computational realm, contributing
to the recent efforts in this direction (Rettenmaier and Bengler, 2020;
Pekkanen et al., 2022; Zgonnikov et al., 2022; Markkula et al., 2023;
Mohammad et al., 2023).

Finally, our work can have conceptual implications for a wider class
of human-agent interactions beyond traffic. Any artificial agent that
regularly encounters space-sharing conflicts with humans can poten-
tially benefit from strategies that avoid interacting ‘‘the hard way’’
by an early preventive action. We hope our speculative example of
nudging the hesitating human in traffic will inspire interaction design
in other domains. The usefulness of the particular modeling approach
used here is likely specific to binary decision-making scenarios that
typically occur in highly structured environments like roads. Alterna-
tive approaches of cognitive modeling of human behavior in human-
agent interaction exist that are less situation-specific (Thomaz et al.,
2016; Hiatt et al., 2017), although integration of cognitive models
into computational frameworks for interaction planning remains an
open problem (Ho and Griffiths, 2022; Schürmann and Beckerle, 2020).
Yet, we believe the research of this kind will be instrumental in en-
abling agents to have appropriate representations of humans around
them, which is critical for responsible development and deployment of
12

artificial agents in the real world (Cavalcante Siebert et al., 2023).
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