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Abstract: Textile heaters are made from knitted conductive yarns integrated into their fabric, making
them stretchable, washable, breathable and suitable for close-to-skin wear. However, the non-zero
resistance in the lead wires causes non-uniform power distribution, which presents a design challenge.
To address this, the electrical performance of the heaters is modeled as an n-ladder resistor network.
By using the finite difference method, simple, closed-form expressions are derived for networks
with their power source connected to input terminals A; By and A; By, respectively. The exact results
are then used to derive approximations and design criteria. The solutions for the ladder networks
presented in this paper apply to a wider class of physical problems, such as irrigation systems,

transformer windings, and cooling fins.

Keywords: knitted heater; electrothermal performance; ladder network; equivalent resistance

1. Introduction

Heated garments have been applied to prevent hypothermia in cold environments, as
heat therapy for relieving joint and muscle pain, or simply as a means to increase thermal
comfort. The latest advancements focus on developing all-textile heating systems that are
stretchable, breathable, washable, and that can be produced using existing manufacturing
equipment [1-3]. Knitted heaters are made from lead wires composed of conductive yarns
interconnected by parallel heating lines with a higher resistance. These heaters aim to
provide a uniform temperature distribution, but the non-zero resistance of the lead wire
sections causes more power to be dissipated near the power source connection and less
further away (see Figure 1).

) electrode
=

electrode

heater lines

Figure 1. (Left): thermal image of a knitted textile heater. (Right): schematic representation.

The decrease in the heating power of a ladder-type heater system is governed by three
main parameters: the resistance of the lead wire sections, the resistance of the heating lines
and the number of heating lines. For the design of garments with various sizes of heaters it
would be beneficial to have a simple model that interrelates those parameters.
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A heating element, as shown in Figure 1, can be modeled as a ladder network of series
and parallel resistors, a well-known concept in the literature. In fact, ladder networks
are commonly used as equivalent models for transport phenomena in systems composed
of a series of identical cells. They are thus not limited to the electrical domain, but are
also applicable to problems in the optical, mechanical, thermal, and chemical domains.
Examples include pressure losses in irrigation systems, respiratory tissues [4], energy loss in
parallel-connected streetlamps, reflect array antennas [5], wave propagation in transmission
lines [6], transformer windings [7], charge transfer in conductive polymers [8], and the heat
spreading in a heat sink with cooling fins [9].

The electrical characteristics of ladder networks can be obtained by applying Kirchoff’s
laws to all elementary cells, resulting in a set of recursive relations for the node voltages,
branch currents and equivalent resistance. In the past, various methods have been applied
to find solutions for both finite and infinite ladder networks, including the use of Fibonacci
sequences [10], Z-transforms [11], Green’s functions [12], and the recursion—transform
method [13,14]. As the number of cells in the ladder network increases, the number
of equations also increases and either rigorous recursive circuit equations have to be
solved or complex state-space matrices need to be handled, resulting in rapidly increasing
computational costs [7]. It would therefore be useful to be able to express the results
in simple-to-use analytical expressions. Solving the difference equation for the unit cell,
Mondal [7] derived generalized analytical expressions for the electrical characteristics of
finite homogeneous ladder networks. Generalized analytical expressions for the electrical
characteristics of finite homogeneous ladder networks are available, but they are often
lengthy despite being in closed form. In this paper, we will derive more compact and
user-friendly solutions, and apply these to obtain asymptotic expressions and design
criteria. While this work focuses on purely resistive networks, the solutions can be easily
extended to resistor-inductor—capacitor networks by substituting the resistances with the
corresponding complex impedances [6,7].

