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”Human beings are poor examiners, subject to superstition, bias, prejudice, and a profound tendency
to see what they want to see rather than what is really there.”

— M. Scott Peck, The Road Less Traveled



Abstract

When a free-standing membrane is actuated with photothermal method, the heat flux requires a certain
time to diffuse through this membrane. This duration of time, called thermal time constant, is important
for its application in sensors, nano-electromechanical systems, filters, etc. This report is devoted to
exploring what plays a major role in the variation of experimentally measured thermal time constants,
and to investigating the relationship between dumbbell dimensions (namely, two drum radius R1 for
drum 1 and R2 for drum 2, half bridge width y0, bridge length x0) and thermal time constants.

First, dumbbell resonators of various dimensions were fabricated using exfoliated molybdenum disul-
fide flakes. Optomechanical experiments were conducted on these devices, involving two collocated
(actuation and measurement located in the same drum) and two non-collocated (actuated at one drum
and measured at the other) measurements for each device. Accordingly, four thermal time constants
were extracted for each resonator through curve fitting. To understand temperature distribution and
experimental variation, a COMSOL model and an analytical model were established, solving the heat
equation with a harmonic laser actuation.

As a result, four thermal time constants for 16 devices were extracted. These experimental data were
verified with a synergy of the two models. The primary contributors for large experimental data variation
were the 2D material irregularities and laser locations. For collocated τ , it was almost unaffected by
dumbbell dimensions, except for R1 which gave a parabolic curve. For non-collocated τ , it increased
monotonously with x0, but a minimumwas always observed when sweeping the other three parameters.

Such minimum occurred when x0 is around 25% of the drum radius. This minimum was attributed
to a balance between the efficiency of heat transport across the bridge and the acceptable duration
required to heat the bridge itself. Meanwhile, the COMSOL model and the analytical model disagreed
on the relationship between non-collocated τ and y0,R1,R2. Moreover, the analytical model’s deviation
from the COMSOL model increased with larger bridge width or thermal conductivity. This stemmed
from errors in the assumed boundary conditions: the existence of the bridge altered the temperature
distribution at the boundaries of drum 1, and in the analytical model the boundaries of the dumbbell are
fixed while in the COMSOL model they are controlled by the substrate.
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1
Background

When a circular resonator with a thin membrane is excited by a laser with periodically fluctuating power
at its centre, the temperature distribution of it u will change. It takes a certain duration τ for heat to
diffuse through the whole membrane and for the resonator to regain a quasi-equilibrium. This is called
a quasi state because the temperature distribution is changing periodically, with the same frequency as
the excitation source. The change in temperature leads to thermal periodic thermal expansion in the
membrane, Accordingly, such expansion incurs compressive stress at the edge of the membrane. The
membrane is eventually pushed upward or downward, depending on the initial state. As the thermal
expansion is periodical, the displacement field of the membrane is too periodic, hence this movement
adds up to vibration.

By virtue of the periodicity, sweeping the excitation frequencies in experiments can offer the information
of thermal signal and mechanical resonances of a device. Specifically, combining the measured data
with established theories on heat transfer and vibration of circular plates, properties like Young’s mod-
ulus, bending rigidity, quality factor, thermal time constant, thermal Conductivity, thermal expansion
coefficient of the resonator can be extracted by curve fitting.

This is what happens to a single resonator and how it is studied with photothermal method. The same
applies to any coupled resonators, yet with extra parameters characterising the coupling. This inspires
us to start from investigating the vibration and heat transfer of a circular resonator, and then to combine
the state-of-the-art of coupled resonators, as a background for heat transport in dumbbell resonators.
Finally, insufficiency in existing literature is identified, so a motivation of this project follows.

1.1. 2D resonator
In the last decade, two-dimensional materials have gained immense popularity in research. Materials
like graphene[19] , MoS2

[37, 9] , FePS3
[18] boost layered structures that is suitable for exfoliation, and such

accessible fabrication urges many studies revealing their promising properties along with potential ap-
plication. For instance, the low mass of 2D membranes can take the fundamental resonance to several
megahertz[6, 11] , which can expand the functional frequency range of sensors. In particular, thermal sen-
sors can take advantage in the extremely high thermal conductivity of graphene[1, 39, 7] . While mass or
force sensing also benefits from the low mass and high quality factor of 2D resonators[59, 46] . Moreover,
information can be encoded and transferred among coupled resonators[47, 58] .

Such transfer of information between resonators should be highlighted because the measured informa-
tion of one resonator can be harnessed by another at a distance, and based on this more complex or
efficient signal procession can be realised. This is more versatile than one-resonator setup. Besides,
for almost all the applications of 2D resonators, heat dissipation or transfer is a significant concern to
stabilise the device performance. Resonance, vibration amplitude, thermal conductivity, mode coupling
are all temperature-dependent and thus can be sensitive to temperature fluctuation due to actuation
or environment. More specifically, an impulse of actuation leads to temperature change at the driving
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1.2. Vibrating membranes 2

position in a 2D membrane, and it takes some time τ to reach an equilibrium again. The transfer of in-
formation cannot be faster than the limit set by this τ , otherwise information would be corrupted. Hence,
it is important to make sure when the equilibrium is reached, and how different it is from the previous
steady state.

(a) (b) (c)

Figure 1.1: Various 2D resonators: (a) a circular resonator in literature [34]. The blue laser excitation and red
laser readout are illustrated on top, and the cross section shows the profile of a membrane with pre-deformation.
(b) A dumbbell resonator in literature [47]. A red and a blue laser are situated at the centre of either circular

drums (top), and two gate voltages are employed to control the coupling between the two drums (bottom). (c) A
graphene ribbon resonator in literature [36]. The setup comprises four contact areas S, D1, D2, D3, and three

gate voltages. The readout is a current Imix at D3.

In this report, a 2D resonator (also called a nanodrum) denotes a micro device comprising a substrate
and a free-standing thin material that can resonate with actuation. A resonator can take assorted
shapes, as shown in figure 1.1. It can be excited by one or several electrostatic[36] , piezoelectric[3] ,
magnetic[2] , or photothermal[32] drives. Two examples of photothermal drives are illustrated in figure 1.1a
and figure 1.1b, while an electrostatic drive is displayed in figure 1.1c.

1.2. Vibrating membranes
For a vibrating circular membrane of radiusR and thickness zt, if we assume sufficiently thin membrane
thus negligible bending rigidity, small amplitude of vibration, and no damping, the displacement field z
of free vibration in polar coordinates (r, θ) must satisfy:

∂2z

∂t2
= c2

(
∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2
∂2z

∂θ2

)
, 0 ≤ r ≤ R, 0 ≤ θ < 2π (1.1)

where c is flexural speed of sound. With boundary condition z = 0 at r = R, literature [31] gives the
solution:

zmn(r, θ, t) = Jm(λmnr)[Acos(cλt) +Bsin(cλt)][Ccos(mθ) +Dsin(mθ)] (1.2)

where J is the first kind Bessel function, and m,n are both integers. The corresponding resonance is
given by:

fmn, membrane =
λmn

2πr
c =

λmn

2πr

√
n0

ρzt
(1.3)
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where n0 is in-plane tension and ρ is membrane density. However, if we do not assume thin membrane,
the resonance frequency is no longer dominated by pretension, but instead is dictated by bending
rigidity[9] :

fmn, plate =
λmn

2πr2

√
D

ρzt
(1.4)

where D is bending rigidity and is given by:

D = γ
Et3

12(1− ν2)
(1.5)

where E is Young’s modulus, ν is Poisson ratio, and γ is a factor accounting for interlayer shear
interactions[52] . Naturally, there are 2D materials behaving like something between a thin membrane
and a plate, and their resonance is a combination of equation (1.3) and equation (1.4):

fmn =
√

f2
mn, membrane + f2

mn, plate (1.6)

Now we get back to equation (1.1) and investigate other assumptions. If the thin membrane is driven
by a force f(r, θ, t), and the damping is α(r, θ, t), then equation (1.1) evolves into:

z̈ + α(r, θ, t)ż = c2∇2z + f(r, θ, t) (1.7)

In a driven motion (i.e. excitation fixed at a frequency ω), all modes zmn are excited but with different
contribution to the total motion, and the solution can still be broken down to time-dependent part and
time-independent part as in equation (1.2). Thus, we normalise modes to an amplitude of 1 and change
the numbering fromm,n into i for simplicity so that the time-independent mode shape becomes ϕi(r, θ),
and we use time-dependent zi(t) to indicate its share in the total motion. The driven motion solution
w(r, θ, t) is assumed to be:

w(r, θ, t) =

∞∑
i=1

zi(t)ϕi(r, θ) (1.8)

Then we plug equation (1.8) back to equation (1.7),

∞∑
i=1

(z̈iϕi) +

∞∑
i=1

(αiżiϕi) = c2
∞∑
i=1

(zi∇2ϕi) + f (1.9)

Next, we multiply mode ϕj on both sides, and integrate them over the membrane area called Ω:

∞∑
i=1

z̈i

∫∫
Ω

ϕiϕjdΩ+

∞∑
i=1

żi

∫∫
Ω

αiϕiϕjdΩ =

∞∑
i=1

qic
2

∫∫
Ω

(∇2ϕi)ϕjdΩ+

∫∫
Ω

fϕjdΩ (1.10)

In this way, we have the mass, spring, damping, and force terms as Mji, Kji, Cji, fj , respectively:
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Mji =

∫∫
Ω

ϕiϕjdΩ

Kji = −c2
∫∫
Ω

(∇2ϕi)ϕjdΩ

Cji = q̇i

∫∫
Ω

αiϕiϕjdΩ

fj =

∫∫
Ω

fϕjdΩ

(1.11)

Finally, the equation of motion is assembled into the matrix form:

Mz̈ +Cż +Kz = f (1.12)

If we assume modes are orthogonal each other, then equation (1.12) can be decoupled into:

mj z̈j + cj żj + kjzj + Fnl,j = Fext,j(ω)e
iωt (1.13)

where Fext,j is the j-th external (i.e. driving) force, and Fnl,j is the nonlinear force, qj is the j-th
generalised coordinates,mj , cj , kj are the j-th effective mass, damping, and spring, respectively. Fnl,j

is negligible if the driving amplitude is small. But we should be aware that mode coupling is always
present, as Suzuki et al[50] found that the first 18 eigenvalues of a stretched drum were interdependent.
For this matter, we shall delve deeper into mode coupling in section 1.3.

Previously, the excitation is fixed at one frequency, but as actuation and vibration are always of the
same frequency, the steady-state solution of equation (1.13) should be a function of ω as well. When
Fnl,j = 0, the solution takes the form of:

zi(ω, t) = zi(ω)e
iωt (1.14)

Many studies start from investigating vibration modes, however, measured vibrations are never exactly
the same as described in equation (1.2), and we should pay attention to the reasons. In experiments,
modes can be split or degenerate, as Davidovikj et al[14] found using a phase-sensitive interferometer.
The uneven distribution of built-in tension and bulging membranes can also cause the deviation from
theories, as seen in the h-BN resonators under electrical tension of Chiout et al[60] .

Texts above introduce the theories of vibrating membranes, and below we discuss how to extract and
describe measured resonances.

(a)Curve fitting with Sx (left) and tension tuning with
various membrane thickness (right), adopted from [27].

(b)Curve fitting with zf (normalised Af ) of the
fundamental (left) and second (right) resonance,

adopted from [33].

Figure 1.2: Extracting properties using curve fitting
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The amplitude of qi(t) in equation (1.14) is a function of frequency, and to obtain the exact location
of the resonance alomng with quality factor Q, one can use curve fitting of a harmonic oscillator in
equation (1.15)[33] upon measured motion-frequency relationship, as shown in figure 1.2b. Using other
models like frequency-domain displacement spectral density (see figure 1.2a left) also works.

Af =
A/meff√

(ω2
0 − ω2)2 + (ω0ω/Q)2

(1.15)

where A is the amplitude of driven force, meff is effective mass, ω0 is fundamental resonance. Many
studies start with building a theoretical model, and then driving a parameter ζ to measure ζ − f0 re-
lationship (ζ refers to AFM forces, actuation power amplitude or frequency, etc.), so that properties
like bending rigidity, Young’s modulus, and pre-tension can be extracted by curve fitting upon equa-
tions (1.3), (1.4) and (1.6). For example, to extract Young’s modulus Sajadi et al[42] built a numerical
model based on Lagrange method, and Sarafraz et al[43] presented a reduced-order continuum model.

Since in experiments, the modes can be split or degenerate[14] , the numbering of resonance m,n is
changed into i for simplicity (for example, µ1 refers to λ01 in equations (1.3) and (1.4), more are listed
in literature [14]). Accordingly, equation (1.6) is transformed into:

fi =
µi

2π

√
D

ηρztr4

[
µ2
i +

n0r2

D

]
, i = 0, 1, 2... (1.16)

where η is mass correction factor due to contamination, µi is a mode-specific factor.

However, the extracted resonance ωeff,i and quality factor Qeff,i for the i-th mode by equation (1.15)
usually differ from the theoretical ωi =

√
ki/mi and the intrinsic Qi =

ci
ωimi

owing to feedback forces,
electrostatic interactions, gas molecules interactions, etc[48] . And those factors can be summarised as
extra terms, ωextra,i and Qextra,i:

ω2
eff,i =

ki
mi

+ ω2
extra,i,

1

Qeff,i
=

ci
ωimi

+
1

Qextra,i
(1.17)

We see from equation (1.3) that material density, tension, membrane thickness (see figure 1.2a right)
all play a part in resonance location, and in experiments different applied strain direction[8] , nonlinear
damping[38] , temperature[13] can all change the aforementioned factors. Moreover, Kim et al[25] noticed
hysteresis in resonance tuning and attributed this to inelastic tension and adhesion at the kink, and
also reasoned that interlayer slippage or unzipped folds would reduce the tension between layers of
heterostructures. Particularly, the resonance also depends on the physical state of the membrane,
which is described by a thermally-induced buckling model[32] .

1.3. Heat transfer in a 2D resonator
Since 2Dmaterial, in experiments, is stored with quasi-constant temperature and in vacuum, convection
which relies on temperature gradient and flow of fluid in the ambient is not the dominant way of heat
transfer. While radiation becomes the dominant mode when temperature is high, which is also not the
case for our experiments. Hence, conduction is the dominant mode of heat transfer, especially when
the materials are heated directly or have high thermal conductivity like graphene[5] .

