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Abstract

A cylindrical column of fluid breaks into drops under the action of surface tension when other forces are rel-
atively small. This phenomenon is called the capillary break-up. Since the introduction of the seminal theory
of inertial-capillary jet instability by Rayleigh in the late 19th century, this phenomenon has seen a rich influx
of academic research and industrial interests over the past few decades. The theory suggests that out of all
the unstable wavelengths only the most unstable wavelength determines the drop size. But in reality, ran-
dom background perturbations and non-linear pinch-off dynamics result in bi-modal drop size distribution.
The two peaks in the bi-modal distribution correspond to the formation of main drops and satellite drops.
The main drops are the desired product of the industry and the satellite drops are relatively smaller in size
and are discarded by post-production processes like sieving. To reduce post-production processes and en-
sure repeatability, the industrial demand is to have a "narrow uni-modal" drop size distribution. Meaning,
elimination of satellite drops and having uniform-sized main drops.

Narrow distribution is achieved by employing finite-amplitude perturbation on the jet. This way the jet
is not affected by the random background perturbation as the finite-amplitude perturbation dominates the
break-up process. But this does not ensure satellite drop elimination. Uni-modality is achieved when the
satellite drops merge with the main drops. Merging happens when the satellite and the main drop have
different velocities and follow the same trajectory. The amplitude of the sinusoidal perturbation can be tuned
to have this merging condition. The externally perturbed jet finds its application in a plethora of industrial
processes such as powder production, combustion, micro-encapsulation, extreme ultraviolet rays (EUV) and,
laser-plasma production (LPP), ink-jet printing, etc.

The focus of this thesis is the production of crystalline fertilizer pellets from the capillary break-up of a
spiralling jet of molten fertilizer. This process is called rotary prilling. Experimental studies in spiraling jets
without external perturbation also shows bi-modal distribution of drops. The fine satellite drops produced
in prilling process are a potential safety hazard as they can cause dust explosions which can be detrimental
to air quality. Expensive filters and wet scrubbers are placed inside the prilling tower to remove the fine
satellite drops. Hence uni-modal drop size distribution in prilling is highly beneficial for both economic
and environmental reasons. As perturbed spiralling jets are not studied in detail in the existing literature,
this thesis employs sinusoidal perturbations on spiraling water jets and aims to achieve uni-modal drop size
distribution.

While the straight jets have a nearly constant base flow, the spiraling jets have a base flow that accelerates
due to the centrifugal and Coriolis forces in the downstream direction. As a result of mass conservation the
accelerating base flow results in jet stretching in the downstream direction. The evolution of perturbations
on such a stretched jet not only depends on surface tension and inertial forces of the local jet radius, but
also on the wavelength that is excited initially. Hence the evolution of perturbations on straight jets with
constant base flow is an eigen-value problem whereas, on a stretched jet it is an initial value problem. When
the stretching rate is faster than the capillary growth rate damping of the surface perturbations will occur.
For the process parameters investigated in this thesis, the capillary growth rate is faster resulting in negligible
damping. The other effect of jet stretching is that the wavelengths are also stretched, that is the wavelength
that is excited initially becomes longer in the downstream direction, thus the wavenumber decreases.

The linear spatial instability theory for spiraling jets is experimentally validated in this thesis. For the
set of non-dimensional numbers chosen in this thesis, uni-modal distribution of drops is achieved by tun-
ing the frequency and amplitude of the sinusoidal perturbation. Uni-modality is observed when the non-
dimensional wavenumber near break-up is approximately 0.7 and the amplitude is tuned accordingly. As
the wavenumber decreases in downstream direction the wavenumber excited at the nozzle should be greater
than 0.7.
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Nomenclature

We - Weber number
Fr - Froude number
Oh - Ohnesorge number
Rb - Rossby number
W ecr - Critical weber number
g - gravity (m/s2)
Ω - Angular velocity of spiralling jet (rad/s)
Cd - Coefficient of discharge
λ - Wavelength (m)
k - Wave number (1/m)
kr - Real wave number (1/m)
ω - Angular frequency of perturbation (1/s)
ωr - Real angular frequency of perturbation (1/s)
ki - Spatial growth rate of perturbations (1/m)
ωi - Temporal growth rate of perturbations (1/s)
k∗ - Non-dimensional wave number
k∗

r - Non-dimensional real wave number
ω∗ - Non-dimensional angular frequency of perturbation
ω∗

r - Non-dimensional real angular frequency of perturbation
k∗

i - Non-dimensional spatial growth rate of perturbations
ω∗

i - Non-dimensional temporal growth rate of perturbations
σ - Strain rate (1/s)
SD - Standard deviation
U - Velocity at the nozzle of the jet (m/s)
H - Radius at the nozzle (m)
tc - Capillary time scale (s)
γ - Surface tension (N/m)
ρ - Density of the liquid (kg /m3)
ta - Advection time scale (s)
ν - Viscosity of the liquid (Pa s)
tb - Break up time of jet (s)
LBU - Break up length (m)
εu - Perturbation amplitude in velocity at the nozzle
εh - Perturbation amplitude in radius at the nozzle
δ - Small perturbation
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1
Introduction

Narrowly dispersed drops when required in high production rates, of the order of a few tons per hour, the
process adopted is prilling (see Van’t Land [43]). Some of the most commonly prilled materials are made
for the fertilizer industry producing urea and ammonium nitrate. The prilling process has a cylindrical or
conically shaped perforated bucket (also called prillers), shown in figure 1.1. Typically these bucket are of
diameter of 0.5 m and the size of perforated holes are of the order of 1 mm. The bucket is filled with the

Figure 1.1: Perforated rotary bucket (Courtesy of Kreber, Vlaardingen, The Netherlands)

molten liquid that is to be prilled and is rotated at speeds of utmost 350 rpm. The high rotation rate increases
the radial pressure in the molten liquid near the walls and hence the liquid is forced out of the perforations.
The jets coming out of these perforations eventually undergo capillary break-up and form drops. These drops
are then cooled for the crystallisation to initiate. The crystallised drops are called as prills. The cooling is
facilitated by the prilling tower built around the perforated bucket. A schematic of the entire prilling process
is shown in figure 1.2. The entire assembly of the bucket is enclosed in a prill tower which could be utmost 60
m tall and provides enough residence time for the drops to crystallise. To increase the heat transfer a counter

1



2 1. Introduction

Figure 1.2: Schematic of prilling process, reproduced from Skydanenko et al. 2017

flow arrangement of air flow is also found in the prilling tower. Finally, the prills are collected at the bottom
of the tower.

Although a narrow range of drop sizes is claimed in the prilling process, there is still a bi-modal distribu-
tion of drop sizes (see Wong et al. [45]). This is because of the near break up non-linearity which results in two
drop sizes, viz. main drops (desired ones) and satellite drops. These satellite drops are undesirable for many
reasons. As the satellites are some times very fine, of the order of few microns, the counter-flow air carries
these fine drops in to the atmosphere. This can cause serious environmental issues such as dust explosion.
Hence the counter-flow air is passed through cyclone separators or wet scrubbers to filter them. These filters
contribute to additional equipment costs and also incur maintenance costs [43]. Moreover, satellite drops
that are filtered results in loss of valuable material. Owing to these issues with the satellite drops this study
aims to eliminate1 them in a dimensionally similar experimental setup with water as the working fluid.

1.1. Outline of thesis
A brief overview of the theory of break-up for straight jets and spiralling jets is presented in chapter 1 followed
by the literature review. Chapter 2 deals with straight jets in detail and presents the preliminary experiments
done in straight jets. Chapter 3 discusses the new improved experimental setup for understanding the spi-
ralling jets and also discusses the post-processing of image data obtained from spiralling jet experiments.
The results are presented in chapter 4 and the agreement of experimental results with the theory is discussed.
Conclusion of the thesis and future recommendations are given in chapter 5.

1The satellite drops are universal and are always present in jet breakup. In this thesis, "elimination of satellite" means a controlled
merging of the satellite drops with the main drops.
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1.2. Theory
1.2.1. Rayleigh’s linear instability theory
Rayleigh [31] solved the linearized Navier-Stokes equation and the kinematic boundary condition corre-
sponding to a radially perturbed straight jet.

h = h0 + h̃ (1.1)

h̃ = δe i (kx−ωt ) where, ω=ωr + iωi (1.2)

h̃ = δeωi t e i (kx−ωr t ) (1.3)

The radial perturbations are given in equations 1.1 and 1.3. h0 is the unperturbed jet radius and h̃ is the
perturbation imposed on it. ωr is the angular frequency of perturbation and ωi is the growth rate. ’x’ is the
streamwise direction and ’r’ is the radial direction of the jet.

ω2 =− γ

ρh3
0

(kh0)(1− (kh0)2)
I1(kh0)

I0(kh0)
(1.4)

The dispersion relation obtained by Rayleigh is given in the equation 1.4. Where, k (= 2π
λ ) is the wavenumber,

ρ & γ are the density & surface tension of the liquid, and I0 and I1 are the 0th order and 1st order modified
Bessel function of the first kind. When ω has a non-zero imaginary part it can be seen from equation 1.3
that the perturbations grow exponentially and lead to break-up. The dispersion relation gives the growth rate
associated with a particular wavenumber. Figure 1.3 shows the imaginary part of ω (growth rate) scaled by

the capillary time (tc =
√
ρh3

0/γ) plotted against the non-dimensional wavenumber (k∗ = kh0).

Figure 1.3: Non-dimensional growth rate plotted against the non-dimensional wavenumber, reproduced from Donnelly and Glaberson
[7]

It can seen from the figure 1.3 that the fastest growing dimensionless wavenumber is approximately 0.7.
This wavenumber will dominate the break-up process and will correspond to the drop size. With the intertial-
capillary time scale (tc ) being one of the relevant time scales, the other time scale that is relevant is the ad-
vection time scale (ta) given in equation 1.5.

ta = h0/u0 (1.5)

W e = t 2
c

t 2
a
= ρu2

0h0

γ
(1.6)

Where u0 is the jet velocity in the streamwise direction. The square of the ratio of these two time scales gives
the Weber number (We) as shown in equation 1.6.
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1.2.2. Slender jet analysis
A slender jet assumption is valid when the length scale in the streamwise direction (lx ) is much longer than
the length scale in radial direction (lr ) of the jet. Subtituting this into the linearized Navier-Stokes equation
gives a one dimensional approximation of the jet.

ω2 =−1

2

γ

ρh3
0

[
(kh0)2 − (kh0)4] (1.7)

Equation 1.7 is the dispersion relation obtained from such a 1-D model. The solution of the 1-D model is more
transparent than the one given by Rayleigh [31] and allows incorporating more complexities. For instance,
jets with finite viscosities can be incorporated with ease. The dispersion relation for viscous jets is given in
the equation 1.8. Where ν is the dynamic viscosity of the jet.

ω2 =−1

2

γ

ρh3
0

[
(kh0)2 − (kh0)4]+ (−iω)

3ν

h2
0

(kh0)2 (1.8)

ta = νh0/γ (1.9)

The inclusion of viscosity brings in a new time scale known as the visco-capillary time scale (tv ), given in
equation 1.9. The effect of viscosity on the capillary growth is measured in terms of the Ohnesorge number
(Oh) which is the ratio of the visco-capillary time scale to interial-capillary time scale and is given in equation
1.11.

Oh = tv

tc
(1.10)

Oh = ν√
ρh0γ

(1.11)

Figure 1.4: Non-dimensional growth rate plotted against the non-dimensional wavenumber for increasing Oh numbers
Oh = 0.01,0.2,1,5,20. (top to bottom in the graph) , reproduced from Eggers and Villermaux [12]

The capillary growth rate for different Oh numbers is shown in figure 1.4. It can be seen that increasing
viscosity slows down the capillary growth rate.
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1.2.3. Satellite drop formation
Although the growth of the capillary perturbations are governed by linear theory the near break-up phe-
nomena are non-linear in nature. When following a sinusoidal perturbation over time it was found that the
sinusoidal waves deviate from their sine shape. It was first noticed in jets by Goedde and Yuen [15]. Figure
1.5 shows the temporal evolution of sinusoidal waves becoming non-sinusoidal.

Figure 1.5: Trace of water jet surface in time sequence measured from experiments, the jet corresponds to a perturbation frequency of
dimensionless wavenumber 0.43, reproduced from Goedde and Yuen [15]

Figure 1.6: Jet perturbed at different wavelengths. It can be seen that the ligament size becomes smaller with decreasing wavelengths
(left to right), reproduced from Sharma et al. [37]

The jet break-ups into drops with ligaments in between them. These ligament recoil into smaller drops
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also called as the satellite drops. The longer the wavelength of perturbation the longer the ligament size
is, which results in bigger satellite drops. Figure 1.6 shows the same jet perturbed at different wavelengths
and the corresponding ligament lengths. As the wavelength of perturbation decreases (left to right) it can be
seen that the ligament size also decreases and smaller satellite drops are formed. Thus the non-dimensional
wavenumber (k∗ = 2πh0/λ) becomes an important dimensionless number for satellite drop formation. Al-
though satellite drops are formed ubiquitously (see Eggers [9]), they merge with the main drops downstream.
The merging phenomena depends on the amplitude of perturbation. At low perturbation amplitudes for-
ward separation and rear merging is observed. A forward separation is when the ligament pinches off form
the main drop first at its fore end. The resulting un-balanced momentum causes the satellite to merge with
the main drop behind it, hence the term rear merging. The time evolution of such a forward separation and
rear merging is shown in figure 1.7.

Figure 1.7: Time evolution of straight jet depicting forward separation and rear merging. These images are taken by the author of this
thesis. The jet is perturbed at the fastest growing wavelength and the images are taken at 4000 fps. The voltage applied to the piezo

crystal is 40 V.

As the amplitude of the perturbation is increased the infinite satellite condition is encountered. This
occurs when the satellite break-ups from the fore end and rear end simultaneously. This is termed as the,
"infinity condition" by Pimbley and Lee [29]. The satellite does not have any unbalanced momentum, so the
relative velocity of the satellite with respect to the main drops is zero. Hence the satellite does not merge with
the main drops. Figure 1.8 shows the infinity condition.

Moving from rear merging condition to infinity condition it is also seen that the merging time increases
and when the infinity condition is reached the merging time becomes infinity. When the amplitude of per-
turbation is increased beyond the infinity condition the satellite pinches off form the rear end and merges
with the main drop upstream. This is called rear separation and forward merging. As the amplitude is in-
creased even further the merging time in the forward direction decreases. Figure 1.9 shows the condition of
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Figure 1.8: Time evolution of straight jet depicting the infinity condition. These images are taken by the author of this thesis. The jet is
perturbed at the fastest growing wavelength and the images are taken at 4000 fps. The voltage applied to the piezo crystal is 65 V.

rear separation and forward merging. Thus for a given non-dimensional wavenumber, the non-dimensional
amplitude of perturbation decides the type of merging and the merging time.

Figure 1.9: Time evolution of straight jet depicting rear separation and forward merging. These images are taken by the author of this
thesis. The jet is perturbed at the fastest growing wavelength and the images are taken at 4000 fps. The voltage applied to the piezo

crystal is 150 V.
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1.2.4. Stability of thinning jets
In the previous analysis the instability of a jet with constant base flow is presented. In this section a jet that is
accelerating is considered. An accelerating jets thins in radius in the downstream direction due to mass con-
servation. The growth of capillary waves on such a temporally evolving jet becomes an initial value problem.

u0 =σx, (1.12)

v0 = −σ
2

r (1.13)

The base flow velocities are given in equations 1.12 and 1.13. Here σ is the strain rate, and u0 and v0 are the
velocity in x and r direction. Integrating equation 1.13 gives the radius of the base flow as a function of time
which is given as,

h0(t ) = h0(0)e
−σ
2 t (1.14)

and integrating equation 1.12 gives the stretching of a fluid element in the base flow as a function of time
which is given as,

δx(t ) = δx(0)eσt (1.15)

Hence the wavelength that is excited at the nozzle temporally evolves as,

λ(t ) =λ(0)eσt (1.16)

k∗(t ) = k∗(0)e
−3
2 σt (1.17)

From equations 1.14 and 1.16 the non-dimensional wavenumber as a fuction of time is found by k∗ = 2πh0/λ,
given in equation 1.17. The growth rate is now a function of the time dependent jet radius (h0(t )) and the time
dependent wavenumber which is given as,

ω2 =−1

2

γ

ρh0(t )3

[
(k(t )h0(t ))2 − (k(t )h0(t ))4] , (1.18)

with h0(t = 0) and k(t = 0) as the initial conditions. Scaling the growth rate by the capillary time scale at time
(t = 0) and substituting k∗ = kh0 in equation 1.18, the non-dimensionalized growth rate is given as,

ω∗
i = ωi√

γ/(ρh0(0)3)
= 1

2

√
k∗2 −k∗4 (1.19)

In straight jets for k∗ > 1 the perturbations are always stable but for a thinning jet with an initial condition
of k∗(0) > 1 it is not the case. As the k∗ decreases over time and becomes less than 1, the initially stable
perturbations can become unstable. Figure 1.10 shows the capillary growth rate of a stretching jet (σ = 0.2)
with different initial conditions of k∗. It can be seen from the figure that for k∗(0) = 1.2 the perturbations are
initially stable but they become unstable later due to wavelength stretching.

