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Flux large deviations of weakly interacting jump
processes via well-posedness of an associated

Hamilton-Jacobi equation
Richard C. Kraaij∗

September 23, 2020

Abstract
We establish uniqueness for a class of first-order Hamilton-Jacobi equa-

tions with Hamiltonians that arise from the large deviations of the empirical
measure and empirical flux pair of weakly interacting Markov jump processes.
As a corollary we obtain such a large deviation principle in the context of
weakly interacting processes with time-periodic rates in which the period-
length converges to 0.

Keywords: Hamilton-Jacobi equation; Large deviations; weakly interacting
jump processes; empirical measure; empirical flux

MSC2010 classification: 49L25; 60F10; 60J75

1 Introduction
Systems of interacting Markov jump processes appear in various contexts, e.g. in
statistical physics, kinetic theory, queuing systems and communication networks. A
first natural goal is to understand the limiting behaviour of appropriate observables
as the number of components goes to infinity. An extension of this question is that
of a large deviation principle, see e.g. [6,9,12,14,18,23,26,27] and references therein.
We will consider the context of time-inhomogeneous interacting jump processes

(Xn,1(t), . . . , Xn,n(t))t>0 (1.1)

on a finite-state space {1, . . . , q}. We assume that the processes are fully exchange-
able, jump one-by-one, and interact weakly: their jump rates depend on their empir-
ical measure µn(t) := n−1

∑n
i=1 δXn,i(t). We will study the large deviation behaviour

of the trajectory of empirical measures t 7→ µn(t) as n gets large.
We assume that that the interaction has the following properties.

(1) The interaction is weak: each of the n process in (1.1) jumps over the bond
(a, b) ∈ Γ :=

{
(a, b) ∈ {1, . . . , q}2

∣∣a 6= b} with rate rn(t, a, b, µn),

(2) The jump rates are time-periodic with decreasing period size. That is, there
is a constant T0 > 0 and a sequence of constants γn →∞ such that

rn(t+ γ
−1
n T0, a, b, µn) = rn(t, a, b, µn)

for all t > 0, µn and (a, b) ∈ Γ .
∗Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broek-

manweg 6, 2628 XE Delft, The Netherlands. E-mail address: r.c.kraaij@tudelft.nl
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(3) The rates are converging: there is a kernel r(t, a, b, µ) such that

lim
n→∞ sup

t6T0
sup

(a,b)∈Γ,µ∈Pn({1,...,n})

∣∣rn(γ−1n t, a, b, µ) − r(t, a, b, µ)
∣∣ = 0,

where Pn({1, . . . , q}) is the set of measures of the form n−1
∑n
i=1 δxi for x1, . . . , xn ∈

{1, . . . , q}.

(4) The rates are Lipschitz: there is some C > 0 such that

sup
n

sup
t6T0

sup
µ,ν∈Pn({1,...,q})

∑
(a,b)∈Γ

|rn(t, a, b, µ) − rn(t, a, b, ν)| 6 C |µ− ν| .

The periodicity on a time-interval that is decreasing in length has the effect that the
interacting particle system undergoes an effective averaging effect and this will be
seen in the final large deviation result. Note that the γn do not model a speed-up of
the process, but rather model an external factor which lives on a faster time-scale.
Recent works on path-space large deviations by [24,26] and works in mathematical
physics [3,7], or [2,4,5] on the study of hydrodynamic limits or long-time (Donsker-
Varadhan) large deviations, have shown that studying the process of the empirical
measures together with the empirical fluxes simplifies proofs and gives greater in-
sight in the large deviation principles. We will follow these insights and study the
empirical measures of the processes in (1.1) in combination with their empirical
fluxes.
This paper can thus be seen as a natural continuation of [14, 18, 24]. The papers
[14, 24] are more general in the sense that they consider contexts where multiple
processes can jump at the same time. If we restrict their results to the context
where only a single process jumps we extend the three papers by including a time
averaging effect. In addition, we extend [18] by including fluxes, [14] by allowing
more general rates and include fluxes, and [24] by including more general rates.
Finally, we establish the large deviation principle by using a non-standard technique
using the machinery of Hamilton-Jacobi equations introduced by [16]. We give a
more elaborate comparison after the statement after the introduction of our main
results.
Consider the processes (1.1) and denote by Wn,i(t) the number of jumps made by
Xn,i(t) up to time t across each directed edge (a, b) ∈ Γ . We will establish the large
deviation principle for the trajectory of the empirical measure-flux pair

t 7→ Zn(t) :=

(
1

n

n∑
i=1

δXn,i(t),
1

n

n∑
i=1

Wn,i(t)

)
(1.2)

on the Skorokhod space of trajectories in E := P({1, . . . , q}) × (R+)Γ . The rate
function is given in Lagrangian form:

I(µ,w) :=

{
I0(µ(0),0) +

∫∞
0 L((µ(s), w(s), (µ̇, ẇ(s)))ds, if (µ,w) ∈ AC,∞ otherwise,

where AC is an appropriate space of absolutely continuous trajectories in E. The
Lagrangian is given as a sum over relative entropies S(z | v) := z log z

v
− z+ v:

L((µ(s), w(s), (µ̇, ẇ(s)))

:=

{∑
(a,b)∈Γ S

(
ẇ(a,b) |µ(a)r(a, b, µ)

)
if ∀a : µ̇(a) =

∑
b ẇ(a,b) − ẇ(b,a),∞ otherwise.

(1.3)
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The kernel r denotes the outcome of the averaging principle from (2) and (3):

r(a, b, µ) :=
1

T0

∫T0
0

r(t, a, b, µ)dt.

The key step in the proof of the large deviation result in this paper, and in addition
our second main result, is the establishment of the comparison principle (imply-
ing uniqueness of viscosity solutions) to a collection of associated Hamilton-Jacobi
equations f − λHf = h, for λ > 0 and h ∈ Cb(E). The operator H in this equation
is given by Hf(µ,w) = H((µ,w),∇f(µ,w)) where H is the Legendre transform of L
from (1.3). Its explicit representation is given by

H((µ,w), p) =
∑

(a,b)∈Γ

µ(a)r(a, b, µ)
[
exp
{
pb − pa + p(a,b)

}
− 1
]
,

(µ,w) ∈ P({1, . . . , q})× (R+)Γ , p ∈ Rq × RΓ . (1.4)