To quantify heat conduction , Fourier heat conduction equation[21] is applied to a laser-actuated drum
with radius R and thickness zt:

∂u

∂t
= κ

(
∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂z2

)
+

1

cpρ

dQ

dt
in 0 < z < zt, 0 < r < R (1.18)
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where κ is the thermal diffusivity, and dQ
dt is the absorbed heat flux from the actuation. Liu[31] obtained

the transient (i.e. no actuation) and solution.

utrans(r, z, t) =

∞∑
m=1

∞∑
n=1

AmnJ0(ηmr)sin

[
(2n− 1)πz

2zt

]
e−λ2

mnt (1.19)

where Amn is the Fourier coefficient which is defined in literature [20]. This solution resembles equa-
tion (1.2), because the non-homogeneous heat equation is similar to the non-homogeneous wave equa-
tion in equation (1.1). if we compare their form:

Wave equation: z̈ = c2∇2z

Heat equation: u̇ = κ∇2u
(1.20)

we can see that mathematically the spatial variations of u in both equations is governed by the Lapla-
cian operator despite different amplitude, while time variation differs as wave equation exhibits a higher
order of time differentiation. Physically, in lattice vibration, atoms leave the equilibrium state, and con-
sequently there are unbalanced forces on them, thus changing the acceleration, which causes the
second-order partial derivative on the left side of wave equation. While temperature gradient governs
the heat flow, and thus the speed of temperature change is linked to the spatial variation, leading to
first-order partial derivative. Nonetheless, wave equation is akin to heat equation on the right hand
side owing to the energy propagation process. When the isotropic material experiences a change in
temperature, this leads to an increase in kinetic energy among the lattice constituents, causing them
to vibrate. These lattice vibrations can be considered as a form of wave traveling through the lattice,
propagating energy in a manner similar to a wave in a continuous medium, so two equations resemble
in terms of spatial variation.

Assuming a constant amplitudeA at the centre of the drum, Liu[31] also offered the quasi-steady state (i.e.
uniform temperature in z direction) solution expressed with Bessel functions. Following this solution,
another one not supposing constant amplitude A for all frequencies is detailed in section 2.5.

As mentioned in the beginning of this chapter, there is delay τ between laser actuation Pace
iωt and

membrane deflection z, and this delay is ascribed to the time needed to raise the temperature of the
membrane. This process can be derived from the heat equation presented in equation (1.18)[16] . If we
decompose the actuation term 1

cpρ
dQ
dt in equation (1.18) into DC and AC component, i.e.:

1

cpρ

dQ

dt
=

1

C

(
Pdc + eiωtPac

)
(1.21)

where C is thermal capacitance, Pac and Pdc are laser heat flux amplitudes of AC and DC components,
respectively. Then we suppose the solution of the following heat equation:

u̇ = κ∇2u+
Pdc

C
(1.22)

can be expressed as:

udc = T0Φ(r, θ) (1.23)

Then adding eiωtPac

C as a harmonic perturbation in equation (1.22), we assume the new solution uac is
in the form of:

uac = udc +∆u = (T0 +∆T (t))Φ(r, θ) (1.24)

Plugging uac back to the heat equation and cancel out the terms in equation (1.22) leads to:
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˙∆T (t)Φ(r, θ) = κ∆T (t) · ∇2Φ(r, θ) +
Pac e

iωt

C
(1.25)

To solve equation (1.25), we first tackle its non-homogeneous counterpart, i.e. Pac = 0. Then we write:

˙∆T (t)

∆T (t)
= κ

∇2Φ(r, θ)

Φ(r, θ)
= −1

τ
(1.26)

where τ is a constant. Next, replacing the Φ(r, θ)-related terms with τ in equation (1.25) and resetting
Pac ̸= 0 produce:

d∆T

dt
+

1

τ
∆T =

Pac

C
eiωt (1.27)

Finally, solving for ∆T results in:

∆T = Pac
τ

C

eiωt

iωτ + 1
(1.28)

If we express this time constant τ = RC, where R is thermal resistance, and also suppose the vibration
amplitude zω is proportional to the temperature perturbation ∆T with a thermal expansion coefficient
α, i.e. zω = α∆T , then we can write:

zω =
Ath

1 + iωτ
(1.29)

where Ath is thermal expansion amplitude. For a circular resonator, the measured data of zω (the
thermal signal at low frequencies, see figure 2.7a) is curve-fitted by equation (1.29) to obtain τ and Ath.
With the obtained τ , thermal diffusive constant µ2 can further be extracted using equation (1.30)[17] , as
an index of heat transport. Liu[31] used it to compare results of experiments, analytical models, and
computational models, with values ranging from 5.02 to 5.78.

τ =
R2Cvρ

µ2k
(1.30)

where Cv is specific heat, k is thermal conductivity.

Furthermore, equations of coupled resonance and thermal signal can be derived. If we consider the fun-
damental resonance in the linear regime only, we can ignore the subscript j and Fnl,j in equation (1.13).
Then replacing the driving force Fext, j(ω) with Ath

1+iωτ yields:

mz̈ + cż + kz =
Ath

1 + iωτ
eiωt (1.31)

Supposing the solution of equation (1.31) is z = zω eiωt, we plug it back and obtain the amplitude zω
as:

zω =
A1

1 + iωτ
· 1

−ω2mk + iωck + 1
(1.32)

where mk = m
k and ck = c

k , and A1 is constant.
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1.4. Coupling of resonators
For small amplitude of vibration in one nanodrum, ignoring all coupled modes can still lead to decent
approximation of motion. But in reality, modes are always coupled, and the total movement is a sum-
mation of infinite number of modes. Luckily, the further the resonance of a mode from the excitation
frequency, the less it contributes to the total displacement field. Hence, even for large amplitude (or
in other words, nonlinear regime), considering one or two coupled mode would usually suffice. That
means there would be two or three coupled equations if equation (1.12) is expanded. For instance,
Keskekler [24] simplified the coupled (0,1) and (0,2) modes of a graphene resonator as:

z̈1 + (kx + Tx)z1 + γz31 + τxż1 + 2αz1z2 = Fcos(Ωt)

z̈2 + (kq + Tq)z2 + τq ż2 + αz21 = 0
(1.33)

where z1 and z2 are generalised coordinates, γ is the Duffing coefficient, and α is the coupling strength.
As seen in equation (1.33), intermode coupling usually involves nonlinear terms, and the resonance of
all coupled modes can be modified by tuning the amplitude of one mode, since they affect each other
through tension[10] .

Apart from internal mode coupling, connecting two resonators will induce coupling as well, and the
simplest case is the linear resonant coupling drawn in figure 1.3a.Based on the Duffing equation and
ignoring the van der Pol term due to small amplitude, one can construct the EOM of two coupled beam
resonators [55] :

m1z̈1 + c1ż1 + k1z1 − kc(z2 − z1) = F1(t)

m2z̈2 + c2ż2 + k2z2 + kc(z2 − z1) = F2(t)
(1.34)

where the coupling spring kc can transfer elastic energy between two resonators
[15] . As for dumbbell

resonators, Siskins et al [47] described such linear coupled oscillators in the form of:

m1z̈1 + c1ż1 + k1z1 = Jz2 + Fcos(ωdt)

m2z̈2 + c2ż2 + k2z2 = Jz1
(1.35)

where J is a coupling parameter that can be tuned by voltage (see figure 1.3b).

Connecting resonators, or using 2D membranes as coupling agency can have diverse application,
such as a variations of transmission for filters[54] , a motion amplifier involving integrated square and
circular resonator[45] , a tunable motion indicator for a suspended beam and a CD actuator[51] , a signal
processor[47] , a molecule-mass-based gas sensor[41] . Meanwhile, we should be aware that a more com-
plex layout can change the vibration that has been introduced in section 1.2. For instance, Kirchhof et
al[26] identified defect modes that could not propagate from central actuation point through a honeycomb
lattice of holes, and showed that frequencies of those modes could be tuned by tension. Yang et al[57]

found that a microdisk’s symmetry is broken by a waveguide path, which results in mode coupling.

In recapitulate, despite a comprehensive understanding of mechanics and thermodynamics of a single
resonator with insight into internal mode coupling, coupling of spatially separated resonators were
only investigated by a few, and they concentrated on the mechanical part rather than the thermal. For
instance, Siskins et al[47] showed the promising potential of such device to transmit bit-by-bit information
with an electromechanical coupling model. Yang et al[57]demonstrated that an extra waveguide path
could change the mode shape and Q factor of a microdisk. Luo et al[36] observed avoided crossings
in figure 1.4b as a sign of mode coupling, and introduced a three-mode coupling model where Ωij , a
measurable and tunable parameter, was employed to quantify coupling strength.
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(a) (b)

Figure 1.3: Models of coupled oscillators: (a) coupled bean oscillator, adopted from [55]; (b) Coupled nanodrum
oscillator, adopted from [47].

(a) Two coupled circular resonators,
adopted from literature [47]. Top:
the crossing is more distinct at low
temperature; bottom: decreasing
cooperativity and increasing

dissipation rate γ2 against growing
temperature.

(b) Three coupled quadrilateral resonators, adopted from literature
[55]. Top: schematic drawing of setup; bottom left: measured

spectrum of three-mode system; bottom right: theoretical model of
three-mode system.

Figure 1.4: Temperature-dependent coupling of resonators

Although most studies are focusing on the mechanical part, the thermal coupling also counts, since
the thermal expansion can affect the in-plane strain and thus resonance as mentioned in section 1.1,
unless the thermal signal is always well separated from the resonance. One of the simplest example of
thermal coupling is two connected objects with different temperature, and the conduction is governed
by the Fourier’s law:

q = −k∇u (1.36)

where q is heat flux density vector, and u is the temperature field. In fact, the Fourier’s law is related
to the heat equation in equation (1.20). Using the first law of thermodynamics, the rate of change in
thermal energy inside a volume must be identical to the net heat flux into this volume[4] :

∂(ρcpu)

∂t
= −∇q (1.37)

Regarding material density ρ and specific heat cp as constant and combining equation (1.36), equa-
tion (1.37) becomes:
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∂u

∂t
=

k

ρcp
∇2u (1.38)

where k
ρcp

equals to the thermal diffusivity κ.

Although there are already solutions for a circular plate or a rectangular plate, heat transfer or thermal
coupling between resonators has not yet been thoroughly investigated. Analytically, solving heat equa-
tion can fuel our investigation into the temperature pattern of a dumbbell resonator with the correct
boundary condition.

1.5. Motivation
The existing literature on coupled resonators in general focus on building a mathematical or compu-
tational model to describe their vibration modes, and using experimental methods to visualise mode
shapes or extracting constants, which is similar to what has been done to a single resonator. By
characterising properties like resonance, coupling strength, cooperativity, etc, a tunable information
transmitter can be built. However, figure 1.4 shows that all these properties depends on temperature,
and very few studies have been published to examine the heat transfer from the heated (actuated)
resonator to the reactive (measured) one. This is important because the resonance of the measured
resonator would change due to heat flux input from the actuated one, and an unknown thermal coupling
between two resonators can lead to inaccurate information transfer. Such issue inspires us to study
the heat transfer and thermal coupling of two resonators by characterising how fast and how much the
heat transfer is, with approaches that have been applied to a single resonator.

Ideally, the thermal time constant can be an indicator for how long the input-output delay should be,
while thermal expansion coefficient indicates the vibration amplitude, and they are both useful infor-
mation for potential application, i.e. sensors and signal processors. In practice, it would be difficult
to obtain a clear signal for all resonator devices with the same actuation power, so cimparing thermal
expansion would be more complex. Therefore, this project concentrates on the thermal time constant
τ , which does not depend on actuation power amplitude[31] .



2
Methodology

This chapter consists of all preparations and approaches employed to investigate the thermal signal
in a dumbbell resonator, from making samples to solving differential equations in an analytical model.
In this way, experiments, simulation, and analytics ensure a thorough understanding of heat transfer
in a dumbbell resonator. To simplify the terminology, the dimensions and components of a dumbbell
resonator is defined in figure 2.1.

Figure 2.1: Terminology of a dumbbell resonator

2.1. Sample fabrication
As defined in chapter 1, a resonator comprises substrate and free-standing material, and this section
introduces how to prepare the 2D material part. As for the substrate, chips prepared by Liu[31] are
employed. These chips features a 285-nm layer of silicon dioxide upon a silicon wafer, and the well-
defined cut is made by electron beam lithography and later etched by CHF3 and Ar plasma. The chip
offers circular drums ranging from 2 to 5 µm in radius, and dumbbells with width y0 from 0.2 to 1.5 µm
and length x0 from 0.5 to 7 µm.

Although there are several ways of creating atomically thin flakes, including chemical vapor deposition
(CVD)[29] , liquid phase exfoliation[56] , electrochemical exfoliation[49] , the original mechanical exfoliation[40]

by tapes remains the simplest yet still powerful method to prepare membranes. Mechanical exfoliation
can maintains the intrinsic properties of the material without introducing chemical residues, but it is
limited to small-scale production thus requires more manual labour. Fortunately, the largest dumbbell
in the chip covers a rectangular of 27µm × 10µm, thus relatively small flakes would suffice, while the
inefficiency is negligible if a mere dozen of samples are to be prepared.

To start with mechanical exfoliation, thick flakes are collected and stored on scotch tapes (dubbed
original tapes). On an original tape, One can identify shiny patches, where thick flakes abound, ideal
for peeling off top layers while still preserving flake size. Then new scotch tapes would be attached
to the original tapes for the first round of exfoliation, and more rounds can be conducted until there
are abundant flakes that are not all shiny. Then these tapes are then attached to polydimethylsiloxane
(PDMS) stamps to thin out the layers for a final round. Through fast releasing of the tape from the
PDMS, some thin flakes of 1 nm to 20 nm can be created and found with microscopy.

11
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In our experiments, MoS2 was used owing to its availability in the lab. Usually, MoS2 flakes of 1 nm to
15 nm in thickness on PDMS exhibit no metallic gaze and are rather dull, as shown by the red arrows
in figure 2.2a, while the thickest ones are often grey or golden with wrinkles, depending on the light
source. After locating thin flakes, they are aligned on the top of a dumbbell cavity and by attaching
PDMS to the chip and slowly releasing it, the flakes are transferred to the chip. This works because
the chip is made of SiO2 and exhibits a stronger adhesion compared to PDMS. To further enlarge the
adhesion force gap between the two materials, one can heat up the chip up to 40 ◦C.

As a result, a dumbbell cavity can be fully covered by 2D MoS2, and the thinnest ones (around 5 nm
thick, see figure 2.2c) exhibit an indigo hue, while the medium ones (around 20 nm thick, figure 2.2d)
manifest a lighter blue, but the thicker ones (around 50 nm thick, see figure 2.2b) display shades of
greyish-green. Sometimes a stark dark part can remain on the chip, as seen in figure 2.2d, and this
stems from parts of a flake not attached to the chip, often caused by a dusty chip or dots of previously
transferred material underneath that weaken the adhesion. Therefore, fabrication should be conducted
in a cleanroom to minimise the interference of small particles.

Observing the fabricated samples, hues of deep crimson on the yellow dumbbells or nanodrums indi-
cates pre-deformation thus uneven strain in the material, and that is ineluctable. What can be improved
is the uniformity of material thickness, for example, the top right sample in figure 2.2c is more desired
than the top left one.

(a) (b) (c) (d)

Figure 2.2: Examples of fabricated MoS2 flakes: (a) before transferring to the chip, thin flakes take a dull to
opaque look; (b) relatively thick flakes of approximately 50nm are in greenish hues; (c) thin flakes of around

10nm are blue to indigo; (d) completely dark part indicates flakes not adhere to the chip surface.