Now consider the small perturbation h̃ growing on a stretching jet. If ε(t ) is the real part of h̃, for a small
change in time (∆t ) the change in ε(t ) is given as follows,

ε(t +∆t ) = [h0(t )+ε(t )]e
−σ
2 ∆t −h0(t )e

−σ
2 ∆t +ωi ε(t )∆t , (1.20)

taking the limit ∆t → 0 in equation 1.20, ε takes the form of,

d

d t
ln(ε) = −σ

2
+ωi . (1.21)

Integrating the above equation gives,

ε(t ) = ε(0)e
−σ
2 t eωi t (1.22)

This analysis is similar to the one presented in Tomotika [42]. The perturbation grows exponentially over
time due to the growth rate term eωi t and the stretching term e

−σ
2 t dampens the exponential growth rate.

This brings in another time scale tσ = 1/σ which is related to the strain rate of the jet. A new dimensional
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Figure 1.10: Non-dimensional growth rate plotted against the non-dimensional wavenumber for different initial conditions of k∗. The
circles in the figure indicate the time instance t = 0; as time increases the k∗ decreases. For all three initial conditions σ= 10.

number (T) can be defined as the ratio of square of tσ to square of capillary time scale. This dimensionless
number was first introduced by Frankel and Weihs [13].

T = t 2
σ

t 2
c

(1.23)

= γ

ρh3
0σ

2
(1.24)

Figure 1.11: Evolution of perturbations for a water jet. The initial conditions are h0(0) = 0.5 mm, ε(t = 0) = 0.01×h0(0) and k∗(0) = 0.7.

For the case of T →∞ ( σ= 0 ) the growth rate becomes independent of time which is same as the straight jet
case. When T is finite, the growth of perturbations is dependent on time due to the time dependent damping
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resulting from the stretching of the jet. The other limiting case, that is when T = 0 (σ→∞) the capillary waves
are over-damped and do not grow in time. For a water jet with the initial conditions, h0(0) = 0.5 mm, ε(t =
0) = 0.01×h0(0) and k∗(0) = 0.7, the evolution of perturbation for different values of strain rate is shown in the
figure 1.11. For a strain rate of σ= 10 (T = 5600), figure 1.12 shows the temporal evolution of the perturbation

Figure 1.12: Evolution of perturbations for a water jet along with h0 and k∗. The initial conditions are h0(0) = 0.5 mm,
ε(t = 0) = 0.01×h0(0) and k∗(0) = 0.7. The σ is chosen to be 10 (T = 5600)

alongside the h0 and k∗. In the figure 1.12 a, the point where l n(ε(t )) and ln(h0(t )) meet corresponds to the
time t = 0.024. This is the time instant the perturbations become as large as the local jet radius and the break-
up occurs. The corresponding non-dimensional wavenumber at the same time instant is found from the
figure 1.12 b, indicated by the vertical line. The k∗ has reduced from 0.7 at the nozzle to 0.48 near break-up.
Therefore, even when the damping caused by stretching is insignificant the non-dimensional wavenumber
changes significantly affecting the near break-up dynamics. In this case bigger satellite drops are formed as
the wavelength of the perturbation is longer near the break-up.

σ= g /u0 (1.25)

An example of accelerating straight jet in reality would be a free falling jet. A liquid jet that falls under
gravity would have a constant stretching rate given in equation 1.25, where g is the acceleration due to grav-
ity and u0 is the velocity. To sum up, the dimensional numbers governing the growth of capillary waves on
a straight jet are We, Oh, initial non-dimensional wavenumber, initial non-dimensional perturbation ampli-
tude, the dimensionless number T and density ratio of fluids in contact. The effect of density ratio is discussed
in subsection 2.1.1.

1.2.5. Stability of spiralling jets
Liquid jets emanating from a spinning source is termed as spiralling jets. A schematic representation of spi-
ralling jets is shown in figure 1.13. These spinning jets are found in many industrial applications including
the prilling process. To solve for the capillary growth rate the base flow of the spiralling jet has to be solved.
Shikhmurzaev and Sisoev [38] presents a rigorous mathematical framework for solving the base flow of the
spiralling liquid jets. Three dimensionless numbers were found to govern the base flow. They are the Weber
number, Froude number and Rossby number which are defined as,
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Figure 1.13: A schematic representation of spiralling jets in nano-fibre production, reproduced from Shikhmurzaev and Sisoev [38]

W e = ρU 2H

γ
, F r = U√

g L
, Rb = U

(Ω/2π)L
, (1.26)

Figure 1.14: Non-dimensionalized kr and ki as a function of u0/U for We = 10, reproduced from Li et al. [24]

here L is the radius of the rotating arm, H is the unperturbed radius of the jet at the nozzle, U is the velocity of
the jet at the nozzle in the streamwise direction andΩ is the angular velocity in rad/s. The centrifugal forces
causes the jet to accelerate in the downstream direction and the jet thinning occurs. The Coriolis and the
gravity forces cause the jet to curve in the directions normal to the streamwise direction. A spatial instability
analysis is performed on this base flow and the dispersion relations are obtained by Li et al. [24]. In the spatial
instability analysis the wavenumber2 (= kr + i ki ) is taken as a complex quantity and the angular frequency
as a real quantity. k∗

r is the non-dimensional wavenumber and k∗
i is the non-dimensional spatial growth

rate. Because of the accelerating base flow in the spiralling jets one can expect wavelength stretching. Figure
1.14 shows the non-dimensionalized kr and ki as a function of u0/U . It can be seen that the dimensionless
wavenumber (k∗

r ) decreases in the downstream direction which confirms wavelength stretching. Here u0/U

2When discussing spatial instability analysis distinction is made between real and complex wavenumbers with appropriate subscripts.
Whereas in temporal instability analysis the wavenumber is always real and does not have a subscript
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is a proxy for the downstream direction. The quantity u0/U increases in the downstream direction because
of the accelerating base flow.

The control of break-up of spiralling jets to eliminate the satellite drops requires combining the knowledge
of dispersion relation, effect of external perturbation’s frequency and amplitude on merging, dimensionless
number T and wavelength stretching. By understanding these phenomena one can manipulate the near
break-up dynamics to eliminate satellite drops.

1.3. Literature review of straight jets
The surface tension forces on a liquid surface was first proposed by marquis de Laplace [25] and Young [46]
independently in their seminal works. Savart [36] conducted a series of experiments in jet breakup but failed
to identify surface tension as the driving force for the breakup. It was Plateau [30] who included surface
tension into account for jet break up and applied surface energy minimization principle to predict the size of
the wavelengths that would lead to breakup. This analysis leads to the definition of critical wavelength (λcr ),
any wavelength greater than this will be unstable and lead to breakup. λcr = 2πh0 ≈ 6.28h0 where h0 is the
unperturbed jet radius. This theory, although, supports the experiments, doesn’t explain the experimental
value of wavelength that is observed by Savart [36], λ ≈ 8.76h0 . This discrepancy can be attributed to not
accounting for flow dynamics by Plateau [30]. A more comprehensive theoretical analysis was put forth by
Rayleigh [32] who proposed the linear perturbation analysis on a inviscid Navier Stokes equations which gives
a dispersion relation for temporal instabilities of the jet. Of all the wavelengths that are unstable, λ≈ 9.01h0

was found to have the fastest growth which agrees well with the previous experiments. A more rigorous linear
stability analysis was performed by Keller et al. [19] who considered the spatial instabilities in a cylindrical
jet. This addresses the un-physical fluid behavior in Rayleigh’s analysis. A temporal growth rate would mean
that everywhere along the jet the waves are growing in time, which is not the case near the jet nozzle; the
waves always have negligible growth near the nozzle. This effect can be captured by considering a spatial
instability analysis where the wavenumber was considered to be complex and the frequency of perturbation
to be real. Although this analysis being more thorough, Rayleigh’s analysis is usually adopted for simplicity.
Chandrasekhar [1] accounted for viscosity in the instability analysis and found that viscosity decreases the
growth rate of the fastest growing modes. This leads to a longer break up length. But the mechanism of
break-up continued to be capillary instabilities.

The linear stability analysis doesn’t capture the satellite droplets observed by Savart as early as 1833, this
can be attributed to linearizing the Navier-Stokes equation in all the above analyses. The satellite drops, fi-
nite jet perturbations and the near breakup dynamics are inherently non-linear processes. The effect of finite
disturbances on the jet surface was considered by Yuen [47]. Before this, it was accepted that the presence
of non-sinusoidal surface waves was due to presence of higher harmonics in the initial perturbation as sug-
gested by Rayleigh [32].

Yuen [47] looking at the radius of the jet as a function of time makes it clear that the jet neck and swell
has to grow at different rates making the process essentially non-linear. This study concludes with a new
inference that the initial finite amplitude perturbation also affects the jet breakup. Lee [21] was the first to
consider the effect of finite perturbations in detail. The model developed was a simplified version of Navier-
stokes with an assumption that the axial velocity of the jet is uniform in the radial direction. It was found that
the linearized version of their model agreed well with Rayleigh’s temporal model and the non-linear model
was able to predict the satellite drop formation quite well. The paper also gives an estimate of break up time
which slightly varies with the break up time estimated by linear theory.

A more detailed description of the role of finite perturbations is given by Pimbley and Lee [29]. This paper
extends the spatial instability analysis by Keller et al. [19] to include second order non-linear terms to predict
the formation of satellite droplets. This theory predicts the satellite droplet separation more accurately than
the previous non-linear theories. Chaudhary and Redekopp [4] present a different approach to the non-
linear problem by introducing a method of strained co-ordinates with Galilean transformation. They obtain
a third order solution with an initial velocity disturbance condition. They find that the satellite drops are
ubiquitously present. So they introduce an additional sub-harmonics on top of the fundamental harmonic
perturbation to have a desired break-up3. The amplitude of the fundamental and sub harmonics are of the
same order and the phase difference between them is adjusted to achieve desired break-up. It was found that
the magnitude of the harmonics also grow in time and because of this it was possible to eliminate satellite
droplets even for long wavelengths which are not the fastest growing ones.

3Accorging to the authors desired break up is when each wavelength collapse into a single drop
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The non-linear spatial instability analysis was only able to qualitatively predict the satellite formation;
hence, solving the complete Navier-Stokes was necessary. But solving the full Navier-Stokes equation with the
necessary boundary conditions is computationally very expensive. Hence, a one-dimensional approximation
similar to lubrication theory by Reynolds [33] was put forth by Eggers and Dupont [11]. This one dimensional
model is computationally affordable yet retains all the important non-linear aspects. This also offers the ease
of incorporating more complex rheology and different base flow models.

Savart [36] was the first to conduct careful experimentation of straight jets and also developed a strobo-
scope technique to capture the jet in a slowed down manner as shown in Figure 1.15. Only after the experi-
mental evidence of jet break-up was published, the theoretical analysis was proposed by Rayleigh [32].

Figure 1.15: Jet break as captured by Savart [36] reproduced from [12]

Donnelly and Glaberson [7] experimentally proved the growth rate curve predicted by Rayleigh [32]. Al-
though the theory was temporal stability analysis, the experimental data was obtained from spatial growth.
In this case, because of having high speed jets, both spatial and temporal analysis happened to give the same
growth rates. They also found the existence of non-sinusoidal surfaces, a non-linear phenomenon in the jet
break up but accounted it to existence of higher order harmonics in the jet disturbance. After the weakly
non-linear temporal instability analysis was published by Yuen [47], Goedde and Yuen [15] experimentally
proved the predictions of neck and swell of the jets growing at different rates. The Figure 1.16 shows normal-
ized neck and swell diameter with respect to time. It shows that the neck contracts at almost a constant rate
whereas, the swell initially has a slow growth rate but at near break-up has rapid growth. The neck and swells
growing at different rates is the reason for non-sinusoidal surfaces found earlier by [7], not the presence of
higher order harmonics as suggested by the same.

Figure 1.16: Neck and Swell diameter changing with time, reproduced from Goedde and Yuen [15]

Theoretically predicted by Yuen [47], these non-sinusoidal surfaces are the result of non-linear nature of
break up process. These difference in growth rates can also explain the formation of satellite droplets and how
they vary with wavenumbers. Goedde and Yuen [15] use a different imaging technique which enables them
to get a real time sequence of images unlike the strobed images by Savart [36] and Donnelly and Glaberson
[7]. This enables them to track a one wavelength in time and discuss the implications of non-sinusoidal
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surfaces. Figure 1.5 shows the trace of the jet break up corresponding to a reduced wavenumber of 0.43.
Initially, the neck contracts faster than the crests swelling as shown in Figure 1.16. Whereas near breakup the
scenario reverses, the neck contracts slowly than the crests swelling. This leads to the point of detachment
between the ’neck end’ and the ’swell beginning’ as depicted in Figure 1.5 (6) (near z = 2). They validate the
linear growth rate theory by calculating the average growth rate of neck and swell. This paper claims that the
downstream of the ligament is always the pinch off point as it has more time to contract than the upstream
of the ligament. This claim will be more refined in later experimental evidence, which is attributed to the
amplitude of the disturbance influencing the break-up.

Pimbley and Lee [29] who gave the spatial instability analysis with higher order terms also did experi-
ments to validate their claim. They carefully considered the effect of finite disturbances and the effect of its
amplitude. Equation 1.27 gives the relationship between the velocity perturbation and the break-up time4

derived by Lee [21]. Pimbley and Lee [29] uses the break-up time of jet (equation 1.27) for a given ampli-
tude of velocity perturbation to make sure that the experiment is operated in the linear regime. Figure 1.17
shows the logarithmic relation between break-up time and the amplitude of velocity perturbation. After es-
tablishing that they operate in the linear regime, the author’s focus is on satellite drop formation and merging
phenomena. A new term "infinite satellite" condition is defined, meaning the satellite droplets formed in the
jet does not merge with the main drops. This infinite satellite condition was observed ubiquitously; doesn’t
depend on the method of perturbation, frequency of perturbation or the viscosity, but only on amplitude of
perturbation. It was found that the merging of satellite with the main drops or the lack of it (infinity con-
dition), is a function of the amplitude of perturbation. An empirical relation between the break-up time for
infinite satellite condition and wavelength over diameter was found as shown in equation 1.28. Where λ is
the wavelength of perturbation and h0 is the jet radius.

tb =− 1

γ0
ln

(
π∆v

2λγ0

)
(1.27)

tb∞ = 76e0.28λ/2h0 (1.28)

Note: By comparing equation 1.27 and 1.28 and equating tb∞ = tb the amplitude of
velocity perturbation corresponding to the infinite condition can be obtained as,

∆v = 2λγ0

π
e−76γ0e0.28λ/d

(1.29)

Comparing this∆v with Figure 1.17 the required current input to the perturbing device
for infinite condition can be determined.

The different merging conditions plotted against the break-up time is shown in figure 1.18. Here the
break-up time tb is used as a proxy for the amplitude of perturbation. When the break-up time is large (low
perturbation amplitudes) rear merging is seen. As the break-up time reduces satellite condition and forward
merging occurs.