Due to the terms of the type µ(a)r(a, b, µ) [epb−pa+p(a,b) − 1] the Hamiltonian is
neither Lipschitz nor uniformly coercive in p. This implies that our Hamilton-Jacobi
equation can not be treated using ‘standard’ methods for first-order equations,
see [1,11,17] and references therein. Instead, our method improves upon the method
of [18] which was designed for the Hamiltonian of weakly interacting jump processes
without taking into account the fluxes. The novelty of the proof of the comparison
principle, compared to [18], is based on a novel ‘two stage’ penalization procedure,
which potentially can be used to treat other types of ‘non-standard’ first-order
Hamilton-Jacobi equations, see Sections 5.1 and 5.2.
We stress that the verification of the comparison principle is of interest beyond the
large deviation statement that is proven in this paper. First of all, the compari-
son principle can find other applications in the field of control theory or mean-field
games. Secondly, an extension of the comparison principle in this paper by the boot-
strap principle introduced in [21] leads to comparison principles for more elaborate
Hamilton-Jacobi (-Bellman) equations. In turn these boosted comparison principles
can be used for new large deviation principles, as carried out in the forthcoming
work [22] in the context of more general slow-fast systems.
We next compare our large deviation result to results in the literature.
Large deviations for weakly interacting jump processes have been studied in the
past, see e.g. [9, 12, 23] in contexts with spatial structure or random fields. The
methods of proof were based on direct evaluation of the asymptotics or tilting argu-
ments based on Sanov’s Theorem, Varadhan’s lemma and the contraction principle.
More recent papers in the context of non-spatial processes have focused on different
methods of proof [14, 18], or have included fluxes [24, 26]. Of these four papers,
two [18, 26] still focus on processes with transitions of the type where one particle
moves its state, whereas other two papers [14,24] allow for more general transitions,
e.g. allowing more particles to change their state at a single time or consider mass-
action kinetics.
As a first remark, this paper includes an averaging effect for path-space large de-
viations. If we restrict ourselves to the time-homogenous case, we can compare
our large deviation principle to those of [14, 18, 24, 26]. We focus our comparison
to [14, 24], as this paper supersedes [18] by the inclusion of fluxes, and [24] su-
persedes [26] by generalizing the single-jump setting as well as letting go of the
independence assumption.
In [14], the authors work in the context without fluxes. The proof of the large
deviation principle is based on a variational expression for the Poisson random
measure, of which it is established that the expression converges as n → ∞. An
approximation argument based on ergodicity is used to reduce the proof of the lower
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bound to trajectories that lie in the interior of the simplex of probability measures.
It is also assumed that the law of large numbers limit pushes the empirical measure
into the interior of the simplex. If restricted to the context of single-jumps only,
this paper covers more cases as assumptions of the type resembling these two final
conditions of [14] are absent from this paper.
In [24], following [26], the empirical measure is combined with the empirical fluxes.
The inclusion of the fluxes allows for a clear and direct change of measure argu-
ment leading in a straightforward way to the Lagrangrian in terms of a sum over
appropriate relative entropies. In the context of single jumps, our result extends
that of [24]. Two key assumptions in [24] are Assumption 2.2 (v) and (vi). The
first of these two conditions is naturally reflected by the assumption that the limit
of the jump rates form a proper kernel as in Assumption 3.1 (c). It should be noted
that (v) of [24] is more restrictive and excludes for example Glauber type inter-
actions like in Example 3.6. In addition, this paper does not assume an analogue
of [24, Assumption 2.2 (vi)].
We thus see that the proof via the comparison principle in the context of systems
with single jumps yields the most general results, and with additional work would
allow for a generalization to the context where the rates are non-Lipschitz as in [18].
The proof of the comparison principle, however, uses a technique that is very much
geared towards Hamiltonians of the type (1.4) and can not directly be adapted to
the more general setting of processes with multiple simultaneous jumps of [14, 24].
More remarks on these restrictions are given in Section 5.2.
The paper is organized as follows. We start in Section 2 with basic definitions,
including those of viscosity solutions of Hamilton-Jacobi equations, the comparison
principle, the martingale problem, and the large deviation principle. In Section 3 we
state our main results: the comparison principle and the large deviation principle.
In Section 4 we give the key results that reduce the proof of the large deviation
principle to the comparison principle. We then prove the comparison principle
in Section 5 and we follow with the verification of the remaining assumptions for
the results of Section 4 in Section 6. In Appendix A, we collect some results for
the literature that are essential for the proof of the comparison principle. Their
inclusion makes the paper as self-contained as possible.

2 Preliminaries
Let E be a Polish space. We denote by P(E) the space of Borel probability measures
on E. By Pn(E) we denote the subset of measures that have the form n−1

∑n
i=1 δxi

for some collection {xi}
n
i=1 ⊆ E.

We denote by DE(R+) the space of paths γ : R+ → E that are right continuous and
have left limits. We endow DE(R+) with the Skorokhod topology, cf. [15, Section
3.5]. An important property is that under this topology DE(R+) is Polish if E is
Polish.
We denote by C(E) and Cb(E) the spaces of continuous and bounded continuous
functions on E. For d ∈ N \ {0} and k ∈ N let Ckb(Rd) be the space of functions
that have k continuous and bounded derivatives. By C∞b (Rd) we denote the space
of functions with bounded continuous derivatives of all orders.
Now consider a subset E ⊆ Rd that is a Polish space and that is contained in the Rd
closure of its Rd interior. We denote by Ckb(E), C∞b (E) the spaces of functions that
have an extension to Ckb(Rd) and C∞b (Rd) respectively. Finally, denote by Ckc(E)
and C∞c (E) the subsets that have compact support in E. Note that the derivative
of a continuously differentiable function on E is determined by the values of the
function on E by our assumption on E.
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Finally, we introduce the space AC(E) of absolutely continuous paths in E. A curve
γ : [0, T ] → E is absolutely continuous if there exists a function g ∈ L1([0, T ],Rd)
such that for t ∈ [0, T ] we have γ(t) = γ(0) +

∫t
0 g(s)ds. We write g = γ̇.

A curve γ : R+ → E is absolutely continuous, i.e. γ ∈ AC(E), if the restriction to
[0, T ] is absolutely continuous for every T > 0.

2.1 Large deviations
Let X be a Polish space. Later we will use both X = DE(R+) and X = E.

Definition 2.1. Let {Xn}n>1 be a sequence of random variables on X. Furthermore,
consider a function I : X→ [0,∞]. We say that

• the function I is a good rate-function if the set {x | I(x) 6 c} is compact for
every c > 0;

• the sequence {Xn}n>1 satisfies the large deviation principle and good rate-
function I if for every closed set A ⊆ X, we have

lim sup
n→∞

1

n
logP[Xn ∈ A] 6 − inf

x∈A
I(x),

and, for every open set U ⊆ X,

lim inf
n→∞ 1

n
logP[Xn ∈ U] > − inf

x∈U
I(x).

2.2 The martingale problem
One effective way of defining a Markov process on E is by using its infinitesimal
generator, see e.g. [15]. One of the instances of this idea is that of solving the
martingale problem.
We introduce the martingale problem for time-inhomogeneous processes. Note that
this is a straightforward extension from the time-homogeneous case via the inclusion
of time in the state-space, see for example Section 4.7.A in [15] or Proposition II.5.7
in [25].
Let A : D(A) ⊆ Cb(E) → Cb(R+ × E) be a linear operator. For each time s ∈ R+,
we denote by A[s] : D(A) ⊆ Cb(E)→ Cb(E) the linear operator obtained by fixing s.
A[s] can be interpreted as the generator at time s. In addition, we construct out of
the operators A[s] an operator ~A on Cb(R+ × E):

• D(~A) satisfies

D(~A) ⊆
{
f ∈ Cb(R+ × E)

∣∣∀ x ∈ E : f(·, x) ∈ C1b(R+), ∀s ∈ R+ : f(s, ·) ∈ D(A)
}
,

• for f ∈ D(~A) we have ~Af(s, x) = ∂sf(s, x) + (A[s]f(s, ·))(x).

Definition 2.2. Let µ ∈ P(E). We say that the process t 7→ X(t) on DE(R+)

solves the (time-inhomogeneous) martingale problem for (~A,µ) if for all f ∈ D(~A)

the process

Mf(t) := f(t, X(t)) − f(0, X(0)) −

∫t
0

~Af(s, X(s))ds

= f(t, X(t)) − f(0, X(0)) −

∫t
0

∂sf(s, X(s)) + (A[s]f(s, ·))(X(s))ds

is a martingale and if the projection of P on the time 0 coordinate equals µ.
By slight abuse of notation, we will also say that the measure of the process t 7→
(t, X(t)) solves the martingale for ~A.
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2.3 Viscosity solutions to Hamilton-Jacobi equations
Definition 2.3 (Viscosity solutions). Let H : D(H) ⊆ Cb(E) → Cb(E), λ > 0 and
h ∈ Cb(E). Consider the Hamilton-Jacobi equation

f− λHf = h. (2.1)

We say that u is a (viscosity) subsolution of equation (2.1) if u is bounded, upper
semi-continuous and if, for every f ∈ D(H) there exists a sequence xn ∈ E such that

lim
n↑∞u(xn) − f(xn) = sup

x
u(x) − f(x),

lim
n↑∞u(xn) − λHf(xn) − h(xn) 6 0.

