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Summary

Janus particles are colloidal particles for which one half of the surface has different attributes than the other half.
One property of a spherical dielectric particle with half of its surface covered by a layer of another dielectric or
metal is that it has a non-uniform scattering pattern when exposed to light. However, the angle with which the
light is shone on the particle has a large effect on the scattering pattern produced. Thus it is important that we
are able to orient these Janus particles.

The orientation can be controlled if we apply an electric field to the particle for example. The movement of
colloidal particles with an electric field is widely studied and this field is called dielectrophoresis. For a Janus
particle, the calculations for the force and torque become complicated. The movement and rotation of these
particles have been studied, however, no analytic solution has been found.

In this report, we derive a semi-analytic description of the force and torque due to an external electric field on
a spherical Janus particle. For this, first the potential due to an external electric field is determined and then
the force and torque are calculated with two methods: the dipole approximation and the Maxwell Stress Tensor
method.

In the dipole approximation, there is no force on the Janus particle. But, there is a torque on the particle in
the dipole approximation. Due to this torque, the Janus particle will orient itself such that its cap points in the
direction perpendicular to the applied field. For the torque calculated with the Maxwell Stress Tensor, we get
a similar result as in the dipole approximation. On the other hand, according to the calculations with the stress
tensor, there is a relatively small force on the particle.

We recommend researching the effect that different parameters have on the agreement between the dipole
approximation and the Maxwell Stress Tensor method. Furthermore, we recommend considering more complex
fields for the rotation of the particle, since there is a constant force on the particle.
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1
Introduction

Janus particles, named after the Roman god with two faces, are colloidal particles for which one half of the
surface has different attributes (size, geometry, materials etc..) than the other half. In recent years the interest in
Janus particles has grown [1] and lead to the discovery of their specific properties.

One such property is that a spherical dielectric particle with half of its surface covered by a layer of another
dielectric or metal has a non-uniform scattering pattern when exposed to light [2, 3, 4]. However, the angle with
which the light is shone on the particle has a large effect on the scattering pattern produced. Thus it is important
that we are able to orient these Janus particles.

The orientation can be controlled if we apply an electric field to the particle for example. The movement of
colloidal particles with an electric field is widely studied and this field is called dielectrophoresis [5, 6, 7]. For
simpler particle geometries the force and torque can be analytically calculated. Such geometries are spheres,
spheres with concentric shells [6], ellipsoids and ellipsoids with shells [8, 9]. For a Janus particle, those calcula-
tions become more complicated. The movement and rotation of Janus particles have been studied, however, no
analytic solution has been found.

Chen and Jiang (2016) [10] for example experimentally observe the rotation of a Janus particle, but they
approximate the Claussius-Mossotti factor of the Janus particle as the average of the factors of the shell and the
core. On the other hand, Behdani et al . (2021) [11] draw up the full system of equations to find the electric
polarizabillity of the particle but solve it numerically using a FEM Tool such as COMSOL.

The aim of this report is to derive a semi-analytic description of the force and torque due to an external electric
field on a spherical Janus particle. We will do this by first finding the potential due to the external field. For this
we need to solve the Laplace equation for the Janus particle. Then, we will calculate the force and torque with
two methods: the dipole approximation and the Maxwell Stress Tensor method. We implement the calculations
and perform the visualizations of the solutions in Python.

The report has the following structure: In chapter 2 we show the calculations to solve the Laplace equation and
we present the calculations for the force and torque. We treat how the mathematical model is implemented in
Python in chapter 3. The results of the model and their visualizations are shown and discussed in chapter 4.
Finally, we list the key takeaways in chapter 5 along with recommendations for further research.
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2
Theory

Let us consider a spherical Janus particle as shown in Fig. 2.1. It consists of a spherical core of radius a with an
electric permittivity ϵc . On the northern hemisphere of the core lies a layer with thickness d , this is the shell and
has permittivity ϵs . We set the coordinate system such that the cap points upwards in the z-direction. Lastly, the
particle is suspended in a medium with permittivity ϵm .

Figure 2.1: Depiction of the model of the Janus particle. The
semi-shell is placed on the Northern Hemisphere.

We want to calculate the force and the torque on
the Janus particle due to an external field, to determine
if and how the particle will orient itself. Therefore,
we first need to calculate the potential, Φ, of the Janus
particle due to the external electric field E e . We first
treat the simpler cases of a spherical particle and a
spherical particle with a full shell. After that, we will
calculate the potential of the Janus particle.

With the potential known, we can calculate the
force and torque on the particle in two ways. First,
we can compute them using the dipole approximation
[7]. That is to identify the effective dipole moment,
pe f f , from the expression of the potential outside the
particle. We can then calculate the force F and the
torque τ, with rotation point as the center of the core,
with the following formulas

F = (pe f f ·∇)Ee (2.1)
τ= pe f f ×E e , (2.2)

where ∇ is the differential operator, ∇= (∂/∂x,∂/∂y,∂/∂z).
Second, we calculate the force and the torque us-

ing the Maxwell Stress Tensor method [12]. In this
method, the Maxwell Stress Tensor T⃗ is integrated
over the surface of the particle. The time-averaged force and torque are thus given by

〈F 〉 =
∮

(T⃗ · n̂)d A (2.3)

〈τ〉 =
∮

r r̂ × (T⃗ · n̂)d A, (2.4)

where n̂ is the unit vector normal to the surface, r is the radial distance to the rotation point and r̂ is the radial
unit vector.

2.1. Calculation of the potential
Due to the partial spherical symmetry of the systems, we use spherical coordinates (r , θ, ϕ) to calculate the
potential. We define r as the radial distance, θ as the polar angle, 0 ≤ θ ≤ π, and ϕ as the azimuthal angle,
0 ≤ϕ< 2π as shown in Figure 2.1.

2



2.1. Calculation of the potential 3

An electrostatic potential, Φ, satisfies the Laplace equation everywhere due to the divergence- and curl-free
properties of an electrostatic field. Therefore, Φ must satisfy

∇2Φ= 0. (2.5)

In the case that there is azimuthal symmetry, the solutions to the Laplace equation in spherical coordinates are
well known, they are of the form [13]

Φ(r,θ) =
∞∑

n=0

(
Anr n +Bnr−(n+1))Pn(ξ), (2.6)

where An and Bn are constants which need to be determined, Pn is the n-th order Legendre polynomial and we
introduce the notation ξ= cosθ. Because of the azimuthal symmetry, the solution does not depend on ϕ.

2.1.1. Spherical particle
We first consider the simplest case of a dielectric spherical particle. The sphere has radius a and is centred around
the origin and it has dielectric permittivity ϵc . It is suspended in a medium with dielectric permittivity ϵm . We
apply an external uniform electric field Ee across the particle. Without loss of generality we can assume that the
electric field is oriented in the z-direction, Ee = Ee ẑ . The spherical particle is shown in Figure 2.2a. The potential
corresponding to this field pointing in the z-direction can be written as:

Φe =−Ee z =−Ee r cosθ =−Ee r P1(ξ), (2.7)

with P1(ξ) = ξ = cos(θ) the first order Legendre polynomial. For the spherical particle, we assume that the
solutions inside Φc and outside Φm the sphere are of the form:

Φm =Φe +B
P1(ξ)

r 2 =−Ee r cosθ+B
cosθ

r 2 r > a, (2.8a)

Φc = Ar P1(ξ) = Ar cosθ r < a. (2.8b)

with A and B two constants. For r →∞ the outside solution corresponds with the potential of the applied field
and at r = 0 the inside solution is bounded.

To find the solution we need to use the boundary conditions to solve for the coefficients A and B . There are
two boundary conditions at the boundary r = a. First, the potential needs to be continuous.

Φm =Φc , r = a, ∀θ. (2.9)

Second, the normal component of the displacement field, D = ϵE , must be continuous.