2.2. Optomechanical measurement
The setup is drawn in figure 2.3, featuring an actuation laser, a readout laser, and an analyser to show
the results.

Figure 2.3: Schematics of optomechanical measurement setup
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When dumbbell resonators have been fabricated a on chip, the chip is fixed in the attocube (i.e. the
vacuum chamber) by double-sided tapes. The attocube is a metal box with 3-DoF positioner controlled
by piezos.

Turning on the red laser, the 632 nm wavelength beam serves as actuation, and it shines through two
focal lengths and a pinhole to assure that the light is concentrated and parallel to the table surface.
Limited by the table size, a mirror anchored in the corner directs the red laser into a polarised beam
splitter (PBM), which, as the name suggests, split the incident beam into two perpendicular polarised
beams. The transmitted beam travels towards the sample in a vacuum chamber, and when this beam
finally meets the vibrating membrane, part of it would be reflected back. The quarter-wave plate needs
to be tuned for a maximum reflected light (i.e. a 45◦ angle), as in the light path of the red laser lies two
PBS in figure 2.3. Now this reflected light adds up to the transmitted beam and the sum is read by a
photodiode, which converts light into an electrical current. This current, containing information of light
phase and intensity, would be the output of a vector network analyser (VNA).

In order to read at various positions, the blue laser with 404 nm wavelength transmits through a colli-
mator and then a dirac mirror mounted on H45 (which makes the light wave polarized at a 45◦ angle to
the horizontal plane). The collimator can narrows the beam, and it is attached to a plane positioner of 2
DoFs, so by fine-tuning the knobs on the positioner, the blue laser sopt can land on a desired location.
While the dirac mirror reflects the blue laser but let the red laser pass. It also features a plane positioner,
so that one can make sure that the concentrated blue laser dive into the hole of the 50x objective lens.

As for the CCD (Charge-Coupled Device) camera, it takes the background light from a light source,
and presents the image of devices in the vacuum chamber along with laser spots. However, the focus
for the camera is not necessarily the focus of lasers, and in fact hard to align their focus. Hence, in
experiments, the camera is used to do the first stage of location, and then by moving the positioner in
the vacuum chamber to reach maximum signal in VNA plots, one can find the optimal actuation location
at the centre of a circular drum, or as close to it as possible.

After locating the sample in the camera, for each dumbbell resonator, four measurements are to be
carried out, as depicted in figure 2.4. Actuating at drum 1 and reading at drum 2 is called measurement
”drum 12”, and the corresponding thermal time constant is dubbed ”τ12”, as shown in setup 4. The
same nomenclature is applied to the rest of the setups in figure 2.4.

Figure 2.4: Four measurements of each dumbbell resonator

The VNA plays a key role in each measurement, as it calculates the transfer function from red laser
readout to blue laser actuation. When the membrane vibrates, the depth of the cavity fluctuates, and
the reflected light from the membrane and from the substrate can add up or cancel each other, so that
the total intensity of reflected light is a function of driving frequency, and this information is stored in
the current Ired eiωt+ϕ flowing into the VNA from the photodiode. The current controller of blue laser
(i.e. DC controller) would produce a current Iblue, and the VNA would add a harmonic part to it and
results in a current βIblue(α + Pace

iωt), where α and β are constants, and this current acts as the AC
controller, dictating the blue laser behaviour over time. In the end, the VNA would plot the amplitude of
signal S(Iblue, Pac, ω), as shown in figure 2.6a, by calculating:
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S(Iblue, Pac, ω) =
1

t0

∫ t0

0

βIblue(α+ Pace
iωt)

Ired eiωt+ϕ
dt (2.1)

where Iblue is the input of DC controller of blue laser, while Pac is the input of AC controller in VNA. And
t0 is the integration time, which is determined by the bandwidth ωb (usually within 10 Hz to 100 Hz for
a precise measurement):

t0 =
1

ωb
(2.2)

Therefore, both the DC and AC controller can affect the DC intensity of blue laser, and the DC intensity
is associated with the strain in the membrane. While only the AC one determines the amplitude of
harmonic driving. In experiments, the maximum AC power is limited to 8 dBm in the VNA due to the
vulnerable photodiode.

(a) (b)

Figure 2.5: (a) calibration setup; (b) calibration results

(a) (b)

Figure 2.6: Comparison of bode plots of device 8, drum 11: (a) non-calibrated results and (b) calibrated results
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Since the thermal time constant is usually much smaller than the delay in the system, a calibration
to filter out this delay need to be conducted. The amplitude of calibration curves depend on the DC
controller but not he AC controller, Therefore, each measurement S(Iblue, Pac, ω) should be calibrated
with corresponding calibration Scali(Iblue, ω) by:

z(Iblue, Pac, ω) =
S(Iblue, Pac, ω)

Scali(Iblue, ω)
(2.3)

where Pac and Pdc are power of AC and DC controller, respectively, and z(Iblue, Pac, ω) denotes the
calibrated results, as presented in figure 2.6b. Comparing the two bode plots in figure 2.6, the phase
lag in calibration is subtracted from the raw data, while the shape of resonance is preserved despite
the amplitude division.

With the calibrated results, one can separate the real and imaginary part to identify the thermal signal,
often found as a valley in the imaginary part at 106 Hz to 108 Hz with molybdenum disulfide resonators.
The exact thermal time constant τ is calculated by a curve fitting of the following model:

z(Iblue, Pac, ω) =
Ath

1 + iωτ
(2.4)

whereAth is the thermal amplitude. Similar to similar to equation (1.15), the amplitude of the resonance
Af can be fitted by:

Af =
Areso√

(ω2
0 − ω2)2 + (ω0 ω/Q)2

+Breso ω + Creso (2.5)

where ω0 = 2πf0 is the resonance frequency, Q is the quality factor, and Areso, Breso, Creso are con-
stants. A linear perturbation Breso ω+Creso is added since the resonance can reside on the deep slope
of the thermal signal, thus being lopsided. An example of such fitting is drawn in figure 2.7b.

(a) (b)

Figure 2.7: Curve fitting of: (a) thermal signal with equation (2.6) and (b) resonance amplitude with equation (2.5)

However, in the curve fitting of equation (2.4), a constant discrepancy in the real part is usually present,
which inspire us to modify equation (1.29) and to use the following model for curve fitting:

z(Iblue, Pac, ω) =
A1

1 + iωτ
+A2 (2.6)
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where A1 is the same as Ath in equation (2.4), and A2 is a real constant denoting the gap. An example
of fitting is shown in figure 2.7a, where the thermal signal can clearly be recognised by the green arrow.
Nonetheless, there is still some measurement with a merged thermal signal and resonance. As derived
in equation (1.32), a coupled model updated from equation (2.6) is used for curve fitting:

z(Iblue, Pac, ω) =

[
A1

1 + iωτ
+A2

]
1

−ω2mk + iωck + 1
(2.7)

where mk and ck are constants that can be derived from resonance and Q factor. Finally, some mea-
surement do not have a ideal fitting with any models above, which might be caused by the coupling of
the two circular drums. The following model with a coupling term exhibits a better fitting in terms of the
coefficient of determination adjusted R squared:

z(Iblue, Pac, ω) =

[
A1

1 + iωτ
+ (a+ bi)ω + c+ di

]
1

−ω2mk + iωck + 1
(2.8)

where a, b, c, d are all real constants. The results of the three model equation (2.6), equation (2.7), and
equation (2.8) are presented and compared in section 3.1.

2.3. AFM measurement
The atomic force microscope (AFM), a high-resolution type of scanning probe microscopy, is a widely
used experimental method to characterise static[23, 44, 30] and recently dynamic properties[12] of mem-
branes. In our case, the drive bend a cantilever that is connected to a probing tip. When the tip moves
upon the sample, the topology of it, described by pixels over the measuring range, can be obtained.
And in this way, the thickness, among other properties, can be measured. When more deflection is
exerted to the cantilever and thus more deflection in the sample, a force-displacement relationship can
also be recorded[8] .

More specifically, the topology data is processed by Gwyddion to compensate error in measurement,
with the assumption that the surface of the chip is flat. Then two masks, indicated by two rectangular
boxes in figure 2.8, are created to represent the height of the base (i.e. chip surface) and that of the
membrane, respectively. Next, we fit height values of pixels in each mask to a normal distribution,
and the thickness of a membrane is calculated as the height difference between the base and the
membrane, as shown in figure 2.8b.

Table 2.1: Dimension of dumbbell devices

Device R1(µm) R2(µm) w(µm) l(µm) t(nm)

1 5.0 5.0 0.2 15.0 13
3 2.5 5.0 0.6 11.5 15
4 4.0 4.0 0.3 12.0 8
5 4.0 4.0 0.4 15.0 60
7 4.0 4.0 0.3 15.0 60
8 5.0 5.0 0.6 12.0 13
9 5.0 5.0 0.6 11.0 13
10 5.0 5.0 0.2 12.0 13
11 3.0 3.0 0.3 8.0 -
12 5.0 5.0 0.2 17.0 9
14 5.0 5.0 0.6 17.0 9
15 4.0 4.0 0.6 12.0 17
16 4.0 4.0 0.5 11.0 12
17 4.0 4.0 0.5 10.0 12
18 3.0 3.0 0.4 8.0 -
19 2.0 3.5 0.6 9.5 15

As a result, in total 19 devices are measured and listed in table 2.1. Device 2 and 6 are not listed due to
a behaviour not obeying any of the three aforementioned model thus not included in extracting thermal
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time constants, and this behaviour is discussed in section 3.2. Device 13 is excluded due to a failure
in measuring its τ21. Except for device 4 and 5, membranes of the devices boost small variation in
thickness, within 12 ± 5nm. For devices 11 and 17, thickness is no longer measurable, owing to too
large a initial force in the AFM setting, or decay during optomechanical measurement.

(a) (b)

Figure 2.8: Post-processing of AFM measurement: (a) mask location of the base and the membrane; (b) curve
fitting of normal distribution to obtain the membrane thickness zt.

2.4. COMSOL simulation
With the ”heat transfer in solids” module in COMSOL multiphysics, similar setup of laser actuation
and readout in figure 2.4 can be established. To begin with, a 3D model of a circular drum (shown
in figure 2.9a) was built to match the results calculated by Liu’s verified axis-symmetric model[31] using
”heat transport in thin shells module”. Then this 3D model is expanded to become a dumbbell resonator,
as shown in figure 2.9b.

(a) (b)

Figure 2.9: Surface temperature (in Kelvin, bottom view) distribution at 1 MHz calculated by: (a) 3D circular drum
model, and (b) dumbbell model.

To build this model, a rectangular 2D membrane is placed on a SiO2 plate of 285 nm in thickness, and
drum 1 is actuated by a heat source with normal distribution in space, as defined in equation (2.15).
Then a harmonic perturbation featuring 10 kHz to 1000 MHz heating is calculated and shown in fig-
ure 2.11. Clear thermal signal can be identified in all three graphs, despite fluctuations in figure 2.11b
and figure 2.11c at high frequencies that are not obvious in experiments. Furthermore, we could also
define analytic functions to simulate readout locations, as explained in equation (2.39).
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As for boundary conditions, the temperature is set to be constant at 293.15 K at the bottom of the
substrate, which is attached to the positioner in the vacuum chamber (see figure 2.3, not modelled in
the COMSOL simulation). Since the positioner is much larger than the substrate, temperature change
of the positioner due to lasers is negligible. Thus, the bottom of the substrate should be kept at room
temperature, as shown in figure 2.10a. For other surfaces, there is a thermal insulation owing to the vac-
uum environment. As the default boundary condition, it is named BC1, and is applied to all simulations
in chapter 3.

(a) (b)

Figure 2.10: Boundary condition of surfaces with constant temperature, coloured in green: (a) BC1, only bottom
of the substrate, applied in chapter 3; (b) BC2 with extra surfaces at the edge of the dumbbell cavity, applied in

section 4.2.

However, this boundary condition is not exactly the same as that of the analytical model introduced
in section 2.5. For this matter, another boundary condition with an extra constant temperature for the
edge of the dumbbell cavity, as indicated by the green surfaces in figure 2.10b. This boundary condition
called BC2, and is applied in some of section 4.2 simulations.

(a) (b) (c)

Figure 2.11: Average surface temperature of: (a) drum 1, (b) bridge, and (c) drum 2, calculated by the dumbbell
model with parameters: R1 = R2 = 4µm, x0 = 4µm, y0 = 0.5µm, H0 = 1.5 · 1010 W/m2, r0 = 0.5µm, k = 40

W/(m · K), ρ = 5060 kg/m3, cp = 240 J/(g·K). Boundary conditions follow figure 2.10a.

2.5. Analytical calculation
COMSOL simulation can offer us a temperature distribution induced by a harmonic heat source, but
to dig out the exact pattern, an analytical solution needs to be developed. This section employs the
nomenclature in figure 2.1, and derives the temperature distribution for drum 1 as u1(x, t), bridge as
v(x, y, t), and drum 2 as u1(x, θ, t), with the coordinates illustrated in figure 2.12.