We say that v is a (viscosity) supersolution of equation (2.1) if v is bounded, lower
semi-continuous and if, for every f ∈ D(H) there exists a sequence xn ∈ E such that

lim
n↑∞ v(xn) − f(xn) = inf

x
v(x) − f(x),

lim
n↑∞ v(xn) − λHf(xn) − h(xn) > 0.

We say that u is a (viscosity) solution of equation (2.1) if it is both a subsolution
and a supersolution to (2.1).
We say that (2.1) satisfies the comparison principle if for every subsolution u and
supersolution v to (2.1), we have u 6 v.

Remark 2.4. The comparison principle implies uniqueness of viscosity solutions.
Suppose that u and v are both viscosity solutions, then the comparison principle
yields that u 6 v and v 6 u, implying that u = v.

Remark 2.5. Consider the definition of subsolutions. Suppose that the testfunc-
tion f ∈ D(H) has compact sublevel sets, then instead of working with a sequence
xn, we can pick a x0 such that

u(x0) − f(x0) = sup
x
u(x) − f(x),

u(x0) − λHf(x0) − h(x0) 6 0.

A similar simplification holds in the case of supersolutions.

3 Main results
In this section we give our two main results: the large deviation principle and
the comparison principle. We give a short recap of some of the definitions infor-
mally given in the introduction. Let {1, . . . , q}, q ∈ N \ {0,1} be some finite set.
Write Γ =

{
(a, b) ∈ {1, . . . , q}2

∣∣a 6= b} for the directed edge-set in {1, . . . , q}. Let
E = P({1, . . . , q}) × (R+)Γ be the Polish space of probability measures on {1, . . . , q}

combined with a space in which we can keep track of the fluxes over the directed
bonds in Γ .
For n points ~x = (x1, . . . , xn) ∈ {1, . . . , q} denote by µn[~x] the empirical measure
µn[~x] = n

−1
∑n
i=1 δxi .

We consider a collection of weakly-interacting jump processes

~Xn(t) = (Xn,1(t), . . . , Xn,n(t))t>0 (3.1)

6



on the space {1, . . . , q} and µn(t) := µn[~Xn(t)] the empirical measure of the process
at time t. For any given n, we will assume that each of the n processes, if at state
a, jumps to state b with rate

rn(t, a, b, µn(t)),

i.e. the processes interact weakly through their empirical measure.
We are interested in the large deviation behaviour of the trajectory t 7→ µn(t) on
the space P({1, . . . , q}). Following [24,26], it turns out that a description of the large
deviation principle simplifies if we take into account also the fluxes across the bonds
in Γ . Therefore, denote by

t 7→Wn,i(t) ∈ NΓ

the process that satisfies

Wn,i(t)(a, b) := # {s 6 t | (Xn,i(s−), Xn,i(s)) = (a, b)} .

Our first result establishes the large deviation principle for the pair of processes

t 7→ Zn(t) :=

(
1

n

n∑
i=1

δXn,i(t),
1

n

n∑
i=1

Wn,i(t)

)
, (3.2)

on the set DE(R+).
In Section 3.1, we state our large deviation principle. In Section 3.2 we give an
example in the context of Glauber dynamics. We end our section of main results in
Section 3.3 with the uniqueness result for the associated Hamilton-Jacobi equations.

3.1 Flux large deviations for time-periodic jump rates
Assumption 3.1. The rates rn(t, a, b, µ) at which each of the processes in (3.1)
jumps over the bond (a, b) ∈ Γ at time t while the empirical measure is given by µ
satisfies the following properties.

(a) The jump rates are time-periodic with decreasing period size. That is, there
is a constant T0 > 0 and a sequence of constants γn → ∞ such that rn(t +
γ−1n T0, a, b, µn) = rn(t, a, b, µn) for all t > 0, µn and (a, b) ∈ Γ .

(b) The rates are converging: there is a kernel r(t, a, b, µ) such that

lim
n→∞ sup

t6T0
sup

(a,b)∈Γ,µ∈Pn({1,...,n})

∣∣rn(γ−1n t, a, b, µ) − r(t, a, b, µ)
∣∣ = 0,

where Pn({1, . . . , q}) is the set of measures of the form n−1
∑n
i=1 δxi for x1, . . . , xn ∈

{1, . . . , q}.

(c) The averaged kernel is ‘proper’. Denote by r the kernel

r(a, b, µ) :=
1

T0

∫T0
0

r(t, a, b, µ)dt.

For each (a, b) ∈ Γ , we have either (i) or (ii):

(i) r(a, b, µ) = 0 for all µ,
(ii) infµ r(a, b, µ) > 0.

(d) The rates are Lipschitz: there is some C > 0 such that

sup
n

sup
t6T0

sup
µ,ν∈Pn({1,...,q})

∑
(a,b)∈Γ

|rn(t, a, b, µ) − rn(t, a, b, ν)| 6 C |µ− ν| .
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Remark 3.2. Note that the time-periodic context includes the time-homogeneous
contexts. Namely, if the rates do not depend on t than any choice of T0 > 0 and
γn →∞ will induce time-periodicity of the type above.

Our first main result is the large deviation principle for the pair of processes (3.2)
in the context of time periodic rates.

Theorem 3.3. For each n consider the process of state-flux pairs

((Xn,1(t),Wn,1(t)), . . . , (Xn,n(t),Wn,n(t)))t>0,

where the jump rates rn satisfy Assumption 3.1.
Consider the processes t 7→ Zn(t) :=

(
1
n

∑n
i=1 δXn,i(t),

1
n

∑n
i=1Wn,i(t)

)
. Suppose

that Zn(0) satisfies a large deviation principle on E = P({1, . . . , q})×(R+)Γ with good
rate function I0, then {Zn}n>1 satisfies the large deviation principle on DE(R+) with
good rate function I given by

I(µ,w) =

{
I0(µ(0), w(0)) +

∫∞
0 L((µ(s), w(s)), (µ̇(s), ẇ(s)))ds if (µ,w) ∈ AC(E),∞ otherwise,

where L : E× Rq+|Γ | → R+ is given by

L ((µ,w), (µ̇, ẇ)) =

{∑
(a,b)∈Γ S(ẇ(a,b) |µ(a)r(a, b, µ)) if ∀a : µ̇a =

∑
b ẇ(b,a) − ẇ(a,b),∞ otherwise,

with

S(z | v) :=


v if z = 0,
z log z

v
− z+ v if z 6= 0, v 6= 0,∞ if z 6= 0, v = 0.

Note that the Lagrangian is given in terms of the entropic cost of changing the flux
across each bond. Indeed, S is the relative entropy corresponding to a tilt of the
intensity of a Poisson measure.

Remark 3.4. Theorem 3.3 gives as a corollary the large deviation principle for the
trajectory of the empirical measures only. This recovers e.g. the result of [18] but
now in contracted form. The rate function J is given by

J(µ) = I0(µ(0)) + inf


∫∞
0

∑
(a,b)∈Γ

S(ẇ(a,b)(s) |µ(a)r(a, b, µ(s)))ds∣∣∣∣∣w ∈ AC(E), ∀a : µ̇(a) =
∑
b

ẇ(b,a) − ẇ(a,b)

}

if µ is absolutely continuous and J(µ) =∞ otherwise.

As a second remark, a comment on the Lipschitz property in Assumption 3.1 (d).