ϵmEm,r = ϵc Ec,r ⇒ ϵm
∂Φm

∂r
= ϵc

∂Φc

∂r
, r = a, ∀θ. (2.10)

Figure 2.2: An overview of the cases we consider in section 2.1. First we consider a sphere (a), then a sphere with a
concentric shell (b) and finally the Janus particle (c).



2.1. Calculation of the potential 4

Combining Equations 2.8 with Equations 2.9 and 2.10 we get the following solutions [6]:

A =− 3ϵm

ϵc +2ϵm
Ee , (2.11a)

B = ϵc −ϵm

ϵc +2ϵm
a3Ee . (2.11b)

The fraction in Equation 2.11b is called the Clausius–Mossotti factor KC M .

2.1.2. Single shelled spherical particle
The next model we consider is that of a spherical particle, with radius a, with a concentric shell around it with
thickness d . The core of the particle has electric permittivity ϵc , the shell of the particle has ϵs and the medium
has permittivity ϵm . In this case, we can also assume to have an external field Ee pointing in the z-direction,
Ee = Ee ẑ . The single shelled sphere is depicted in Figure 2.2b.

We assume that the solutions are of the following form:

Φm =−Ee r cosθ+B
cosθ

r 2 r > a +d , (2.12a)

Φs =Cr cosθ+D
cosθ

r 2 a < r < a +d , (2.12b)

Φc = Ar cosθ r < a. (2.12c)

with A, B , C , D being four constants to determine. We again have that at r →∞ the solution corresponds to the
external potential and the solution is bounded at r = 0. The boundary conditions as in Equations 2.9 and 2.10
apply for the boundaries: r = a and r = a +d , which gives us

r = a, ∀θ :

{
Φs =Φc

ϵs
∂Φs
∂r = ϵc

∂Φc
∂r ,

(2.13a)

r = a +d , ∀θ :

{
Φs =Φm

ϵs
∂Φs
∂r = ϵm

∂Φm
∂r .

(2.13b)

If we put Equations 2.12 into the boundary conditions we get a system of 4 equations which need to be solved.
In the literature, we can find two solutions to this problem. Jones (1995) [6] gives the following solution:

A J =− 3ϵm(1−K )ζ3

(ϵ′s +2ϵm)(ζ3 −K )
Ee , (2.14a)

B J =
ϵ′s −ϵm

ϵ′s +2ϵm
(a +d)3Ee , (2.14b)

C J =− 3ϵmζ
3

(ϵ′s +2ϵm)(ζ3 −K )
Ee , (2.14c)

D J = 3ϵmK (a +d)3

(ϵ′s +2ϵm)(ζ3 −K )
Ee , (2.14d)

where ζ= (a +d)/a = 1+d/a, K = (ϵ′s −ϵm)/(ϵ′s +2ϵm) and

ϵ′s = ϵs

ζ3 +2
(
ϵc−ϵs
ϵc+2ϵs

)
ζ3 −

(
ϵc−ϵs
ϵc+2ϵs

) . (2.15)

Here ϵ′s is introduced to simplify the expressions and to put Equation 2.14b in the same form as Equation 2.11b,
to form a different Clausius–Mossotti factor. We can see that the potential outside of a single shelled sphere is
equivalent to the potential outside of a sphere with permittivity ϵ′s and radius a +d .
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However, Turcu et al . (1989) [14] find the following coefficients:

AT =− 3ϵmϵs

ϵs (ϵc +2ϵm)+2R(ϵm −ϵs )(ϵc −ϵs )
Ee , (2.16a)

BT = ϵs (ϵc −ϵm)−R(ϵm −ϵs )(ϵc −ϵs )

ϵs (ϵc +2ϵm)+2R(ϵm −ϵs )(ϵc −ϵs )
(a +d)3Ee , (2.16b)

CT =− ϵm(ϵc +2ϵs )

ϵs (ϵc +2ϵm)+2R(ϵm −ϵs )(ϵc −ϵs )
Ee , (2.16c)

DT = ϵm(ϵc −ϵs )

ϵs (ϵc +2ϵm)+2R(ϵm −ϵs )(ϵc −ϵs )
a3Ee , (2.16d)

where R = 1
3 [1−ζ−3] was introduced.

Remarkably, these coefficients are not equal to each other. To verify which of these solutions is the correct
solution we can solve the system of equations using Maple. Maple gives the following solutions:

AM = 9ϵmϵs (a +d)3

(2(ζ−3 −1)ϵ2
s + ((−2ζ−3 −1)ϵc +2(−ζ−3 −2)ϵm)ϵs +2(ζ−3 −1)ϵmϵc )

Ee = AT (2.17a)

BM = (−2ζ−3 +2)ϵ2
s + ((ϵc −2ϵm)+2(ϵc −ϵm/2)ζ−3)ϵs +ζ−3ϵcϵm −ϵcϵm

(2(ζ−3 −1)ϵ2
s + ((−2ζ−3 −1)ϵc +2(−ζ−3 −2)ϵm)ϵs +2(ζ−3 −1)ϵmϵc )

(a +d)6Ee = B J (2.17b)

CM =− 3(ϵc +2ϵs )ϵm(a +d)3

(2(ζ−3 −1)ϵ2
s + ((−2ζ−3 −1)ϵc +2(−ζ−3 −2)ϵm)ϵs +2(ζ−3 −1)ϵmϵc )

Ee =CT (2.17c)

DM = 3ϵm(ϵc −ϵs )(a +d)3

(2(ζ−3 −1)ϵ2
s + ((−2ζ−3 −1)ϵc +2(−ζ−3 −2)ϵm)ϵs +2(ζ−3 −1)ϵmϵc )

a3Ee = DT (2.17d)

Surprisingly, the A, C and D coefficients of the Maple solution are equal to the A, C and D coefficients of the
solution given by Turcu et al . (1989), but the B coefficient is equal to the B coefficient given by Jones (1995). In
appendix C we look at the values of the potential and the displacement field to verify which solution is correct.
We will then compare the correct solution with the solution of our model to check the validity of our model.

2.1.3. Janus particle
We now consider a Janus particle as shown in Figure 2.2c in 2D and in Figure 2.1 in 3D. Since the Janus particle
is not completely spherically symmetric, we can not assume that the field is only pointing in the z-direction.
Due to the principle of superposition we can, however, decompose the external field, Ee , into a field-oriented
along the z-direction, the axial direction, and into a field-oriented perpendicular to the z-direction, the transverse
direction. Without loss of generality, we can assume that the transverse direction is pointing into the x-direction.

Following the approach developed by Scherbak et al . (2015) [15], we mirror the shell of the particle to the
southern hemisphere, to create a second half-shell. The second half-shell is visualized in Figure 2.2c as the dotted
shell indicated by "mirrored shell". This second half-shell has permittivity ϵŝ . If we take the permittivity of the
lower shell, ϵŝ , equal to the permittivity of the medium, ϵm , we will get a solution equal to the solution of a Janus
particle. We first consider the case of the external field oriented along the z-direction and after that we consider
the external field in the x-direction.

Janus particle in an axially oriented electric field
The potential function for each region we are considering can be written as

Φm =
∞∑

n=0
Bnr−(n+1)Pn(ξ)−Ee r P1(ξ) r > a +d , (2.18a)

Φs =
∞∑

n=0

[
Cnr n +Dnr−(n+1)]Pn(ξ) a ≤ r ≤ a +d , 0 ≤ θ ≤ π

2
, (2.18b)

Φŝ =
∞∑

n=0

[
Ĉnr n + D̂nr−(n+1)]Pn(ξ) a ≤ r ≤ a +d ,

π

2
< θ ≤π, (2.18c)

Φc =
∞∑

n=0
Anr nPn(ξ) r < a. (2.18d)
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To find the potential we need to use the boundary conditions to solve for the different coefficients (An , Bn , Cn ,
Dn , Ĉn and D̂n). We require that the potential, Equation 2.9, and the displacement field, Equation 2.10, are
continuous at the boundaries. Thus, we get the following boundary equations:

a ≤ r ≤ a +d , θ =π/2 :

{
Φs =Φŝ

ϵs
∂Φs
∂θ = ϵŝ

∂Φŝ
∂θ ,

(2.19a)

r = a, 0 ≤ θ <π/2 :

{
Φs =Φc

ϵs
∂Φs
∂r = ϵc

∂Φc
∂r ,

r = a, π/2 ≤ θ ≤π :

{
Φŝ =Φc

ϵŝ
∂Φŝ
∂r = ϵc

∂Φc
∂r ,

(2.19b)

r = a +d , 0 ≤ θ <π/2 :

{
Φs =Φm

ϵs
∂Φs
∂r = ϵm

∂Φm
∂r ,

r = a +d , π/2 ≤ θ ≤π :

{
Φŝ =Φm

ϵŝ
∂Φŝ
∂r = ϵm

∂Φm
∂r .