Following this Chaudhary and Maxworthy [3] attempted to characterize the modulator, i.e. the pertur-
bation device which produces finite amplitude perturbation. In this study the modulator is considered as
a black box and a transfer function is used to model it. It compares the break up time form the numerical
analysis to the experimental analysis. When the break up time corresponding to a theoretical perturbation
(ε) is same as the experimental break up time, then the applied voltage, which determines the experimental
perturbation, should have some relation to ε. This relation is given by the transfer function. As an additional
check for this theory the authors compare the experimentally obtained surface profile with the numerically
calculated ones.

Chaudhary and Maxworthy [3] continued their experimental work in their next paper Chaudhary and
Maxworthy [2] focusing on post break up scenario. In this study they confirm the results of Pimbley and Lee
[29] on satellite drop formation. This paper delves deep into the control of satellite drops to achieve a uniform
drop size. The forward merging, rear merging and the infinity condition reported in Pimbley and Lee [29] is
acknowledged by these authors.

Instead of using the breakup length as a measure for the amplitude of perturbation, García et al. [14]
perturbs the pressure in the fluid chamber which is connected to the jet. This gives a more straight forward

4Time spent by the jet from nozzle exit to breaking up into drops
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Figure 1.17: Jet break up time (tb ) plotted against electric current I applied to the piezo crystal which is an indirect measure of velocity
perturbation amplitude, reproduced from Pimbley and Lee [29]

approach to determining the amplitude of fluctuations instead of having to calculate a transfer function.
Figure 1.19 shows the decrease of breakup length with increase in amplitude (bottom to top). On closer look
it can also be seen that there is forward separation and rear merging at low amplitudes. With increasing
amplitude exactly at 7.5 Pa exists the infinity condition and later there exists rear separation and forward
merging.
Additional literature of break-up regime classification for straight jet and different perturbation mechanisms
used in literature are discussed in chapter 2.

Stretched jets were first considered by Tomotika [42]. The author finds that the stretching dampens the
exponential growth of the perturbations on the surface of the jet. Frankel and Weihs [13] considers stretching
in inertia dominated jets. Because of stretching the capillary instabilities which is an eigen value problem
in straight jets becomes a initial value problem in stretched jets (see sub-section 1.2.4). The other effect of
stretching is that the initially perturbed wavelength increases in the downstream direction. The damping of
the capillary waves could explain why jets of honey falling under gravity do not break-up due to capillary
instabilities. Viscous liquids already have a smaller growth rate and this coupled with strong stretching of
the jets leads to very long intact lengths. Another example of such jets are seen in nature during volcanic
eruptions. The molten lava which is a very viscous liquid is drawn into jets by wind. These jets have diameter
less than 0.5 mm and are so long as 2 m. After they molten lava jets cool down it forms long fibres as shown
in figure 1.20.

1.4. Literature review of spiralling jets
Wallwork et al. [44] considered the stability of inviscid spiralling liquid jets. The authors define an orthogonal
co-ordinate system in a rotating frame of reference and obtain asymptotic steady state solution for the tra-
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Figure 1.18: Different merging conditions plotted as a function of break-up time tb . Reproduced from Pimbley and Lee [29]

jectory of the spiralling jet. It is shown that the jet thins in diameter as it flows further away from the orifice.
A slender jet approximation using Taylor expansion is made on the base flow and is valid for Weber numbers
fairly larger than 1. A linear spatial and temporal instability analysis was performed on this base flow and the
growth rate relations are given; it was found that all the modes are unstable in a spatial instability analysis. A
prediction for break up length is given and it agrees with reasonable accuracy with the theoretical results.

Wong et al. [45] conducted experiments on the break up of spiralling liquid jets. The authors observe four
break up modes and gives a break up regime map as shown in Figure 1.21. The traces of the jet for the four
modes of break up is shown in Figure 1.22. Modes 2 & 3 show formation of satellite drops and have bi-modal
distribution of drop sizes. Mode 1 has no satellite drops and Mode 4 being extremely viscous causes changes
to upstream jet trajectory. The difference between mode 2 and 3 is that the former has short wavelength
and grows rapidly and the later has longer wavelengths. It should be noted that the spiralling jets in these
experiments breakup under a random background perturbation.

Partridge et al. [28] repeated Wong’s experiments on a pilot scale. They found their experimental result to
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Figure 1.19: Different merging modes as a function of perturbation amplitude, with pressure fluctuations as proxy for amplitude.
reproduced from García et al. [14]

Figure 1.20: Solidified molten lava jets also known as Pele’s hair. Reproduced from nps.gov

be different in the following ways,

• Modes 1 and 4 were not observed and the authors attribute this to increased wind resistance and un-
intended vibrations in the system.

• Presence of jets in the no jet regime of Wong et al. [45], this according to the authors is due to increased
centrifugal forces because of using larger diameter buckets.

• Overlapping of Mode 2 and 3 for Oh ≈ 0.02 as shown in Figure 1.23

• A difference in the way the satellite drops were created as compared to Wong et al. [45]

Both Wong et al. [45] and Partridge et al. [28] who did spiralling jet experiments only did a qualitative
analysis. In the classification of break-up modes, the mode 2 is said to have short wavelengths and mode 3 is
said to have long wavelengths. The observation of "short" and "long" is very qualitative and could be different
for another researcher who wants to reproduce the regime map. Literature on quantitative experimental
analysis of wavelengths and growth rate of capillary waves on the spiralling jets is lacking when this thesis
was written.

Although it is recognized that the exit velocity plays a significant role in the break-up dynamics, the un-
certainty values on the measured velocities is not given. A plot of the exit velocities comparing the lab scale
and pilot scale experiments are shown in Figure 1.24. The paper also solves the slender-jet approximation
of Navier-Stokes equation imposed on the steady state trajectory calculated by Wallwork et al. [44] and finds
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Figure 1.21: spiralling jet break-up regime map reproduced from Wong et al. [45]

Figure 1.22: Four break-up modes of spiralling jets, reproduced from Wong et al. [45]

a qualitative agreement with the experimental results. The one observation that is unchanged between the
lab-scale and pilot scale experiments is that the jet becomes more curved with increasing rotation rates.

Decent et al. [6] extends the analysis done by Wallwork et al. [44] to include viscosity and they compare
their results with experiments. They find reasonably good agreement for drop size distribution for different
modes of break up. Gurney et al. [17] theoretically considers forced vibrations at the nozzle of the spiralling
jet; the author compares the theoretical results with the experiments of Partridge et al. [28]. In order to repli-
cate the M1 mode theoretically, the author suggests adding a harmonic to the fundamental fastest growing
frequency. Only when the amplitude of the additional frequency is 10% of the velocity of the nozzle at the jet,
there exists some agreement with the experimental results. Such large disturbances may not be present in the
bucket experiments since there is no active perturbation imposed on it; this could be the result of complex
interactions between different frequencies too, according to the author of the paper. Finally, Gurney et al.
[17] calls for the need of more precise experiments with better control over the inherent perturbations of the
system.

Shikhmurzaev and Sisoev [38] finds numerous errors in the mathematical framework used by [44], [6]
and several other papers published in the modeling of spiralling liquid jets. This study embarks on a rigor-
ous mathematical approach using a local jet specific co-ordinate system. In the following paper Li et al. [24]
consider the effect of finite amplitude perturbations and also describes the non-linear evolution of the per-
turbations near the break-up. In infinitesimally small perturbations the jet thins due to centrifugal, Coriolis
and gravity forces and the fastest growing frequency does not correspond to the one at the nozzle. Whereas,
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Figure 1.23: Break up modes observed in pilot scale experiments, reproduced from Partridge et al. [28]

when the ratio of radius fluctuations to the radius of the jet is more than 1% at the nozzle it was found that
the fastest growing frequency corresponds to the one that is excited at the nozzle.

1.5. Highlights of literature survey
Straight jets

• The frequency and amplitude of disturbance are important in characterizing the breakup process.

• The neck and swell grows at different rates for straight jets.

• The direct relationship between the applied disturbance in the form of voltage or current and the actual
velocity fluctuations at the nozzle is mostly unknown. Hence the break-up length or break-up time is
used as a proxy for the same.

Spiralling jets
• Weber number, Ohnesorge number, Froude number, Rossby number, jet velocity at nozzle, amplitude

of perturbation and dimensionless wavenumber are identified as important parameters affecting the
breakup process.

• Existing experimental research on spiralling jets does not include external perturbations of the jet.

• Experiments on lab scale and pilot scales are in contradiction in certain modes of breakup.

• The uncertainties in the jet velocity measured in spiralling jets are not given in the literature.

• The experimental research published so far in spiralling jets is qualitative in nature.

1.6. Research objective
The main objective of this thesis is to understand the formation and merging of satellite drops in spiralling
water jets under controlled perturbations. By manipulating the frequency and amplitude of the external per-
turbations the satellite drops can be merged with the main drops to have a uni-modal drop size distribution.
This will be crucial for the design and control of the prilling process to have mono-dispersed prills. Another
objective is to perform quantitative analysis on measuring the wavelength and the capillary growth rate on a
spiralling jet.



20 1. Introduction

Figure 1.24: Comparison of measured velocities in lab and pilot scale experiments, reproduced from Partridge et al. [28]

1.6.1. Approach for current research
This study begins with the experiments of straight jets to understand the experimental difficulties, imple-
mentation of perturbations mechanisms and choosing the right mechanism. Chapter 2 explores these topics
and identifies the perturbation mechanism that will be implemented for spiralling jets.

Bucket experiments by Wong et al. [45] are repeated along with audio perturbations to give an insight into
controlling the spiralling jet break-up. Learnings from these two experiments are vital and have implicitly
contributed to building a better experimental setup for spiralling jets. At the moment of undergoing this
study only few experimental papers on spiralling liquid jets have been published. The authors of these papers
find it difficult to compare the lab-scale and pilot scale experiments. It is also the suggestion of Gurney et al.
[17] to engineer a system with minimum inherent vibrations as possible which has been attempted in this
thesis. Hence the following research approach is put forth for spiralling jet experiments,

• Actively perturbing the jet should be done so that the amplitude of other vibrations in the system are
relatively insignificant. Hence the external perturbation dominate the break-up process instead of ran-
dom background perturbation. Because it is a rotating system, periodic high amplitude vibration might
occur so the system must be well balanced. This is taken into consideration while conceptualizing the
design.

• The velocity of the jet at the nozzle needs to be measured with good accuracy.

• The design should allow the calculation of capillary growth rates for a given perturbation frequency in
order to validate linear theories. So far, linear theories have not been validated against the theoretical
growth rate values for spiralling jets.

• Classification of modes of breakup is heavily subjective in the literature and is based on existence or lack
of satellite drops and the length of unstable wavelengths. Hence, this study considers this as overlooked
governing parameters in spiralling jets. Them being, the frequency and amplitude of the perturbation.

• It is hypothesized that changing the frequency of perturbation will result in different wavelengths of
break-up and changing the perturbation amplitude will result in different modes of separation and
merging of satellite droplets. Hence, the modes identified by the previous works are only a subset of
infinitely many combinations of breakups possible.

• The goal of the study is the elimination of satellite drops which has been experimentally observed only
for We < 5 and Oh < 0.1 in lab-scale experiments (refer figure 1.21). In this thesis it is hypothesised
that by actively perturbing the jet, satellite drop elimination is possible for different combination of
governing dimensionless numbers.
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1.7. Summary
It was clear from the literature survey that the near and post breakup scenarios are dominated by non-linear
dynamics. These dynamics influence the separation and merging of satellite droplets which is crucial in
controlling the breakup process. Hence, introducing a finite amplitude disturbance on the jet surface whose
frequency and amplitude can be changed is indispensable for precise control over the breakup process. The
novelty of this study resides in the same.





2
Straight jets

2.1. Motivation & objective
Before attempting to study the breakup in spiralling liquid jets, it was vital to experimentally reproduce the
breakup of a straight jet for three reasons. Firstly, to understand the perturbation mechanisms used in the
literature and to get familiarized with different electronic devices such as audio amplifiers, piezoelectric crys-
tals, piezoelectric amplifiers, etc. Secondly, coupling these devices to perturb the jets should also be investi-
gated as there are many ways of doing this, viz. direct and indirect perturbation. Lastly, perturbed spiralling
jets have not been studied in the literature before, so starting from known straight jet studies was necessary
to validate the working of perturbation mechanisms. Moreover, experimental peculiarities and workarounds
needs to be explored in perturbed jet experiments and starting with perturbed spiralling jets will lead to too
many unknowns. Hence, it is logical to start with straight jet experiments and perform validation studies.

The objectives of the straight jet study are formulated to provide clarity on how the perturbed jets work
and thereby easing the transition to experimentation in perturbed spiralling jets as smoothly as possible. The
objectives are as follows:

• Defining the operating conditions in dimensionless numbers

• Identifying different perturbation mechanisms available in the literature

• Defining the steady breakup

• Performing experiments and validation of results

2.1.1. Operating conditions
Newtonian liquid jets emanating from a nozzle eventually undergo breakup . Although, the breakup mecha-
nism depends on the parameter space (Flow rate, Nozzle geometry, ratio of viscosity of the fluids in contact,
We, Re and Fr) as compiled by Leroux et al. [23]. The paper compiles five (A, B, C, D, & E) different breakup
mechanism as a function of velocity at the nozzle and the breakup length (LBU ) i.e the unbroken length of
the jet, as shown in figure 2.1.

23
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Figure 2.1: Breakup mechanism regime map reproduced from Leroux et al. [23]. The map identifies 5 breakup regimes of straight jet
based on breakup length and velocity of the jet.

The Regime A, the jet formability, is studied in detail by Leib and Goldstein [22]. This regime pertains to
the formability of the jet i.e. the fluid column is in transition from the dripping to the jetting regime. When
the We number is below O(1), the fluid column is in dripping regime and when We > O(1) the fluid column
forms a jet. This transition takes place at the critical weber number (W ecr ), which also marks the transition of
the breakup mechanism. Below the critical weber number (W ecr ) the fluid column is absolutely unstable and
above W ecr , the breakup mechanism is convective instability as delineated by Keller et al. [19]. The absolute
instability stems from a saddle point singularity in the characteristic equation that defines the growth rate of
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viscous jets. Physically, what this means is that the unstable wavelenghts travel in both upstream and down-
stream direction, as the inertia is not strong enough to convect the disturbances downstream. The waves that
travel upstream hinders the jet formation at the nozzle influencing the formability of the jet itself, hence the
name absolute instability. So the effect of surface tension continues to be the source of jet formability too.

To derive the critical Weber number, Leib and Goldstein [22] uses the viscous growth rate equations de-
rived by Chandrasekhar [1] (Pg. 541) but applies a spatial instability analysis on them. Assuming the effects of
gravity and viscosity of the air to be negligible, an inviscid jet is convectively unstable above the critical weber
W ecr = π. As the jet becomes more viscous the growth rate of convective instability dominate the breakup
mechanism causing a decrease in W ecr as the jet becomes more viscous. The figure 2.2 shows the depen-
dence of W ecr on Re. Clanet and Lasheras [5] include the effect of gravity to this transition and also provide
experimental evidence to the same.

Figure 2.2: W ecr Vs Re, reproduced from Leib and Goldstein [22]

Regime B, the capillary pinch off, is the focus of this thesis. The breakup mechanism here is the convective
instability, proposed by Keller et al. [19]. Although at higher We numbers the breakup is closely captured by
the Rayleigh’s temporal instability theory [31]. Often in literature the Rayleigh theory is used because of its
mathematical simplicity. Note should be made that the jet instability is purely driven by surface tension and
the fluid in contact with the jet does not contribute to the breakup.

Regime C, is the first wind-induced breakup or the wind assisted capillary pinch off. The capillary forces
still drive the onset of instabilities but the pressure fluctuations at the interface, due to the presence of the
other fluid starts to become significant.

In Regime D and E, the second wind-induced regime and the atomization regime, the pressure fluctuations
at the interface dominate the breakup phenomena. The fastest growing wavelengths (λm) are much smaller
resulting in extremely small droplets.