Starting with drum 1, we consider a two-dimensional circular resonator heated up by a fluctuating power
P (x, t), and for simplicity this problem is regarded as axisymmetric, the heat equation can be written
as:

∂u1

∂t
= κ

(
∂2u1

∂x2
+

1

x

∂u1

∂x

)
+ P (x, t) (2.9)
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First we solve for the solution of homogeneous equation (2.9), i.e. P (x, t) = 0. Assume the variables
are separable, thus:

u1(x, t) = U1(x)e
iωt (2.10)

Figure 2.12: Coordinates applied in analytical calculation

Plugging equation (2.10) into equation (2.9) yields:

x2 dU1

dx2
+ x

dU1

dx
+ x2 iω

κ
U1 = 0 (2.11)

Then equation (2.11) is in the form of Bessel’s differential equation, hence the solution is:

U1(x) =

n∑
i=0

[ciJi(mx) + diYi(mx)] (2.12)

where m =
√

− iω
κ . Due to no singularity at x = 0, we set di = 0. After applying boundary condition

U1(R1) = 0, cn can be expressed as:

cn = −
∑n−1

i=0 ciJi(mR1)

Jn(mR1)
(2.13)

In this way, U1(x) can be rewritten as:

U1(x) =

n∑
i=0

ciwi(x) =

n−1∑
i=0

ci

[
Ji(mx)− Ji(mR1)

Jn(mR1)
Jn(mx)

]
(2.14)

As u1(x, t) now only satisfies the homogeneous heat equation u̇ = k∇2u, the solution of the non-
homogeneous one (see equation (2.9)) is considered to be the same form as U1(x) e

iωt, so that the
Galerkin method can be applied to determine coefficient ci. First, the actuation power P (x, t) writes:

P (x.t) = P0(x)e
iωt = H0e

− x2

r20 eiωt (2.15)

where H0, r0 are constants. Then plugging unh(x, t) into the non-homogeneous equation when using
Galerkin method gives:
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∫ R1

0

n−1∑
i=0

[
ciiω · wi(x)− cik∇2wi(x)− P0(x)

]
· wj(x)xdx = 0 , (j = 0, 1, 2..., n− 1) (2.16)

To solve for ci in equation (2.16), it is reconstructed into matrix form Ac = f, where:

Aij =

∫ R1

0

[
iω · wj−1(x)− k∇2wj−1(x)

]
wi−1(x)xdx

fi =

∫ R1

0

P0(x)wi−1(x)xdx

(2.17)

Note that i and j in equation (2.17) are 1-based, instead of 0-based as in equation (2.16). Hence, the
coefficient ci assembled in c in equation (2.16) can be calculated by:

c = A−1f (2.18)

Following the solution of equation (2.14), we can proceed to obtain the solution of heat equation for the
bridge part, V (x, y). Assuming the width of the bridge is small relative to the diameter of the circular
drum, the change in temperature distribution of drum 1 U1(x) because of the opening on drum 1’s
boundary is negligible, then U1(x) can directly be applied as input of the bridge part. Thus, the boundary
condition of the bridge part writes:

v(x, y = ±y0, t) = 0; v(x = 0, y, t) = u1(
√

y2 +R2
1 − y20 , t) (2.19)

where y0 is half width of the bridge. Similar to how we solved equation (2.11), the homogeneous equa-
tion is considered thanks to negligible heating power on the bridge part, and the solution is assumed
to be:

v(x, y, t) = V (x, y)eiωt = X(x)Y (y)eiωt (2.20)

Plugging equation (2.20) into the homogeneous heat equation gives:

iω

κ
=

1

X

d2X

dx2
+

1

Y

d2Y

dy2
(2.21)

The solution of equation (2.21) can be presented in the form:

X(x) = Axe
−
√
sx +Bxe

√
sx (2.22)

Y (y) = Ajcos

(
(j + 1

2 )πy

y0

)
, j = 1, 2, 3... (2.23)

where s = iω
κ + (j+1/2)2π2

y2
0

, and Ax, Bx, An are constants. Along the x-axis of the bridge, we suppose
the temperature drop for no heating is present, i.e.:

dX

dx
< 0 for x > 0 (2.24)

Hence Bx = 0, and the solution can be assembled into:

v(x, y, t) =

n∑
j=0

[ajVj(x, y)] e
iωt =

n∑
j=0

[
aje

−
√
sxcos

(
(j + 1

2 )πy

y0

)]
eiωt (2.25)
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To determine coefficients aj , we use the Galerkin method to satisfy the boundary condition in equa-
tion (2.19). Note that Y (y) already satisfies the first boundary condition, and it can serve as a set of
orthogonal base. Then the Galerkin equation to satisfy the second boundary condition reads:

∫ y0

0

n∑
j=0

[
ajVj(x = 0, y)− U1

(√
y2 +R2

1 − y20

)]
cos

(
(k + 1

2 )πy

y0

)
dy = 0, k = 0, 1, 2... (2.26)

With a similar approach in equation (2.17), the solution of v(x, y, t) can be attained: equation (2.26) is
rearranged in matrix form Ka = p, where:

Kij =

∫ y0

0

Vj−1(x = 0, y) cos

(
(i− 1

2 )πy

y0

)
dy

pi =

∫ y0

0

U1

(√
y2 +R2

1 − y20

)
cos

(
(i− 1

2 )πy

y0

)
dy

(2.27)

Note that i and j are again 1-based in equation (2.27). The final step is to solve aj in array a with:

a = K−1p (2.28)

Using V (x, y), the coupling of the bridge is defined as:

Vcp =
V (x = x0, y)

V (x = 0, y)
(2.29)

From this point on, we again use v(x, y, t) as the input of drum 2, with assumption that the introduction
of drum 2 would not change v(x, y, t). In drum 2, the temperature distribution u2(x, θ, t) must satisfy:

∂u2

∂t
= κ

(
∂2u2

∂x2
+

1

x

∂u2

∂x
+

1

x2

∂2u2

∂θ2

)
(2.30)

Similarly, we separate the variables and write the solution as:

u2(x, θ, t) = U2(x, θ)e
iωt = F (x)Θ(θ)eiωt (2.31)

And plugging equation (2.31) into equation (2.30) yields:

x2

F

d2F

dx2
+

x

F

dF

dx
− iω

κ
x2 = − 1

Θ

d2Θ

dθ2
= λ2 (2.32)

where λ is a constant. With the symmetry Θ(θ) = Θ(−θ), the solution of equation (2.32) is:

F (x) = bxJλ (mx) ; Θ(θ) = bθ cos(λθ) (2.33)

Note that Θ(θ) is a set of orthogonal base within the interval [0, π], so that we can construct again the
Galerkin equation to satisfy the boundary condition in equation (2.34):

u2(x = R2, θ, t) = v (x0 +R2(1− cos(θ)), R2sin(θ), t) · (θ < β) = g(θ)eiωt (2.34)

where β is the opening angle illustrated in figure 2.1. Due to periodicity in θ axis, λ in equation (2.32)
is rewritten as an integer j, so that u2 is expressed as:
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u2(x, θ, t) =

n∑
j=0

bjU2,j(x, θ)e
iωt =

n∑
j=0

bjJj (mx) cos(jθ)eiωt (2.35)

Based on equation (2.35), the Galerkin equation to satisfy equation (2.34) is written as:

∫ π

0

n∑
j=0

[bjU2,j(R2, θ)− g(θ)] · cos(kθ)dθ = 0, k = 0, 1, 2... (2.36)

By virtue of the orthogonality of cos(kθ) over [0, π], solution of bj can be calculated by:

bj =
2

π

∫ π

0
g(θ)cos(jθ)dθ

Jj (mR2)
(2.37)

Finally, the average temperature of drum 1 U1,avg, bridge Vavg, and drum 2 U2,avg are given by:

U1,avg =
1

R1

∫ R1

0

U1(x)x dx

Vavg =
1

x0y0

∫ y0

0

∫ x0

0

V ((x, y) dxdy

U2,avg =
2

πR2
2

∫ π

0

∫ R2

0

U2(x, θ)x dxdθ

(2.38)

Hence, an analytical model describing temperature distribution in a dumbbell resonator is established,
with three domains: u1(x, t) for drum 1, v(x, y) for bridge, and u2(x, θ, t) for drum 2, and an illustrative
result is plotted in figure 2.13. Noticeable noise at low frequencies in the real part and strong noise
at low frequencies can be observed, despite a clear thermal signal for all three graphs, and further
investigation is presented in section 3.3.

Additionally, a location of readout can be incorporated in this model, as the red laser also has a nor-
mal distribution in space. This is realised by adding a weight function to the average temperature in
equation (2.38):

W (x.y) = e
− (x−xr)2+(y−yr)2

R2
0 (2.39)

(a) (b) (c)

Figure 2.13: Analytical calculation of: (a) U1,avg, (b) Vavg, and (c) U2,avg, with parameters same as in figure 2.11

where xr and yr are coordinates of readout position, and R0 is a constant. Hence, taking readout at
drum 2 as example, results picked up at (xr, yr) become:
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U2,avg,r =
2

πR2
2

∫ π

0

∫ R2

0
U2(x, θ)W (xcos(θ), xsin(θ))x dxdθ∫ π

0

∫ R2

0
W (xcos(θ), xsin(θ))x dxdθ

(2.40)



3
Results

This chapter presents the results of three approaches described in the previous chapter: optomechan-
ical experiments, COMSOL simulation, and analytical calculation. A comparison of all three method is
also conducted. More importantly, parameters in the COMSOL and analytical models are tuned in an
effort to explain the variation in experiments, and to visualise the impact of dumbbell dimensions.

3.1. Extracting thermal time constant
Based on experiments described in section 2.2, we try to locate the thermal signal and thus obtain the
four thermal time constants τ11, τ12, τ21, τ22, for a dumbbell resonator. Broadly speaking, there are four
types of measurement results we can see: (1) the most ideal one, with a clear thermal signal at low
frequency separated from the fundamental resonances in high frequencies, as shown in figure 3.1a; (2)
the thermal signal is coupled with the fundamental resonance, without a clear ”valley” in the imaginary
part, often stemming from a small thermal time constant, as shown in figure 3.1b; (3) thermal signal
is clear, but resonance is of small amplitude or absent, usually a fluctuation at high frequencies that
resembles simulation in figure 2.11c can be noticed, as shown in figure 3.1c; (4) amplitude of signal is
too small that noises cloud the thermal signal, as shown in figure 3.1d. In general, type 1 and 2 are the
most common in measurement, therefore the following contents address the curve fitting performance
for those two types.

(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4

Figure 3.1: Four types of measurement results

To extract those τ from the measured and calibrated signal zω, we borrow the models mentioned in
section 2.2. For the first and the third type, we can obtain the τ by directly fitting equation (3.1) with an
adjusted R2 of 0.70 to 0.99, thanks to a clear thermal signal. Meanwhile, some distortion and noise are
present in low frequencies, especially from 10 kHz to 100 kHz. That is because calibration, despite the
same input of laser controllers, can still vary due to different temperature and moisture, optics alignment
in the setup, and noise from the vacuum pump. Additionally, though a τ can be extracted, type 3 can
never give an ideal fit for equation (3.1), as at high frequencies the imaginary part rises above zero.

24
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Model 1 : zω =
A1

1 + iωτ
+A2 (3.1)

However, curve fitting for type 2 measurement is more tricky. Theoretically, equation (3.2) describes
the behaviour of coupled thermal signal and fundamental resonance, but in practice, this model yields
the worst fitting, leaving the largest gap between fitted curves and data, as seen in figure 3.3a and
figure 3.3b. In particular, the location of the valley (thermal signal) in figure 3.3b differs in the fitted
curve, and the gap is even larger at higher frequencies or near resonances. This inspires us to come
up with term linear to ω in lieu of A2 so that this gap can be narrowed, as shown in equation (3.3).

Model 2 : zω =

[
A1

1 + iωτ
+A2

]
1

−ω2mk + iωck + 1
(3.2)

Model 3 : zω =

[
A1

1 + iωτ
+ (a+ bi)ω + c+ di

]
1

−ω2mk + iωck + 1
(3.3)

To compare the three models and decide which one to trust, we extract thermal time constant τm−p

with model p, and introduce coefficient of determination R2
adj,p, which is defined as:

R2
adj,p = 1− (1−R2

p)
n− 1

n− v − 1
, p = 1, 2, 3 (3.4)

where v is number of variables, n is number of data points, and R2
p is expressed as:

R2
p = 1−

∑n
i=1 |yi − yfit,i|2∑n
i=1 |yi − ymean|2

(3.5)

where yi is the i−th data point, yfit,i is the i−th point in fitted curve, and ymean is the mean value of all
yi. Meanwhile, we also observe in graphs if the thermal signal is well represented by the fitted curve.

Starting with model 1, we trust its fitting results for type 1 measurement, as it always demonstrates a
thermal signal overlapping the measured data, with a R2

adj,1 often over 0.9, as plotted in figure 3.2a.
Whereas model 1 is less trustworthy when it comes to measurement type 2, as shown in figure 3.2b.
When model 1 creates a thermal signal, there is no reference in measured data, despite a good (but
less optimal than fitting of type 1 data) R2

adj,1 just below 0.8. Additionally, τ extracted here is more
susceptible to the fitting frequency range [fb, ft]: when ft approaches the resonance frequency, the
thermal signal location also advances toward it, making τ fluctuating up to 30%. Hence, we determine
fb to be 1.65E5 Hz to avoid interference in low-frequency noises and calibration, and to set ft in all
curve fittings of model 1 as equation (3.6) with constant α = 27 for a same regime in fitting.

ft = f0 − α
f0
Q

(3.6)

Table 3.1: Comparison of three curve fitting models

Measurement Type τm−1 (s) R2
adj,1 τm−2 (s) R2

adj,2 τm−3 (s) R2
adj,3

Device 5, drum 21 1 1.6430E-7 0.9715 3.3834E-7 0.3667 1.5782E-7 0.9723
Device 14, drum 11 1 1.0863E-7 0.9401 2.5584E-7 0.1343 1.0718E-7 0.8715
Device 16, drum 21 2 1.0144E-7 0.7324 1.3824E-7 0.8211 7.6083E-8 0.9762
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(a) (b)

Figure 3.2: Curve fitting with model 1: (a) type 1 measurement, device 14, drum 11; and (b) type 2 measurement,
device 16, drum 21

(a) (b)

(c) (d)

Figure 3.3: Curve fitting of type 1 measurement, device 14, drum 11: (a) real part, by model 2; (b) imaginary part,
by model 2; (c) real part, by model 3; (d) imaginary part, by model 3.
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(a) (b)

(c) (d)

Figure 3.4: Curve fitting of type 2 measurement, device 16, drum 21: (a) real part, by model 2; (b) imaginary part,
by model 2; (c) real part, by model 3; (d) imaginary part, by model 3.

(a) (b)

Figure 3.5: Measurement of device 2: (a) drum 11; (b) drum 22, both type 2 data, fitted with model 1.
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Table 3.2: Measured thermal time constants of all devices

Device Model τ11,exp(s) τ12,exp(s) τ21,exp(s) τ22,exp(s)

1 1 2.6375e-07 2.1388e-07 1.5819e-07 1.6081e-07
3 1 1.0505e-07 1.2239e-07 4.0851e-07 1.5305e-07
4 3 1.2438e-08 2.6259e-07 1.4728e-07 1.6310e-08
5 1 1.2025e-07 1.4615e-07 1.6430e-07 8.5135e-08
7 1 4.7572e-08 7.7288e-08 1.4926e-07 4.3813e-08
8 3 1.8486e-08 7.1143e-08 1.0098e-07 2.2348e-08
9 3 1.4690e-07 6.7254e-08 1.0214e-07 2.2126e-08
10 3 7.1570e-08 1.1059e-07 6.8182e-08 1.8433e-08
11 3 1.9230e-08 3.0244e-08 6.2925e-08 1.5042e-08
12 1 1.0553e-08 5.1595e-08 3.2689e-08 2.6525e-08
14 3 3.3940e-08 4.1235e-08 6.7606e-08 3.2626e-08
15 1 9.1293e-08 1.6379e-07 1.1522e-07 1.1306e-07
16 3 1.8000e-08 7.2759e-08 3.0030e-08 2.8965e-08
17 3 2.6377e-08 5.2779e-08 7.6083e-08 3.3492e-08
18 1 1.8010e-07 5.3910e-08 1.3615e-07 1.5050e-07
19 1 1.8663e-08 1.2778e-07 4.1844e-08 2.9159e-08

To compare the performance of model 2 and model 3, we again use type 1 data. We extract τm−1 with
model one, and τm−2 and τm−3 should be close to τm−1. Taking device 14, drum 11 measurement as
example, τm−3 is much closer to τm−1, with a 1.3% discrepancy compared to a 235.5% difference from
τm−2. A much higher R2

adj,p is also recorded for model 3, as listed in table 3.1. Fitting in figure 3.3 too
agrees with the statistics, with a much better overlapping of data and fitting curves using model 3.