Remark 3.5. The Lipschitz assumption can be dropped in the context that the
rates are time-homogeneous.
The uniqueness of solutions of the Hamilton-Jacobi equation in Theorem 3.8 below
does not depend on this statement. Thus, a large deviation principle for the time-
homogeneous case without the Lipschitz condition can be obtained by dropping the
Ff,n or hn term in Proposition 6.1 and Lemma 6.2. Alternatively, one can adapt
the operator convergence proof in [18].
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Even in the context of time-inhomogeneous rates, the Lipschitz property is not
essential. In a work in progress, [22], this is explored in the more general context
of Markov processes with two time-scales. A proof of convergence of operators and
how to deal with the viscosity solutions for the limiting operators in this general
two-scale context is technically more challenging. We refrain from carrying this out
in this context and keep a simpler and independent proof in this paper.

3.2 Example: the Curie-Weiss-Potts model
Next, we establish the path-space large deviation principle in the context of the
dynamic Curie-Weiss-Potts model.

Example 3.6 (Time-dependent potential functions). Let V : R+ × Rq → R be a
twice continuously differentiable function in the second component and such that
V(t + 1, ·) = V(t, ·) for all t > 0. Fix r0 : {1, . . . , q} × {1, . . . , q} → R+. Finally, let
γn →∞ and set

rn(t, a, b, µ) := r0(a, b) exp
{
−n2−1

(
V
(
γnt, µ− n−1δa + n−1δb

)
− V(γnt, µ)

)}
.

As n goes to infinity, the limiting kernel r becomes

r(t, a, b, µ) := r0(a, b) exp
{
1

2
∇aV(t, µ) −

1

2
∇bV(t, µ)

}
,

so that
r(a, b, µ) := r0(a, b)

∫1
0

exp
{
1

2
∇aV(t, µ) −

1

2
∇bV(t, µ)

}
dt.

3.3 The comparison principle
We close our section of main results with the uniqueness of viscosity solutions for
the Hamilton-Jacobi equation.
The motivation for this well-posedness result comes from a connection between
large deviation theory of Markov processes and non-linear semigroup theory that
by a chain of arguments leads to Theorem 3.3. This chain of arguments was first
introduced in [16] and later reproved in [19, 20]. The key technical steps in this
method are collected in Section 4.
This reduction, even though at first sight technical, is fully analogous to that of
establishing weak convergence of Markov processes and is carried out via the con-
vergence of their a transformed version of their infinitesimal generators. The state-
ment that the martingale problem for the limiting operator is well posed is naturally
replaced by uniqueness of solutions for the Hamilton-Jacobi equation (see [10] for
the result that the uniqueness of the martingale problem for a linear operator fol-
lows from uniqueness of solutions to the Hamilton-Jacobi equation in terms of this
operator).
In the proof of Theorem 3.3, we see that the natural limiting operator H is of the
form Hf(µ,w) = H((µ,w),∇f(µ,w)) where

H((µ,w), p) =
∑

(a,b)∈Γ

µ(a)r(a, b, µ)
[
exp
{
pb − pa + p(a,b)

}
− 1
]
. (3.3)

Our second main result is the well-posedness of the Hamilton-Jacobi equation f −
λHf = h. We state it separately as it is of use in a context that goes beyond
large deviation theory. It also holds in a slightly more general setting than for the
Hamiltonian obtained in Theorem 3.3. We give the proper context.
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Definition 3.7. Let v : Γ × P({1, . . . , q})→ R+. We say that v is a proper kernel if
v is continuous and if for each (a, b) ∈ Γ , the map µ 7→ v(a, b, µ) is either identically
equal to zero or satisfies the following two properties:

(a) v(a, b, µ) = 0 if µ(a) = 0 and v(a, b, µ) > 0 for all µ such that µ(a) > 0.

(b) There exists a decomposition v(a, b, µ) = v†(a, b, µ(a))v‡(a, b, µ) such that v† :
Γ × [0,1]→ R+ is increasing in the third coordinate (that is, in µ(a)) and such
that v‡ : Γ × P({1, . . . , q})→ R+ is continuous and satisfies infµ v‡(a, b, µ) > 0.

Note that the Hamiltonian in (3.3) features a proper kernel v. Choose v†(a, b, µ) =
µ(a) and v‡(a, b, µ) = r(a, b, µ) and argue using Assumption 3.1 (c).

Theorem 3.8. Consider the Hamiltonian H : D(H) ⊆ Cb(E)→ Cb(E) with domain
C∞c (E) ⊆ D(H) ⊆ C1b(E) satisfying Hf(µ,w) = H((µ,w),∇f(µ,w)) where H : E×Rd →
R is given by

H((µ,w), p) =
∑

(a,b)∈Γ

v(a, b, µ)
[
exp
{
pb − pa + p(a,b)

}
− 1
]
. (3.4)

and where v : Γ × P({1, . . . , q}) → R+ is a proper kernel. Then for each λ > 0 and
h ∈ Cb(E) the comparison principle holds for

f− λHf = h.

The proof of the theorem can be found in Section 5.2.

Remark 3.9. Note that a natural interpretation of E is that as a subset of Rq+|Γ |.
However, due to the fact we work with probability measures, we can also interpret
E as a subset of Rq−1+|Γ |. The first interpretation is more natural to write down
equations or Hamiltonians and we will do so in the subsequent sections stating the
main results. Only in the second interpretation our set is a subset of Rq−1+|Γ | that
is contained in the closure of its interior as as will be needed in the proofs of Section
5.

4 Large deviations via well-posedness of the Hamilton-
Jacobi equation

The key tool that allows us to establish the path-space large deviation principle
is the well-posedness of the Hamilton-Jacobi equation. In this section, we give an
outline of this reduction. We base ourselves on the work [16] in which this connection
was first put on strong footing. We will also refer to [19] in which a new proof of
the functional analytic content of the reduction is given.
The method can best be compared to a similar situation in the context of the
weak convergence of Markov processes. There one establishes: tightness, conver-
gence of generators, and the uniqueness (and existence) of solutions of the limiting
martingale problem. In the large deviation context, we follow the same strategy
1: exponential tightness, convergence of non-linearly transformed generators, and
well-posedness of the Hamilton-Jacobi equation for the limiting operator.
To properly describe the reduction, we start by introducing an appropriate martin-
gale problem for the empirical measures and their fluxes. Afterwards, we introduce
the appropriate notion of convergence of operators. After that we give the frame-
work that reduces the large deviation principle to the comparison principle.

1In fact, the similarity is more than simply an analogy. It was established in [10] that well-
posedness for the Hamilton-Jacobi equation with a linear operator establishes uniqueness for the
corresponding martingale problem.
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4.1 An appropriate martingale problem
We next introduce the martingale problem that corresponds to the evolution of the
empirical measure and empirical fluxes of n weakly interacting Markov processes.
Denote by

En :=

{
(µ,w) ∈ E

∣∣∣∣∣∃(x1, . . . , xn) ∈ {1, . . . , q},W ∈ NΓ : µ =
1

n

n∑
i=1

δxi , w =
1

n
W

}

the state space of the process of empirical measures and fluxes when working with
n interacting processes.
Following the setting in Section 3, we see that at moment that one of the processes
Xn,i makes a jump from site a to b, the empirical measure makes a change from
µn[~X] to µn[~X] + 1

n
(δb − δa), whereas the empirical flux w is increased by n−1 on

the bond (a, b) ∈ Γ .
It follows that the corresponding generator for the process

t 7→ Yn(t) := (t0 + t, µn(t), wn(t))

on DR+×En(R+) is given by

~Anf(t, µ,w) = ∂tf(t, µ, x)

+
∑

(a,b)∈Γ

µ(a)rn(t, a, b, µ)

[
f

(
µ+

1

n
(δb − δa), w+

1

n
δ(a,b)

)
− f (µ,w)

]
.