2. Theory
2.1. Layout and Definitions for Ladder Configuration

We consider a sequence of 1 heaters with resistance R;, that are connected by two lead
wire lines, A and B, resulting in nn — 1 lead wire parts with resistance R4, and Rp, respectively
(see Figure 2). A potential Vj is applied over nodes A; and By. The currents in the lead
wires and heater resistances are indicated with i j, ig  and ij, ; respectively.

n-1 IBn-1

Ru| ink+1  Ihn-1|Rn Inn

Idn-1

Figure 2. Resistances for the ladder configuration with input terminals connected to A;B;.
Applying Kirchov’s voltage law (KVL) to segment k, we obtain
Ryip e+ Rpig g — Ryipjr1 — Raiaf =0 (1)

Then, using
ik =iak—1—liax and ipp = —iak 2)
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and introducing the lead wire resistance ratio as € = (R4 + Rp)/R;, we can rewrite Equation (1) as

inks1— (2+e€)igxtiapg1=0 (©)

—ké

This is a second order finite difference equation for which ¢, e =% or combinations

thereof are known solutions. Here, we use it as a trial function:
ipx = A cosh[kd] + B sinh[ké] + C (4)

Inserting this in Equation (3) then results in cosh[é] = 1+ %8 and C = 0. Next, we
apply the KVL to the first and the last mesh:

Vo — Ryipg =0, Ryipy—1+ (Ra+Rp+Ry)igy—1 =0

which can be rewritten as

. . Vi . )
io—ia1+ sz =0, (2+€)ign-1—ian—2=0 ()

The solution for A and B then follows by substituting the trial solution in Equation (5).
These solutions can be simplified by using the addition formulas for hyperbolic functions.
Solving for A and B then gives

A Rlisinh[nd] . —X—icosh[n&]
~ sinh[nd] — sinh[(n — 1)4]’ - sinh[nd] — sinh[(n — 1))’

from which we obtain

R;; sinh[(n —1)] Vi
q 1 _ Yo
R, 1 sinh[nd] lo= RL (6)
__sinh[(n — k)] . Vo cosh[(n —k+ %)5} -

N L cosh[ (1~ 1)¢]

Here, ReLq denotes the equivalent resistance of the ladder heater configuration and I
the total current through the heater. The lead wire and heater currents in Equation (7) result
in compact closed-form equations with the node number, k, and the total number of heater
wires, 1, as the main parameters. With this formulation it can immediately be seen that the
lead wire current decreases from Iy at k = 0 (near the source) to 0 at the end (k = n). The
heater current starts at V/Ry, at k = 1, as expected.

2.2. Solution for Diagonal Configuration

In what we call the diagonal configuration, we connect the power source to nodes A;
and By, respectively (see Figure 3). The solution procedure is similar to that for the ladder
configuration, except now that we have

ipr=1Io—iar =ian—k (8)

From symmetry considerations, we can see thati 4 ; = ip ,_1, which is similar for the
other node numbers. In addition, for the heater currents, we have iy, = i ;,_1-

Applying Equation (8) in the governing KVL equation for the kth mesh (Equation (3))
we obtain

. . . 1
iaker — (2+e)iagp+iag_1+ Eslo =0 )
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4,1 14,k IA,n-1

Iy —»

2 ko Bk K+l n-1 1Bnl

i/1,k+] ih,n-]

Vo O

Figure 3. Resistances for the diagonal configuration with input terminals connected to A;Bj,.

The boundary condition is obtained by applying the KVL over the power source

connections:
n—1

Ra Y iax+ Ryiny =Vo (10
k=1

Because of the symmetry, we now propose it as trial function:

iA,k:Acosh[(k—g)(s} +Bsinh[(k—g)5} +C (11)

Applying this to Equation (11) then yields cosh[6] = 1+ %8 and C = %IO. By combining
Equations (8) and (11) we obtain

iAkHAn,k:zAcosh[(k—f)(s]+o+2C:10 (12)
k1A, 2

and, hence, we find A = 0. From isg = Iy, we find B = —1Iy/sinh[46]. From
Equations (10), (A2) and (A3) in Appendix A, we obtain Je(n — 1)Iy + Bsinh|[ (4 — 1)6] +

%IO = 1‘{—2 and, finally

R(B] 1 n . 1 Vo
Ry Ecothbé} sinh[d] + Z(n —2)g, Iy = R—qu (13)
(o
g sinh[(k — £)d]  Dpsinh[4] —_
ZA,k = EIO <1 - W , lh,k = sinh[g(s]COSh[(k — 2)§:| (14)

The expressions in Equations (13) and (14) are simpler and more condensed than those
reported by Mondal [7]. Direct inspection shows that i 4  decreases to 0 at the last branch,
k = n and that the heater currents are symmetric around (n + 1)/2.