The limits of the dimensional numbers for the above regimes by different studies have been compiled
by Dumouchel [8] as shown in the Table 2.1. The subscripts L and G correspond to liquid and gas phase
respectively. Caution should be taken to remain with the limits of Rayleigh regime (B) for the experiments to
be done in the straight jet.
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Table 2.1: Limits of breakup regimes for straight jets, reproduced from Dumouchel [8]

2.1.2. Perturbation mechanisms
The perturbation mechanisms can be classified into two types based on their interaction with the jet, viz. the
direct perturbation and the indirect perturbation. As the names suggest, the direct perturbation mechanism
is physically coupled to jet and in the indirect method, the perturbation is caused by an indirect force on
the jet. The direct perturbation mechanisms include mechanical oscillators, piezoelectric crystals, etc. Some
direct perturbation mechanisms found in the literature are shown in figure 2.3. The disadvantage of using di-
rect perturbations is that a simple correlation does not exist between the amplitude of excitation applied and
the corresponding perturbation that results on the jet. For instance, Chaudhary and Maxworthy [3] assumes
the direct piezoelectric perturbation to be a black box and uses a transfer function to find this correlation
experimentally.

(a) Direct piezoelectric perturbation
(b) Direct perturbation with mechanical oscillator

Figure 2.3: Different types of direct perturbation techniques. (a) reproduced from Rohani et al. [34] and (b) reproduced from Moallemi
et al. [27]

Indirect mechanisms that are used in literature are audio speakers and electrohydrodynamic excitation
(EHD). In audio perturbations the pressure waves generated by the speaker travels through air and perturbs
the jet surface, here the correlation of amplitude of the sound waves and the jet perturbation amplitude is
not known and depends on various factors such as speaker placement, orientation, loudness etc. The EHD
induces electric charges on the surface of the jet by placing a conductive ring around the jet which is supplied
with alternating voltage. In case of EHD excitation there exists an explicit quadratic relation between the
voltage applied to the oscillator and the resulting pressure disturbance is causes on the jet. Figure 2.4 shows
the construction of an electrohydrodynamic excitation.
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Figure 2.4: Indirect Perturbation - Electrohydrodynamic excitation, reproduced from González and García [16]

An other classification of perturbation mechanisms can be made based on the flow property which is
affected by the perturbation mechanism, viz radius perturbation and velocity perturbation. The radius per-
turbation is achieved by squeezing the radius of the jet and velocity perturbation is achieved by vibrating the
fluid in the reservoir. Although the mechanisms are affecting different flow property, they result in the same
breakup mechanism, that being the capillary pinch off. This is investigated in detail by [27]. Figure 2.5 shows
how these different types of perturbations can be achieved.

(a) Piezoelectric velocity perturbation

(b) Piezoelectric radius

Figure 2.5: Perturbation of different flow properties.
(a) reproduced from Chaudhary and Maxworthy [3] and (b) reproduced from Keshavarz and McKinley [20]

2.1.3. Steady breakup
As the jet is perturbed it is necessary to make sure that the perturbation applied is such that the amplitude of
perturbation is larger than the amplitude of the background noise. Issues such as improper coupling of the
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piezoelectric crystal to the nozzle, not having sufficient amplitude of pressure waves when using a speaker,
etc can result in the jet not responding to the external perturbation but breaking up under background noise.
This again speaks to the unclear connection between amplitude of perturbation produced by the perturba-
tion device and its resulting perturbation in velocity or the radius of the jet as discussed in sub-section 2.1.2.
This relation can be expressed by the transfer function f given in equation 2.1. f gives the relation between
the actuation signal (current or voltage to piezo crystal) and the resulting amplitude of radius perturbation.
The transfer function is device specific and has to be found experimentally, except when using EHD type
perturbation devices.

(δR j et ) or (δV j et ) = f
(
actuation signal

)
(2.1)

Finding the transfer function is a tedious process and involves post-processing of the results and metic-
ulous experiments (refer [3]), hence it is useful to come up with a simple strategy to make sure that the jet is
breaking up as per the applied perturbation, this calls for the definition of ’steady breakup’. A steady breakup
is when the reciprocal of the time period between the breakup of two consecutive drops is same as the fre-
quency of perturbation and remains constant for the duration of applied external perturbation. This is math-
ematically expressed in equation 2.2

fper t = 1/T(consecuti ve br eakup) (constant over time) (2.2)

Although this condition for steady breakup seems straight forward, it poses a challenge to experimen-
tal investigation for large number of drops. So it is proposed to use the strobe technique to validate steady
breakup. When the high-speed camera’s acquisition rate is set to match the perturbation frequency the cam-
era acts as a strobe and outputs a still image over time. If the condition given in 2.2 is not satisfied the output
images from the strobing camera don’t remain the same. It should be noted that this is only a preliminary test
to validate steady breakup, as mentioned earlier more rigorous post-processing of data is necessary. Strobed
camera images from this study are shown in the figure 2.6. It can be seen that the breakup length and breakup
process remains almost similar in all the images.

Figure 2.6: Strobe images - Steady breakup
fper t = facqui si t i on = 2600H z
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2.2. Experimental setup
As one of the objectives was to try out different perturbation mechanisms, different devices were fashioned
out of readily available speaker and piezoelectric crystals. This was done as a preliminary test to understand
different perturbation mechanisms and to analyse cases of steady breakup. Some of the makeshift prototypes
that were built earlier in the research are shown in figure 2.7. Sub-figure (a) shows a jet nozzle attached to the
voice coil of a speaker, in this way the jet mean velocity is perturbed [27]. Sub-figure (b) shows a pointed tip
barely touching the jet, the other end of the pointed tip is attached to the voice coil of a speaker [7]. Sub-figure
(c) shows a fluid reservoir with end plates that are fitted with 10 mm square piezo-crystals. Only prototype
(a) was able to produce steady breakup. This could be because the amplitudes produced in b and c might
have been of the same order of magnitude as the background random noise. Nevertheless, building these
prototypes and testing them quickly gave a quick overview of what to expect from different mechanisms and
also partly shed light on the transfer function defined in equation 2.1.

Figure 2.7: Prototypes of different perturbation mechanisms. (a) shows a jet nozzle attached to the voice coil of a speaker, in this way the
jet mean velocity is perturbed similar to [27]. (b) shows a pointed tip barely touching the jet, the other end of the pointed tip is attached

to the voice coil of a speaker similar to [7]. (c) shows a fluid reservoir with end plates that are fitted with 10 mm square piezo-crystals.

2.2.1. Setup description and methodology

Figure 2.8: Schematic of the straight jet setup

Keeping in mind the operating range and the availability of equipment in the laboratory it was decided to use
an indirectly coupled speaker perturbation. The speaker used was a BEYMA 6MI90 6.5 inch speaker rated at
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Non-dimensional numbers Range
W eL 20 > 8
W eG 0.02 < 0.4
Oh 0.006
Fr 86
Re 762

Entrance length 7.6 mm
Nozzle length 6.35 mm

Table 2.2: Parameter range of the study

250 W RMS with a frequency response of 150 - 8000 Hz and a resonant frequency of 120 Hz, refer [40] for more
specifications of the speaker. The jet nozzle is placed inside a plexi-glass box and the speaker is mounted on
one of the walls of the box. This box can be closed when running the experiments, but steady breakup was
found when the box is left open too. General purpose precision tips of NORDSON EFD were used. Flexible
tube of 2 mm inner diameter connects the precision tips to the syringe pump which controls the flow rate.
The PHD2000 Series Harvard Pumps were used and the setup is placed in a climate controlled room where
the temperature is maintained as constant at 22 degree Celsius. The backlight used for shadowgraphy was a
170 W LED panel and the heating can be neglected as the panel is placed outside the plexi-glass box and is
switched on only for 10-15 seconds to observe the jet. Deionised water with a resistivity of 18.2 MΩ cm is used
in the experiment. The experimental setup used is similar to the one used by Donnelly and Glaberson [7] and
the schematic and the actual setup is shown in figure 2.8 and 2.9 respectively. The experimental parameters
used in the study is given in the table 2.2. The W eL > 8 and the W eG < 0.4 to make sure that the experiments
lie in the Rayleigh regime. The Fr >> 1 to make sure that the jet doesn’t stretch due to gravity.

Figure 2.9: The straight jet setup

The setting up of the experiments has to be done in a meticulous way to ensure repeatability, hence the
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following precautions are to be taken in order to ensure the same. The nozzle is mounted firmly to a sliding
joint, so that the jet does not move when the syringe pump is switched on due to the upward reaction force on
the nozzle. The connection of the sliding joint to the plexi-glass box has to be damped so that the sound fre-
quency produced by the speaker is not affecting the source of the jet through the plexi-glass box. This might
be important as the speed of the sound is far higher in the plexi-glass box than in the air, which will end up
perturbing the jet source itself, this is undesirable, as the jet will be perturbed in a direct and in-direct man-
ner simultaneously. Before starting the experiments, efforts should be made to eliminate all the air bubbles
inside the tubing, syringe pump and nozzle as it can hinder the flow having a constant velocity. Faced with a
choice of having to use a glass syringe or a plastic syringe the choice was made based on repeatability. The
downside of the glass syringe is that it exhibits stick-slip motion between the piston and the cylinder which
causes the velocity to vary in time. Due to these reasons the plastic syringe pump is used in the experiments
and the images are taken only after 10 ml volume of fluid is expelled to avoid initial transient behavior in
velocity if there is any. The speaker and the backlight is switched on and the image acquisition is done. The

Figure 2.10: Post processing steps
a) Image of jet breakup after background subtraction b) Image is cropped and complemented to have dark background c) Image is

binarized d) The black spots inside the droplets are removed e) Droplets with their centroids.

post-processing of the image data is done in the following procedure. Background subtraction is done first,
following that, the part of the image that contains the drops is cropped and binarized at a given threshold.
Regionprop command in MATLAB is used to find the connected regions which gives the cross section of the
drop and the centroid of the drops are found. The distance between the centroid of n (>8) drops is calculated
for every image (more than 100 images are used). It should be noted that the camera acquisition frequency is
manually adjusted to be same as the perturbation frequency which allows the camera to act as a strobe. The
average wavelength of the breakup (λaver ag e ) is calculated by finding the distances between the centroid of
the first and the nth drop and dividing it by n-1. The step by step method of post-processing is explained in
Figure 2.10. It was calculated that the change in velocity of the first and the last drop only changes by 0.3%
over the imaging length due to gravitational pull, and hence ignored. Also the diffraction diameter was not
subtracted as it does not affect the position of the centroid.



32 2. Straight jets

Note: No new equipment was bought for straight jet experiments as it was only a validation case for the
study and minimum amount of time and money was spent on this.

2.2.2. Equipment uncertainties
The flowrate (Q) deliverd by the syringe pump has two errors associated with it, the random error which is
0.35% and a repeatability error of 0.05% as given by the manufacturer. These errors are considered to be
independent of each other while calculating the progressive error. The inner diameter of the tip has an error
of 7 µm as given by gauge standards. The velocity at the nozzle is found by the ratio of the flow rate and the
nozzle cross sectional area and the associated progressive error in the velocity is calculated. Table 2.3 shows
the uncertainties that arise due to different equipment used in the experiment.

Flow parameters Value ±St and ar ddevi ati on Units
Qs yr i ng e pump 7.2±0.025 ml/min
Di ametert i p 200±7 µ m

V el oci t yNozzl e 3.82±0.25 m/s

Table 2.3: Parameter range of the study

The other equipment that is involved in the breakup process is the speaker which perturbs the jet. The
error associated with the audio output of the speaker manifests in two ways, the uncertainty in the frequency
of the audio and the uncertainty in the amplitude of the audio. This is investigated with the help of the
microphone that is available in the smart phones. The audio acquisition in the smart phone is set to raw
mode so that the audio file is not post-processed by the smartphone and this audio file is used for analysis.
Figure 2.11 (a) shows the frequency response and 2.11 (b) shows the amplitude of the 3000 Hz audio file
recorded. It can be seen that the 3000 Hz audio output has a frequency response of 2999 Hz having a 1 Hz
error and the amplitude varies about 0.1 on the normalised amplitude scale. Both indicates that the audio
produced by the speaker is subjected to errors which can affect the repeatability of the experiments.

(a) Frequency response

(b) Amplitude

Figure 2.11: Visualization of audio properties. (a) shows the frequency response of recorded audio signal and (b) shows the amplitude
of the 3000 Hz audio file recorded

2.3. Results from straight jet experiments
A simple analysis for the validation of steady breakup is performed by comparing the jet velocity calculated
from image post-processing and the nozzle velocity set by the syringe pump. The velocity of the jet is cal-
culating by multiplying the average wavelengths of beakup with the frequency of the perturbation, given by
V j et = λaver ag e × fper tur bati on . Figure 2.12 shows the graph of velocity of nozzle against the velocity of the
jet. Here, the jet velocity is plotted in red circles along with its error bar and the nozzle velocity shown in red
line and error bars shown in blue dotted lines. It should be noted that several other factors may influence the
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velocity at the nozzle. One hypothesis is the creeping of fluid to the outer edge of the nozzle due to surface
tension resulting in a reduction in velocity also observed by Clanet and Lasheras [5]. The other hypotheses
include the change in the boundary condition of the fluid leaving the nozzle, from no slip to free slip resulting
in increase in velocity (refer Middleman and Gavis [26]) and cyclic oscillations present in the flow rate deliv-
ered by the syringe pump due to the way that a syringe pump works. Efforts have not been made to check the
validity of these hypotheses but efforts are made to avoid them in the experiments of spiralling jets.

Figure 2.12: Velocity validation. We = 20, 200 µm nozzle.

2.4. Summary
As mention earlier in section 2.1, the aim of the straight jet study has been threefolds: (1) to understand
the perturbation of jet, (2) to understand the coupling and limitation of perturbation mechanisms and (3)
understanding the experimental peculiarities and workarounds which hasn’t been delineated in the existing
literature. Such useful findings from performing the straight jet experiments have been listed as follows:

• Short nozzle has to be used so that the flow is not fully developed inside the nozzle and hence do not
result in an increase in velocity due to boundary relaxation,

• Hydrophobizing the nozzle will help in avoiding the creeping of the fluid to outer edge of the nozzle,

• Instead of using a syringe pump, a hydro-static pressure driven flow (gravity driven flow) has to be
established to eliminate the cyclic oscillations in the flow rate,

• Audio perturbations not being very reproducible, piezo-electric perturbations can be used.





3
Spiralling jets

3.1. Motivation
The motivation of this study is employing active perturbations on spiralling water jets to eliminate satellite
drops and to achieve an uni-modal distribution of drop sizes. Some prilled materials such as urea and am-
monium nitrate have their molten viscosity as low as 0.005 Pa s and high surface tension, in other words
a Ohnesorge number that is very close to that of the water. Hence, prilling of these fertilizers are a direct
application of this study.

3.2. Objective
To achieve the final goal of mono-dispersity of drops issuing from a spiralling nozzle, a robust experimental
setup has to be designed. This setup must be capable of incorporating external perturbations on the spiralling
liquid. Perturbing the spiralling jet in-directly using a speaker is easy to implement, but as seen in section 2.4
audio perturbations have some inherent flaws that hinder repeatability. So it was proposed to use a piezo-
crystal perturbation which is more repeatable. Implementing a direct perturbation on a spiralling jet source
is not trivial. A novel experimental setup has to be engineered to do the same. This novel setup should
also possess other characteristics that are necessary for precise measurement of velocity, provision for high
speed shadowgraphy, ability to reproduce different dimensional numbers that govern the flow in prilling
process etc. Conceptualizing this novel setup and building it is one of the main objectives. Needless to say,
characterisation of the rotating bucket prilling process in terms of dimensional parameters are also in order
and hence dealt with. Finally, a program (MATLAB code) to analyse the images from the high speed camera
to obtain quantitative data to validate linear theory must also be developed.

3.3. Dimensional analysis
The available mathematical models in the literature given by Saleh et al. [35] and Skydanenko et al. [39] are
lacking some essential physics of the problem and the dimensional analysis presented in the literature (Wong
et al. [45] and Li et al. [24]) addresses only parts of the prilling process and hence do not provide a compre-
hensive picture. So in this study, a thorough description of the process is presented and arguments are made
for the relevant dimensional numbers.

Owing to the complexity of the flow mechanics, the problem is split into two part. First part deals with
the flow mechanics until the jet leaves the nozzle (jet formation) and the second part deals with the jet evolu-
tion and breakup phenomena. The geometric, material and flow parameters affecting the mechanics of the
problem for both the parts is given in table 3.1. Thirteen different parameters are identified in this table. This
along with three physical dimensions (mass, length, time) will result in 10 dimensionless numbers according
to Buckingham PI theorem. The geometric parameters are shown in the schematic 3.1.