Starting from this generator, we introduce the machinery to establish the large
deviation principle.

4.2 Convergence of operators
To study the convergence of operators, we first need a notion of convergence of
functions on a sequence of spaces.

Definition 4.1. Let fn ∈ Cb(R+ × En) and f ∈ Cb(E). We say that LIM fn = f if

• supn ||fn|| <∞,

• for all T > 0 and M > 0, we have

lim
n→∞ sup

(t,µ,w)∈R+×En:
t6T,|w|6M

|fn(t, µ,w) − f(µ,w)| = 0.

The second condition of the definition of LIM is equivalent to the statement that for
all (µ,w) ∈ E and any sequence (tn, µn, wn) ∈ R+ × En such that (µn, wn)→ (µ,w)

and supn tn <∞, we have limn fn(tn, µn, wn) = f(µ,w). Note that for any function
f ∈ Cb(E), we have (by interpreting it as a function on R+ × En by f(t, x) = f(x))
the natural statement LIM f = f.
Using the notion of convergence of functions, we can define the extended limit of
operators.

Definition 4.2. Let Bn ⊆ Cb(R+ × En) × Cb(R+ × En). Define ex − LIMBn ⊆
Cb(E)× Cb(E) as the set

ex− LIMBn

= {(f, g) ∈ Cb(E)× Cb(E) |∃ (fn, gn) ∈ Bn : LIM fn = f,LIMgn = g} .
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4.3 The main reduction step
As announced at the beginning of the section, the large deviation principle can be
derived from three main inputs:

1. exponential tightness,

2. convergence of operators,

3. well-posedness of the Hamilton-Jacobi equation.

This framework was first established in [16, Theorem 7.18], but we will work in
the context of the reworked version of [19, Theorem 7.10]. The key insight is the
following reduction:

• Exponential tightness allows one to reduce the large deviation principle on
the Skorokhod space to that of the large deviations of the finite dimensional
distributions.

• Brycs theorem, in combination with the Markov property, allows one to reduce
the large deviation principle for the finite dimensional convergence to the large
deviations at time 0 and the convergence of conditional generating functions
(4.1).

• The conditional generating function forms a semigroup. The convergence of
semigroups can be treated via a functional analytic framework.

Before giving the large deviation result, we introduce the involved operators for the
functional analytic framework, and a weakened version of exponential tightness.
Thus, we start by introducing a semigroup, a resolvent and an infinitesimal gener-
ator. Denote by

Vn(t)f(s, µ,w) :=
1

n
logE

[
enf(Yn(t))

∣∣∣Yn(0) = (s,w, µ)
]

(4.1)

the conditional log-generating function. As a function of t the operators Vn(t) form
a non-linear semigroup. The formal infinitesimal generator of the semigroup is given
by the operator Hn

D(Hn) :=
{
f ∈ Cb(R+ × En)

∣∣∣ enf ∈ D(~An)
}
,

Hnf :=
1

n
e−nf~Ane

nf,
(4.2)

and the corresponding resolvent Rn(λ) = (1− λHn)
−1 is given by

Rn(λ)h(s, µ,w)

:= sup
Q∈P(DR+×En (R+))

{∫∞
0

λ−1e−λ
−1t

(∫
h(Yn(t))Q(dYn) −

1

n
St(Q |Pn,s,µ,w)

)
dt
}

where St is the relative entropy on the set DR+×En([0, T ]) and where Pn,s,µ,w is the
law of t 7→ Yn(t) when started in (s, µ,w). A full analysis of this triplet is given
in [19].
Next, we introduce the exponential compact containment condition. This condition
is a weakened version of exponential tightness on the path space. The weakening
consists of only requiring exponential tightness for the time marginals. In our
context, the empirical measures live on a compact space, so the condition translates
to a control on the number of jumps that the process makes.
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Definition 4.3. We say that the processes t 7→ Yn(t) = (t0+ t, µn(t), wn(t)) satisfy
the exponential compact containment condition if for each T0 > 0, M0 > 0, T > 0
and a > 0, there is a M =M(T0,M0, T, a) such that

lim sup
n→∞ sup

(t0,µ,w)∈[0,T0]×En:|w|6M

1

n
log Pt0,µ,w [|wn(t)| > M for some t ∈ [0, T ]] 6 −a.

Theorem 4.4 (Adaptation of Theorem 7.10 of [19] to our context). Suppose that
that the exponential compact containment condition holds.
Denote Zn = (µn(t), wn(t)). Suppose that

(a) The large deviation principle holds for Zn(0) on E with speed n and good rate
function I0.

(b) The processes Zn(t) = (µn(t), wn(t)) are exponentially tight on DE(R+) with
speed n.

(c) There is an operator H ⊆ Cb(E)× Cb(E) such that H ⊆ ex− LIMHn.

(d) For all h ∈ Cb(E) and λ > 0 the comparison principle holds for f− λHf = h.

Then there is a family of operators R(λ), λ > 0 and a semigroup V(t), t > 0 on
Cb(E) such that for all f ∈ Cb(E), x ∈ E and t > 0, we have

V(t)f(x) = lim
m→∞Rm

(
t

m

)
f(x). (4.3)

V(t) and R(λ) satisfy

• If λ > 0 and LIMhn = h, then LIMRn(λ)hn = R(λ)h;

• For h ∈ Cb(E), the function R(λ)h is the unique function that is a viscosity
solution to f− λHf = h;

• If LIM fn = f and tn → t we have LIMVn(tn)fn = V(t)f

In addition, the processes Zn = (µn, wn) satisfy a large deviation principle on
DE(R+) with speed n and rate function

I(γ) = I0(γ(0)) + sup
k>1

sup
0=t0<t1<...,tk

ti∈∆cγ

k∑
i=1

Iti−ti−1(γ(ti) |γ(ti−1)). (4.4)

Here ∆cγ is the set of continuity points of γ. The conditional rate functions It are
given by

It(y | x) = sup
f∈Cb(E)

{f(y) − V(t)f(x)} .

On the basis of this abstract result, we derive our main result.

Proof of Theorem 3.3. To apply Theorem 4.4, we have to verify (a) to (d). As-
sumption (a) follows by the assumption on the large deviation principle at time 0
of Theorem 3.3. The other three properties will be checked below. We give their
respective statements.
We verify (b) in Proposition 6.4 and we verify (c) in Proposition 6.1 below.
(d) is the result of Theorem 3.8 which will be proven in Section 5.
At this point, we have the large deviation principle with a rate function in projective
limit form. That this rate function equals the rate-function in Lagrangian form
follows from Proposition 6.6.
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5 Verification of the comparison principle
5.1 A general method to verify the comparison principle
Throughout this section, we assume that E = P({1, . . . , q})× (R+)|Γ | is parametrized
as a subset of Rq−1+|Γ | to make sure that it is contained in the closure of its interior.
We correspondingly write d = q− 1+ |Γ |.
In this section, we give the main technical results that can be used to verify the
comparison principle. These methods are based on those used in [8, 11, 13, 16, 18].
The key component in this method is the method of ‘doubling variables’. To obtain
the comparison principle, one aims to give an upper bound on

sup
x
u(x) − v(x). (5.1)

A direct estimate is hard to obtain, so instead one doubles the amount of variables
and a penalization to large discrepancies between the variables. Thus one tries to
find an upper bound for

sup
x,y

u(x) − v(y) − αΨ(x, y)

which converges to 0 as α→∞. If Ψ(x, y) = 0 if and only if x = y, one obtains as a
consequence an upper bound on (5.1) .
This technique works in the setting of compact spaces. In the context of non-
compact spaces, one also has to penalize x, y that are ‘far away’. Thus later works
introduce the use of ‘containment’ or Lyapunov functions. We introduce both these
concepts below.
In this section, a novel aspect in comparison to the aforementioned papers, is the
use of two ‘penalization’ functions instead of one.