Finally, we move on to type 2 data, using model 2 and 3, as shown in figure 3.4. Both model can
capture the resonance, while model 3 is much better tracking the data before the resonance, exhibiting
a higher R2

adj,3 than R2
adj,1 and R2

adj,2. Model 3 is also more robust compared to model 2, for R2
adj,3 is

never below 0.76, and is mostly over 0.95 if the resonance is well identified.

There are two remaining issues in extracting those τ . First, the reason why model 3 performs better
than model 2 in fitting is unclear, since theoretically the coupling term (a+ bi)ω+ c+di in equation (3.3)
should have been inversely proportional to ωa (a is an integer depending on frequency, see appendix A).
Second, device 2 and 6 are not included, due to their type 3 measurement of drum 11 and drum 22,
as illustrated in figure 3.5. The imaginary part goes up above zero while the real part drops below
zero around 100 MHz, and the fitting curve of model 1 is slightly off the thermal signal. Moreover, the
facility only allow measurement up to approximately 120 MHz, so this phenomenon of crossing real
and imaginary part is not well captured, and thus model 1 is not considered a reasonable model to do
curve fitting.

In conclusion, for type 1 and 3 measurement, model 1 is employed to extract its thermal time constant,
while for type 2 measurement, model 3 is used. Following this guideline, thermal time constants of 16
devices (see table 2.1) are extracted and presented in table 3.2, each with a subscript ”exp”.

3.2. Tuning COMSOL model
Eventually, we want to study the relationship between thermal time constant and dumbbell sizes, which
is characterised by R1, R2, x0, and y0, as introduced in figure 2.1. However, it is time-consuming to
prepare samples for all four variables, let alone divergence of samples. Hence, a 3D COMSOL model
is built to investigate how τ depends on some variables, and what play the key role in the variations in
experimental τ .

First, the convergence of a 3D circular resonator model is tested against a 2D axisymmetric model
created and verified by Liu[31] . Thermal amplitude Ath and thermal time constant τ , as seen in model 1
in equation (3.1), ought to be extracted to quantify the convergence. The extracted τ fluctuates withAth,
so the valley location is calculated instead. This location refers to the thermal signal, i.e. the frequency
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where the imaginary part reaches the minimum. As depicted in figure 3.6a, the valley locations of two
models are invariant with mesh sizes, while Ath of the 3D model also approaches to the 2D model as
mesh sizes become smaller. Given the negligible discrepancy in Ath and valley location, w conclude
that the 3D circular resonator model is converging and valid.

∆τ+ =

∣∣∣∣ 1

2πfτ
− 1

2π(fτ +∆fτ )

∣∣∣∣ = 1

2π

∣∣∣∣ 1fτ − 1

fτ10d

∣∣∣∣ = 1

2πfτ
· 10

d − 1

10d

∆τ− =

∣∣∣∣ 1

2πfτ
− 1

2π(fτ −∆fτ )

∣∣∣∣ = 1

2π

∣∣∣∣ 1fτ − 1

fτ10−d

∣∣∣∣ = 1

2πfτ
· (10d − 1)

(3.7)

∆τ+
τ

=
10d − 1

10d
;

∆τ−
τ

= 10d − 1; (3.8)

(a) (b)

Figure 3.6: Convergence plots, minimum element size against: (a) thermal amplitude Ath; (b) location of thermal
signal, i.e. the minimum of the imaginary part.

Figure 3.7: Relative error in thermal time constant caused by using valley location, plotted against d, which indicates a d of
0.01 would suffice the precision of τ .

Additionally, to extract τ , valley location is proffered when it comes to drum 12 or drum 21 of simulation
and analytical model. As seen in section 2.4 and section 2.5, those curves resemble type 2 data in
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section 3.1, which means curve fitting with model 1 is no longer appropriate. However, to use valley
location instead of curve fitting for τ must lead to some error, but such error is tolerable if the frequency
resolution is sufficient. Assume the actual valley location is at fτ , whereas we obtain fτ +∆fτ , then the
error between the real thermal time constant τ and the extracted one is∆τ , as written in equation (3.7).
In simulation, frequency sweep is determined by an array of geometric sequence fi, where common
ratio 10d = fi+1

fi
. Typical values of d are from 0.001 to 0.02. According to such settings, the maximum

relative error ∆τ
τ is obtained by setting ∆fτ equals to (10d − 1)fτ or (1 − 10−d)fτ . In this way, ∆τ

τ
becomes a function of of d, as presented in equation (3.8) and plotted in figure 3.7. If we expect the
relative error to be smaller than 0.1, then d = 0.02 would meet this requirement.

After settling the mesh size and frequency resolution, we investigate the settings of actuation and
readout laser. As Liu[32] found out, the actuation amplitude do not affect thermal time constant, we can
also reason that τ remain unaffected by readout amplitude. Therefore, equation (3.9) is borrowed from
section 2.5 to define the actuation power P (x, t) and readout weight function W (x, y). First, we tune
r0 in P (x, t), as illustrated in figure 3.8a, to examine the corresponding shift in τ11 and τ12. In addition,
the thermal time constants extracted with weight function W (x, y) are calculated as well, called τ11c
and τ12c. All four time constants are plotted in figure 3.8b. Smaller laser spots, i.e. smaller r0, leads
to larger thermal time constants, since it takes longer time to heat up the membrane for smaller r0.
The variation in τ11 due to r0 is negligible, registering within 5%, and thus can originate from errors in
valley location, as defined in equation (3.8). While variation in τ12 is almost 15%, and that means the
variation mainly stems from heat transfer in bridge and drum 2. Variation saturates as r0 go beyond
4 µm, which coincides with less variation in actuation power: difference between curves of r0 = 8µm
and r0 = 4µm compared to that between curves of r0 = 4µm and r0 = 1µm is more distinct. As for
W (x, y), R0 is set to 4.0µm, and W (x, y) assign larger weight to area closer to the centre of drum 1
or drum 2, Since the temperature distribution can be expressed by a series of Bessel function J(mx)
(see section 2.5), when x grows, the first valley location in the imaginary part of J(mx) registers at a
smaller frequency, and that means a larger τ for larger x. This complies with the physical meaning of
τ : longer time duration is required for heat to transfer from the centre to area of larger x. Despite a
increase of τ with W (x, y), such growth is marginal if we calculate the ratio, as detailed in figure 3.8c.
The maximum growth is within 9%, and the ratio is closer to 1 for τ12/τ12c. There are some odd points
go slightly above 1 (at 1.02), but this probably comes from error of valley location again. Hence, it is
not necessary to take into account W (x, y) if the readout location is at the centre.

P (x.t) = H0e
− x2

r20 eiωt

W (x.y) = e
− (x−xr)2+(y−yr)2

R2
0

(3.9)

(a) (b) (c)

Figure 3.8: Tuning actuation laser spot: (a) power of laser spot in space with different shape parameter r0; (b)
values of resultant thermal time constant, with and without a weight function in readout; (c) ratio between thermal

time constants with and without a weight function in readout.

Nonetheless, when readout locates away from the centre, i.e. xr ̸= 0 or xr ̸= 0, then the shift of the
thermal time constant can be significant. The same should be reasoned for actuation location. We fix
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R0 to 4.0µm and r0 to 0.5µm, and vary xr and yr inW (x, y) for actuation and readout to see how large
the shift of τ is.

To explore the influence of actuation location, the red laser spot is moved along axis xr1 from -3µm to
3µm, and then along axis yr1 from -3µm to 3µm, as drawn in top figure 3.9a. The same is conducted
for the blue laser, as drawn in bottom figure 3.9a, and the results are summarised in figure 3.9c. Moving
actuation or readout location has limited affect on τ11, with the largest fluctuation of merely 2.3%. For
τ12, the shift is more observable. The curve of τ12 with varying yr is symmetrical against xr = 0. The
largest variance in figure 3.9b is found in τ12 with a fixed yr = 0, and the corresponding curve is almost
linear from −1µm to 3µm (see the yellow line). Such linear relationship matches the time needed for
the heat to travel from the actuation to the readout location. This is again evidenced by moving readout
away from actuation location: τ12 with fixed yr drops almost linearly in figure 3.9c. Similarly, changing
readout location exerts less influence on τ11 compared to τ12. Hence, positions of actuation and readout
along xr1 and xr2 axis matter, bringing about shifts up to 9% and 31%, respectively. In comparison,
deviance along yr1 and yr2 is negligible, always within 3%. Additionally, the linear relationship between
τ12 and xr is not valid when xr < −2µm. This location is close to the bridge part, where some of the
readout is off the membrane, thus distorting τ12.

From this point on, we can combine the influence of actuation and readout location, and calculate the
largest and smallest resultant thermal time constant τ12,max and τ12,min, then compare them to τ11c
and τ12c. The largest τ12 should be obtained by actuation at (xr1 = −3, yr1 = 0) µm and readout at
(xr2 = 3, yr2 = 0) µm, while to attain the smallest τ12, actuation is situated at (xr1 = 3, yr1 = 0) µm
and readout is situated at (xr2 = −3, yr2 = 0) µm. As a result, τ12,max registers 0.3103 µs, 26% larger
than τ12c, and the τ12,min is 40% smaller than τ12c, measuring 0.1485 µs. This means the ratio between
τ12,max and τ12,min is 2.10, or 0.48 if the denominator and the numerator are switched. These ratios
are further utilised in section 3.4.

(a) (b) (c)

Figure 3.9: Tuning actuation or readout location in the COMSOL model: simulation setup illustrated in (a). Top of
(a): varying location of actuation blue laser and fixed location of readout red laser at the centre of drum 1 and
drum 2, and the results shown in (b). Bottom of (a): varying location of readout red laser and fixed location of
actuation blue laser at the centre of drum 1, and the results shown in (c). Red or blue laser is moved along axis

xri or xri (i = 1, 2) defined in (a).

So far, we are using this COMSOLmodel to test variations rooted in optomechanical measurement, and
the next step is to test how material properties can change the thermal time constant. For this matter,
in following simulations, r0 is fixed to 0.5µm and R0 4.0µm, actuation and readout locations have no
deviation from the drum centre, and W (x, y) is not involved when acquiring thermal time constants.
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(a) (b)

Figure 3.10: Affect of material properties on: (a) thermal time constant τ and (b) thermal amplitude Ath.

From equation (1.30), we see that thermal conductivity k and specific heat Cv play a key role in τ value,
if material density is considered constant. Apart from that, thickness alsomatters if it is not much smaller
than resonator dimensions. Accordingly, we tune the thermal conductivity and membrane thickness in
the COMSOL model, and plot how τ and Ath varies in figure 3.10. Large thickness contributes to a
larger τ due to more time needed for heat to propagate in the thickness direction, which is the case
in figure 3.10a. Thickness of our samples is found between 8 nm to 60 nm, and that would result
in a shift in τ registering around 20%. This shift is dwarfed by that caused by thermal conductivity,
measuring a 1418% difference. The curve also agrees with equation (1.30), which indicates a inverse
proportional relationship between τ and k. The range of thermal conductivity is determined by experi-
ments on monolayer MoS2

[35, 53, 28, 22] , and considering thickness variation in our samples, such range of
k is conservative. Similarly in Ath, thermal conductivity brings about a much larger variation, as this
property is directly linked to heat transfer. Hence, as a material property, thermal conductivity is the
dominant factor in determining τ .

In recapitulate, the major factors of variance in thermal time constant are actuation and readout location
along xr axis, and thermal conductivity of the membrane.

3.3. Temperature distribution
The COMSOL model serves as a robust tool to study how some parameters or properties shift thermal
time constant, but it is still a black box that only the equivalent input and output are clear to us. There-
fore, we use the analytical model to better understand the physics and mathematics of temperature
distribution.

First, the analytical model should converge to the simulation in COMSOL, as they both solve the heat
equation with the same boundary condition. The solution of temperature distribution in drum 1 is copied
from section 2.5 and written in equation (3.10), and in theory the more Bessel functions we include, the
more closer the analytical and simulation models are. Thus, normalised average temperature of drum 1
U1,avg, bridge Vavg, and drum 2 U2,avg are calculated when n = 3, 5, and 8. These curves are compared
with the normalised average calculated by the COMSOL model, as displayed in figure 3.11. All those
curves are normalised by dividing a ratio γ defined in equation (3.11), where f1 = 1 kHz and f1 = 10
kHz. In this way, the real part of the signal at 10 kHz (i.e. the start frequency of plots) is close to 1 Kelvin,
then the shape of them can be addressed. For U1,avg, n = 3 already shows a good overlapping, and
improvement by increasing n is marginal. While n = 8 yields decent improvement for Vavg and U2,avg,
particularly regarding small fluctuations at high frequencies. However, if the location of the first valley
in the imaginary part only is considered, n = 3 is sufficient and much more time-saving in calculation.

An obvious drawback that can be observed in figure 3.11 is error around 20 MHz, especially in the
solution of bridge Vavg. When using Galerkin method to solve for U1(x) in section 2.5, we used base
functions that are not orthogonal to each other in the integration interval, then inverse of a matrix A
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need to be calculated in equation (2.18). This matrix A becomes more baldly scaled when n grows,
and is the closest to singular matrix around 20 MHz. Consequently, numeric error, comprising precision
in Bessel functions and inverse calculation, become dominant when the amplitude of signal per se is
small, as seen in the bridge part. Luckily, such numerical error is attenuated when calculating bj using
orthogonal base in equation (2.37), so that the solution of drum 2 is more smooth.

U1(x) =

n−1∑
i=0

ci

[
Ji(mx)− Ji(mR)

Jn(mR)
Jn(mx)

]
(3.10)

γ =

∫ f2

f1

Re{zw(2πf)} df (3.11)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.11: Convergence of analytical model and COMSOL simulation model in normalised results, with red and
blue lines calculated by analytical model while dotted lines from COMSOL model. (a-c) n = 3; (d-f) n = 5; (g-i)

n = 8. Material (graphene) properties for both models are based on settings in literature [32]: thermal
conductivity is 5 W/(m3·K), specific heat is 700 J/(g·K), and density is 3375 kg/m3.

In figure 3.11, normalised curves calculated by the analytical model and the COMSOL model share a
similar shape, but the original ones are of different amplitude, as evidenced by temperature distributions
in figure 3.13 and figure 3.12. The analytical model lacks a thickness direction, so it is a 2D model. The
COMSOLmodel’s heat source, as introduced in equation (3.9), is set toH0 = 1.5E10W/m3, while in the
analytical model,H0 takes the same amplitude, but the unit of it becomes W/m2. This raw translation of
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heat source from 3D to 2D is one of the reasons why the amplitudes are different. Comparing figure 3.13
and figure 3.12, the COMSOL model in general produces a higher temperature amplitude at 1 MHz. In
particular, the bridge and drum 2 of the COMSOL model gives a temperature almost three orders of
magnitude higher than that of the analytical model. A prominent difference in the bridge and drum 2
temperature amplitude has to do with the assumption on the boundary condition, which is discussed in
section 4.2.

(a) (b) (c)

Figure 3.12: Temperature distribution at 1 MHz (absolute values), produced by the COMSOL model: (a) domain
drum 1; (b) domain bridge; (c) domain drum 2. Material properties follow figure 3.11.