The dimensional analysis of the jet evolution is adopted from Li et al. [24] which describes the trajec-
tory and the breakup process. The three dimensional numbers that govern the base flow of spiralling jet are
Froude number (Fr), Rossby number (Rb) and Weber number (We). The derivations are based on the assump-
tion that the jet is slender, i.e. the length scale in the streamwise direction is much longer than the length scale
in directions normal to streamwise direction. Table 3.2 gives the dimensional numbers that govern the flow

35
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Figure 3.1: Flow dynamics in the rotating priller with a parabolic surface. Zoomed in section shows the flow of jet in the nozzle

Parameters Symbol Units
Velocity at nozzle exit (radial direction of bucket) U m/s

Radi usnozzle H m
Radi usbucket L m
Hei g htbucket B m

Rotation speed of bucket Ω rad/s
T hi cknessbucket (nozzle l eng th) Lnoz m

Density of the liquid ρ kg /m3

Density of the gas ρg kg /m3

Surface tension γ N/m
Gravitational acceleration g m/s2

Viscosity of liquid µ Pa s
Frequency of perturbation f Hz

Amplitude of velocity perturbation δU m/s

Table 3.1: Parameters affecting the flow

mechanics of jet evolution and breakup. Only 8 dimensional numbers are given in this table the other two are
defined in the next section. It is clear from the table 3.2 that the jet velocity has to be determined precisely for
characterising the jet evolution. The next section is dedicated to deriving the jet velocity and thereby iden-
tifying meaningful dimensional numbers for describing flow mechanics leading up to the nozzle. To define
the dimensionless number T = t 2

σ/t 2
c , one needs to define σ. For spiralling jets, σ is defined as the ratio of

centrifugal acceleration (apparent gravity experienced by the jet) to jet velocity. σ=Ω2L/U . This is similar to
equation 1.25 where the g is replaced by apparent gravityΩ2L.
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Dimensional Numbers Equation

Weber number (We) ρU 2 H
γ

Rossby number (Rb) U
(Ω/2π)L

Froude number (Fr) Up
g L

Ohnesorge number (Oh) µp
ργH

T =
t 2
σ

t 2
c

γU 2

ρH 3L2Ω4

Density Ratio
ρg

ρ

Scaled frequency (ω∗
r ) 2πH f

U

Scaled Amplitude of perturbation (ε) δU
U

Table 3.2: Dimensional numbers governing jet evolution

3.3.1. Analytical prediction of jet velocity in prilling
As recognised by Partridge et al. [28] the exit velocity of the jet plays an important role in determining the
dimensional parameters that govern the breakup phenomena. Hence, a mathematical model has to be pro-
posed to quantify the exit velocity of the jet leaving the prilling bucket. A simple analytical model is derived.
The problem is split into two different parts, solid body rotation of the fluid in the cylinder (priller) and the
flow inside the nozzle. The two different parts are shown in figure 3.1.

The mass and momentum conservation equations for solid body rotation in a cylinder in steady state are
as follows,

∇·U = 0 =⇒ U = [0, uθ =Ωr, 0] (3.1)

−ρu2
θ

r
=−∂p

∂r
(3.2)

0 =µ ∂

∂r

(
1

r

∂

∂r
(r uθ)+ ∂2uθ

∂z2

)
(3.3)

0 =−∂p

∂z
−ρg (3.4)

Integrating 3.2 & 3.4 we can get an expression for pressure field.

p(r, z) = 1

2
ρΩ2r 2 −ρg z + const ant (3.5)

Assuming a small curvature at the origin O(r=0,z=0) the pressure is patm gives us,

p(r, z) = 1

2
ρΩ2r 2 −ρg z +patm (3.6)

Note that for any point under the interface z is negative. It is assumed that the nozzle is at the bottom of
the tank for modeling purposes (i.e hnoz = 0). Let h′ be the height of the fluid below origin (r=0,z=0) and h(r )
be the height of the interface from the plane z=0 in the radial direction as shown in figure 3.1.

As the volume of the fluid in the bucket is constant,

V =
∫ r=L

r=0
2πr h(r )dr +πR2h′ (3.7)
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From boundary conditions it can be found that,

h(r ) = Ω
2r 2

2g
(3.8)

Substituting equation 3.8 in equation 3.7 h’ is given as,

h′ = V

πL2 − Ω
2L2

4g
(3.9)

When h’=0,Ωcr i t i cal can be found as,

Ωcr i t i cal =
√

4gV

πL4 (3.10)

Hence, this mathematical formulation is suitable only whenΩ≤Ωcr i t i cal .
Going back to 3.6 and substituting for z = - (h’) and r = L which is the radius of the bucket,

p(L,−h′) = 1

2
ρΩ2L2 +ρg

(
V

πL2 − Ω
2L2

4g

)
+patm (3.11)

where, p(L,-h’) is the pressure at the inlet of the nozzle.
Now following a stream line from the interface to the inlet of the nozzle, the ∆p is given as,

∆p = 1

2
ρΩ2L2 +ρg

(
V

πL2 − Ω
2L2

4g

)
(3.12)

= ρg
V

πL2 + 1

4
ρΩ2L2 (3.13)

This can be converted into units of head by dividing it by ρg ,

Hr ot = V

πL2 + Ω
2L2

4g
(3.14)

In the nozzle, the forces acting on the control volume (CV) (refer zoomed in section in the figure 3.1)
are the centrifugal body force, hydro-static forces and the shear forces. Although a coriolis force acts on the
control volume, its projection in the streamwise direction is zero. The centrifugal force inside the nozzle is
given in equation 3.18.

F = ρ
Ñ

CV
f dV (3.15)

with, f =∇
(
Ω2x2

2

)
(3.16)

=⇒ F = ρAnoz Lnoz (L+Lnoz /2)Ω2 (3.17)

≈ ρAnoz Lnoz LΩ2 (∵ Lnoz << L) (3.18)

Since Lnoz << L the flow in the nozzle can be assumed to be a plug flow (with a velocity U ) and the losses
can be accounted for by multiplying the momentum leaving the CV by a overall loss factor (K ). The force
balance in the nozzle simplifies to,

K

(
1

2
ρU 2

)
= ρLnoz LΩ2 +ρg Hr ot (3.19)

U =
√

2g Hr ot +2Lnoz LΩ2

K
(3.20)

U =Cd

√
2g Hr ot +2Lnoz LΩ2 (Where, K = 1/C 2

d ) (3.21)

U =Cd
√

2g Hr ot

√
1+ Lnoz LΩ2

g Hr ot
(3.22)



3.4. Rotating bucket experiments 39

Here Cd is the discharge coefficient. For a typical prilling process, Lnoz = 4 mm, L = 0.2 m,Ω = 300 rpm, Hr ot

= 0.4 m, then the ratio Lnoz LΩ2

g Hr ot
= 6.3×10−3. Therefore the nozzle velocity can be simplified as,

U =Cd
√

2g Hr ot (3.23)

Once the jet leaves the nozzle the jet may undergo further contraction depending on whether the flow
was fully developed in the nozzle (refer Middleman and Gavis [26]). Going through this rigourous process of
getting the velocity at nozzle exit gives an opportunity to make an informed choice about the dimensional
numbers that govern the flow mechanics leading up to the formation of jet in the prilling process. The di-
mensionless numbers proposed by this study is given in the table 3.3. The Hr ot in this table can be replaced
by the bucket height height B at high rotation rates for simplicity. These two dimensional numbers in combi-
nation with the other 8 already presented in the table 3.2 completes the dimensional similarity of the prilling
process.

Dimensional Numbers Equation

Coefficient of discharge Cd

Ratio of centrifugal to hydrostatic forces Lnoz LΩ2

g Hr ot

Table 3.3: Dimensional numbers governing jet formation, to be used along with the dimensionless numbers in table 3.2

3.4. Rotating bucket experiments

Figure 3.2: Rotating bucket experiments with and without audio perturbations.

The rotating bucket experiments similar to the prilling process has been repeated in a small scale as a
preliminary study to check the hypothesis of active perturbation on spiralling jets. A lab scale setup is built
for this purpose. A cylindrical bucket of inner diameter 84 cm and 20 cm height is manufactured. A nozzle
of 0.4 mm is attached to the bottom of the cylinder at 2 cm height from the base. The experiment’s bucket
dimensions are kept as same as Wong et al. [45]. It has to be noted that this experiment does not have di-
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mensional similarity to the prilling process with respect to jet formation, table 3.3. The experimental setup is
shown in figure 3.2.

Wong et al. [45] uses peristaltic pump to continuously pump water into the bucket. This disturbs the free
surface and may cause artificial velocity fluctuations at the nozzle. Hence in these experiments the flow is
filled to a certain height and then allowed to drain for a height of 1 cm to visualise the jet. i.e. The initial
spinning height of the bucket is 18 cm and by the end of the experiment it reduces to 17 cm. But this makes
it difficult to determine the jet velocity in this experiment, unlike Wong et al. [45] where the fluid height is
constant and is collected for a certain amount of time to calculate the jet velocity. Because of not maintain-
ing constant bucket height accurate velocities of the jet are unknown, limiting the study only to qualitative
measurements. An audio perturbation is added to the bucket experiment and a frequency sweep is done to
see if the jet responds the perturbations. As this is done with a poor knowledge of the velocity of the jet, the
ability to choose the fastest growing frequency is curtailed forcing a frequency sweep study. The jet seems
to be breaking up uniformly around 800 Hz as shown in the figure 3.3. The experimental conditions are as
follows, rotation speed 30 rad/s, height of the liquid in the bucket at zero rotation is 13 cm and the rotation
height is 16.5 cm. Although this is not a quantitative study this gives us confidence to build an experimental
setup where the velocities and rotation speed can be precisely controlled.

Figure 3.3: Rotating bucket experiments.

3.5. Experimental setup
Because of difficulties with measuring velocities from a spiralling source and to be able to change the dimen-
sionless numbers in table 3.2 with ease, rethinking the design of experimental setup is crucial. Also, from
figure 2.11 it is known that audio perturbations has to be replaced with piezo electric perturbations. The
design is inspired from a lawn sprinkler and is shown in figure 3.4. This device has sealing mechanism and
hence allows the jet to be perturbed as it is rotating. It has a very sturdy build so that the vibrations generated
by the rotating parts are small. The CAD design, tolerancing, sealing, perturbation mechanism, manufac-
turing etc are explained in detail in Appendix A. The placement of this design in a broader sense with the
ancillary devices is shown in the schematic 3.5. The different parts of this new setup are explained as follows:
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Figure 3.4: New design of experimental rig.

Figure 3.5: Schematic of experimental setup (Not to Scale).

• 1 - The vibrating plate. Top surface of the fluid chamber which is connected to the piezo crystal
through (6). This delivers the fluid perturbation. An eigen frequency analysis of this plate is given in
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Appendix B. This is done to ensure that the plate is not in resonance condition when the perturbations
are switched on.

• 2 - Fluid inlet port. Fluid enters the fluid chamber from the gravity pump.

• 3 - Rotary Union. This is fluid coupling that has a non rotating input and a rotating output. The rotary
union is connected to a speed controlled motor. This is the heart of this new design which enables the
perturbation of a rotating jet.

• 4 - Nozzle. The nozzle is connected to the rotary union via a threaded joint. In this new setup the
rotating arm length (L) and the nozzle length (Lnoz ) is the same.

• 5 - Fluid chamber

• 6 - Connecting shaft. The shaft that connects the piezo crystal to fluid chamber.

• 7 - Pressure port. The pressure in the fluid chamber is measured in this port.

• 8 - Timer belt and Pulleys A timer belt pulley system connects the rotary union to the pulley on the
motor.

• 9 - Motor A stepper motor with PID control that can deliver various rotation speeds

• 10 - Fluid reservoir Fluid reservoir which acts as a hydro-static pump. The height at which the reservoir
is placed can be adjusted to change the velocity of the jet at zero rotation speed of the motor. The
temperature of the water is measured in the fluid reservoir.

• 11 - Graduated tube This graduated tube connected in parallel with the tank is used to measure the
height of the liquid in the tank precisely as it is easier to distinguish the upper and lower meniscus.

• 12 - High speed camera

• 13 - Piezo-electric Crystal The piezo crystal can deliver a force of 6000 N and has a resonant frequency
of 25 kHz. The displacement of the shaft per oscillation can be controlled by the amplitude of the
sinusoidal voltage applied to the crystal, the shaft amplitude can be adjusted between 0 - 60 µm, cor-
responding to a voltage input of 0 - 1000 V.

• 14 - Valve A valve that can be opened or closed to start the jet.

• 15 - Diffuse LED Light source The light source is rated at 25 W power.

The guidelines proposed in section 1.6.1 list various requirements for the experimental setup, which is
met in the above design. The features of this new experimental setup are as follows:

• Different combinations of We and Rb can be obtained by adjusting the fluid reservoir’s height (10) and
the rotation speed of the motor.

• Precise calculation of velocity is possible and is done by measuring the flow rate and then dividing by
nozzle area.

• Different nozzle diameters can be mounted which enables the control of Oh number to an extent.

• The jet can be perturbed by applying sinusoidal voltage to the piezo-electric crystal.

The actual setup that was built and assembled in the multi-phase experimental lab is shown in figure 3.6.
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Figure 3.6: The setup along with supporting electronics.

3.5.1. Procedure for experimentation
An initial setup procedure is followed every time to ensure reproducible experiments. The procedure is as
follows:

1. The system has to be void of bubbles. The bubbles could absorb the perturbations and hence result in
a weaker perturbation of velocity. The procedure to render the fluid chamber (5) devoid of bubbles is
explained in Appendix C.

2. The FFT of the pressure signal should give the frequency of the perturbation, this is an additional check
to validate the removal of bubbles.

3. Let the height of the top surface of the water in the reservoir (10) from the nozzle be hn . To measure
the velocity of the jet, the motor is spun after opening the valve (14). The time for 1 cm (∆hn = 1cm)
of liquid to decrease in the graduated tube (11) is measured. The flow rate is found by multiplying tank
area to ∆hn and then the velocity can be found by dividing this flow rate by nozzle cross sectional area.
Here the assumption is that the jet does not contract after leaving the nozzle. This step is repeated and
the uncertainty in nozzle velocity is determined.

4. Caution should be taken that ∆hn/hn is small so that the velocity at the nozzle doesn’t change signifi-
cantly within the measurement time. In this study∆hn/hn = 1/17. The error in velocity due to this type
of measurement is 2.5 %.

5. Calibration of the target should be carried out.

3.6. Post processing
Apart from just visualising the jet, there needs to be quantitative information extracted from the images.
Experimental studies in the literature have not measured any quantitative information from spiralling jet
experiments. Hence a MATLAB program was written to perform a quantitative analysis of jet breakup. The
two most common validation of instability analysis is the wavelength of the unstable wave and the growth
rate of the same. Attempts have been made to measure both of them. This section will explain the novel
post-processing code and address the challenges and limitations of the code. The matlab code is given in
Appendix F.

A sample of input images to the code is shown in figure 3.7. These images undergo a series of pre-
processing such as background subtraction, binarization and median filtering so that they are suitable for
quantitative analysis. Such pre-processed images are shown in figure 3.8. In this figure temporal evolution of
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Figure 3.7: Input images to code, top and bottom images are a few time steps apart.

Figure 3.8: Pre-processing images (Temporally evolving jet).

an unperturbed jet is shown, this is a more powerful image as it gives both spatial and temporal information,
in other words this is a video recording shown in an image.

In order to calculate the wavelength and the growth rate, an individual wavelength has to be tracked over
time. This is done using 2D cross-correlation. The code takes the wavelength to be tracked as input on the i th

image and finds the closest looking wavelength in the i +1th image. Then it cross-correlates the newly found
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wavelength on i +1 image to find its temporal evolution in i +2 image and so on. This process is explained
in the figure 3.9. Here an individual wavelength is tracked over 6 images. The wavelength that are tracked till
breakup occurs is shown in figure 3.10.

Figure 3.9: Wavelength tracked over time.

Figure 3.10: Temporal evolution of a wavelength.