Definition 5.1. We say that {Ψ1, Ψ2}, with Ψi : E2 → R+ is a good pair of pe-
nalization functions if Ψi ∈ C1(E2) and if x = y if and only if Ψi(x, y) = 0 for
i ∈ {1,2}.

In the proof of Theorem 3.8, we work with a penalization

α1Ψ1 + α2Ψ2,

then send α1 → ∞ and afterwards α2 → ∞. To be able to treat both steps in
a similar fashion, we introduce an auxiliary penalization function in which α1 is
already sent to infinity:

Ψ̂2(x, y) :=

{
Ψ2(x, y) if Ψ1(x, y) = 0,∞ if Ψ1(x, y) 6= 0.

Finally, we introduce containment functions that allow us to restrict our analysis
to compact sets.

Definition 5.2. Let H : E× Rd → R, we say that Υ : E→ R is a good containment
function (for H) if

(Υa) Υ > 0 and there exists a point z0 such that Υ(z0) = 0,

(Υb) Υ is continuously differentiable,

(Υc) for every c > 0, the sublevel set {z ∈ E |Υ(z) 6 c} is compact,

(Υd) we have supz∈EH(z,∇Υ(z)) <∞.
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The following result gives us the main technical input for the proof of the comparison
principle.

Lemma 5.3. Let u : E → R be bounded and upper semi-continuous, let v : E → R
be bounded and lower semi-continuous. Let {Ψ1, Ψ2} be a good pair of penalization
functions and let Υ : E→ R+ be a good containment function for H.
Fix ε > 0. Then there is a compact set Kε ⊆ E such that for every α ∈ (0,∞)2,
α = (α1, α2) there exist points xα,ε, yα,ε ∈ Kε, such that

u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
−

2∑
i=1

αiΨi(xα,ε, yα,ε) −
ε

1− ε
Υ(xα,ε) −

ε

1+ ε
Υ(yα,ε)

= sup
x,y∈E

{
u(x)

1− ε
−
v(y)

1+ ε
−

2∑
i=1

αiΨi(x, y) −
ε

1− ε
Υ(x) −

ε

1+ ε
Υ(y)

}
.

In addition, for all ε > 0 and α2 > 0 there are limit points xα2,ε, yα2,ε ∈ Kε of
x(α1,α2),ε and y(α1,α2),ε as α1 →∞ and we have

lim
α1→∞α1Ψ1(x(α1,α2),ε, y(α1,α2),ε) = 0,

Ψ1(xα2,ε, yα2,ε) = 0.

In addition

u(xα2,ε)

1− ε
−
v(yα2,ε)

1+ ε
− α2Ψ̂2(xα2,ε, yα2,ε) −

ε

1− ε
Υ(xα2,ε) −

ε

1+ ε
Υ(yα2,ε)

= sup
x,y∈E

{
u(x)

1− ε
−
v(y)

1+ ε
− α2Ψ̂2(x, y) −

ε

1− ε
Υ(x) −

ε

1+ ε
Υ(y)

}
.

Remark 5.4. The result remains true for Ψi and Υ that are lower semi-continuous
instead of C1.

The proof of Lemma 5.3, carried out below, is based on the following standard
result.

Lemma 5.5 (Proposition 3.7 of [11] or Lemma 9.2 in [16]). Let F : E → R ∪ {−∞}

be bounded above, upper semi-continuous, and such that for each c ∈ R the set{
(x, y) ∈ E2

∣∣ F(x, y) > c} is compact. Let G : E2 → [0,∞] be lower semi-continuous
and such that x = y implies G(x, y) = 0.
Then there exist for each α > 0 variables (xα, yα) ∈ E2 such that

F(xα, yα) − αG(xα, yα) = sup
x,y∈E

{F(x, y) − αG(x, y)} .

In addition, we have

(a) The set {xα, yα |α > 0} is relatively compact in E;

(b) Any limit point (x0, y0) of (xα, yα)α>0 as α → ∞ satisfies G(x0, y0) = 0 and
F(x0, y0) = supx,y∈E,G(x,y)=0 F(x, y);

(c) We have limα→∞ αG(xα, yα) = 0.
Proof of Lemma 5.3. As u, v are bounded and the Ψi are bounded from below, we
find using the semi-continuity properties of all functions involved, and the compact
level sets of Υ, that there is a compact set Kε ⊆ E and variables xα,ε, yα,ε ∈ Kε as
in the first claim of the lemma.
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The second statement follows from Lemma 5.5 by taking for α the variable α1, and
for F and G the functions

F(x, y) :=

{
u(x)

1− ε
−
v(y)

1+ ε
− α2Ψ2(x, y) −

ε

1− ε
Υ(x) −

ε

1+ ε
Υ(y)

}
,

G(x, y) := Ψ1(x, y).

The following result gives us the explicit condition that can be used to verify the
comparison principle.

Proposition 5.6. Let H : D(H) ⊆ Cb(E) → Cb(E) have domain D(H) satisfying
C∞c (E) ⊆ D(H) ⊆ C1b(E) and be of the form Hf(x) = H(x,∇f(x)). Assume that the
map H : E× Rd → R is continuous and that for each x ∈ E the map p 7→ H(x, p) is
convex.
Fix λ > 0, h ∈ Cb(E) and consider u and v sub- and supersolution to f− λHf = h.
Let k ∈ N \ {0} and let {Ψ1, Ψ2} be a pair of good penalization functions and Υ be a
good containment function. Moreover, for every α = (α1, α2) ∈ (0,∞)2 and ε > 0
let xα,ε, yα,ε ∈ E be such that

u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
−

2∑
i=1

αiΨi(xα,ε, yα,ε) −
ε

1− ε
Υ(xα,ε) −

ε

1+ ε
Υ(yα,ε)

= sup
x,y∈E

{
u(x)

1− ε
−
v(y)

1+ ε
−

2∑
i=1

αiΨi(x, y) −
ε

1− ε
Υ(x) −

ε

1+ ε
Υ(y)

}
. (5.2)

Suppose that

lim inf
ε→0

lim inf
α2→∞ lim inf

α1→∞ H

(
xα,ε,

2∑
i=1

αi∇Ψi(·, yα,ε)(xα,ε)

)

−H

(
yα,ε,−

2∑
i=1

αi∇Ψi(xα,ε, ·)(yα,ε)

)
6 0, (5.3)

then u 6 v. In other words: f− λHf = h satisfies the comparison principle.

Proof. Using the convexity of H and the definitions of sub- and supersolutions, we
find by Lemma A.4 that

sup
x
u(x) − v(x)

6
h(xα,ε)

1− ε
−
h(yα,ε)

1+ ε
(5.4)

+
ε

1− ε
H(xα,ε,∇Υ(xα,ε)) +

ε

1+ ε
H(yα,ε,∇Υ(yα,ε)) (5.5)

+ λ

[
H

(
xα,ε,

2∑
i=1

αi∇Ψi(·, yα,ε)(xα,ε)

)
−H

(
yα,ε,−

2∑
i=1

αi∇Ψi(xα,ε, ·)(yα,ε)

)]
.