(2.19c)

First we solve the boundary condition in Equation 2.19a. We do this using the property of the Legendre poly-
nomials that for n odd we have Pn(0) = 0 and that for n even we have (d/dθ)Pn(0) = 0. Putting this into
Equation 2.19a we get:

Ĉn = ηnCn , (2.20a)

D̂n = ηnDn , (2.20b)

with

ηn =
{

1 if n even
ϵs /ϵŝ if n odd.

(2.21)

We now introduce the dimensionless variable ρ = r /a and coefficients: αn = An an−1/Ee , βn = Bn a−(n+2)/Ee ,
γn =Cn an−1/Ee and δn = Dn a−(n+2)/Ee to get the following set of equations

Φm = Ee a

[ ∞∑
n=0

βnρ
−(n+1)Pn(ξ)−ρP1(ξ)

]
, (2.22a)

Φs = Ee a
∞∑

n=0

[
γnρ

n +δnρ
−(n+1)]Pn(ξ), (2.22b)

Φŝ = Ee a
∞∑

n=0

[
γnρ

n +δnρ
−(n+1)]ηnPn(ξ), (2.22c)

Φc = Ee a
∞∑

n=0
αnρ

nPn(ξ). (2.22d)

To solve for the coefficients αn , βn , γn and δn we insert Equations 2.22 into their respective boundary conditions
in Equations 2.19b and Equations 2.19c. We get the following system of equations; where we use that for r = a
we have ρ = 1 and that for r = a +d we have ρ = 1+d/a = ζ. For r = a we have

∞∑
n=0

[
γn +δn

]
η(s,ŝ)

n Pn(ξ) =
∞∑

n=0
αnPn(ξ), (2.23)

∞∑
n=0

[
nγn − (n +1)δn

]
ϵs,ŝη

(s,ŝ)
n Pn(ξ) =

∞∑
n=0

nαnϵc Pn(ξ). (2.24)

Here we write the equations compactly by introducing the sub- and superscripts s and ŝ. We retrieve the equation
for 0 ≤ ξ≤ 1 by taking s in the sub- and superscripts, where we have that η(s)

n = 1. The equation for −1 ≤ ξ≤ 0 is
obtained by taking ŝ in the sub- and superscripts and η(ŝ)

n is the same ηn as in Equation 2.21.
Similarly, with the same notation, we have for the boundary at r = a +d

∞∑
n=0

[
ζn−1γn +ζ−(n+2)δn

]
η(s,ŝ)

n Pn(ξ) =
∞∑

n=0
ζ−(n+2)βnPn(ξ)−P1(ξ) (2.25)

∞∑
n=0

[
nζn−1γn − (n +1)ζ−(n+2)δn

]
ϵs,ŝη

(s,ŝ)
n Pn(ξ) =

∞∑
n=0

−(n +1)ζ−(n+2)βnϵmPn(ξ)−ϵmP1(ξ). (2.26)
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Solving for the coefficients now becomes more difficult, since the Legendre polynomials do not form a complete
set on 0 ≤ ξ≤ 1 or −1 ≤ ξ≤ 0.

To solve this problem and to create a system of equations, we cut-off the sums in each equation at N . We
then multiply each equation by Pk (ξ), for different values of k ranging from k = 0 to k = N . If we do this to the
Equations in 2.23, we get

N∑
n=0

[
γn +δn

]
Pk (ξ)Pn(ξ) =

N∑
n=0

αnPk (ξ)Pn(ξ) 0 < ξ≤ 1, 0 ≤ k ≤ N , (2.27)

N∑
n=0

[
γn +δn

]
ηnPk (ξ)Pn(ξ) =

N∑
n=0

αnPk (ξ)Pn(ξ) −1 ≤ ξ< 0, 0 ≤ k ≤ N . (2.28)

Then we integrate over the respective domain of each equation, 0 ≤ ξ ≤ 1 for index s and −1 ≤ ξ ≤ 0 for in-
dex ŝ. Now we can add the equations of index ŝ to their corresponding equations of index s. Thus by adding
Equation 2.28 to Equation 2.27 we obtain

N∑
n=0

[
γn +δn

][∫ 1

0
Pk (ξ)Pn(ξ)dξ+ηn

∫ 0

−1
Pk (ξ)Pn(ξ)dξ

]
=

=
N∑

n=0
αn

[∫ 1

0
Pk (ξ)Pn(ξ)dξ+

∫ 0

−1
Pk (ξ)Pn(ξ)dξ

]
0 ≤ k ≤ N . (2.29)

If we use the property that the Pn is an even function for even n and Pn is odd for odd n, Pn(−x) = (−1)nPn(x),
we get the following ∫ 0

−1
Pn(ξ)Pk (ξ)dξ= (−1)n+k

∫ 1

0
Pn(ξ)Pk (ξ)dξ. (2.30)

We can use this to rewrite Equation 2.29.

N∑
n=0

[
γn +δn

][
1+ηn(−1)n+k

]
Un,k =

N∑
n=0

αn

[
1+ (−1)n+k

]
Un,k 0 ≤ k ≤ N , (2.31)

where we introduce the notation Un,k = ∫ 1
0 Pn(ξ)Pk (ξ)dξ. These integrals are computed analytically by Kettunen

et al . (2007) [16]. If we also do these steps for Equations 2.24, 2.25 and 2.26, we obtain a system of 4(N +1)
equations, which we can write in matrix form:

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4



α

β

γ

δ

=


R1

R2

R3

R4

 , (2.32)

where α, β, γ and δ are vectors of length N +1 and contain the coefficients for which we want to solve. The
matrix, M , and the vector, R , on the right can be written as:
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Akn
1 =−

[
1+ (−1)n+k

]
Un,k B kn

1 = 0

Akn
2 =−

[
1+ (−1)n+k

]
nϵcUn,k B kn

2 = 0

Akn
3 = 0 B kn

3 =−
[

1+ (−1)n+k
]
ζ−(n+2)Un,k

Akn
4 = 0 B kn

4 =
[

1+ (−1)n+k
]

(n +1)ϵmζ
−(n+2)Un,k

C kn
1 =

[
1+ηn(−1)n+k

]
Un,k Dkn

1 =
[

1+ηn(−1)n+k
]
Un,k

C kn
2 =

[
ϵs1 +ϵs2ηn(−1)n+k

]
nUn,k Dkn

2 =−
[
ϵs1 +ϵs2ηn(−1)n+k

]
(n +1)Un,k

C kn
3 =

[
1+ηn(−1)n+k

]
ζn−1Un,k Dkn

3 =
[

1+ηn(−1)n+k
]
ζ−(n+2)Un,k

C kn
4 =

[
ϵs1 +ϵs2ηn(−1)n+k

]
nζn−1Un,k Dkn

4 =−
[
ϵs1 +ϵs2ηn(−1)n+k

]
(n +1)ζ−(n+2)Un,k

Rk
1 = 0

Rk
2 = 0

Rk
3 =−

[
1− (−1)k

]
U1,k

Rk
4 =−

[
1− (−1)k

]
ϵmU1,k .