Finally the wavelength, diameter of crest and trough are calculated for individual wavelets over time. A
separate function is written for this purpose. This function fits a straight line as the trajectory of the wave-
length and rotates the image such that the jet is perpendicular. Here an assumption is made that the trajectory
over one wavelength is a straight line. Now by drawing horizontal lines the diameter is found as a function
of the trajectory length. This process is shown in figure 3.11. Red and blue line on the image on the right
shows the two crests and the trough, from which the wavelength and the diameters of crests and troughs are
calculated.

Figure 3.11: Acquiring quantitative data from wavelets.
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3.7. Summary
A comprehensive dimensional analysis for the prilling process is developed and a robust experimental rig is
built. The guidelines proposed in section 1.6.1 and 2.4, viz. active perturbation with piezo crystals, minimis-
ing vibration in the system, hydrophobizing the nozzle and a hydro-static pump were implemented in the
new design. Apart from this, lesson learnt from rotating bucket experiments are also implemented, i.e. the
provision made for the precise measurement of velocity. It is worth to mention that doing straight jets and
rotating bucket experiments were vital in conceptualizing the new design. Furthermore, a MATLAB program
is developed for obtaining quantitative data from spiralling jet images.



4
Results and discussion

This chapter presents the results of the experimental analysis of spiralling jets. It begins with the derivation
of linear temporal instability analysis for spiralling jets, as the literature ([24]) only gives a spatial analysis.
Following that, experimental values of wavenumber and linear growth rate are plotted against the theoretical
lines. Finally, a simple route for achieving mono-dispersity is presented. The dimensional numbers imple-
mented in the experiments are given in the table 4.1. The scaled amplitude of perturbation is not estimated.
Usually in literature a transfer function is experimentally found to estimate the same.

Dimensional Numbers Values
Weber number (We) 18.21
Rossby number (Rb) 5.96
Froude number (Fr) 2.16

Ohnesorge number (Oh) 0.006
T 1508

Density Ratio 0.0012
Cd 1

Ratio of centrifugal to hydrostatic forces 1.95
Scaled angular frequency (ω∗

r ) 0.7, 0.9 & 1.1
Scaled amplitude of perturbation > 0

Table 4.1: Dimensional numbers of the experiments conducted in the new experimental setup. Refer to table 3.3 and 3.2 for the
definition of these dimensional numbers

The transfer function f given in equation 2.1 has not be found for the perturbation mechanism used in
this study. Hence, the relation between the applied voltage and the amplitude of velocity perturbation is
unknown and is given as a recommendation for the future research. Hence, the scaled amplitude of pertur-
bation (δU /U ) is unknown and is given as a value greater than zero in table 4.1. In the rest of the discussion
the actual value of volts given to the piezo crystal is considered as a measure of the amplitude of perturbation.
Higher the voltage stronger the perturbation.

It can be seen that the ratio of centrifugal to hydrostatic forces is 1.95 in the new setup whereas this num-
ber is of the order of 1/1000 for a typical prilling process. Meaning the jet experiences a significant acceler-
ation in the nozzle in the new setup when compared to the actual prilling process where the acceleration in
the nozzle is negligible. But this enables reaching high jet velocities in the lab scale setup with a hydrostatic
pump that is only a few centimeters tall instead of one that is few meters tall, while the operating rotation
rates are still approximately the same as that of the prilling process.

4.1. Temporal instability analysis
A slender jet approximation is assumed in the calculation of the spiralling jet trajectory by Shikhmurzaev and
Sisoev [38]. Following that, Li et al. [24] used the same approximations to derive the spatial linear instability
dispersion relation. In this section the same equations will be used to derive the temporal linear instability
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dispersion relation for spiralling jets. A temporal instability analysis is necessary because of the way post-
processing is done which is by tracking a wavelength over time, i.e the capillary growth is calculated in a
Lagrangian frame moving with jet velocity.

∂h

∂t
+u

∂h

∂s
+ h

2

∂u

∂s
= 0 (4.1)

ρ

(
∂u

∂t
+u

∂u

∂s

)
=−γ∂κ

∂s
+3µ

∂2u

∂s2 (4.2)

The simplified continuity equation and momentum equation for the inviscid spiralling jets is shown in
equations 4.1 and 4.2. The equations presented here are in dimensional form. They are obtained by incorpo-
rating slender jet approximations on the base flow. These derivations can be found in Eggers [10] and hence
not repeated here. Another assumption made here is that the cross section of the base flow is circular and the
trajectory passes through the center of this circle. This assumptions is also valid when considering first order
terms in the trajectory equations (refer [24]). These equations are same as the straight jet case, but now the
base flow is chosen as the spiralling case. The base flow is obtained from Shikhmurzaev and Sisoev [38].

h(s, t ) = h0(s)+ h̃(s, t ) (4.3)

u(s, t ) = u0(s)+ ũ(s, t ) (4.4)

h̃(s, t ) = εhe i (ks−ωt ) (4.5)

ũ(s, t ) = εue i (ks−ωt ) (4.6)

Here s is the length along the streamwise direction, h(s,t) is the radius of the jet at any point in space and
time, u(s,t) is the velocity in stream wise direction. k is the real wavenumber and ω is the complex angular
frequency. h0 and u0 corresponds to the base flow and are only functions of streamwise direction (s) and h̃
and ũ are the perturbations on the base flow, which are functions of both streamwise direction and time (s,t)
given as follows,

Substituting h(s,t) and u(s,t) in to equations 4.1 and 4.2 and negating the base flow for an inviscid case, the
following set of equations 4.7 and 4.8 are obtained. The simplifications performed are explained in Appendix
D.

(ku0 −ω)εh + kh0

2
εu = 0 (4.7)

γk

ρ

(
k2 − 1

h2
0

)
εh + (ku0 −ω)εu = 0 (4.8)

Equations 4.7 and 4.8 form a set of homogeneous equations, this set of equations has a non-trivial solu-
tions only if the determinant of the coefficient matrix is zero, given in equation 4.9.

(ku0 −ω)2 − γ

2ρh3
0

(k4h4
0 −k2h2

0) = 0 (4.9)

By substituting ω = ωr + iωi and k as real in 4.9 and equating the real and imaginary parts, the relations
4.10 and 4.11 are obtained. It can be seen that these equations are same for the straight jet as we used the
straight jet equations. But these equations have to be solved along with the base flow of spiralling jets.

ωr = ku0 (4.10)

ωi =
√

1

2

γ

ρh3
0

(k2h2
0 −k4h4

0) (4.11)

From equation 4.10, the wave-speed is given as,

cr =ωr /k = ku0/k =⇒ cr = u0 (4.12)

Hence, the wave travels at the same speed as the local velocity of the jet.
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Non-dimensionalising the growth rate (equation 4.11), with advection time scale,

ω∗
i ,ad v =

√
k∗2

2W eh∗
0

(1− (k∗h∗
0 )2) (4.13)

In equation 4.13 the time scale used is tad v = H/U , the scale for length is H (radius at the nozzle) and
the scale for velocity of jet is U (velocity at the nozzle). An equivalent spatial growth rate can be derived by,
ki =−ωi /u0, as given in 4.14.

k∗
i ,ad v =−

√
k∗2

2W eh∗
0 u∗

0
2 (1− (k∗h∗

0 )2) (4.14)

Although the growth rates 4.13 and 4.14 only depends on We number, they have to be solved along with the
spiralling jet base flow equations given in Shikhmurzaev and Sisoev [38] to obtain the continously changing
u0 and h0. The MATLAB program for solving the base flow was provided by the thesis daily supervisor Yavuz
E. Kamis. The figure 4.1 compares the the spatial growth rate obtained by derivation in this study to the
spatial growth rate given by Li et al. [24]. Here the spatial growth rates are plotted against the scaled velocity
which serves as a proxy for streamwise direction ’s’ . The Fr and Rb numbers are kept constant at 2.5 and 5
respectively, the dimensionless excitation frequency ω∗

r = 0.7 and the We number is varied from 5 to 100. It
can be seen that the ki from equation 4.14 closely follows the ki obtained in [24] except for small We numbers,
this is trend that is similar to the trend observed in straight jets.

Figure 4.1: The spatial growth rate obtained in this study compared to the spatial growth rate from Li et al. [24].

4.2. Wavenumber and Linear growth rate
The wavelength obtained from post-processing is converted into non-dimensional wavenumber by the equa-
tion 4.15. The corresponding non-dimensional velocity of the jet, where the wavenumber is calculated is
given in equation 4.16. Using equations 4.16 and 4.15 the wavenumber can be verified against the theoretical
results.

k∗
r = kr H = 2πH

λ
(4.15)

u∗
0 = u0

U
=⇒ u∗

0 = cr

U
(From equation 4.12)
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u∗
0 = ωr /kr

U
(4.16)

The linear growth rate is found by tracking a wavelength as discussed in section 3.6. The radius of the
swelling crest is found from the images and subtracted from the unperturbed radius and plotted over time in
a semi log scale. A line is fitted through the experimental values of equation 4.18 whose slope will give the
capillary growth rate. As the growth rate measured is the slope of a fitted line in the graph of log (hcr est (t )−
h0) against time, the slope also has an error, as the value of hcr est (t )−h0 has an measurement uncertainty
associated with it. To make things more complicated performing a logarithmic transformation to this data
yields a non-uniform uncertainty to l og (hcr est (t )−h0) (i.e) uncertainty at each time step is different. Such
an error analysis and line fitting through data with non-uniform uncertainty is presented in Appendix E.
Surprisingly this type of error analysis is not found in previous literature for growth rate measurement.

hcr est (t ) = h0 +εhe(ωi t ) (4.17)

ωi t + l og (εh) = log (hcr est (t )−h0) (4.18)

The ωi measured is a dimensional quantity, hence it is multiplied by the capillary time scale (tc =
√

ρH 3

γ )

to giveωi ,cap . To plot the data against the spatial growth rate given by Li et al. [24] the following conversion is
made,

ω∗
i ,ad v =ω∗

i ,cap /
p

W e

k∗
i ,ad v =−ω∗

i ,ad v /u∗
o

Figure 4.2: Experimental validation of wave-stretching and spatial growth rate. The red circles indicate the experimental values and the
blue lines are the theoretical values.
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The time steps are set by the frequency of the camera. To have sufficient temporal resolution, the camera
frequency is set to 5 ×ω/(2π) = 5 * 500 Hz = 2500 Hz. A continuous video is taken every time the jet passes over
the camera and 10 such sweeps are taken. The figure 4.2 shows the experimental values plotted against the
theoretical lines, here the non-dimensional angular frequency is set at 0.7 and the amplitude of the vibrations
is set to 150 Volts which corresponds to 9µm displacement of the perturbation plate (the displacement values
corresponding to the applied voltage are known from the manufacturer). A zoomed in version of the same
figure along with the error in the experimental values is shown in figure 4.3. Each data point corresponds
to one tracked wavelength. Ten such points are plotted corresponding to the ten sweeps of data collected.
There is some difference in the local jet velocities because the start of the tracking and the end of the tracking
is not exactly the same for different sweeps. It should be noted that the wavelengths are not tracked till they
breakup, the tracking starts at a point where visible deformations starts and stopped when the deformations
on the surface tends to deviate from sinusoidal waves. Typically a wave is tracked over 6 time steps. Hence
the error bars plotted on the data points are standard deviation rather than standard error. Another way to
calculate capillary growth rate would be to calculate the difference between the radius of the crest and the
radius of the trough which was also found to give growth rate values very close to the ones plotted on the
figure 4.2.

Figure 4.3: Experimental validation of wave-stretching and spatial growth rate zoomed in version. The red circles indicate the
experimental values and the blue lines are the theoretical values. There is error bars in both directions as the scaled local jet velocity

(u∗
0 ), the non-dimensional wavenumber (k∗

r ) and non-dimensional spatial growth rate (k∗
i ) all are experimentally determined from the

images. The error in k∗
r is very small to be noticed on the figure.

4.3. Elimination of satellite drops
Following a wavelength over time, two competing phenomena determine the break-up dynamics. The rate
of strain (du0/d s) experienced by the jet has a damping effect on the growth of the instability as proposed
by Tomotika [42]. While the surface tension force causes the exponential growth of the instability. Figure
4.4 shows the individual effects of strain rates, capillary growth and the combined effect. It can be seen that
the combined effect of the straining and capillary growth are superposition of both effects. Depending on the
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actual rate of both effects one or the other dominates the jet evolution. As discussed earlier in section 1.2.4 the
competition between the two phenomenon is governed by the dimensionless number T. For the spiralling jet
investigated in this thesis the dimensionless number T is 1508. As T >> 1 the capillary waves are not damped
and they grow exponentially in time (refer figure 1.11). Another phenomena that could damp the instability
is the viscosity, but the Ohnesorge number = 0.006 (<< 1). So the viscosity does not affect the linear growth
rate of the perturbations.

Figure 4.4: Schematic representation of fluid straining, capillary growth and the combined effect (Not to scale).

For analysis purpose a straight jet with the same initial radius and same T value as the spiralling jet is
analysed in figure 4.5. Figure 4.5 (a) shows the growth of the small perturbation (εh = h0/100) over time and
the evolution of the base radius of the jet over time. Figure 4.5 (b) shows the decrease in the non-dimensional
wavenumber over time. Although the low strain rate does not damp the growth of capillary waves, it is suf-
ficient enough to stretch the wavelengths. The point where l n(ε(t )) and ln(h0(t )) meet corresponds to the
time t = 0.019. This is the time instant when the perturbations become as large as the local jet radius and the
break-up occurs (based on linear analysis). The near break-up non-dimensional wavenumber is 0.32 for this
case.

Figure 4.5: Evolution of perturbations for a water jet along with h0 and k∗. The initial conditions are h0(0) = 0.4 mm,
ε(t = 0) = 0.01×h0(0) and k∗(0) = 0.7. The T = 1508 and the σ = 27.
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The spiralling case is different from the straight jet case because σ (= du0/d s) is not a constant along the
jet trajectory. The T value is therefore changing continously along the stream wise direction of the jet. From
simple force balance it is found that,

u0
du0

d s
≈Ω2L (4.19)

u0(s) ≈ (u0) |s=0

√
1+ 2Ω2Ls

(u0) |s=0
(4.20)

u0(s) ≈U

√
1+ 2Ω2Ls

U
(∵ (u0) |s=0=U ) (4.21)

The approximate strain rate is given as,

σ= du0

d s
≈ Ω

2L

U
× 1√(

1+ 2Ω2Ls
U 2

)3
(4.22)

From the above equation it can be seen that the value of σ is decreasing in the downstream direction. For
ease of use the maximum value of σ (=Ω2L/U ) which occurs at the nozzle is used so far for the calculation of
T. Since σ decreases in the downstream direction the value of T increases. So the stretching becomes weaker
in the downstream direction.

4.3.1. Tuning the perturbation frequency
Experiments are done for the three different perturbation frequencies viz. ω∗

r = 0.7, 0.9 & 1.1 for the exper-
imental conditions given in table 4.1. These different frequencies correspond to different initial conditions
of k∗

r . 50 different measurements of the wavelength near breakup is found and their mean is taken. Using
the equations 4.15 and 4.16 the corresponding k∗

r and u∗
0 is found. This data is plotted against the theoretical

curves for different frequencies of perturbation as shown in figure 4.6.

Figure 4.6: Experimental values of near break-up non-dimensional wavenumber for different perturbation frequencies are plotted
against the theoretical curves. The non-dimensional numbers are kept as the same as given in table 4.1 and the perturbation amplitude

corresponds to 150 V.

It can be seen in the figure 4.6 that the reduced wavenumber just before breakup is 0.5, 0.58 and 0.7
respectively for the reduced angular frequencies 0.7, 0.9 and 1.1, meaning shorter and shorter wavelengths
breakup. In the case of ω∗

r = 0.7, the k∗
r |noz = 0.7 and before breakup k∗

r = 0.5, which results in a longer
ligament and bigger satellite drops. This is shown in the figure 4.7.

Figure 4.8 shows the temporal evolution of the same jet with an angular perturbation of ω∗
r = 0.9. Here

the reduced wave number near breakup is k∗
r = 0.58. This is already a shorter wavelength than the previous

case and is reflected in the smaller satellite drop size.
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Figure 4.7: Temporally evolving jet perturbed at ω∗
r = 0.7. The non-dimensional numbers are kept as the same as given in table 4.1 and

the perturbation amplitude corresponding to 150 V.