(5.6)

Consecutively taking lim inf over α1, α2, ε, the term (5.6) vanishes by assumption.
The term in (5.5) vanishes as well, due to the uniform bounds on H(z,∇Υ(z)) by
property (Υd) of Definition 5.2. Consecutively taking limit points as in Lemma
5.3 by sending α1, then α2 to infinity, we find a pair (xε, yε) with Ψ1(xε, yε) =

16



Ψ2(xε, yε) = 0. This implies xε = yε. Thus, taking lim inf over α1 and α2 the term
in (5.4) is bounded above by

sup
z∈Kε

h(z)

1− ε
−
h(z)

1+ ε
6

2ε

1− ε2
||h|| ,

which vanishes if ε → 0. We conclude that the comparison principle holds for
f− λHf = h.

The next lemma establishes that the Hamiltonian applied to the pair of penaliza-
tion functions is either bounded below or above. Using coercivity properties of H,
this allows us to derive properties of the sequences (xα,ε, yα,ε) that can be used
afterwards to help the the verification of (5.3).

Lemma 5.7. Let H : D(H) ⊆ Cb(E)→ Cb(E) with domain D(H) satisfying C∞c (E) ⊆
D(H) ⊆ C1b(E) and such that Hf(x) = H(x,∇f(x)). Assume that the map H : E×Rd →
R is continuous and that for each x ∈ E the map p 7→ H(x, p) is convex.
Let h ∈ Cb(E) and λ > 0 and let u be a subsolution and v a supersolution to
f− λH = h.
Let {Ψ1, Ψ2} be a pair of good penalization functions and Υ be a good containment
function. Moreover, for every α = (α1, α2) ∈ (0,∞)2 and ε > 0 let xα,ε, yα,ε ∈ E be
as in (5.2). Then we have that

sup
ε,α

H

(
yα,ε,−

2∑
i=1

αi(∇Ψi(xα,ε, ·))(yα,ε)

)
<∞, (5.7)

inf
ε,α

H

(
xα,ε,

2∑
i=1

αi(∇Ψi(·, yα,ε))(xα,ε)

)
> −∞. (5.8)

The proof is an adaptation of Lemma 9.3 in [16]. For a similar version in compact
setting see Lemma 5 in [18].

Proof. We only prove the first statement, the second can be proven similarly. Using
that v is a supersolution to f − λHf = h, we find that it is a supersolution to the
equation f − λH‡f = h, where H‡ is a super-extension of H that includes functions
of the type y 7→ (−(1+ ε)

∑2
i=1 αiΨi(x, y) − εΥ(y) in its domain, see Lemma A.2. It

follows that for the points (xα,ε, yα,ε), we have

H

(
yα,ε,−(1+ ε)

2∑
i=1

αi∇Ψi(xα,ε, ·)(yα,ε) − ε∇Υ(yα,ε)

)

6
v(yα,ε) − h(yα,ε)

λ
6

||v− h||

λ
.

By the convexity of p 7→ H(x, p), we find

H

(
yα,ε,−

2∑
i=1

αi∇Ψi(xα,ε, ·)(yα,ε)

)

6
1

1+ ε
H

(
yα,ε,−(1+ ε)

2∑
i=1

αi∇Ψi(xα,ε, ·)(yα,ε) − ε∇Υ(yα,ε)

)
+

ε

1+ ε
H (yα,ε,∇Υ(yα,ε)) ,
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which implies

sup
α

H

(
yα,ε,−

2∑
i=1

αi(∇Ψi(xα,ε, ·))(yα,ε)

)

6
1

1+ ε

(
||v− h||

λ
+ ε sup

z
H(z,∇Υ(z))

)
<∞.

Taking the supremum over ε yields the final claim.

5.2 The verification of the comparison principle for our ex-
plicit Hamiltonian

We now turn to the verification of Theorem 3.8, that is, the verification of the
comparison principle for the Hamilton-Jacobi equation with Hamiltonians of the
type

H((µ,w), p) =
∑

(a,b)∈Γ

v(a, b, µ)
[
exp
{
pb − pa + p(a,b)

}
− 1
]
.

To obtain the comparison principle, we aim to apply Proposition 5.6. To do so,
we first need to choose a pair of good penalization functions (Ψ1, Ψ2) and a good
containment function Υ. This is the first thing we will do in the section. Afterwards,
we verify (5.3) which is the key hypothesis of Proposition 5.6.
We start by construction of a good containment function.

Lemma 5.8. Consider H : E× Rd → R given by

H((µ,w), p) =
∑

(a,b)∈Γ

v(a, b, µ)
[
exp
{
pb − pa + p(a,b)

}
− 1
]

where v : Γ × P({1, . . . , q}) is continuous and non-negative.
Then the function Υ(µ,w) =

∑
(a,b)∈Γ log

(
1+w(a,b)

)
is a good containment func-

tion for H.

Proof. As P({1, . . . , q}) is compact and x 7→ log(1+ x) has compact level sets on R+

the map Υ has compact level sets in E also. Clearly Υ is smooth. Thus, it suffices
to show supµ,wH((µ,w),∇Υ(µ,w)) <∞:

H((µ,w),∇Υ(µ,w)) =
∑

(a,b)∈Γ

v(a, b, µ)
[
exp
{
(1+w(a,b))

−1
}
− 1
]

6
∑

(a,b)∈Γ

v(a, b, µ) [exp {1}− 1] .

The claim follows as v is continuous, and, therefore, bounded.

We proceed by constructing a pair of good penalization functions. For Ψ1 we use a
version of the quadratic distance on the space of measures which was first introduced
in [18]. For Ψ2 we use a standard quadratic distance on the space of fluxes. The
exact definition follows.
For x ∈ R, let x− := x∧ 0 and x+ = x∨ 0.

Lemma 5.9. Define Ψ1, Ψ2 by

Ψ1(µ, µ̂) =
1

2

∑
a

((µ(a) − µ̂(a))−)2 =
1

2

∑
a

((µ̂(a) − µ(a))+)2,

Ψ2(w, ŵ) :=
1

2

∑
(a,b)∈Γ

(w(a,b) − ŵ(a,b))
2.
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The pair (Ψ1, Ψ2) is a pair of good penalization functions for E = P({1, . . . ,1})×(R+)Γ .
In addition, we have

(∇Ψ1(·, µ̂))(µ) = −(∇Ψ1(µ, ·))(µ̂),
(∇Ψ2(·, ŵ))(w) = −(∇Ψ2(w, ·))(ŵ).

The use of Ψ1 is highly specific for the space P({1,2, . . . , q}). The special form is
motivated by the linear constraint

∑
µ(a) = 1. The use of the standard quadratic

distance leads to ‘loss of control’ over the variables when applying Lemma 5.7. This
issue is related to the discussion in Remark 5.10. The adaptation of the quadratic
distance takes into account the form of our Hamiltonian and the linear constraint
in a symmetric way and is geared towards re-establishing the control via Lemma
5.7.

Proof of Lemma 5.9. Note that as
∑
i µ(i) =

∑
i µ̂(i) = 1, we find that Ψ1(µ, µ̂) = 0

implies that µ = µ̂. As Ψ2 is a quadratic distance on (R+)Γ , we indeed have that
(µ,w) = (µ̂, ŵ) if and only if Ψ1(µ, µ̂) + Ψ2(w, ŵ) = 0.
The second claim follows by direct verification.

We proceed with the verification of of the comparison principle by establishing the
key estimate (5.3) of Proposition 5.6.