(2.33)

This system of equations can not be solved analytically [15], thus we solve this system numerically to get the
desired coefficients. Finally, we obtain the coefficients Ĉn and D̂n with the relation in Equation 2.20.

Janus particle in a transverse oriented electric field
If we have a field pointing in the x-direction we lose our azimuthal symmetry, so we cannot describe the

potential with Legendre polynomials. But, we can describe them with associated Legendre polynomials P m
n

multiplied by cosmϕ. For this report, we use the associated Legendre polynomials without the Condon-Shortley
phase. We can write the potential as:

Φe =−Ee x =−Ee r sinθcosϕ=−Ee r P 1
1 (ξ)cosϕ. (2.34)

Now the potentials which are expanded in associated Legendre polynomials with a cosϕ dependency are of the
form [16]:

Φm =
∞∑

n=1
Bnr−(n+1)P 1

n(ξ)cosϕ−Ee r P 1
1 (ξ)cosϕ r > a +d , (2.35a)

Φs =
∞∑

n=1

[
Cnr n +Dnr−(n+1)]P 1

n(ξ)cosϕ a ≤ r ≤ a +d , 0 ≤ θ ≤ π

2
, (2.35b)

Φŝ =
∞∑

n=1

[
Ĉnr n + D̂nr−(n+1)]P 1

n(ξ)cosϕ a ≤ r ≤ a +d ,
π

2
< θ ≤π, (2.35c)

Φc =
∞∑

n=1
Anr nP 1

n(ξ)cosϕ r < a. (2.35d)

To solve for the coefficients we have the same boundary conditions as for the field oriented in the z-direction
(Equations 2.19), where the conditions must also hold for all ϕ. Again we first solve the boundary condition
between the two semi-shells. This is done using the property that for the associated Legendre polynomials we
have even values of n, P 1

n(0) = 0 and for odd values of n, ∂P 1
n/∂θ (0) = 0. Putting this into Equation 2.19a we

obtain

Ĉn = η′nCn , (2.36a)

D̂n = η′nDn , (2.36b)
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with

η′n =
{

1 if n even
ϵs /ϵŝ if n odd.

(2.37)

To obtain the other coefficients we use the same approach as in the axial case, however we multiply each equation
with P 1

k (ξ) for different values of k from k = 1 to k = N . Then we integrate over the domain of each equation
and use the property that P m

n (−x) = (−1)n+mP m
n (x) to rewrite

∫ 0
−1 P 1

n(ξ)P 1
k (ξ)dξ= (−1)n+k

∫ 1
0 P 1

n(ξ)P 1
k (ξ)dξ. We

eventually get the same system of equations as in Equation 2.33 only with ηn replaced by η′n and Un,k replaced
by U 1

n,k = ∫ 1
0 P 1

n(ξ)P 1
k (ξ)dξ. These integrals are also computed analytically by Kettunen et al . (2007) [16]. The

system of equations again needs to be solved numerically and we obtain the final coefficients Ĉn and D̂n with
Equation 2.36.

2.2. Calculation of force and torque
We now have defined the potential everywhere. With this information we can calculate the force and torque on
the Janus particle. We use two methods for the calculations. First we use the dipole approximation, this method
reduces the particle to the simpler model of a dipole and these calculations can be done analytically. Second
we use the Maxwell Stress Tensor method, this method is the most rigorous approach to calculate the force and
torque [6], however the calculations have to be done numerically.

2.2.1. Dipole approximation

Figure 2.3: Depiction Janus particle with the field incident
with the angle ν.

In an electric field, the particle becomes polarized and
creates a secondary electric field. This induced field
can be approximated by the field of a dipole. The po-
larizability χ is a parameter which describes the mag-
nitude of the polarization and is defined as the ratio
between the effective dipole moment and the magni-
tude of the electric field.

pe f f =χEe . (2.38)

To determine the polarizability χ we have to con-
sider the potential of a dipole and compare it with the
dipolar term (n = 1) of the series expansion in Equa-
tions 2.18a or 2.35a.

The potential of an electric dipole, which is z-
directed, is of the form [6]

Φd = pe f f cosθ

4πϵmr 2 . (2.39)

The dipolar term of the series expansion of the axial
case is

Φd ,ax = B1P1(ξ)

r 2 = B1 cosθ

r 2 . (2.40)

Thus we have for the polarizability

pe f f ,ax = 4πϵmB1,ax = 4πϵm a3Eeβ1,ax =χax Ee , (2.41)

pe f f ,tr = 4πϵmB1,tr = 4πϵm a3Eeβ1,tr =χtr Ee , (2.42)

where pe f f ,tr was derived similarly as pe f f ,ax , but with the expression of a x-directed dipole.
For a object with a rotational symmetry, around the z-axis, we can write it the effective dipole moment a

more general form [16]:

pe f f = χ̄ ·Ee , (2.43)

where the polarizability dyadic is of the form

χ̄=χtr
(
x̂ x̂ + ŷ ŷ

)+χax ẑ ẑ . (2.44)
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We define the angle ν as the angle between the z-axis and the field, as shown in Figure 2.3. Then we can represent
the field as:

Ee = [sinν x̂ +cosν ẑ]Ee . (2.45)

Now we can write the effective dipole moment of the particle as

pe f f = [
χtr sinν x̂ +χtr cosν ẑ

]
Ee . (2.46)

Since the field is uniform there is no force on the Janus particle as stated by Equation 2.1. Using Equation 2.2
we can calculate that the torque on the particle is

τ= [
χax −χtr

]E 2
e

2
sin2ν ŷ . (2.47)

From this equation, we can see that depending on the difference between the axial and the transverse polarizabil-
ity one of ν= 0 or ν=π/2 is a stable equilibrium and the other is an unstable equilibrium.

2.2.2. Maxwell Stress Tensor (MST)
In order to compute the force and torque in a different way, we introduce the Maxwell Stress Tensor. This is
defined for any electric field E as [12]

T⃗ = ϵ
(

E E − 1

2
|E |2⃗I

)
(2.48)

where I⃗ is the unit tensor and the product of two vectors without a dot denotes the dyadic product.
Before we can calculate the stress tensor we first have to calculate the electric field from the potential. For

spherical coordinates, we have the following formula to calculate the electric field

E =−∇Φ=−∂Φ
∂r

r̂ − 1

r

∂Φ

∂θ
θ̂− 1

r sinθ

∂Φ

∂ϕ
ϕ̂. (2.49)

We determine the field attached to the potential in its general form, Equation 2.6 and then we can use the coeffi-
cients determined by the model for each area. So we obtain the following field in the axial case:

E ax
r =−

N∑
n=0

[
n Anr n−1 − (n +1)Bnr−(n+2)]Pn(ξ), (2.50a)

E ax
θ =

N∑
n=0

[
Anr n−1 +Bnr−(n+2)]sinθ

n

ξ2 −1
[ξPn(ξ)−Pn−1(ξ)], (2.50b)

E ax
ϕ = 0, (2.50c)

where we used that (x2 −1) dPn
d x = n(xPn(x)−Pn−1(x)). The sum stops at N since we only calculated the coeffi-

cients up to N . If the external field is in the transverse direction, we get the following field as a result

E tr
r =−

N∑
n=0

[
n Anr n−1 − (n +1)Bnr−(n+2)]P 1

n(ξ)cosϕ, (2.51a)

E tr
θ =

N∑
n=0

[
Anr n−1 +Bnr−(n+2)]sinθ

1

ξ2 −1

[
nξP 1

n(ξ)− (n +1)P 1
n−1(ξ)

]
cosϕ, (2.51b)

E tr
ϕ =

N∑
n=0

[
Anr n−1 +Bnr−(n+2)]P 1

n(ξ)

sinθ
sinϕ, (2.51c)

where we used the property of the associated Legendre polynomials that:

(x2 −1)
dP m

n

d x
= nxP m

n (x)− (n +m)P m
n−1(x).