2.3. Simplified Solutions

The above expressions are exact and can be simplified by assuming that ¢ < 1. In that
case for the parameter § we obtain the following;:

1 3
0= \e— —e2+... 15
Ve—Spet+ (15)
For € < 0.4, the error from ommiting the second and higher-order terms is less than 0.01.
Further simplification by Taylor series development, however, do not result in practical
results, since the arguments of the sinh functions scale are 76 which, in this case, is of order
unity or larger.
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The equivalent resistances are important parameters for calculating the overall current
and power dissipated by the network. For small ¢, the equivalent resistances should
converge to the solution of a parallel resistor network R, /n. In addition, for n >> 1 for the
equivalent ladder and diagonal resistances, we obtain

L D
Ry RD

1 1
e et ~(n—2 1
R, , R, 2\/§+4(n )e (16)

For the diagonal configuration, we may approximate the solutions for the lead wire

and heater currents as
€ n+1 2
1+-(k— 17
\/a { + 2< 2 > } (17)

o

, k ) Iy
~p(1-2), __ 07
Ak =10 < n) hk sinh [

2.4. Design Criteria

N[

In this paper our goal is to minimize the difference between dissipated heat across
different heating wires. This requires us to consider the individual heating powers: P = i’R.
For the ladder configuration, this means the ratio between the minimum and maximum
heating wire power must exceed a certain value, denoted as fj,;,. To quantify uniformity,
we define the heater current decay criterion 7y, as:

. .2
min (lh,k)
2
max (Zh,k>

For the ladder and diagonal configuration these ratios amount to, respectively,

Thw = > fhw (18)

cosh? |1 ,/¢
2 1
f- i T

cosh? Kn — %) \/E} cosh? {% \/E}

in which we introduce the approximation Equation (15) for convenience. A ry,, ratio close
to one indicates that the heater wire powers and temperatures are nearly uniform. To
ensure the ratio between the lowest and highest power across the heater is not less than,
say, 0.70, the designer can attempt to decrease the lead wire resistances, increase the heater
wires resistances, or change the number of heating wires per unit length. The manipulation
of the lead and heater wire resistances can be achieved by selecting yarns with different
conductivity or by altering the width of the knitted strip.

For the second criterion, we consider the heat generated by the different sections of the
lead wires. Figure 1 shows that the generated heat is largest close to the power connections
and decreases further downstream. For our application, a knitted heater structure, it is no
problem that the lead wires also contribute to the heating, but we should ensure that the
power of the lead wires does not exceed that of the heater wires. Therefore, we require that
the maximum lead wire power is always equal to or less than that of the heater wires

2
. ZA,]RL
Tlw =

<1 (20)

2
Zh,l Rh

Again, using Equations (7) and (14), we obtain with some rewriting:

2
2 n—
tanh| 2= +/¢ _
rle = (Rh — 1) €, rlD = g ¢ & 4tanh® [1/121\/5} (21)
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Note that, from the latter equation, it can be deduced that the criterion rl% = 1is met if
(n—1)ve 2 1.099 (22)

3. Example Cases

In order to validate our closed-form expressions we will compare it with numerical
simulations (using the block diagram environment of MatLab Simulink, version 10.2). In
addition, we will show how the approximations discussed in Section 2.3 relate to these
exact solutions. For this, we will consider a typical case for a knitted heater strip and
assume Vo =10V, R, =100 QY and R4 = Rg =1, 5 or 10 (), resulting in € values of 0.02, 0.10
and 0.20, respectively.

First, we consider the equivalent resistances as given by Equations (6) and (13) and
their approximations, Equation (16). As shown in Figure 4 for the ladder configuration,
the equivalent resistances decrease monotonically with increasing # until they reach their
asymptotic value given by the first of Equation (16). For small ¢, the curves approximate
the 1/#n limit of the parallel resistor configuration. The closed-form solutions (full lines)
and simulation results agree exactly. The approximations obtained by substituting 6 = /e
(Equation (15)) almost coincide with the full solution (maximum deviation 0.65%) and can
thus be considered as accurate and practical simplifications. The equivalent resistance of
the diagonal configuration, on the other hand, first follows a 1/n decay, which is later taken
over by a %ne asymptotic increase (2nd of Equation (16)). The asymptotes (shown as the
intermittent lines in Figure 5) are shown to converge well with the closed form solutions
(full lines) and the simulations (symbols).