Figure 4.8: Temporally evolving jet perturbed at ω∗
r = 0.9.The non-dimensional numbers are kept as the same as given in table 4.1 and

the perturbation amplitude corresponding to 150 V.

Finally, figure 4.9 shows the jet with an angular perturbation of ω∗
r = 1.1. Here the reduced wave number

near breakup is k∗
r = 0.7. Figure 4.10 shows the wavelengths before breakup for the three different frequen-

cies of perturbation. This gives a visual representation of decrease in the wavelengths when perturbed at
increasing frequencies. Also it can be seen that the satellite drops are at its smallest when the near breakup
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Figure 4.9: Jet perturbed at ω∗
r = 1.1. The non-dimensional numbers are kept as the same as given in table 4.1 and the perturbation

amplitude corresponding to 150 V.

Figure 4.10: Near breakup wavelengths visual representation. All the three images are in the same scale. The non-dimensional numbers
are kept as the same as given in table 4.1 and the perturbation amplitude corresponding to 150 V.

non-dimensional wavenumber (k∗
r ) is 0.7. This corresponds to a non-dimensional angular perturbation fre-

quency of ω∗
r = 1.1 for the non-dimensionless numbers chosen in this thesis. For satellite drop elimination

having a smallest satellite drops is more suitable. So the frequency of perturbation has to be changed such
that the near breakup non-dimensional wavenumber is 0.7.

4.3.2. Tuning the perturbation amplitude for satellite elimination
The spiralling jet perturbed atω∗

r = 0.9 for three different amplitudes of perturbation (75, 100 & 150 V) is anal-
ysed in this section. Figure 4.11 shows the jet perturbed at 75 V. Since the jet is perturbed at ω∗

r = 0.9 the near
breakup non-dimensional wavenumber is 0.58. In the wavelength tracked with red boxes, rear separation
and forward merging seems to happen. Although the actual merging is not seen in the field of view which
may or may not happen downstream. The wavelength tracked in green boxes have a forward separation and
rear merging. Therefore, at this perturbation amplitude the merging seems to be irregular.

When the amplitude of perturbation is increased to 100 V for the same frequency of perturbation the
merging is more regular as shown in figure 4.12. The rear separation (green boxes) happens more consistently
for this amplitude of perturbation and the merging appears to be forward merging. In some cases the merging
happens in the field of view and it other cases it may or may not happen downstream.
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Figure 4.11: Temporal evolution of jet perturbed with ω∗
r = 0.9 and an amplitude corresponding to 75 V. All the other non-dimensional

numbers are kept as the same as given in table 4.1.

Figure 4.12: Temporal evolution of jet perturbed with ω∗
r = 0.9 and an amplitude corresponding to 100 V. All the other non-dimensional

numbers are kept as the same as given in table 4.1.

When the perturbation amplitude is set to 150 V the temporal evolution of the jet is shown in figure 4.13.
Here a rear separation and forward merging is observed. The satellites merge with the main drops in the field
of view itself. This combination of frequency and amplitude of perturbation results in a uni-modal distribu-
tion of drop sizes. Although this is not the most optimum frequency (ω∗

r = 0.9 instead of ω∗
r = 1.1), it is used
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to illustrate the effect of different amplitudes of perturbation. With increasing amplitudes of perturbation
the merging time in the forward direction decreases. This is similar to that of the straight jet case in the rear
separation and forward merging zone (see subs-section 1.2.3). Further investigation has to be done at several
amplitudes of perturbation to validate this claim and get a smooth curve for merging time.
The figure 4.9 shows the jet perturbed at the optimum frequency (ω∗

r = 1.1) and an amplitude of 150 V. The
satellite drops are eliminated within the field of view and a uni-modal drop distribution is seen.

Figure 4.13: Temporal evolution of jet perturbed with ω∗
r = 0.9 and an amplitude corresponding to 150 V. All the other non-dimensional

numbers are kept as the same as given in table 4.1.

The We = 18.21 and the Oh = 0.006 should correspond to mode 2 breakup regime and have a bi-modal
drop size distribution according to the experimental results of Wong et al. [45] as shown in figure 1.21. This
is indeed the case when the jet is not externally perturbed. By introducing external perturbations and tuning
them, the bi-modal distribution can be manipulated to give a uni-modal drop size distribution. Figure 4.14
shows the un-perturbed jet and a perturbed jet where the perturbations are tuned for satellite elimination.
The sub-figures (c & d) give the histogram of the drop size distribution corresponding to the un-perturbed
and the perturbed jet. A bi-modal distribution is seen for an un-perturbed jet and a uni-modal distribution
for the perturbed jet. These histograms shown here should be considered only as an overall trend as some of
the drops are still in the process of merging. In future works data should be collected further downstream of
the jet so that the merging is completed.

4.4. Procedure to eliminate satellite drops in prilling process
In this study the capillary break up of spiralling water jets is controlled to have mono-dispersed drop sizes.
A similar approach can be implemented in the prilling process to have mono-dispersity. The procedure is as
follows:

1. For an unperturbed prilling process the size distribution of the product should be plotted. This bi-
modal distribution will give an estimation of the wavenumber near breakup.

2. The jet should be perturbed on a trial and error basis. The bi-modal distribution from this perturbed jet
will give a new estimation for the near breakup wavenumber. The perturbation frequency is increased
till the near break-up non-dimensional wavenumber becomes close to 0.7. The satellite drops will still
be present but will have a very small size.

3. Now the amplitude of perturbation is increased till the product drop size distribution is uni-modal.
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Figure 4.14: Temporal evolution of spiralling jets. All the other non-dimensional numbers are kept as the same as given in table 4.1.
Sub-figure (a) shows the temporal evolution of an unperturbed jet. Sub-figure (b) shows the temporal evolution of jet perturbed with
ω∗

r = 0.9 and an amplitude corresponding to 150 V. Sub-figure (c) gives the histogram of 110 drops corresponding to sub-figure (a).
Sub-figure (d) gives the histogram of 95 drops corresponding to sub-figure (b)

4.5. Summary
A temporal instability analysis is performed and its relation to spatial analysis is derived. It is found that
for large We numbers, the conversion between spatial and temporal analysis is possible. Experiments to
measure reduced wave number and growth rate are performed and the values are plotted against theoretical
curves and a good agreement is found. The near breakup wavenumber determines the size of the satellite
drops and can be changed by changing the perturbation frequency. The amplitude of perturbation governs
the merging phenomena and can be tuned to merge satellite drops with the main drops. Finally, a route to
satellite elimination is presented.
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Summary and conclusions

5.1. Summary
In the pursuit of achieving mono-dispersity in the prilling process, the approach adopted led to the following:

• A straight jet experimental setup was built to understand the perturbation mechanisms and to gain
a basic understanding of performing experiments on jet instabilities. Experimental workarounds and
improvements that could be implemented in spiralling jet experiments were found.

• After repeating spiralling jet experiments from the literature, the limitations of the rotating bucket setup
used in those studies were understood. Performing these experiments also gave insights into develop-
ing a new setup which could provide quantitative information on contrast to the qualitative research
published so far. It was also clear that external perturbations are necessary for controlling the breakup
process and hence were incorporated in the new setup.

• A comprehensive dimensional analysis was proposed for the prilling process.

• Experiments in spiralling jets were carried out in the new setup to validate growth rate and wavenumber
against the theoretical values.

• The dimensional numbers chosen in the study falls in the mode 2 of the regime map found in the
literature which has a bi-modal drop size distribution. The same was observed in the experiments
from this thesis. By tuning the frequency and amplitude of perturbation it was possible to change the
bi-modal distribution to uni-modal drop size distribution.

5.2. Conclusion
The study furthers the understanding of the breakup of spiralling liquid jets significantly through experimen-
tal analysis. This is achieved by validating the theoretical linear growth rate and wavenumber against the
experimental values. Elimination of satellite drops which is crucial to the prilling process was achieved in
a spiralling water jet by tuning the perturbation frequency and amplitude. A procedure to implement uni-
modal drop size distribution in a prilling process is outlined.

5.3. Future recommendations
• The pressure measured at the fluid chamber whose FFT gives the same frequency of perturbation. The

amplitude of these fluctuations can be used to model the velocity perturbations at the nozzle. This
model will give a transfer function between the voltage of amplitude and velocity fluctuations.

• Post-processing code needs to be developed for obtaining the trajectory of the jet.

• Different combinations of the dimensionless numbers have to be experimented for mono-dispersity.
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• The post-processing code developed uses a forced learning for certain operations. A machine learning
code can be developed that uses this forced learning to automate the post-processing. Or else drop in
flight visualisation technique developed by, "Image Expert" can be purchased which is a similar com-
mercially available computer vision code developed for ink-jet printing industries (see [18]).

• Viscous fluids can also be tested, although there is limit to the viscosity of the liquid as the flow is driven
by gravity. A pressure pump has to be implemented in the place of gravity pump for highly viscous
liquids.

• For testing of high velocity jets and to reduce the blur error, a strobing capacitive LED has to be incor-
porated. This is to eliminate streaking behaviour. This step is in progress at the moment of publishing
this thesis.

• Only the jet edges cast a shadow when the liquid is transparent, this complicates the post-processing in
MATLAB. Hence using a dye would significantly reduce experimental challenges such as shadowgraphy
and post processing.



A
Experimental setup

As the rotary union is the heart of this new setup, shown in figure A.1, the rest of the setup is designed around
it. The next important part being the perturbations from piezo crystal it is designed next. The sizes of the
piezo housing are designed with a massive weight so that it has high inertia and does not vibrate on itself
when the perturbations are switched on. The setup in real life is shown in the figure A.2. The machining was
done by Kreber industry. Additional components that are found in this figure includes, frequency spectrum
analyser, frequency generator, power sources for diffuse light and piezo amplifiers. Figure A.3 shows the
placement of diffuse light source and figure A.4 shows the timer belt connections between the motor and the
rotary union.

The CAD models were developed in solidworks and the tolerancing was decided in communication with
the manufacturer. The reader is encouraged to contact the author for CAD models.

Figure A.1: Rotary union.
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Figure A.2: Real life setup.
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Figure A.3: Placement of diffuse light.
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Figure A.4: Timer belt connections.



B
Modal analysis

The Eigen mode analysis of the plate that is perturbed is done. The plate that is perturbed is shown here along
with a surface plot of displacement. When 150 V is applied to piezo crystal the shaft attached to the crystal
moves 9 µm as shown in figure B.1. The 9 µm displacement is given at the 8 mm hole at the center of the plate
in y direction.

Figure B.1: Displacement plot.

The fluid that is to be perturbed is present inside the surface with fixed joints. Hence the interesting
eigen mode is when the inner regions of the plate is excited. The first 14 eigen modes are shown in the
figure B.2 and B.3. The mode that is dangerous to our process is found at the frequency of 1196 Hz. In this
study the operating range of frequency is in between 500 - 850 Hz. If there is a need to operate the system
at higher frequencies a thicker plate (thickness > 1 mm) can be used. The simulations are made in COMSOL
with appropriate boundary conditions and discretization with the help of another student from mechanical
engineering masters’ (precision and micro-systems engineering track).
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Figure B.2: First four eigen modes.



67

Figure B.3: Eigen modes five to eight.





C
Procedure for air bubble removal

While filling the fluid chamber 5, in figure 3.4, air bubbles will get trapped at the top surface. These bubbles
have to be removed or else the they will absorb the piezo perturbations since they deform easier than the
liquid. So in order to remove the bubbles provisions were made in the fluid chamber as shown in figure C.1.
This figure shows a tube with many holes at the top surface of the fluid chamber. A schematic of bubble
removal technique is shown in figure C.2. The air bubbles are trapped at the top are shown in the figure. A
syringe with the liquid is attached to the nozzle and water is forced into the fluid chamber after closing the
inlet valve from gravity pump. This increases the pressure inside the fluid chamber. This increased pressure
is stronger than the buoyancy force that is keeping the air at the top of the fluid chamber. Hence the air
bubbles are forced to come out through the tube that is in the top of the fluid chamber. Complete removal
of bubbles cannot be ascertained as the chamber is opaque, although a simple test can be done by pressure
measurement. Once the bubbles are removed, the piezo perturbations are switched on and the pressure
is measured as a function of time. If the FFT of the pressure signal gives the same frequency as the piezo
perturbation frequency then it is sure that the largest air bubbles are removed. The FFT was performed on
the time signal by the software that does data acquisition. The length of the time signal for FFT can be given
as an input to the software.

Figure C.1: Provisions for bubble removal.
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Figure C.2: Bubble removal schematic.



D
Derivations of linear stability equations

The kinematic condition and the momentum equation in the streamwise direction is repeated here given in
equations D.1 and D.2.

∂h

∂t
+u

∂h

∂s
+ h

2

∂u

∂s
= 0 (D.1)

ρ

(
∂u

∂t
+u

∂u

∂s

)
=−γ∂κ

∂s
+3µ

∂2u

∂s
(D.2)

The equations for the radius and velocity is given as,

h(s, t ) = h0(s)+ h̃(s, t ) (D.3)

u(s, t ) = u0(s)+ ũ(s, t ) (D.4)

h̃(s, t ) = εhe i (ks−ωt ) (D.5)

ũ(s, t ) = εue i (ks−ωt ) (D.6)

Substituting equations D.3 and D.4 in equation D.1 gives,

∂h̃

∂t
+u0

∂h0

∂s
+u0

∂h̃

∂s
+ ũ

∂h0

∂s
+ h0

2

∂u0

∂s
+ h0

2

∂ũ

∂s
= 0 (D.7)

The kinematic condition for base flow is given as,

u0
∂h0

∂s
+ h0

2

∂u0

∂s
= 0 (D.8)

Subtracting equation D.7 by base flow equation D.8 yields,

∂h̃

∂t
+u0

∂h̃

∂s
+ ũ

∂h0

∂s
+ h0

2

∂ũ

∂s
+ h̃

2

∂u0

∂s
= 0 (D.9)

Now substituting equations D.5 and D.6 in equation D.9 gives,

εh(−iω)e i (ks−ωt ) +u0εh(i k)e i (ks−ωt ) +εue i (ks−ωt ) ∂h0

∂s
+ h0

2
εu(i k)e i (ks−ωt ) + εh

2
e i (ks−ωt ) ∂u0

∂s
= 0 (D.10)

Dividing this equation by e i (ks−ωt ) and equating the imaginary parts to zero gives equation D.11 which is
the same as 4.7

(ku0 −ω)εh + kh0

2
εu = 0 (D.11)

A similar approach is adopted for equation D.2, the only new term encountered here is the spatial deriva-
tive of curvature term. Subtracting the perturbed momentum equation by the base flow momentum equation
and ignoring the viscous terms yields,
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∂ũ
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+u0

∂ũ

∂s
+ ũ
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ρ
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1
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0

∂h̃
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− 2h̃

h3
0

∂h0
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∂s3

)
= 0 (D.12)

By substituting equations D.5 and D.6 in equation D.12 and equating the imaginary terms will result in
equation D.13 which is the same as equation 4.8,

γk

ρ

(
k2 − 1

h2
0

)
εh + (ku0 −ω)εu = 0 (D.13)



E
Error estimation

The standard deviation (SD) for the non-dimensionalized wave number, growth rate and jet velocity has to
be found to plot the experimental values on the theoretical graphs. The non-dimensionalized wave-number
is given as,

k∗
r = 2πH

λ
(E.1)

From this the standard deviation on k∗
r is given as,

SDk∗
r
=

√(
∂k∗

r

∂λ

)2

(SDλ)2 +
(
∂k∗

r

∂H

)2

(SDH )2 (E.2)

Where the uncertainty of the nozzle inner diameter SDH is measured experimentally. The standard devi-
ation of the λ is given as,

SDλ =
√

1

N −1

∑
(λi −λmean)2 (E.3)

The non-dimensionalized velocity is given as,

u∗
0 = f λ

U
(E.4)

where f is the frequency of perturbation and U is the velocity at the nozzle. The uncertainty in u∗
0 is given

as,

SDu∗
0
=

√(
∂u∗

0

∂λ

)2

(SDλ)2 +
(
∂u∗

0

∂U

)2

(SDU )2 (E.5)

The uncertainty in nozzle velocity is measured by repeating the experiments.
Finally the error in the capillary growth rate has to be measured. The capillary growth rate is the slope of

the line fit into the equation E.7,

hcr est (t ) = h0 +εhe(ωi t ) (E.6)

hcr est (t )−h0 = εhe(ωi t ) (E.7)

hcr est is the radius of the swell measured at every time instance. The diameter of the crest is the distance
between the two edges of the jet. Each edge detection has a an error of half a pixel and the hcr est has an error
of 1/2 pixels on imaging plane. h0 the local unperturbed jet radius is calculated from the local velocity which
also has an error associated with it. By error propagation the error on hnew (t ) = hcr est (t )−h0 at every time
instance is found. As the next step is taking the logarithm of the values hnew (t ), the error propagation is given
as,
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δl n(hnew )(t ) = δhnew /hnew (t ) (E.8)

Before taking the logarithm, the errors on all the points were the same (i.e.) δhnew was constant for all
points, but after taking the log, the error in each time instance is different.