(a) (b) (c)

Figure 3.13: Temperature distribution at 1 MHz (absolute values), produced by the analytical model with n = 8 :
(a) drum 1 part; (b) bridge part; (c) drum 2 part. Material properties follow figure 3.11.

(a) (b) (c)

Figure 3.14: Residual on drum 2 boundary condition, using equation (2.34). Convergence towards the actual BC
can be observed when comparing: (a) when using 5 cosine functions; (b) when using 90 functions. The residual

value is plotted in (c). Position refers to θ defined in figure 2.12.

As for the pattern of temperature distribution, the calculation of the analytical model follows the COM-
SOL model well. In domain drum 1, the centre features a significantly higher temperature due to the
actuation. In domain bridge, the left side features shades of ellipse, which fades out at around 1 µm
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along horizontal direction. In domain drum 2, small areas of relatively high temperature are identified
on the left side.

In addition, a flaw of the analytical model lies in the satisfaction of boundary condition. In section 2.5,
equation (2.36) is applied to satisfy boundary condition equation (2.34). However, this boundary condi-
tion is not smooth, and the cosine functions cannot fulfill the boundary condition exactly, always leaving
a DC residual. As seen in figure 3.14, the calculated BC converges to the actual one as number of
cosine function n increases, and luckily the residual is well over one order of magnitude smaller than
the original BC thus tolerable.

Another flaw of the analytical model emerges when thermal conductivity k is higher than 10 W/(m·K).
The solution of U1,avg always match for the two models no matter what the k is, as evidenced by the
first column of figure 3.15. However, mismatch appears in Vavg in the second column when k grows.
Even larger discrepancy ensues in the third column of U2,avg, particularly in figure 3.15i where k is the
highest, at 40 W/(m·K). The reason for such gap is ascribed to the assumption made in section 2.5:
(1) the opening of the bridge part exerts trivial impact on the temperature distribution in drum 1. This
assumption holds for U1,avg, but it might not for Vavg or U2,avg; (2) in the COMSOL model, temperature
at the edge of the dumbbell is not fixed, but that is fixed in the analytical model. The reasons are
detailed in section 4.2.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.15: Comparison of the analytical model to the COMSOL model with three thermal conductivity values, in
terms of average temperature of three domains: drum 1, bridge, and drum2. (a-c) U1,avg, Vavg, and U2,avg with
k = 5 W/(m·K); (d-f) the same three averages with k = 20 W/(m·K); (g-i) the same three averages with k = 40
W/(m·K). Other material (MoS2) properties for both models are: specific heat is 240 J/(g·K), and density is 5060

kg/m3.
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3.4. Verification with experimental data
In this section, thermal time constants from experiments, COMSOL simulation, and the analytical model
are compared. For clarity, subscript ”exp”, ”sim”, ”ana” are assigned to them, respectively. For example,
τ12,exp denotes thermal time constant τ12 derived from experimental data.

The previous section 3.2 and section 3.3 present the results of the COMSOL model and the analytical
model, and those two models match each other. This section moves on to explore if these models
match the experimental results in section 3.1, so that eventually these models can be employed to
explore the τ -dumbbell size relationship.

As revealed in section 3.2, laser location and thermal conductivity both play a significant role in thermal
time constant, so large variance is found in experimental data, as detailed in section 3.5. Furthermore,
each size of drum has only one or two samples, so it is impossible to directly verify the models with
extracted τ in table 3.2. Given this, we need to numerically filter out the disturbance of laser location and
thermal conductivity from experiments, and compare the filtered results with the COMSOL or analytical
model.

Figure 3.16: Procedure to cancel out the effect of varying thermal conductivity.

κi =
R2

i

µ2τii
, (i = 1, 2) (3.12)

κbridge =
κ1 + κ2

2
(3.13)

ηij =
τij,ana
τij,exp

, (i, j = 1, 2) (3.14)

First, to tackle the thermal conductivity, a procedure to produce τ12,ana and τ21,ana without the effect of
thermal conductivity is illustrated in figure 3.16 and explained in the next two paragraphs.

As heat capacity and density are deemed constant for all devices, thermal diffusivity κ1 and κ2 for
drum 1 and drum 2 are dealt with instead. To acquire κ1 and κ2, we align the experimental results
of drum 1 and drum 2 with those of the analytical model of drum 1, i.e. making τ11,ana = τ11,exp and
τ22,ana = τ22,exp. To do this, equivalent thermal diffusivity κ1 for drum 1 and κ2 for drum 2 can be
derived by equation (3.12). Note that µ2, despite being constant, can vary from 5.02 to 5.78[31] , so an
optimisation algorithm is employed to make sure τ11,ana is as close to τ11,exp as possible, and same for
τ22,ana and τ22,exp. We extract µ2 = 5.6564 for all devices, if an error of 5% is allowed. As for the bridge
part, its thermal diffusivity κbridge is assumed to be the average of κ1 and κ2, as stated in equation (3.13).
This coarse assumption should lead to some error, but unfortunately there is no experimental data to
extract κbridge directly.

Thereafter, these thermal diffusivity constants, along with temperature distribution of drum 1 U1(x) are
inserted in the analytical model of bridge and drum 2 to calculate τ12,ana and τ21,ana. In this way, the
difference between τ12,ana and τ12,exp should mainly stem from deviation of laser location from the drum
centre, and the same can be argued for τ21,ana and τ21,exp. Consequently, the thermal time constants
without the influence of thermal conductivity are listed in table 3.3.
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Table 3.3: Thermal time constants of all devices calculated by the analytical model

Device τ11,ana(s) τ12,ana(s) τ21,ana(s) τ22,ana(s)

1 2.6650e-07 3.7818e-07 3.3551e-07 1.5911e-07
3 1.0610e-07 2.2579e-07 4.3023e-07 1.5336e-07
4 1.2573e-08 2.3957e-08 2.5552e-08 1.6271e-08
5 1.1959e-07 1.8268e-07 1.6971e-07 8.5842e-08
7 4.7248e-08 7.9137e-08 7.8412e-08 4.4298e-08
8 1.8632e-08 3.4219e-08 3.5178e-08 2.2196e-08
9 1.4619e-08 2.9710e-08 3.2878e-08 2.2331e-08
10 7.1740e-08 8.7854e-08 6.6033e-08 1.8525e-08
11 1.9408e-08 3.1331e-08 2.9375e-08 1.5135e-08
12 1.0658e-08 2.7775e-08 3.4646e-08 2.6770e-08
14 3.4254e-08 5.6848e-08 5.6326e-08 3.2412e-08
15 9.0719e-08 1.7446e-07 1.8268e-07 1.1421e-07
16 1.7942e-08 3.8537e-08 4.3040e-08 2.9233e-08
17 2.6604e-08 5.1161e-08 5.4068e-08 3.3802e-08
18 1.8101e-07 3.0318e-07 2.8953e-07 1.5195e-07
19 1.8740e-08 4.2538e-08 6.8041e-08 2.9429e-08

(a) (b)

(c) (d)

Figure 3.17: Derived thermal time constants without the effect of thermal conductivity. (a) and (b) show desired
alignment of τ11,ana with τ11,exp, and τ22,ana with τ22,exp, as evidenced by an error bar of ±5%. (c) and (d) show
large variation in τ12,ana and τ21,ana, with over 70% data points falling within the error bar. Reasons of such

variation is further discussed insection 4.1.
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As a result of the aforementioned procedure, the alignment of τ11,ana and τ11,exp is plotted in figure 3.17a,
while τ22,ana and τ22,exp in figure 3.17b. For both alignment, the error is within 5%, as all data points
fall with in the lines y = (1 ± 0.05)x. Two similar plots are presented in figure 3.17c and figure 3.17d
to compare τ12,ana with τ12,exp and τ21,ana with τ21,exp, respectively. When filtering out the effect of
thermal conductivity, the variation should mainly come from deviation of laser location. Theoretically, if
deviation of lasers from the centre of a drum is random in space, then the chances of τ12,exp and τ21,exp
being larger or smaller than the ones measured at the drum centre are the same, so the median of all
ratios ηij should be one. In fact, a median of 0.05 is recorded, which is close to one.

As calculated in section 3.2, the ratios among thermal conductivity of various actuation positions range
from 0.48 to 2.10. These two ratios form an error bar, as indicated by the dotted red lines. Though a
much larger variation can be spotted, over 70% of points are located within the error bar. Such variation
is further discussed in section 4.1.

To quantify the difference between results in table 3.3 and experimental data in table 3.2, ratios between
those thermal time constants are calculated, as defined in equation (3.14). Since the alignment of
τ11,ana with τ11,exp and τ22,ana with τ22,exp boost desired results (meaning η11 and η22 close to 0 for all
devices), a diagram is drawn only for η12 and η21, as seen in figure 3.18a. Two dotted lines of 210%
and 48% are drawn, signifying the same error bar in figure 3.17c and figure 3.17d. Those ratio range
from 0.09 to 5.60, with only 25% ηij considered closed to 1 (i.e. within 1±0.1 range). For many outliers,
for example device 1 and 17, their η12 and η21 are both much larger than one, while those of device 4
and 8 are much smaller than one.

Large variation is also spotted in the derived thermal diffusivity κ1 and κ2, as depicted in figure 3.18b.
They span from 4.19E-6 to 4.19E-4 m2/s. For 11 out of 16 devices the discrepancy between κ1 and
κ2 registers below 5E-5 m2/s (see the dotted yellow line), with the largest found in device 12 at 2.5E-4
m2/s.

In summary, the experimental data exhibits large variation compared to the COMSOL and analytical
model, and the reasons are discussed in section 4.1.

(a) (b)

Figure 3.18: Results of ηij and κi by device: (a) comparison of experimental thermal time constants and those
calculated by procedure in figure 3.16; (b) variation in thermal diffusivity, along with difference between drum 1

and drum 2.

3.5. Dependence of thermal time constant on dumbbell size
There are four parameters for defining a dumbbell: R1, R2, x0, and w y0, as drawn in figure 2.1. The
thermal time constant characterise the time for the heat flux to travel from the actuation to covering up
the whole membrane, thus these four parameters should all play a role in the thermal time constants. As
mentioned in section 4.1, it is difficult to recognise a pattern between any τ and parameter. Therefore,
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it is more practical to summarise the τ -dumbbell size relationship using the COMSOL and analytical
models, as they have been verified with experimental data in section 3.4. Same as section 3.4, sub-
script ”ana” and ”sim” are introduced to denote data derived by the analytical and COMSOL model,
respectively.

Following the controlled variable method, the relationship between the thermal time constant and dumb-
bell dimensions are derived by the COMSOL model. The plots are arranged in figure 3.19.

With an increasing bridge length x0 in figure 3.19a, bridge width exerts ignoble effect on τ11,ana and
τ11,sim, while both τ12,ana and τ12,sim experience a growing trend, almost linear to x0. This corresponds
with the physical meaning of τ : a longer bridge requires more time for heat flux to propagate. In
addition, there are prominent gap between the simulated and analytical data. τ11,ana is 14% less than
τ11,sim, which coincides with the mismatch seen in figure 3.15 (g-i): a large k = 40 W/(m·K) incurs more
noticeable differences between the simulated τ and its analytical counterpart. But in general, the trend
of those simulated curves agrees with that of the analytical ones.

(a) (b)

(c) (d)

Figure 3.19: The relationship between thermal time constants and: (a) bridge width y0; (b) bridge length x0; (c)
drum 1 radius R1; (d) drum 2 radius R2. Material properties for both COMSOL and analytical models follow

figure 3.15 (g-i).

In figure 3.19b, τ11,ana and τ11,sim remains constant irrespective of bridge width y0. However, τ12,ana
shows a slow growing trend while τ12,sim drops fast with smaller y0 and slows down with a larger y0. A
larger bridge width also calls for a longer time to heat up, so the physical meaning of τ supports the
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trend of τ12,ana. Nonetheless, there are assumptions that simplifies the analytical model compared to
the COMSOL one, so in turn the trend of τ12,ana is not affected by some factors overlooked by those
assumptions. This is detailed in section 4.3.

As for the radius of drum 1 R1, the behaviour of both τ11,ana and τ11,sim demonstrate a almost parabolic
relationship with R1, which agrees with the theory in equation (1.30). τ12,ana gives a same trend with a
larger value because of the bridge part. While there is an initial decrease below R1 = 2 µm in τ12,sim,
followed by an accelerating rise. On the other hand, τ11,ana and τ11,sim remains almost unaffected by a
changing R2. Whereas τ12,ana climbs up monotonously as R2 increases. The pattern of τ12,sim again
differs from that of τ12,ana: it reaches a minimum between 3 and 4 µm, and appears monotonous on
either side of the minimum. Physically, larger R1 or R2 should have resulted in a larger thermal time
constant, and the reasons why not for the COMSOL model are discussed in section 4.3.

To sum up, the thermal time constants extracted from the analytical COMSOL models always exhibit
a discrepancy, which is first captured in section 3.3 and then discussed insection 4.2. In figure 3.19,
the behaviour of curves produced by the two models resembles only partially, and the reasons are
explained in section 4.3.



4
Discussion

The results in chapter 3 present nearly 30% outliers in experimental data, and identifies a disagreement
between the analytical and COMSOL model regarding average temperature in each dumbbell domain
and the relationship of thermal time constants with dumbbell dimensions. This chapter discusses the
reasons behind these mismatches.

4.1. Variation in experimental data

Figure 4.1: Dependence of thermal time constant on drum radius using experimental data

In figure 4.1 lies the τ11 and τ22 extracted from the experiments. Unfortunately, it is hard to find a
convergence for each drum radius, not to mention that for some drum radius there is only one sam-
ple. Theoretically, a parabolic relation should be recognised between the thermal time constant and
dumbbell radius, as indicated by equation (1.29). If we trim out the outliers, the mean values can form
a parabolic curve (see the fitting of αx2). But again, the trimming and curve fitting can be a wishful
thinking, for there is no convergence for those data points and we seek for a relation presented in
equation (1.29). Such large variation is reminiscent of the work of Dolleman et al[17] : they built circular
resonators using monolayer molybdenum disulfide, and extracted thermal time constant τ with equa-
tion (1.29). The maximum τ is more than ten times larger than the smallest one for nanodrums with the
same radius at 5 µm. Hence, given multilayer samples in our experiments, large variation in thermal
times constants is understandable, and a limited sample size do not allow us to extract τ -dumbbell size
relationship directly from the experimental data.

41
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In section 3.2, we find thermal conductivity and laser locations culpable for the variation in experimen-
tal data, and then in section 3.4, the effect of thermal conductivity is cancelled out. Those obtained
thermal time constants still show significant difference from the experimental data, and such difference
is visualised in figure 3.17 and quantified by ηij defined by equation (3.14). However, there are still
almost 30% of outliers that cannot be explained by mere laser location deviation detailed in section 3.4,
and the following text discusses the possible reasons.

First, the thermal diffusivity of the bridge part is assumed to be the average of that of drum 1 and drum 2,
owing to a lack of experimental data. Hence, there is no physical reasoning behind such assumption.
In the results of κ1 and κ2 in figure 3.18b, though 11 out 16 devices show a close κ1 and κ2 with a
difference less than 5E-5 m2/s, there are chances that κbridge deviate significantly from the assumed
value. This can account for cases when both η12 and η21 are much larger or smaller than zero, which
includes device 1, 4, 8, and 17.