We have now calculated the electric field in spherical coordinates. To turn this into a vector field of Cartesian
coordinates we use the following relations:

r̂ = sinθ(cosϕx̂ + sinϕŷ)+cosθẑ , (2.52a)

θ̂ = cosθ(cosϕx̂ + sinϕŷ)− sinθẑ , (2.52b)
ϕ̂=−sinϕx̂ +cosϕŷ . (2.52c)
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If we have an external field of the form as given in Equation 2.45, the resulting field will be the sum of the
field caused by an external field in the axial direction and in the transverse direction.

E = sinνE t r +cosνE ax . (2.53)

If we plug this into Equation 2.48 we obtain the following:

T⃗ = ϵ
(
sin2ν

[
E t r E t r − 1

2

∣∣E t r ∣∣2⃗
I
]
+cos2ν

[
E ax E ax − 1

2

∣∣E ax ∣∣2⃗I
]
+ sinνcosν

[
E t r E ax +E ax E t r −E ax ·E t r I⃗

])
(2.54)

= sin2νT⃗ t r +cos2νT⃗ ax + sinνcosνT⃗ cr oss (2.55)

The stress tensor is thus a sum of the stress tensor related to a field in the axial direction, the tensor related to a
field in the transverse direction and a cross term. We get the following for each individual tensor.

T⃗ ax = ϵm

2

 E 2
r −E 2

θ
2Er Eθ 0

2Er Eθ −E 2
r +E 2

θ
0

0 0 −E 2
r −E 2

θ

=
 Tr r Trθ Trϕ

Tθr Tθθ Tθϕ
Tϕr Tϕθ Tϕϕ

. (2.56)

T⃗ t r = ϵm

2


[
E 2

r −E 2
θ

]
cos2ϕ−E 2

ϕ sin2ϕ 2Er Eθ cos2ϕ 2Er Eϕ sinϕcosϕ
2Er Eθ cos2ϕ

[−E 2
r +E 2

θ

]
cos2ϕ−E 2

ϕ sin2ϕ 2EθEϕ sinϕcosϕ
2Er Eϕ sinϕcosϕ 2EθEϕ sinϕcosϕ −[

E 2
r +E 2

θ

]
cos2ϕ+E 2

ϕ sin2ϕ

.

(2.57)

T⃗ cr oss = ϵm


[
E ax

r E tr
r −E ax

θ
E tr
θ

]
cosϕ

[
E ax
θ

E tr
r +E ax

r E tr
θ

]
cosϕ E ax

r E tr
ϕ sinϕ[

E ax
θ

E tr
r +E ax

r E tr
θ

]
cosϕ

[−E ax
r E tr

r +E ax
θ

E tr
θ

]
cosϕ E ax

θ
E tr
ϕ sinϕ

E ax
r E tr

ϕ sinϕ E ax
θ

E tr
ϕ sinϕ −[

E ax
r E tr

r +E ax
θ

E tr
θ

]
cosϕ

. (2.58)

In Equations 2.56 and 2.57 we omit the superscript on the field components for readability. In Equation 2.56
we also introduce the general notation for each element of the tensors. In Equations 2.57 and 2.58 we take the
ϕ dependence outside of the field components, to simplify the evaluations of the integrals later.

2.2.3. Force and Torque derived from the Maxwell Stress Tensor
The force and torque are calculated by integrating the stress tensor, calculated with the field outside of the surface,
over the surface of the Janus particle. In order to make the calculation clear, we partition the Janus particle into
three distinct surfaces, which are indicated in Figure 2.4.:

1. the spherical dome of the shell, r = a +d , 0 ≤ θ < π/2 and 0 ≤ ϕ < 2π, its vector normal to the surface
points is n̂1 = r̂ .

Figure 2.4: Depiction of the integration surfaces of the Janus particle. The indicated surfaces need to be revolved around the
z-axis.
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2. The thin ring at the bottom of the shell, a ≤ r ≤ a +d , θ = π/2 and 0 ≤ ϕ < 2π. This surface has normal
vector n̂2 = θ̂.

3. The lower hemisphere of the core, r = a, π/2 < θ ≤ π and 0 ≤ ϕ < 2π, which has n̂3 = r̂ as its normal
vector.

Because of the linearity of the integral, the dot product and the cross product, we can calculate the torque and
force independently for each component of the tensor. For example, the force due to the field in the axial case is
then calculated as

〈F ax〉 =
∮

(T⃗
ax · n̂)d A =

Ï
1

(T⃗
ax · r̂ )d A+

Ï
2

(T⃗
ax · θ̂)d A+

Ï
3

(T⃗
ax · r̂ )d A (2.59)

= 〈F ax
1 〉+〈F ax

2 〉+〈F ax
3 〉 (2.60)

Force calculations
We consider the integrals over the first and third surfaces together since they have the same normal vector.

〈F 1,3〉 =
Ï

1,3
(T⃗ · r̂ )d A =

Ï
1,3

(
Tr r r̂ +Trθθ̂+Trϕϕ̂

)
R2 sinθdθdϕ. (2.61)

=
Ï

1,3

(
Tr r

[
sinθ(cosϕx̂ + sinϕŷ)+cosθẑ

]+Trθ
[
cosθ(cosϕx̂ + sinϕŷ)− sinθẑ

]
+Trϕ

[−sinϕx̂ +cosϕŷ
])

R2 sinθdθdϕ. (2.62)

Above we introduced R for which we have R = a +d for surface 1 and R = a for surface 3. Furthermore, we
expand the unit vectors in spherical coordinates into Cartesian unit vectors with Equations 2.52. For surface 1
we need to integrate θ from θ = 0 to θ =π/2 and for surface 3 we need to integrate from θ =π/2 to θ =π.

For the field due to an axial external field, we do not have a ϕ dependence in the tensor. If we integrate over ϕ
from ϕ= 0 to ϕ= 2π, we see that all the terms with cosϕ and sinϕ drop out. Thus we remain with the following

〈F ax
1,3〉 = ϵmπR2

∫
1,3

(Tr r cosθ−Trθ sinθ)sinθdθ ẑ (2.63)

= ϵmπR2
∫

1,3

([
E 2

r −E 2
θ

]
cosθ−2Er Eθ sinθ

)
sinθdθ ẑ . (2.64)

For the field due to a transverse external field, each component of the tensor has a sin2ϕ, cos2ϕ or sinϕcosϕ
dependence. We know that the integrals of cos3ϕ, cos2ϕsinϕ, cosϕsin2ϕ and sin3ϕ from ϕ= 0 to ϕ= 2π are
all zero. Thus we can see that all the terms containing x̂ and ŷ drop out and what remains is:

〈F tr
1,3〉 =

ϵmπ

2
R2

∫
1,3

([
E 2

r −E 2
θ −E 2

ϕ

]
cosθ−2Er Eθ sinθ

)
sinθdθ ẑ , (2.65)

where we used that
∫ 2π

0 cos2ϕdϕ= ∫ 2π
0 sin2ϕdϕ=π.

For the cross-term in the stress tensor, we see that each element of the tensor has a sinϕ or cosϕ dependence.
Thus now the terms with sinϕ, cosϕ and sinϕcosϕ drop out as a result of the integration over ϕ, which are the
y- and z-components. So we remain with

〈F cr oss
1,3 〉 = ϵmπR2

∫
1,3

([
E ax

r E tr
r −E ax

θ E tr
θ

]
sinθ+ [

E ax
θ E tr

r +E ax
r E tr

θ

]
cosθ−E ax

r E tr
ϕ

)
sinθdθ x̂ . (2.66)

For the second surface, we have the following

〈F 2〉 =
Ï

2
(T⃗ · θ̂)d A =

Ï
2

(
Tθr r̂ +Tθθθ̂+Tθϕϕ̂

)
r sinθdr dϕ (2.67)

=
Ï

2

(
Tθr

[
sinθ(cosϕx̂ + sinϕŷ)+cosθẑ

]+Tθθ
[
cosθ(cosϕx̂ + sinϕŷ)− sinθẑ

]
+Tθϕ

[−sinϕx̂ +cosϕŷ
])

r sinθdr dϕ. (2.68)
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Following the same steps as above for each tensor component, we get the following formulas

〈F ax
2 〉 = ϵmπ

∫ a+d

a

[
E 2

r −E 2
θ

]
r dr ẑ , (2.69)

〈F tr
2 〉 = ϵmπ

2

∫ a+d

a

[
E 2

r −E 2
θ +E 2

ϕ

]
r dr ẑ , (2.70)

〈F cr oss
2 〉 = ϵmπ

∫ a+d

a

[
E ax
θ E tr

r +E ax
r E tr

θ −E ax
θ E tr

ϕ

]
r dr x̂ , (2.71)

where we used that θ = π/2. The integrals in Equations 2.64, 2.65, 2.66, 2.69, 2.70 and 2.71 are evaluated
numerically. It might be possible to evaluate the integrals analytically, however, this goes beyond the scope of
this report.