Ladder configuration

1.0 4
E eps 0.20
0.8 ] eps 0.10
] eps 0.02
£ 4
3 0.6 : ——
=3 ]
ml ]
x 04 7]
0.2 1
0.0 1 : : . ; ; . . . .
1 3 5 7 9

Figure 4. Equivalent resistances for ladder configuration. Full lines are exact solutions; symbols are
Simulink data; dashed lines are limiting solutions.

The currents in the lead wires and heaters (Equation (7)) are depicted in Figures 6
and 7 for 5, 10 and 15 heater wires with an ¢ value of 0.02 (colored full lines) and for ¢ values
of 0.10 and 0.20 (dashed lines). The simulated values (symbols) agree exactly with the
closed-form expressions in all the considered cases. The lead wire currents are at maximum
near the power source and vanish at k = n. The heater currents (Figure 7) always start at a
value of Vy/R;, at k = 1. The curves have a parabolic shape and a minimum at k = n.
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Diagonal configuration

0.0 T T T T T T T T

[y
w
)]
~
o

Figure 5. Equivalent resistances for diagonal configuration. Full lines are exact solutions; symbols are
Simulink data; dashed lines are limiting solutions.

lead wire currents, ladder

0.80
0.70 n=5, e=0.02
0.60 n=10, e=0.02
0.50 n=15, e=0.02
<0.40 - . = n=10, =0.10
= — —n=10, e=0.20
0.30
0.20
0.10
i T + .
0.00 — = e
0 0.2 0.4 0.6 0.8 1
k/n

Figure 6. Lead wire currents for ladder configuration. Lines are exact solutions; symbols are Simulink data.

heater currents, ladder

n=5,e=0.02 |
n=10, e=0.02
0.10 A &\e\% n=15, e=0.02
A\ -+ = n=10, e=0.10|—¢
N2
A — —n=10, e=0.20
— A
= LN
0,05 S e N !
h "
R ~| A
% T~ A b A—g
~ ~te._
%__%\—:_. Bl I SRS
— - — —
0.00 ==
0 0.2 0.4 0.6 0.8 1
k/n

Figure 7. Heater currents for ladder configuration. Lines are exact solutions; symbols are Simulink data.
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Figures 8 and 9 show similar plots for the diagonal configuration. In this case, the
lead wire currents (Figure 8) show a more linear behavior and Equation (17) (dashed lines)
turns out to give good approximations. The heater currents have a minimum at k = "TH
and show much more uniformity over the different heater nodes as compared to the ladder
currents. The approximations now deviate more from the exact solutions.

lead wire currents, diagonal

0.70
h=5, Eq.14
0.60 n=10, Eq.14
n=15, Eq.14
0.50 n=10, e=0.10
-n=10, e=0.20
=040 4  Tesa TS e | e approximation Eq.17
&
—=0.30
0.20
0.10
0.00
0 0.2 0.4 0.6 0.8 1

k/n

Figure 8. Lead wire currents for diagonal configuration. Lines are exact solutions; symbols are
Simulink data and dashed lines are approximations.

heater currents, diagonal

0.10
0.08
0.06
=
~0.04
n=5, Eq.14
0.02 n=10, Eq14
n=15, Eq.14
----- approximation Eq.17
0.00
0 0.2 0.4 0.6 0.8 1

k/n

Figure 9. Heater currents for diagonal configuration. Lines are exact solutions; symbols are Simulink
data. Dashed lines are the approximation according to Equation (17).