Second, in section 3.2, range of laser deviation is limited to 3µm when R1 = R2 =4 µm. However,
occasionally, the deviation can be larger. For example, in device 1, a τ12,exp is measured smaller than
τ11,exp, and the same occurs to τ21,exp and τ22,exp. It also happens to device 9 and 17. For those
devices, it is likely that when measuring τ12,exp and τ21,exp, the distance between the red and blue
lasers are smaller than l (see definition in figure 2.1), so that the thermal time constants are much
underestimated. For other outliers found in device 11 and 18, they are just outside the error bar, thus
can also come from a larger deviation of laser location than expected.

Third, irregularities of the membrane is another inherent contributor of variation. Liu[31] measured pre-
tension for four graphene resonators, and the maximum one was 1.9 times larger than the smallest.
And normalised areal tensity also featured a ratio of over 10 between the largest and the smallest.
That indicates variation could be large in the same material, and from this point we can deduce that
within one resonator, the material can also demonstrate appreciable variation. In our analysis, both
COMSOL and analytical model feature a smooth membrane with the same material properties, at least
within each domain. However, the variation in material properties can change the local temperature
distribution. Consequently, the shift of input of the bridge part, or of the input of drum 2 in the analytical
model would result in a different τ12,ana or τ21,ana.

Other sources of variation include: (1) Curve fitting introduced in section 3.1 gives error in thermal
time constants. Due to a high adjusted R2 (mostly over 0.8), the error comes from fitting itself is small
but not negligible. Moreover, we are still not sure why model 3 in section 3.1 works well with the
curve fitting, or if there is a better model to extract thermal time constants for dumbbell resonators,
so error might originate from fitting model per se. Additionally, the resonance is nonlinear in some
measurements, but still a curve fitting model with linear resonance is applied. This is expected to
induce minor error, but not yet verified. (2) Extracting thermal time constant using the valley location.
Such error is briefed in section 3.1, which could introduce an error within 2%. (3) Ambient temperature.
There is no temperature controller in the experimental setup, so in theory thermal time constant can
shift due to temperature changes. Unfortunately, we have not investigated how much this perturbation
from temperature result in. (4) Thermal resistance at the edge. In the analytical model, the thermal
resistance at the dumbbell edge is treated as infinity, but this value is difficult to measure directly in
experiments, and theCOMSOLmodel does not take into account the profile of amembrane, as depicted
in figure 1.1a. It plays an important role in thermal time constant, as detailed in section 4.2.

In summary, a verification is conducted in section 3.3, giving nearly 30% of outliers. Such amount
of outliers are mainly attributed to the coarse assumption of κbg in equation (3.13), larger deviation
of lasers than applied in section 3.2, and variation of local material properties. Other factors include
curve fitting error, valley location error, temperature shift in experiments, and thermal resistance at the
dumbbell edge.

4.2. Differences between the analytical and COMSOL model
In section 3.3, the analytical model is compared with the COMSOL model, and a discrepancy between
them, especially when thermal conductivity k is high, is identified. This section discusses four capable
contributors: (1) coupling between drum 1 and bridge; (2) coupling between bridge and drum 2; (3)
value of thermal conductivity; (4) boundary condition.
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The first major difference between the COMSOL model and the analytical model lies in the assumption
that the bridge part changes the temperature distribution of drum 1 U1(x) only marginally. However,
the solution of U1(x) is utilised as the input of bridge part as the boundary condition on the left side.
A minor change in U1(x) around the boundary might not affect the U1,avg but it can alter Vavg, and
eventually U1,avg. If this is true, we shall see a difference between the temperature of two points
located symmetrical to the drum 1 centre. Thus, we mark the left side of bridge boundary as line B,
and the symmetrical line B is marked on the other side of drum 1. Nest, at the midpoint of two lines,
two representative points, Qb and Qd, are selected to showcase the temperature difference, as drawn
in top figure 4.3.

The temperature of points Qb and Qd is displayed in figure 4.2 with various bridge width y0. A temper-
ature gap between the two locations can always be recognised for any y0, but it widens for a larger
y0. The increase of temperature at Qd due to y0 is small, relative to that at Qb. This verifies that the
opening of bridge changes the local temperature distribution significantly.

(a) (b) (c)

Figure 4.2: Comparison of temperature at point Qb and Qe when: (a) bridge half width y0 =0.5 µm; (2) bridge half
width y0 =0.75 µm; bridge half width y0 =1 µm. Boundary condition follows BC1 defined in figure 2.10a.

Figure 4.3: Two simulation setups to compare temperatures at three points, Qd, Qb, and Qe. In the dumbbell setup (top), R1 =
R2 = x0 = 4 µm; y0 = 0.5 µm. In the lollipop setup (bottom), R1 = 4 µm, R2 = 0, x0 = 12 µm, y0 = 0.5 µm. Point Qe has the
same coordinates in two setups, and the same for Qd and Qb. Boundary condition follows BC1 desribed in figure 2.10a.

A similar assumption is made for the analytical model of drum 2: it would not change the temperature
distribution of the bridge V(x, y). However, even for small bridge width (i.e. y0 < 0.25R2), this might
not hold with large thermal conductivity k, as an educated guess for reason of the mismatch found
in figure 3.15. To test this hypothesis, we need to delve into the boundary condition again. In the
analytical model, the boundary at line E is free, which means the temperature at Qe relies only on its x
coordinates and the solution of drum 1, rather than the length of bridge. This inspires us to establish a
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lollipop resonator with much longer bridge part and no drum 2 to compare the impact of drum 2 on the
temperature atQe. Accordingly, the lollipop setup is drawn in bottom figure 4.3 to investigate contributor
(2).

In figure 4.4, temperatures of two setups are compared, with various k. The existence of drum 2 makes
the temperature amplitude marginally larger than the lollipop setup, even with k = 40 K/(W·K), and this
gap is much smaller than the ones in figure 4.2. This denotes that coupling due to drum 2 is not the
main contributor of the discrepancy seen in the solutions of the two models.

(a) (b) (c)

Figure 4.4: Temperature at point Qe in both dumbbell and lollipop models with COMSOL, when thermal
conductivity k equals to: (a) 5 W/(m·K); (b) 20 W/(m·K); (c) 40 W/(m·K). Boundary condition follows BC1 shown

in figure 2.10a.

The previous text discusses the influence of geometry that the analytical model does not take into ac-
count, and the following text measures the contributors of thermal conductivity and boundary condition
with the simulation of dumbbell setup.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Temperatures of point Qb and Qd with three thermal conductivity values under two boundary
conditions: (a-c) BC1 and (d-f) BC2.
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In figure 4.5, temperature amplitude of point Qb and Qd under two boundary conditions (i.e. BC1
and BC2, see figure 2.10) with multiple thermal conductivity values are plotted. To further quantify
the amplitude difference as well as valley location of the imaginary part, pertinent statistics are listed
in table 4.1. The amplitude is defined in equation (4.1), where zω is the temperature signal. A ratio
(dubbed ζ) between the temperature amplitude at point Qb and Qd is determined by equation (4.2).
This ratio measures how large the temperature discrepancy is between the two points. The valley
location (defined in section 3.2) marks the approximated thermal time constant, represented by τ in
table 4.1.

BC2 always manifests a larger amplitude compared to BC1, and τ with BC1 is always larger than that
with BC2. Physically, this makes sense. A non-fixed boundary BC2 allows heat to diffuse beyond
the boundary, as evidenced by non-zero values at the edge in figure 4.6a. This gives rise to higher
amplitudes at the dumbbell edge and longer time to heat up the membrane. However, the difference
between τ under BC1 andBC2 is unaffected by the variation of the thermal conductivity k, so is the ratio
ζ withBC2. While ζ withBC1 declines with growing k. This signifies that k is not a significant contributor
for the mismatch of τ , as observed in figure 3.19, and the pattern of the temperature distribution should
be insensitive to k with BC2. But it changes with BC1 in that the non-fixed boundary with larger k
allows more heat to transfer outside the dumbbell domain, resulting in a reduced difference between
the temperature amplitude of Qb and Qd.

γP =

∫ f2

f1

Re{zw(2πf)} df , where P = Qb, Qd (4.1)

ζ =
γQb

γQd

(4.2)

Table 4.1: Caption for the table.

k
τ (µs) ζ

(W/(m·K)) BC1 BC2 BC1 BC2
5 0.80 0.78 2.85 6.09
20 0.22 0.20 1.91 6.11
40 0.12 0.10 1.63 6.11

(a) (b)

Figure 4.6: Comparison of temperature amplitude along line B and D with two boundary conditions: (a) with BC1,
amplitude is not zero at the edge; (b) with BC2, amplitude is zero at the edge and is smaller than that with BC1.

As indicated by previous text, the dominate contributor to the discrepancy of the two models is a fixed
temperature at the edge of the dumbbell in the analytical model while a free boundary for the COMSOL
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model. This boundary condition in COMSOL is first illustrated in figure 2.10a, and applied throughout
chapter 3. It is more realistic since heat can propagate beyond the edge of a dumbbell. But in the
analytical model, it is difficult to determine the thermal resistance at the edge, so a fixed temperature
is selected.

To further verify the aforementioned hypothesis, BC2 is employed, as displayed in figure 2.10b. Using
a thermal conductivity k = 40 W/(m·K), the results are shown in figure 4.7. The analytical model now
follows the COMSOL model well. Such desired match-up proves that a large k lead to larger fluctu-
ation of temperature at the edge of the dumbbell, which deviates further from the fixed temperature
assumption in the analytical model.

(a) (b) (c)

Figure 4.7: Average temperature of each domain with a thermal conductivity at 40 W/(m·K): (a) U1,avg, (b) Vavg,
and (c) U2,avg. The red and blue lines indicate the real and imaginary part of the analytical model, while the

dotted lines are for the COMSOL model. Boundary condition follows BC2 introduced in figure 2.10b.

To summarise, all four contributors play a role in different amplitudes, with (1) coupling between drum 1
and bridge and (4) boundary condition being the dominant ones. Whereas only contributor (4) accounts
for the discrepancy in thermal time constants.

4.3. Restriction of a dumbbell shape

(a) (b)

Figure 4.8: Behaviour of thermal time constants with larger variation of bridge width y0: (a) when both radius are
3.0 µm; (b) when both radius are 4.0 µm. Other parameters are fixed.

In section 4.2, we notice that if R2 = 0, then the dumbbell shape degrades to a lollipop. Equally, when
y0 approximates one of the drum radius, the shape is analogous to a stadium. In the analytical model,
two assumptions are made for a dumbbell shape: the bridge should not affect the solution in drum 1,
i.e. U1(x); and drum 2 should not affect the solution in the birdge, i.e. V (x, y). However, when some
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parameters become too large or small, these assumptions no longer hold, thus giving a different τ , as
seen in figure 3.19. To address this issue, COMSOL simulations are conducted for various y0 with two
drum radius.

Shifting y0 from 0.1 µm to drum radius, and the corresponding τ11 and τ12 are plotted in figure 4.8. To
evaluate how much τ11 has changed due to the presence of the bridge, the thermal time constant of a
circular drum is obtained as τ11s, and a normalised value τ11

τ11s
is calculated. For R1 = R2 = 4µm, the

normalised τ is less than 1.05 when y0 is smaller than 1 µm. While for R1 = R2 = 4µm, y0 registers
1.5 µm for the same condition. Thus, it is safe to say y0 should be less than 25% of the smaller drum
radius to make τ11 unaffected by the bridge geometry. A y0 larger than this 25% critical value can bring
about a surging τ11 up to 30% larger than τ11s.

Interestingly, τ12 in both sub-figures of figure 4.8 demonstrate a minimum around the critical value of
25%, as mentioned in the last paragraph. For R1 = R2 = 4 µm, the minimum is situated at around
0.9 µm, i.e. 23 % of the drum radius. While for R1 = R2 = 3 µm, the percentage creeps up to 33 %,
at around 1 µm. This phenomenon corresponds with the (partial) decrease of τ12,ana in figure 3.19b,
figure 3.19c, and figure 3.19d, where y0 is relatively small as opposed to R1 or R2.

To explain the initial downward trend mathematically, we need to resort to the analytical model, although
it does not demonstrate such trend. For this matter, the solution of drum 1 temperature is brought to
equation (4.3), along with the boundary condition of the bridge in equation (4.4). When y0 grows, the
boundary condition in equation (4.4) takes the value of U1(x) with a smaller x. A smaller x in Bessel
function J(mx) indicates a valley location at a higher frequency (see green arrows in figure 4.9), which
in turn gives a smaller τ . This smaller τ translates into the initial downward trend produced by the
COMSOL model, but the analytical model fails to capture this. The reason probably lies in the solution
of U2(x), given that the trend of tau11,ana and tau11,sim always resemble each other in figure 3.19.
U2(x) of the analytical model is primarily shaped by the boundary condition from the bridge part, and
this boundary condition is changed due to the presence of bridge, the same way bridge changes the
boundary of drum 1 (see figure 4.2).

u1(x, t) =

n−1∑
i=0

ci

[
Ji(mx)− Ji(mR)

Jn(mR)
Jn(mx)

]
eiωt (4.3)

v(x, y = ±y0, t) = 0; v(x = 0, y, t) = u1(
√

y2 +R2
1 − y20 , t) (4.4)

Figure 4.9: Extra plot for mathematical explanations on τ12 curves in figure 3.19a: valley location of J(mx), as
highlighted by the green arrows, moves to the left side given a larger x, which means a larger τ in the end. x in

the legend refers to that in function J(mx).

Physically, the initial decrease of τ12 accounts for the relatively wide bridge that allows the heat to
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travel to drum 2 more efficiently, producing a smaller τ12. But as the bridge continues to widen, this is
eventually countered by the time to heat up the bridge itself, thus a growing trend ensues.

In a nutshell, for a fixed radius, there must be a bridge width that brings about a smallest τ12 or τ21. This
minimum is reached with a balance of efficient heat transport through the bridge and tolerable time to
warm up the bridge itself.



5
Conclusion

This thesis investigates the thermal time constants of a dumbbell-shape 2D resonator with analytical,
simulation, and experimental method.

First, optomechanical measurements are conducted for 19 devices fabricated with molybdenum disul-
fide, and the corresponding thermal time constants are extracted with a comparison of three models.
The extracted thermal time constants exhibit large variation, thus impossible to discern any pattern
against dumbbell size directly. Then, the COMSOL model is established to find out what causes such
variation in experiments, and to recognise the pattern clouded by the experimental variation. More-
over, The analytical approach is employed to better understand the temperature distribution by solving
a series of heat equations.

As a result, over 70% of the experimental data can be explained by the combination of two models. The
outliers can be accounted for by unexpected thermal conductivity of the bridge part, too much deviation
(over 3 µm) of laser location, along with irregularities of membranes. As for the pattern against dumbbell
sizes, the bridge width relative to drum radius plays a major role: narrow bridges are not efficient in
heat transport so bigger thermal time constants ensue, while wide bridges needs more time to heat up
itself, thus a large thermal time constant can also be calculated. Therefore, there is always an optimal
bridge width for a dumbbell that allows the smallest τ12 or τ21.