Finally, the expression of the total force on the particle is

〈F 〉 = sin2ν〈F tr 〉+cos2ν〈F ax〉+cosνsinν〈F cr oss〉. (2.72)

Torque calculations
We again treat surfaces 1 and 3 together, so the formula for the torque becomes

〈τ1,3〉 =
Ï

1,3
r r̂ × (T⃗ · r̂ )d A =

Ï
1,3

R r̂ ×
(
Tr r r̂ +Trθθ̂+Trϕϕ̂

)
R2 sinθdθdϕ (2.73)

= R3
Ï

1,3

(
−Trϕθ̂+Trθϕ̂

)
sinθdθdϕ (2.74)

= R3
Ï

1,3

(−Trϕ
[
cosθ(cosϕx̂ + sinϕŷ)− sinθẑ

]+Trθ
[−sinϕx̂ +cosϕŷ

])
sinθdθdϕ. (2.75)

For the case of the external field pointing in the axial direction, we have that Trϕ = 0 and that the integral over a
sine or cosine is zero. For the transverse case, Trϕ has a cosϕsinϕ dependence and Trθ has a cos2ϕ dependence.
Due to this the integral from ϕ= 0 to ϕ= 2π also yields zero. Thus we see that, in both cases, there is no torque
contribution due to these surfaces.

〈τ1,3
ax〉 = 〈τ1,3

tr 〉 = 0. (2.76)

For the cross tensor we have that Trϕ has a sinϕ dependence and Trθ has a cosϕ dependence. Hence, only the
terms with ŷ remain and we get the following integral for the torque

〈τ1,3
cr oss〉 = ϵmπR3

∫
1,3

(
−E ax

r E tr
ϕ cosθ+E ax

θ E tr
r +E ax

r E tr
θ

)
sinθdθ ŷ . (2.77)

For the second surface we get the following formula for the torque

〈τ2〉 =
Ï

2
r r̂ × (T⃗ · θ̂)d A =

Ï
2

r r̂ ×
(
Tθr r̂ +Tθθθ̂+Tθϕϕ̂

)
r sinθdr dϕ (2.78)

=
Ï

2

(
−Tθϕθ̂+Tθθϕ̂

)
r 2 sinθdr dϕ (2.79)

=
Ï

2

(−Tθϕ
[
cosθ(cosϕx̂ + sinϕŷ)− sinθẑ

]+Tθθ
[−sinϕx̂ +cosϕŷ

])
r 2 sinθdr dϕ. (2.80)

Using the same reasoning as we did for the first and third surfaces and using that θ =π/2, we see that the torque
becomes

〈τ2
ax〉 = 〈τ2

tr 〉 = 0 (2.81)

〈τ2
cr oss〉 = ϵmπ

∫ a+d

a

[−E ax
r E tr

r +E ax
θ E tr

θ

]
r 2 dr ŷ . (2.82)

We solve the resulting integrals in Equations 2.77 and 2.82 numerically, for the same reason as for the integrals
for the force.

If we now look at the final expression for the torque of the particle

τ= sinνcosν
[〈τ1

cr oss〉+〈τ2
cr oss〉+〈τ3

cr oss〉]= 1

2
sin2ν

[〈τcr oss
1 〉+〈τcr oss

2 〉+〈τcr oss
3 〉]ŷ , (2.83)

we can see that it has the same form as Equation 2.2.



3
Model implementation

3.1. Solving for the coefficients of the potential
For the implementation of the model, we make separate functions to calculate the Akn

i , B kn
i , C kn

i , Dkn
i and Rk

i
coefficients with i = 1,2,3,4, as we specified in Equations 2.33. If we iterate over n and k we can create the
matrix and vector of Equation 2.32. We subsequently use the numpy function numppy.linalg.solve to
solve the system of equations and to get the desired coefficients α, β, γ and δ.

3.2. Calculating the potential with the coefficients
When we have obtained the coefficients, we can calculate the potential at all the points. First, we determine the
region on the basis of the coordinates of the point, to pass the correct coefficients to the correct function. Then we
determine the factors in front of the (associated) Legendre polynomials for each n and lastly we calculate the Leg-
endre or associated Legendre polynomials using the functions numpy.polynomial.legendre.legval
and scipy.special.lpmv respectively.

3.3. Calculation Force Maxwell Stress Tensor (MST)
For every surface which needs to be integrated, we create a function which calculates the integrand of the integrals
given in subsection 2.2.2. The function takes only the argument of the variable which needs to be integrated and
the integration is done by the scipy function scipy.integrate.quad.

Figure 3.1: Diagram of the steps used for implementation of the model.
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4
Results

In this chapter, we show the results of the calculations done using the model. First, we discuss the different
calculations of the potentials, where we compare the model to known potentials cases and consider the stability
of the model. After that, we show the potential and the field of the Janus particle due to an external z- and x-field.
Lastly, we consider the calculations of the force and torque done using the dipole approximation or done using
the Maxwell Stress Tensor method and compare them.

The calculations for the Janus particle were done with the following values, which are indicated in Fig-
ure 2.2c. For the medium the permittivity of water at 20oC was chosen, ϵm = 80ϵ0 [17], where ϵ0 = 8.85 ·10−12

Fm−1 is the permittivity of free space. The shell was assumed to be made of TiO2, thus the permittivity of the
shell is ϵs = 114ϵ0 [18]. The core was made of SiO2 which has a permittivity of ϵc = 3.9ϵ0 [17]. We take the
permittivity of the lower shell equal to the permittivity of the medium, ϵŝ = ϵm = 80ϵ0. The thickness was taken
as d = 0.2a. The core radius a and the external field strength Ee are not specified since the calculations were
done with dimensionless coefficients.

4.1. Potential calculation
4.1.1. Agreement with known potentials
We can change the dielectric permittivities of the various regions, to have the model represent the cases for which
the solutions are already known. If all the permittivities are equal to each other (ϵm = ϵs = ϵŝ = ϵc = 80ϵ0), there
is no particle in the medium and we will expect no change in the potential. If the permittivities of the upper
and the lower shell are equal to the permittivity of the medium (ϵm = ϵs = ϵŝ = 80ϵ0 ; ϵc = 3.9ϵ0) or that of the
core (ϵm = 80ϵ0 ; ϵs = ϵŝ = ϵc = 3.9ϵ0), we should obtain the potential of a sphere with radius a or radius a +d ,
respectively. When the permittivities of the upper shell and the lower shell are equal but they differ from the core
and the medium (ϵm = 80ϵ0 ; ϵs = ϵŝ = 114ϵ0 ; ϵc = 3.9ϵ0), the model should give the potential of a particle with a
concentric shell.

In Tables 4.1 we present the values of the α1, β1, γ1 and δ1 coefficients, together with their expected dimen-
sionless coefficients. We calculated the coefficients with N = 50 for a field pointing in the axial direction and for
a field in the transverse direction. The numerically calculated coefficients with n ̸= 1 are all 0 we do not show
these values. Furthermore, Ĉn =Cn and D̂n = Dn for all n, since ϵs = ϵŝ , so we also do not shown these values in
the tables.