In Figures 10 and 11, we present the uniformity criterion for the ladder and diagonal
cases. A uniformity of unity signifies that all heating wires have equal temperatures, which
is only achievable in the ideal cases of ¢ = 0 or n = 1. For a configuration with seven heaters,
a uniformity value of 0.5 would require an e value of 0.08 for the diagonal case and a value
of 0.02 for the ladder case, indicating that, in the latter case, a four times lower lead wire
resistance would be needed.
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0.2 T T T T T T T T T
[N
Lo
0.18¢ 2 . .
T
L
0.16 .
0.14 i
0.12 1
g

o 01p 1
0.08 _ T
. . _

0.06 N\

N
0.04 | N 1
C?‘g \HH H"‘--.._.__MK"H_\__\_
S S
S '--._____ 'h\-.._\_\__
0.0zr g T, 7 06 05— 1
i i i  re— T i —
2 3 4 5 6 7 8 9 10

number of heating elements

Figure 10. Contour plot for criterion Equation (18). Ladder configuration.

0.2 T
o
018 © o
e
016
0.14

012

eps

01r
0.08 e
0.06

0.04 1

002t 0.8 ki“—-——_____

09

2 3 4 5 5] 7 8 9 10
number of heating elements

Figure 11. As in Figure 10. Diagonal configuration.

The plots for the 2nd criterion are depicted in Figures 12 and 13. Of practical impor-
tance is the case where the maximum heat generated by the lead wires matches that of the
heater’s maximum, i.e., ”l?u = 1. Assuming that we have a lead wire resistance of a fixed
minimum value, we can use this criterium to calculate the maximum number of heaters
in relation to a chosen heater resistance. With lead wire resistances of 1 () and a heater
resistance of 100 (), we obtain an ¢ of 0.02 and, thus, can have no more than 12, respectively:
nine heaters for the ladder and diagonal configurations.
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0.2

0.16 A
0.14
0.12

0.1

eps

0.08

0.06

0.04

0.02

2 3 4 5 6 7 8 9 10 11 12
number of heating elements

Figure 12. Contour plot for criterion Equation (20). Ladder configuration.

0.2

0.18

0.16

0.14

012
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0.08
0.06

0.04

U505 0.7 080" tenes
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number of heating elements

0.02

Figure 13. As in Figure 12. Diagonal configuration. The dots are in accordance with Equation (22).

4. Discussion and Conclusions

This paper presents simple closed-form solutions for the electrical characteristics of
finite homogeneous ladder networks with their power sources connected to input terminals
A1B1 and A1 By, respectively. Explicit expressions are derived for the equivalent resistances
and mesh currents and, based on those, approximations and asymptotic solutions are
presented. In addition, we formulated two criteria: one for the uniformity of the current
distribution over the heating wires and one to ensure that the power dissipated in the lead
wires does not exceed that of the heater wires. When designing heated garments that cover
larger surface areas, such as an arm, leg or torso, the designer must consider several factors:
whether to use a single ladder-like configuration, use multiple parallel-connected heating
elements or adjust the placement and number of power sources. The solutions presented in
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this paper can be a valuable tool for designers, offering direct feedback on the impact of
design decisions, e.g., overall power consumption and heating uniformity.

As previously mentioned, the work presented here is also applicable as a model for
other transport systems, such as the respiratory system and irrigation channels. In these
cases, electrical potential, current and resistance correspond to pressure, flow speed and
flow resistance, respectively. Additionally, our solutions can be applied to describe the
dynamic behavior of more complex ladder-like electrical systems, such as transformer
windings. In this case, the resistances in our model should be replaced with the equivalent
complex impedances of the repeating electrical units, which consist of resistors, capacitors
and inductors.

In future work, we plan to validate the model using physical knitted samples and compare
predicted power distributions with measured overall resistances and temperature distributions.

Funding: This research received no external funding.
Data Availability Statement: The data will be made available upon request from the author.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A
For the evaluation of Equation (10), we use the sum of power identities

m mo m —md
ko e -1 —ké 1—e
k;e C1—ed k;e -1 (A1)
Applying this to the hyperbolic functions eventually leads to

"o n sinh[%4] | [m—n—i—l }

sinh|(k—=)é| = 2 _Lsinh ) (A2)
k; K ) } sinh {%5} 2

u n sinh[%4] {m—n—l—l ]

cosh| (k—=)d| = 2 cosh 6 (A3)

Note that, for m =n — 1, the sinh term in Equation (A2) vanishes and the corresponding
cosh term in Equation (A3) reduces to unity.
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