As the error at each point is different and the slope of that data has to be found, instead of a simple Linear
Regression analysis a weighted Linear Regression analysis has to be used. The equations for the slope and the
uncertainty in the slope for weighted Linear Regression is taken from the book [41] (Page 198).

Consider Xi be the independent variable, Yi be the dependent variable and σY ,i be the error at each Yi .
The weights are given as,

wi = 1/σ2
Y ,i (E.9)

and the slope of the line is given as,

Sl ope =
∑

w
∑

w X Y −∑
w X

∑
wY∑

w
∑

w X 2 − (
∑

w X )2 (E.10)

Finally, the deviation in the slope is given as,

SDsl ope =
√ ∑

w∑
w

∑
w X 2 − (

∑
w X )2 (E.11)

The last two equations are used to estimate the capillary growth rate and its deviation.



F
Matlab code

F.1. Code for wavelength tracking

clear;
close all;
clc;

datadir = ’C:\camera_highspeed\15July\test4\swp1’;
bg = imread(fullfile(datadir,sprintf(’bg.tif’)));
bg = bg(:,:,1);
st = 6;
en = 11;
Kim = 0;

for i = st:en

I =imread(fullfile(datadir,sprintf(’swp1_%04d.tif’,i)));
I = I(:,:,1);
I = imcomplement(I) - imcomplement(bg);
I = imbinarize(I,0.2);
I = medfilt2(I);
% I = imcomplement(I);
% cc = bwconncomp(I);
I = imfill(I,’holes’);
cc = bwconncomp(I);
stats = regionprops(cc,’Area’);
[~,idx] = max([stats.Area]);
I = ismember(labelmatrix(cc),idx);

if i == st
fh1 = figure(1);
imshow(I);
[x1,y1] = ginput(1);
x1 = round(x1); y1 = round(y1);
hold on
plot(x1,y1,’ro’);
[x2,y2] = ginput(1);
x2 = round(x2); y2 = round(y2);
hold on
plot(x2,y2,’ro’);
hold on
x = [x1,x1,x2,x2,x1];
y = [y1,y2,y2,y1,y1];
plot(x,y);
pause(1);
close(fh1);

secI = I (y1:y2,x1:x2);
leny = size(secI,1);
lenx = size(secI,2);
secI = I (y1:y1+leny,x1:x1+lenx);

else
secI = I(a(3):a(3)+leny,a(1):a(1)+lenx);

end
% fh2 = figure(2);
% imshow(secI);
moving = cast(secI,’single’);

J =imread(fullfile(datadir,sprintf(’swp1_%04d.tif’,i+1)));
J = J(:,:,1);
J = imcomplement(J) - imcomplement(bg);
J = imbinarize(J,0.2);
J = medfilt2(J);

J = imfill(J,’holes’);
cc_j = bwconncomp(J);
stats_j = regionprops(cc_j,’Area’);
[~,idx_j] = max([stats_j.Area]);
J = ismember(labelmatrix(cc_j),idx_j);
fixed = cast(J,’single’);

c = xcorr2(fixed,moving);
[max_c, imax] = max(abs(c(:))); %find the max value

[ypeak, xpeak] = ind2sub(size(c),imax(1)); %Find peak in cross-correlation.

% fh3 = figure(3);
% imshow(J);
% hold on
% plot(xpeak,ypeak,’ro’);
% hold on
% plot(xpeak-size(moving,2),ypeak-size(moving,1),’ro’);
% pause(1);
% close(fh3)

x1 = xpeak-size(moving,2);
x2 = xpeak;
y1 = ypeak-size(moving,1);
y2 = ypeak;
a = [x1,x2,y1,y2];

p1 = edge(J(a(3):a(3)+leny,a(1):a(1)+lenx));
[,id] = find(p1);
[row,col] = ind2sub(size(p1),id);
col = col + a(1);
row = row + a(3);
p = secI;
% p(1,:) = 1;
% p(end,:) = 1;
edge_I{i-st+1} = p;
Kim = Kim + J;
% K(y(1):y(2),x(1):x(3)) = K(y(1):y(2),x(1):x(3)) + edge_I{i-st+1,:,:};
fh4 = figure(4);
imshow(Kim);
hold on
plot(col,row,’r.’);
hold on
pause(0.3);
% save(fh4,sprintf(’tem_%d.jpg’,i-st+1));
% imshow(edge_I{i-st+1,:,:}, ’ColorMap’, [0 0 0; 1 0 0]);

% [optimizer, metric] = imregconfig(’multimodal’);
% moving_reg = imregister(moving,fixed,’similarity’);
% fh3 = figure(3);
% imshowpair(moving_reg)
% % C = cat(1,I,J);
% montage(C);
% I = edge(I);
% imshow(I);
% J = J + I;

end
% %
K = edge_I{1};

for j = st:en-1
K = cat(2, K,edge_I{j-st+2});

end
figure(2)
imshow(K);

% K_rot = matrix_rot(edge_I{1});
% size1 = size(K_rot);
% for j = st:en-1
% m = matrix_rot(edge_I{j-st+2});
% K_rot = cat(2, K_rot,m);
%
% end
%
% figure(3)
% imshow(K_rot);
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%% lambda_extract
diameter = zeros(size(edge_I,2),2);
lambda = zeros(size(edge_I,2),1);
d_min = zeros(size(edge_I,2),1);

fh5 = figure(5);
imshow(edge_I{en-st+1});
q1 = ginput(1);
hold on
plot(q1(1),q1(2),’ro’)
q2 = ginput(1);
hold on
plot(q2(1),q2(2),’ro’)
pause(0.5);
close(fh5);

min_peak = 0.7 * sqrt( (q1(1)-q2(1))^2 + (q1(2)-q2(2))^2 );

for j = st:en

[lambda(j-st+1,1) , diameter(j-st+1,:), d_min(j-st+1,1)] =
... matrix_rot(edge_I{j-st+1},min_peak);

end

diam = [(diameter(end,1) - diameter(1,1)), length(diameter(:,1))-1];

pix_s = 11*10^(-6);
M = 0.2057;
d_n = 0.0008;
f = 500;

lam_f = mean(lambda)*pix_s/M;
lambda = (lambda)*pix_s/M;
% blurr = 1.725*10^(-4);
cam_res = pix_s/M;
lam_dev = sqrt((std(lambda)*pix_s/M)^2 + (cam_res)^2);
Kr = pi*d_n/lam_f;
dev_d_n = 20 * 10^(-6);
Kr_dev = sqrt((pi*d_n*lam_dev/lam_f^2)^2 + (pi * dev_d_n/lam_f)^2 );
u_noz = 1.788;
u_noz_dev = 0.027;
u_r = f*lam_f;
u_l = f*lambda/u_noz;
u_fit = polyfit(1:1:length(u_l),u_l’,1);
u_l = polyval(u_fit,1:1:length(u_l));

u_r_dev = f*lam_dev;
u_f = u_r/u_noz;
u_f_dev = sqrt( (u_r_dev/u_noz)^2 + (u_r*u_noz_dev/u_noz^2)^2 );

% growth rate cal
f_acq = 2500;
We = 18.21;
gamma = 0.073;
% g = (2*pi*250/60)^2;
rho = 998;
% r_l = 1./sqrt(u_l);
Rs = 0.5.*diameter(:,1).*pix_s/M;
% Rs2 = 0.5.*diameter(:,2).*pix_s/M;
% r_s = Rs/(d_n/2);
% r_sfit = polyfit(1:1:length(r_s),r_s’,1);
% r_s1 = polyval(r_sfit,1:1:length(r_s));

% Rn = 0.5.*d_min.*pix_s/M;
% r_n = Rn/(d_n/2);
% r_nfit = polyfit(1:1:length(r_n),r_n’,1);

% r_n1 = polyval(r_nfit,1:1:length(r_n));

temp1 = Rs’ - (d_n/2)/sqrt(u_f);
Rs_dev = pix_s/M /2;
Rl_dev = sqrt ( 1/(4*u_f)*dev_d_n^2 + u_f_dev^2 * d_n^2/(16*u_f^3) );
temp1_dev = ones(1,length(temp1)).*sqrt(Rs_dev^2 + Rl_dev^2);
% temp2 = (Rs’ - (d_n/2)/sqrt(u_f)) / (d_n/2);
% temp3 = Rs2’ - (d_n/2)/sqrt(u_f);

% temp_fit = polyfit(1:1:length(temp1),temp1,1);
% temp1 = polyval(temp_fit,1:1:length(temp1));
temp1_dev = temp1_dev ./ temp1;

temp1 = log(temp1);

time1 = (0:1:length(Rs)-1)./f_acq;
% temp2 = log(temp2);
% ps = polyfit(time1,temp1’,1);
% ki_s = ps(1);
% temp2 = log(d_n/2 - Rn);

X = time1;
Y = temp1;
sigY = temp1_dev;
w = 1 ./ (sigY).^2;

del2 = sum(w)*sum(w.*X.^2) - (sum(w.*X))^2;
B = sum(w)*sum(w.*X.*Y) - sum(w.*X).*sum(w.*Y);
B = B/del2;

sig_B = sqrt(sum(w)/del2);
% pn = polyfit(time1,temp2’,1);
% ki_n = pn(1);
% temp3 = log(temp3);
% len_eta = time1.*u_r;
wi_swell = B;
wi_swell_dev = sig_B;
% wi_err = sqrt(diag((bint.R)\inv(bint.R’))./bint.normr.^2./bint.df);
% ki_neck = polyfit(len_eta,temp2’,1);
% cap_len = sqrt(gamma/(rho * g));
% ki_swell = ki_swell(1)*cap_len;
% ki_neck = ki_neck(1)*cap_len;
%
% rl = (d_n/2)/sqrt(u_f);
% rl = d_n/2;
wi_swell = wi_swell / sqrt(gamma/ (rho*(d_n)^3));
wi_swell = wi_swell / sqrt(We);
ki_swell = wi_swell/u_f;

wi_swell_dev = wi_swell_dev / sqrt(gamma/ (rho*(d_n)^3));
wi_swell_dev = wi_swell_dev / sqrt(We);
ki_swell_dev = wi_swell_dev/u_f;
% wi_err = wi_err(1)/ sqrt(gamma/ (rho*(d_n)^3));
% wi_dev = wi_err / sqrt(We);

% ki_dev = wi_err/u_f;

% wi_f = polyfit(time1,temp3,1);
% wi_f = wi_f(1)/sqrt(gamma/ (rho*d_n^3));
% wi_f = wi_f / sqrt(We);
% ki_f = wi_f/u_f;

%
% ki_f = ki_f(1)*u_noz / sqrt(rho/(gamma*(d_n/2)^3));
% ki_f = ki_f(1)*cap_len;
% res = [Kr,Kr_dev,u_f,u_f_dev,ki_swell];
% res = res’;

% ki = Kr^2 - (1/)
pp = [Kr,Kr_dev,u_f,u_f_dev,ki_swell,ki_swell_dev];
pp = transpose(pp);

F.2. Code to rotate an individual wavelength and find the radius of crest
and trough

function [lambda,peks,d_min] = matrix_rot(M,min_peak_dist)

Ed = edge(M);
[id] = find(Ed);
[row,col] = ind2sub(size(M),id);
polyno = polyfit(col,row,1);

scale = 1; % scale factor
angle = atan((polyno(1))) + pi/2; % rotation angle
tx = 0; % x translation
ty = 0; % y translation
fill = 0;

sc = scale*cos(angle);
ss = scale*sin(angle);

T = [ sc -ss 0;
ss sc 0;
tx ty 1];

t_nonsim = affine2d(T);

m = imwarp(M,t_nonsim,’FillValues’,fill);

ed_m = edge(m);
d = zeros(1,size(ed_m,1));
for j = 1:size(ed_m,1)

pp = find(ed_m(j,:)==1);
if ( isempty(pp) || length(pp) == 1)

d(j) = 0;

else
if( length(pp) == 2)

d(j) = abs(pp(2)- pp(1));
else

d(j) = abs(pp(end) - pp(1));
end

end
end

% code without smoothing
% [pks,locs] = findpeaks(d,1:1:length(d),’MinPeakDistance’,min_peak_dist);
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% smoothing data code
dia = smoothdata(d);
[pks,locs] = findpeaks(dia,1:1:length(d),’MinPeakDistance’,min_peak_dist);
peks = [(d(locs(1)-1)+d(locs(1))+d(locs(1)+1))/3, d(locs(2))];
%[d_min, lo]= min(d(locs(1):locs(2)));
lo = round((locs(2) + locs(1))/2);
d_min = (d(lo)+d(lo+1)+d(lo-1))/3;
lambda = abs(locs(2)-locs(1));
fh2 = figure(2);
imshow(m);

hold on
yline(round(locs(1)),’r’,’LineWidth’,2);
hold on
yline(round(locs(2)),’r’,’LineWidth’,2);
hold on
yline(round(lo),’b’,’LineWidth’,2);

pause(0.5);
close(fh2);

end

F.3. Code to plot histograms of drop sizes

clear;
close all;
clc;

datadir = ’C:\camera_highspeed\15July\test7\swp1’;
bg = imread(fullfile(datadir,sprintf(’bg.tif’)));
bg = bg(:,:,1);

len = 50;
J = 0;
start = 1;

for i = start:2:len

I =imread(fullfile(datadir,sprintf(’swp1_%04d.tif’,i)));
% I = I(:,:,1);
% % I = I(195:1318,13:1788); %test 11 strobe
% % bg = adaptthresh(I,0.7);
% I = imcomplement(I) - imcomplement(bg);
% I = imbinarize(I);
% I = imcomplement(I);
% I = medfilt2(I);
I = I(:,:,1);
I = imcomplement(I) - imcomplement(bg);
I = imbinarize(I,0.2);
I = medfilt2(I);
I = imfill(I,’holes’);
cc = bwconncomp(I);
stats = regionprops(cc,’Area’);
[~,idx] = max([stats.Area]);
% s = cc.NumObjects;
I1 = ismember(labelmatrix(cc),idx);
% I = imcomplement(I);
% cc = bwconncomp(I);
I = I - I1;
J = J + I;

end

cc2 = bwconncomp (J);
bubbles_props2 = regionprops(cc2,’Area’,’BoundingBox’,’Centroid’
... ,’MajorAxisLength’,’MinorAxisLength’,’Orientation’,’Eccentricity’);
idx2 = find([bubbles_props2.Eccentricity] > 0.4 & [bubbles_props2.Eccentricity] < 0.8
... & [bubbles_props2.Area] < 1100 & [bubbles_props2.Area] > 50);
J2 = ismember(labelmatrix(cc2),idx2);
cc3 = bwconncomp (J2);
bubbles_props3 = regionprops(cc3,’Area’);

rad = zeros(1,cc3.NumObjects);
for pp = 1: cc3.NumObjects
rad(pp) = sqrt(bubbles_props3(pp).Area/pi);
end

pix_s = 11*10^(-6);
M = 0.2057;

rad = rad.*pix_s/M * 1000;
% J = J / length(start:2:len);
imshow(J2);
rad_n = rad;

%% plotting
% w = rad(min):0.05:rad(max);
rad_n = cat(2,rad_n,rad);

%%
figure(3)
[n1,n2] = hist(rad_n,9);
% n1 = sgolay(n1,11);
n1 = n1./max(n1);
plot(n2,n1);
xlabel(’Drop radius (mm)’)
ylabel(’Normalized number of occurances’)
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