In Table 4.1a, Table 4.1b and Table 4.1c we provide, respectively, the results of the cases for no particle, for
a spherical particle of radius a and for a spherical particle of radius a +d . In the tables, we can see that the
coefficients calculated with the model, in both directions, are equal to the exact coefficients.

In Table 4.1d the case for the single shelled particle is shown with the two exact solutions of Jones (1995) [6]
and Turcu et al . (1989) [14]. The data is also plotted in Figure 4.1. In the table and in the figure we can see that
for the coefficients α1, γ1 and δ1 the solutions of the model are equal to the coefficients as calculated by Turcu
et al .. On the other hand, the β1 coefficient of the model is equal to the solution of Jones. This is the same result
we saw in the solution given by Maple, Equations 2.17, and in appendix C.
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Table 4.1: In this table we show different values of the first coefficients calculated by the model for cases of: no particle (a),
a spherical particle with radius r = a (b), a spherical particle with radius r = a +d (c) and a shelled particle (d). The

coefficients calculated for an external field in the axial- and the transverse-direction are shown.

(a) No particle (ϵm = ϵs = ϵŝ = ϵc )

Exact Axial field Transverse field
α1 -1 -1 -1
β1 0 0 0
γ1 -1 -1 -1
δ1 0 0 0

(b) Spherical particle with radius a (ϵs = ϵŝ = ϵm)

Exact Axial field Transverse field
α1 -1.46431 -1.46431 -1.46431
β1 -0.46431 -0.46431 -0.46431
γ1 -1 -1 -1
δ1 -0.46431 -0.46431 -0.46431

(c) Spherical particle with radius a +d (ϵs = ϵŝ = ϵc )

Exact Axial field Transverse field
α1 -1.46431 -1.46431 -1.46431
β1 -0.80232 -0.80232 -0.80232
γ1 -1.46431 -1.46431 -1.46431
δ1 0 0 0

(d) Shelled particle (ϵs = ϵŝ )

Exact Jones (1995) Exact Turcu et al . (1989) Axial field Transverse field
α1 -1.28807 -1.3863 -1.3863 -1.3863
β1 -0.34263 -0.80561 -0.34263 -0.34263
γ1 -1.07494 -0.94001 -0.94001 -0.94001
δ1 -0.21314 -0.44629 -0.44629 -0.44629

4.1.2. Convergence of solution
The solution of the system 2.32 tends to diverge at two points: r = a and r = a +d . If the series 2.22 and 2.35
converge at these points, they converge everywhere [16]. To verify the convergence we solve the system for
different values of N and calculate the relative error in the potential:

eΦ =
∣∣∣∣ΦN −Φ340

Φ340

∣∣∣∣, (4.1)

whereΦN is the potential calculated for N andΦ340 is the potential for N = 340. The relative error in the potential
for r = a +d , θ =π/4 and ϕ= 0 is plotted in Figure 4.2a on a logarithmic scale. We can see from the figure that
the relative error has an oscillating behaviour. If we focus on the peaks of the oscillations, we can see that in both
cases the error decreases for higher N , thus we can assume that the error converges further towards zero. For
both the external field along the z-axis and the x-axis we see that there is a resonance-like behaviour in the error.
The amplitudes of the oscillations increase toward a point, where the oscillations are at their largest and decrease
beyond that point. For the external field in the z-direction, the resonance-point lies around N = 155 and for the
external field in the x-direction that point lies around N = 320.

The relative error is lower than 0.01% for N = 50. We can get a lower error by taking a higher N , however, this
will result in a longer computation time. So for this report, the figures and the values we present are calculated
with N = 50.

Since we use the dipole term, β1, for the calculation of the torque, we also consider the relative error of
β1: eβ1 . The relative error is calculated in the same way as Equation 4.1 but with β1,N as the dipole term
calculated for N and β1,340 as the dipole term calculated for N = 340. The results are plotted in Figure 4.2b.
We can see in the figure that the error in the dipole coefficient decreases faster than the error in the potential.
Furthermore, there is no oscillatory behaviour in the error. For the dipole term we can see that, in both cases,
the error is below 0.01% for N = 50. Thus N = 50 is also sufficient for the dipole calculations of the torque. In
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Figure 4.1: Barplot of the coefficients for the shelled particle, as calculated by Jones (1995) and Turcu et al . (1989) and
calculated with the model for an external field in the axial direction and the transverse direction.

(a) Relative error of the potential (b) Relative error of the dipole coefficient

Figure 4.2: Plots of the relative errors of the potential value at (r = a, θ =π/4,ϕ= 0) and the dipole coefficient calculated for
different values of N . The plots are shown on a logarithmic scale. The relative errors are shown for both the axial and

transverse field direction.

Figure D.1 the relative errors of the α1, γ1 and δ1 are shown. In these plots we see the same behaviour as we see
for β1 in Figure 4.2b.

4.1.3. Potential Janus particle
In Figure 4.3 and Figure 4.4 we show the potential and the resulting fields of a Janus particle for an external axial
and transverse field respectively. The fields were calculated using the Equations 2.50 and 2.51 and converted to
Cartesian coordinates using Equations 2.52. In these figures, we have that ϕ= 0, for x ≥ 0, or ϕ= π , for x < 0,
thus Ey = 0 for all points in the plane shown in the axial and the transverse case, hence, this field is not shown in
the figures.

In the fields of the axial and transverse cases we can see some similarities. First, if we compare the field in
the direction perpendicular to the external field, the x-field for the axial case and the z-field for the transverse
case, we can see that the fields have the same shape. Both the fields have a butterfly-pattern, with the upper-left
and lower-right "wings" having a positive field and the lower-left and upper-right being negative. For the fields
along the direction of the external field we can see that the field is the weakest outside the core along the direction
of the field. The field is the strongest in the direction perpendicular to the applied field.
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Figure 4.3: Plots of the potential and the field in the z- and x-directions for a Janus particle in an axial-oriented electric field,
shown in the left middle and right plots respectively.

Figure 4.4: Plots of the potential and the field in the z- and x-directions for a Janus particle in an transverse-oriented electric
field, shown in the left middle and right plots respectively.

4.2. Calculation of force and torque
4.2.1. Dipole approximation
As we already discussed in subsection 2.2.1, there is no force on the dipole due to the external field being uniform.
There is, however, a torque on the particle in the dipole approximation. In Figure 4.5 we show the torque for
different values of the angle ν. If the torque is positive, the particle will turn counterclockwise and thus the angle
ν will decrease. On the other hand, if the torque is negative, the particle will turn clockwise and the angle ν will
increase. Thus, we can see that for ν=π/2 we have a stable equilibrium. This angle corresponds to the position
where the field is pointing in the positive x-direction as shown in Figure 2.1. We can also deduce that there is a
stable equilibrium when the field is pointing in the negative x-direction. This corresponds to the angle ν=−π/2.
The angles ν= 0 and ν=π, which correspond to the applied field in the positive or negative z-direction, are thus
unstable equilibriums.

4.2.2. Maxwell Stress Tensor (MST)
In Tables 4.2 we show the results of the calculations of the force and torque. Table 4.2a shows the axial contribu-
tion of the force, Table 4.2b shows the transverse contribution of the force and Table 4.2c the contribution of the
cross term to the force. In Table 4.2d the contribution of the cross term to the torque is shown. The torques due
to the axial term and the transverse terms are not shown since they are zero. In both the tables, we first display
contributions for each surface and finally the total force or torque on the particle.

We can see that the transverse component of the force has the smallest magnitude and the cross-component
has the largest magnitude. Because we have that the transverse and the axial component are both positive, we
see that the Janus particle will always want to move in the direction its cap is pointing. This is regardless of
the direction of the field due to the squared sine and cosine in Equation 2.72. For the cross-component of the
force we have that due to the sinνcosν, the particle will have a force in the positive x-direction for the angles
0 < ν<π/2 and π< ν< 3π/2. The particle will have a force in the negative x-direction for the other angles.