The amplitude discrepancy between the analytical model and the COMSOLmodel is mainly ascribed to
the coupling between drum 1 and bridge and a non-fixed boundary of the dumbbell in COMSOL model.
While the discrepancy in thermal time constant is only induced by the aforementioned boundary differ-
ence. Such discrepancy become significant for the calculation of τ12 or τ21 when thermal conductivity
is larger than 10 W/(m·K).

There is much to continue and improve for this project, especially the analytical part. The analytical
model can be upgraded by treating the boundary between drum 1 and bridge as free, as well as in-
vestigating how to determine the thermal resistance at the boundary instead of treating it as infinity.
Moreover, the vibration is not coupled into the analytical model, and the addition of it can shed some
light on why there is a term linear to frequency in curve fitting model 3 in equation (3.3). Then, how to
derive the optimal bridge width for the minimal thermal time constant is not yet known, which can also
benefit from a more thorough analytical model. Regarding experiments, means to reduce variation are
appreciated. For example, using one large monolayer flake to cover multiple dumbbell cavities (even
the whole chip) is desired. Thus, chemical deposition might be a better way to fabricate samples for
dumbbells as it produces more large thin flakes.

49



References

[1] Alexander A Balandin et al. “Superior thermal conductivity of single-layer graphene”. In: Nano
letters 8.3 (2008), pp. 902–907.

[2] Yahav Ben-Shimon and Assaf Ya’Akobovitz. “Magnetic excitation and dissipation of multilayer
two-dimensional resonators”. In: Applied Physics Letters 118.6 (2021).

[3] Ewald Benes et al. “Sensors based on piezoelectric resonators”. In: Sensors and Actuators A:
Physical 48.1 (1995), pp. 1–21.

[4] Theodore L Bergman. Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
[5] Theodore L Bergman et al. Introduction to heat transfer. John Wiley & Sons, 2011.
[6] J Scott Bunch et al. “Electromechanical resonators from graphene sheets”. In: Science 315.5811

(2007), pp. 490–493.
[7] Weiwei Cai et al. “Thermal transport in suspended and supported monolayer graphene grown by

chemical vapor deposition”. In: Nano letters 10.5 (2010), pp. 1645–1651.
[8] Andres Castellanos-Gomez et al. “Mechanics of freely-suspended ultrathin layered materials”. In:

Annalen der Physik 527.1-2 (2015), pp. 27–44.
[9] Andres Castellanos-Gomez et al. “Single-layer MoS2 mechanical resonators”. In: Advanced Ma-

terials 25.46 (2013), pp. 6719–6723.
[10] Andres Castellanos-Gomez et al. “Strong and tunable mode coupling in carbon nanotube res-

onators”. In: Physical Review B 86.4 (2012), p. 041402.
[11] Changyao Chen et al. “Performance of monolayer graphene nanomechanical resonators with

electrical readout”. In: Nature nanotechnology 4.12 (2009), pp. 861–867.
[12] Dejan Davidovikj et al. “Nonlinear dynamic characterization of two-dimensional materials”. In:

Nature Communications 8.1 (2017), p. 1253.
[13] Dejan Davidovikj et al. “On-chip heaters for tension tuning of graphene nanodrums”. In: Nano

letters 18.5 (2018), pp. 2852–2858.
[14] Dejan Davidovikj et al. “Visualizing the motion of graphene nanodrums”. In: Nano letters 16.4

(2016), pp. 2768–2773.
[15] Guang-Wei Deng et al. “Strongly coupled nanotube electromechanical resonators”. In: Nano let-

ters 16.9 (2016), pp. 5456–5462.
[16] Robin J Dolleman et al. “Optomechanics for thermal characterization of suspended graphene”.

In: Physical Review B 96.16 (2017), p. 165421.
[17] Robin J Dolleman et al. “Transient thermal characterization of suspended monolayer MoS 2”. In:

Physical Review Materials 2.11 (2018), p. 114008.
[18] Ruixiang Fei et al. “Enhanced thermoelectric efficiency via orthogonal electrical and thermal con-

ductances in phosphorene”. In: Nano letters 14.11 (2014), pp. 6393–6399.
[19] Andre K Geim and Konstantin S Novoselov. “The rise of graphene”. In: Nature materials 6.3

(2007), pp. 183–191.
[20] Matthew J Hancock. “The 1-D heat equation”. In: MIT OpenCourseWare. Accessed August 31

(2006), p. 2018.
[21] Frank P Incropera et al. Fundamentals of heat and mass transfer. Vol. 6. Wiley New York, 1996.
[22] Jin-Wu Jiang, Harold S Park, and Timon Rabczuk. “Molecular dynamics simulations of single-

layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties,
and thermal conductivity”. In: Journal of Applied Physics 114.6 (2013).

50



References 51

[23] Tao Jiang and Yong Zhu. “Measuring graphene adhesion using atomic force microscopy with a
microsphere tip”. In: Nanoscale 7.24 (2015), pp. 10760–10766.

[24] Ata Keskekler et al. “Symmetry-breaking-induced frequency combs in graphene resonators”. In:
Nano letters 22.15 (2022), pp. 6048–6054.

[25] SunPhil Kim, Jaehyung Yu, and Arend M Van Der Zande. “Nano-electromechanical drumhead
resonators from two-dimensional material bimorphs”. In: Nano letters 18.11 (2018), pp. 6686–
6695.

[26] Jan NKirchhof et al. “Tunable graphene phononic crystal”. In:Nano Letters 21.5 (2021), pp. 2174–
2182.

[27] Jaesung Lee et al. “High frequency MoS2 nanomechanical resonators”. In: ACS nano 7.7 (2013),
pp. 6086–6091.

[28] Wu Li, Jesús Carrete, and Natalio Mingo. “Thermal conductivity and phonon linewidths of mono-
layer MoS2 from first principles”. In: Applied Physics Letters 103.25 (2013).

[29] Xuesong Li et al. “Large-area synthesis of high-quality and uniform graphene films on copper
foils”. In: science 324.5932 (2009), pp. 1312–1314.

[30] Yuhao Li et al. “Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force
microscopy and finite element simulation”. In: NPJ Computational Materials 4.1 (2018), p. 49.

[31] Hanqing Liu. “Mechanics and thermodynamics of suspended two-dimensional membranes”. In:
(2023).

[32] Hanqing Liu et al. “Enhanced photothermal response near the buckling bifurcation in 2D nanome-
chanical resonators”. In: arXiv preprint arXiv:2305.00712 (2023).

[33] Hanqing Liu et al. “Nanomechanical resonators fabricated by atomic layer deposition on sus-
pended 2D materials”. In: 2D Materials 10.4 (2023), p. 045023.

[34] Hanqing Liu et al. “Tension tuning of sound and heat transport in graphene”. In: arXiv preprint
arXiv:2204.06877 (2022).

[35] Xiangjun Liu et al. “Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons”. In:
Applied Physics Letters 103.13 (2013).

[36] Gang Luo et al. “Strong indirect coupling between graphene-based mechanical resonators via a
phonon cavity”. In: Nature communications 9.1 (2018), pp. 1–6.

[37] Kin Fai Mak et al. “Atomically thin MoS 2: a new direct-gap semiconductor”. In: Physical review
letters 105.13 (2010), p. 136805.

[38] Tengfei Miao et al. “Graphene nanoelectromechanical systems as stochastic-frequency oscilla-
tors”. In: Nano letters 14.6 (2014), pp. 2982–2987.

[39] DL Nika et al. “Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite”.
In: Applied Physics Letters 94.20 (2009).

[40] Kostya SNovoselov et al. “Electric field effect in atomically thin carbon films”. In: science 306.5696
(2004), pp. 666–669.

[41] IE Rosłoń et al. “High-frequency gas effusion through nanopores in suspended graphene”. In:
Nature Communications 11.1 (2020), p. 6025.

[42] Banafsheh Sajadi et al. “Experimental characterization of graphene by electrostatic resonance
frequency tuning”. In: Journal of Applied Physics 122.23 (2017).

[43] Ali Sarafraz et al. “Pressure-induced nonlinear resonance frequency changes for extracting Young’s
modulus of nanodrums”. In: Nonlinear Dynamics (2023), pp. 1–11.

[44] Hannes C Schniepp et al. “Bending properties of single functionalized graphene sheets probed
by atomic force microscopy”. In: ACS nano 2.12 (2008), pp. 2577–2584.

[45] Rajan Singh et al. “Motion transduction with thermo-mechanically squeezed graphene resonator
modes”. In: Nano letters 18.11 (2018), pp. 6719–6724.

[46] V Singh et al. “Optomechanical coupling between a multilayer graphene mechanical resonator
and a superconducting microwave cavity”. In: Nature nanotechnology 9.10 (2014), pp. 820–824.



References 52

[47] Makars Šiškins et al. “Tunable strong coupling of mechanical resonance between spatially sepa-
rated FePS3 nanodrums”. In: Nano letters 22.1 (2021), pp. 36–42.

[48] Peter G Steeneken et al. “Dynamics of 2D material membranes”. In: 2D Materials 8.4 (2021),
p. 042001.

[49] Ching-Yuan Su et al. “High-quality thin graphene films from fast electrochemical exfoliation”. In:
ACS nano 5.3 (2011), pp. 2332–2339.

[50] Hideo Suzuki, Naoki Yamaguchi, and Hideaki Izumi. “Theoretical and experimental studies on the
resonance frequencies of a stretched circular plate: Application to Japanese drum diaphragms”.
In: Acoustical science and technology 30.5 (2009), pp. 348–354.

[51] GJ Verbiest et al. “Tunable coupling of two mechanical resonators by a graphene membrane”. In:
2D Materials 8.3 (2021), p. 035039.

[52] Guorui Wang et al. “Bending of multilayer van der Waals materials”. In: Physical Review Letters
123.11 (2019), p. 116101.

[53] Xiaolin Wei et al. “Phonon thermal conductivity of monolayer MoS2: A comparison with single
layer graphene”. In: Applied Physics Letters 105.10 (2014).

[54] Dana Weinstein et al. “Mechanical coupling of 2D resonator arrays for MEMS filter applications”.
In: 2007 IEEE International Frequency Control Symposium Joint with the 21st European Fre-
quency and Time Forum. IEEE. 2007, pp. 1362–1365.

[55] Bo Xu et al. “Nanomechanical resonators: toward atomic scale”. In: Acs Nano 16.10 (2022),
pp. 15545–15585.

[56] Yanyan Xu et al. “Liquid-phase exfoliation of graphene: an overview on exfoliation media, tech-
niques, and challenges”. In: Nanomaterials 8.11 (2018), p. 942.

[57] Yue-De Yang, Shi-Jiang Wang, and Yong-Zhen Huang. “Investigation of mode coupling in a mi-
crodisk resonator for realizing directional emission”. In: Optics Express 17.25 (2009), pp. 23010–
23015.

[58] Zhuo-Zhi Zhang et al. “Coherent phonon dynamics in spatially separated graphene mechanical
resonators”. In: Proceedings of the National Academy of Sciences 117.11 (2020), pp. 5582–5587.

[59] Zijian Zhang et al. “High-Sensitivity Force Sensors Based on Novel Materials”. In: Advanced
Devices & Instrumentation 4 (2023), p. 0019.

[60] Xu-Qian Zheng, Jaesung Lee, and Philip X-L Feng. “Hexagonal boron nitride nanomechanical
resonators with spatially visualized motion”. In: Microsystems & Nanoengineering 3.1 (2017),
pp. 1–8.



A
Coupling in a dumbbell resonator

In this appendix, the signal of coupled thermal signal and fundamental resonance for a dumbbell is
derived. First, consider drum 1 and drum 2 of the dumbbell resonator:

m1z̈1 + c1ż1 + k1z1 = f1
d e

iωt + Γx2

m2z̈2 + c2ż2 + k2z2 = f2
d e

iωt + Γx1

(A.1)

where mi, ci, ki are mass, damping, and spring coefficient for drum i; zi is the generalised coordinate
for drum i, and Γ is the coupling strength. The driving force is further expressed as:

f i
d =

Ath,i

1 + jωτi
, where j2 = −1, i = 1, 2 (A.2)

Then the solution of zi is supposed to be in the form of:

z1 = Z1 e
j(ωt+ϕ1)

z2 = Z2 e
j(ωt+ϕ2)

(A.3)

where Z1 and Z2 are complex constants. Next, equation (A.3) is taken back to equation (A.1) to solve
for Z1 and Z2. This results in the matrix equation:

(
−m1ω

2 + jc1ω + k1 −Γ
Γ −m2ω

2 + jc2ω + k2

)(
Z1

Z2

)
=

(
Ath,1

1+jωτ1
Ath,2

1+jωτ2

)
(A.4)

Finally, A1 and A2 are solvable by matrix inverse.

In our experiments, there is only one actuation, at either drum 1 or drum 2, so either f1
d or f2

d is zero.
Hence, when setting f2

d = 0, actuation is located in drum 1, and Z1 should be the amplitude of mea-
surement drum 11, while Z2 is that of drum 12. This leads to the solution of equation (A.4), displayed in
equations (A.6) and (A.7). Another case is when f1

d = 0, and this yields the solution in equations (A.9)
and (A.10). In those solutions, zmn denotes measurement drum mn, where m,n = 1, 2.
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Case 1 : f2
d = 0 (A.5)

z11(ω) = Z1 =
1

−m1ω2 + jc1ω + k1 − Γ2/(−m2ω2 + jc2ω + k2)
· Ath,1

1 + iωτ11
(A.6)

z12(ω) = Z2 =
Γ

(−m1ω2 + jc1ω + k1)(−m2ω2 + jc2ω + k2)− Γ2
· Ath,1

1 + iωτ11
(A.7)

Case 2 : f1
d = 0 (A.8)

z21(ω) = Z1 =
Γ

(−m1ω2 + jc1ω + k1)(−m2ω2 + jc2ω + k2)− Γ2
· Ath,2

1 + iωτ22
(A.9)

z22(ω) = Z2 =
1

−m2ω2 + jc2ω + k2 − Γ2/(−m1ω2 + jc1ω + k1)
· Ath,2

1 + iωτ22
(A.10)

Furthermore, z11 and z22 can be written as:

z11(ω) =
1

1− Γ2/ [(−m1ω2 + jc1ω + k1)(−m2ω2 + jc2ω + k2)]
· Ath,1

1 + iωτ11
· 1

−m1ω2 + jc1ω + k1
(A.11)

z22(ω) =
1

1− Γ2/ [(−m1ω2 + jc1ω + k1)(−m2ω2 + jc2ω + k2)]
· Ath,2

1 + iωτ22
· 1

−m2ω2 + jc2ω + k2
(A.12)

Hence, equation (A.11) and equation (A.12) resemble equation (3.2) in curve fitting. However, why
equation (3.3) does not exhibit any resemblance to the solutions presented above remains unknown.
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