In the dipole approximation, we saw that there was no force on the particle, however, there is a force on the
particle according to the Maxwell Stress Tensor. Nevertheless, we have that the forces on the separate surfaces
almost cancel each other. Since the resulting forces, for the axial, transverse and cross-components, are three
orders of magnitude lower than their respective the largest force on an individual surface.
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Figure 4.5: A plot of the torque on the Janus particle for different field angles ν. The stable position is denoted with a
diamond and lies at ν=π/2, this position corresponds to the field pointing in the positive x-direction. The unstable positions

are denoted with a circle and lie at ν= 0 and ν=π, which correspond to a field pointing in the positive and negative
z-direction, respectively.

We see that the cross-component of the torque on the particle is negative, which is the same as in the dipole
approximation. So we have the same shape of the torque as in Figure 4.5. Thus we have that for angle ν= π/2
the particle is at a stable equilibrium. In the dipole approximation we have that

[
χax −χtr

]
E 2

e =−3.484a3E 2
e ϵ0,

which is close to the value of the torque calculated by the Maxwell Stress Tensor.
Thus the dipole approximation is a reasonable approximation to calculate the force and torque on a Janus

particle. However this is only for the specific parameters used in this report, we for example expect that these
values for the torque and force will have larger differences if the thickness d is increased. Because, in that case
the model is less similar to the model of a sphere, which is perfectly described by a dipole.
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Table 4.2: Force in the z-direction on the Janus particle for an axial external field (a) and for a transverse external field (b).
The first three entries in the tables are the forces for each individual surface and the last entry is for the total force.

(a) Axial force

Force/(a2E 2
e ϵ0) in the z-direction

〈F ax
1 〉 5.373836

〈F ax
2 〉 -134.019

〈F ax
3 〉 128.7616

〈F ax〉 0.115974

(b) Transverse force

Force/(a2E 2
e ϵ0) in the z-direction

〈F tr
1 〉 -252.898

〈F tr
2 〉 50.03007

〈F tr
3 〉 202.8756

〈F tr 〉 0.008121
(c) Cross force

Force/(a2E 2
e ϵ0) in the x-direction

〈F cr oss
1 〉 278.6593

〈F cr oss
2 〉 -137.672

〈F cr oss
3 〉 -140.217

〈F cr oss〉 0.770905

(d) Cross torque

Torque/(a3E 2
e ϵ0) in the y-direction

〈τcr oss
1 〉 3.835102

〈τcr oss
2 〉 -6.3761

〈τcr oss
3 〉 -0.82279

〈τcr oss〉 -3.36379



5
Conclusion

The purpose of this report was to derive a semi-analytic description of the force and torque on a Janus particle
due to an electric field. We derived this solution by first finding the potential because of the electric field and
then calculating the force and torque with the dipole approximation and the Maxwell Stress Tensor.

The model of the Janus particle has been developed by adapting the approach developed by Scherbak et al .
(2015) [15]. If the model is reduced to the case of a spherical particle or a spherical particle with a concentric
shell, then the potential calculated using the model corresponds with the known potential of those cases. The
solution of the model on the boundaries is stable and converges for a higher number of terms in the series, thus the
solution converges everywhere. The values of the dipole coefficient, which we use for the dipole approximation,
also converge for a higher number of terms.

In the dipole approximation, we saw that there is no force on the Janus particle since the applied field is uniform.
There is, however, torque on the Janus particle, which has resulted that the particle orients its axis perpendicular
to the direction of the electric field. The force calculated with the Maxwell Stress Tensor method is non zero,
but the magnitude of the total force is three orders of magnitude than the separate components of the force.
The torque calculated with the stress tensor is approximately equal to the torque as calculated with the dipole
approximation.

Our study only focused on developing the model to calculate the force and torque. We did not investigate the
effects of different parameters or the use of more complicated electric fields for rotation of the particle. Thus we
recommend researching at which parameter configurations the agreement between the dipole approximation and
the Maxwell Stress Tensor breaks down. We expect that this happens for a larger shell thickness, however, this
can possibly happen for varying permittivities. Furthermore, we recommend using the model from this report to
investigate how to rotate the Janus particle without displacing it. This is not trivial since there is always a force,
although small, pointing in the direction the cap of the particle is pointing. This can possibly be done by using a
rotating external electric field. Another approach to research is to calibrate the strength of the external field such
that there is enough torque to turn the particle but the force is not large enough to move the particle.
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A
Python code

The Python code used for this report is available at
https://gitlab.tudelft.nl/optica/force-and-torque-on-janus-particle

We implemented the solver of the coefficients in potential_calculation.py. Also, the functions to
calculate the value of the potential and the field from the coefficients are defined in that file. The file calls the
functions in build_u_matrix.py, which calculate the values of Un,k or U 1

n,k . In the file input_file.py
we defined a dictionary called variables in which the variables for the model are defined. All the other files
import the variables dictionary from the input file, thus there is a central place to modify the input of the model.
In plotting.py we have some standard functions for visualizations defined, such as the function to draw the
outline of a Janus particle.

The files which start with error_in_potential calculate the coefficients of their respective cases: no
particle, a spherical particle or a single shelled particle.

The script in calculate_potential_coeff_diff_N.py calculates the values of the coefficients and
the potential at a point for multiple values of N and stores the data in Data/. The files plot_convergence_
coeff.py and plot_convergence_potential.py use the saved data to plot the relative error of the
α1, β1, γ1 and δ1 coefficients and the relative error of the potential, respectively. The other files starting with
plot are files that plot the figures we show in this report.

Finally, we have in the files mst_force_janus_particle.py and mst_torque_janus_particle.
py the code that calculates the force and torque with the Maxwell Stress Tensor method.
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B
Nomenclature

Table B.1: Table with the names of the variables and constants used throughout the report

Ee External electric field [V/m]
p Dipole moment [Cm]
F Force [N]
τ Torque [Nm]
Φ Electric potential [V]
Pn Legendre polynomial
P 1

n Associated Legendre polynomial
a core radius [m]
d shell thickness [m]
(r, θ, ϕ) Spherical coordinates
ρ = r /a Dimensionless radius
ξ= cosθ Variable Legendre polynomial
ζ= 1+d/a Dimensionless outer radius
ϵ Electric permittivity [Fm]
N Cut-off term series
< . > Time averaging
subscript: m medium
subscript: s shell
subscript: ŝ mirrored shell
subscript: c core
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C
Comparison solutions shelled particle

To investigate the difference in the solutions given by Jones (1995) and Turcu et al . (1989) the potential and
the displacement field in the core, shell and medium are plotted in Figures C.1. As a reminder, the coefficient
corresponding to the core is A, the coefficients corresponding to the shell are C and D and the coefficient corre-
sponding to the medium is B .

In Figure C.1a, we plot the potential across the shell. We can see that for the solution of Jones the potential
is continuous across the boundaries. However, the solution of Turcu et al . is not continuous at the shell-medium
boundary, but it is continuous with the solution of Jones at that boundary. In Figure C.1a we show the dis-
placement field, ϵE , across the shell. The figure illustrates that the displacement field is discontinuous at both
boundaries for the Jones solution. On the other hand, the field given by Turcu et al . is continuous at the core-
shell boundary, but discontinuous at the shell-medium boundary. We notice that the solution of Turcu et al . is
continuous with the Jones solution at the shell-medium boundary. This implies that the correct solution is the
solution with the A, C and D coefficients of Turcu et al . and the B coefficient of Jones, which is the same answer
Maple gives as shown in Equations 2.17.

(a) Potential of shelled particle (b) Displacement field of shelled particle

Figure C.1: Plots of the values of the potential and the displacement field, ϵE , across the shell according to the solutions of
Jones (1995) [6] and Turcu et al . (1989) [14].
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D
Relative error n=1 coefficients

Figure D.1: Relative error of the coefficients α1, β1, γ1 and δ1 plotted for different values of N .
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