Proof of Theorem 3.8. The proof is an adaptation of the proof of Theorem 4 in [18].
Fix h ∈ Cb(E) and λ > 0. Let u be a subsolution and v be a supersolution to
f− λHf = h.
We verify (5.3) of Proposition 5.6 using containment function Υ and penalization
functions Ψ1, Ψ2 from Lemmas 5.8 and 5.9. For ε > 0, α1, α2 > 0 let xα,ε :=

(µα,ε, wα,ε) and yα,ε := (µ̂α,ε, ŵα,ε) be as in (5.2).
To establish the theorem, we will show that already after taking one liminf, the
bound is satisfied. Indeed, we will show for fixed ε > 0 and α2 > 0 that

lim inf
α1→∞ H

(
xα,ε,

2∑
i=1

αi∇Ψi(·, yα,ε)(xα,ε)

)

−H

(
yα,ε,−

2∑
i=1

αi∇Ψi(xα,ε, ·)(yα,ε)

)
6 0. (5.9)

By Lemma 5.3 for fixed α2, ε and sending α1 →∞, we find limit points (xα2,ε, yα2,ε) =
((µα2,ε, wα2,ε), (µα2,ε, ŵα2,ε)) of the sequence ((µα,ε, wα,ε), (µ̂α,ε, ŵα,ε)). Without
loss of generality, going to a subsequence if necessary, we assume that these se-
quences converge to their respective limit point. By the definition of H, we have

H

(
xα,ε,

2∑
i=1

αi∇Ψi(·, yα,ε)(xα,ε)

)
−H

(
yα,ε,−

2∑
i=1

αi∇Ψi(xα,ε, ·)(yα,ε)

)
=
∑

(a,b)∈Γ

[v(a, b, µα,ε) − v(a, b, µ̂α,ε)]× (5.10)

[
eα1((µα,ε(b)−µ̂α,ε(b))

−−(µα,ε(a)−µ̂α,ε(a))
−)+α2(wα,ε(a,b)−ŵα,ε(a,b)) − 1

]
.

To ease the notation, and focus on the parts that matter, we will write cα,ε(a, b) :=
α2 (wα,ε(a, b) − ŵα,ε(a, b)) as this term will not play a role in our bounds below.
In fact, for fixed ε and α2, we have for all (a, b) ∈ Γ that

sup
α1

|cα,ε(a, b)| <∞ (5.11)
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because by the construction of Lemma 5.3 we have

sup
α1

α2Ψ2(wα,ε, ŵα,ε) <∞.
We will show that each term in (5.10) separately is bounded from above by 0

asymptotically. Pick some ordering of the ordered pairs (a, b) ∈ Γ , and assume that
we have some sequence α1 such that the lim infα1→∞ of the first l terms in equation
(5.10) are bounded above by 0. We construct a subsequence so that also term l+ 1

is asymptotically bounded above by 0. The result then follows by induction. Thus,
suppose that (i, j) is the pair corresponding to the l+1-th term of the sum in (5.10).
We go through the two options of v being a proper kernel. Clearly, if v(i, j, π) = 0

for all π then we are done. Therefore, we assume that v(i, j, π) 6= 0 for all π such
that π(i) > 0 and that conditions (a) and (b) of having a proper kernel are satisfied.
Case 1: If µα2,ε(i) > 0, we know by (5.7), using that v(i, j, ·) is bounded away from
0 on a neighbourhood of µα2,ε (condition (a) of having a proper kernel), that

sup
α1

eα1((µα,ε(j)−µ̂α,ε(j))
−−(µα,ε(i)−µ̂α,ε(i))

−)+cα,ε(i,j) − 1 <∞.
As we also have that the exponential is bounded from below by 0, we can pick a
subsequence α(n) = (α1(n), α2) and some constant c such that

e
α1(n)

(
(µα(n),ε(j)−µ̂α(n),ε(j))

−
−(µα(n),ε(i)−µ̂α(n),ε(i))

−
)
+cα(n),ε(i,j) − 1→ c.

Using that π→ v(i, j, π) is uniformly continuous on compact sets, we see

lim inf
α1→∞ [v(i, j, µα,ε) − v(i, j, µ̂α,ε)]×[

eα1((µα,ε(j)−να,ε(j))
−−(µα,ε(i)−να,ε(i))

−)+cα,ε(i,j) − 1
]

6 lim
n→∞

[
v(i, j, µα(n),ε) − v(i, j, µ̂α(n),ε)

]
×

lim
n→∞

[
e
α1(n)

(
(µα(n),ε(j)−µ̂α(n),ε(j))

−
−(µα(n),ε(i)−µ̂α(n),ε(i))

−
)
+cα,ε(i,j) − 1

]
= c lim

n→∞
[
v(i, j, µα(n),ε) − v(i, j, µ̂α(n),ε)

]
= 0.

Case 2: Suppose that µα,ε(i), µ̂α,ε(i)→ 0 as α1 →∞. Again by (5.7), we get

M := sup
α1

v(i, j, µ̂α,ε)
[
eα1((µα,ε(j)−µ̂α,ε(j))

−−(µα,ε(i)−µ̂α,ε(i))
−)+cα,ε(i,j) − 1

]
<∞.
(5.12)

First of all, if supα1 α1
(
(µα,ε(j) − µ̂α,ε(j))

− − (µα,ε(i) − µ̂α,ε(i))
−) + cα,ε(i, j) < ∞,

then the argument given in step 1 above also takes care of this situation. So suppose
that this supremum is infinite. Clearly, the contribution α1 (µα,ε(j) − µ̂α,ε(j))− is
negative, and the one of cα,ε is uniformly bounded by (5.11), which implies that
supα1 α1 (µ̂α,ε(i) − µα,ε(i))

+ = ∞. This means that we can assume without loss of
generality that

α1 (µ̂α,ε(i) − µα,ε(i))→∞, µ̂α,ε(i) > µα,ε(i). (5.13)

The bound on the right, combined with property (a) of v being a proper kernel,
implies that v(i, j, µ̂α,ε) > 0. We rewrite the term (a, b) = (i, j) in equation (5.10) as[

v(i, j, µα,ε)

v(i, j, µ̂α,ε)
− 1

]
×

v(i, j, µ̂α,ε)
[
eα1((µα,ε(j)−µ̂α,ε(j))

−−(µα,ε(i)−µ̂α,ε(i))
−)+cα,ε(i,j) − 1

]
.
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The term on the second line is bounded above by M introduced in (5.12) and
bounded below by − ||v||. Thus, we can take a subsequence of α1, also denoted
by α1, such that the right-hand side converges. By (5.13), the right-hand side is
non-negative. Therefore, it suffices to show that

lim inf
α1→∞

v(i, j, µα,ε)

v(i, j, µ̂α,ε)
6 1.

By property (b) of v being a proper kernel, we find v(i, j, µ) = v†(i, j, µ(i))v‡(i, j, µ)

which implies that

lim inf
α1→∞

v(i, j, µα,ε)

v(i, j, µ̂α,ε)
= lim inf
α1→∞

v†(i, j, µα,ε(i))

v†(i, j, µ̂α,ε(i))

v‡(i, j, µα,ε)

v‡(i, j, µ̂α,ε)

6

(
lim sup
α1→∞

v†(i, j, µα,ε(i))

v†(i, j, µ̂α,ε(i))

)(
lim
α1→∞

v‡(i, j, µα,ε)

v‡(i, j, µ̂α,ε)

)
6
v‡(i, j, µα2,ε)

v‡(i, j, µα2,ε)
= 1,

where we use that r 7→ v†(i, j, r) is increasing and the bound in (5.13) for the first
term and that π 7→ v‡(i, j, µ) is continuous and bounded away from zero in a neigh-
borhood of µα2,ε for the second term.
Thus, cases 1 and 2 inductively establish an upper bound for (5.9), concluding the
proof.

Remark 5.10. Note that the motivation for the definition of the non-standard
Ψ1 in [18], as well as the introduction of the use of two penalization functions in
this paper comes from the bound obtained in (5.12). Indeed, in [18] the use of Ψ1
allowed us to obtain (5.13), which is needed to complete the argument.
In our setting, where we work with fluxes, using a single penalization function Ψ =

Ψ1+Ψ2 multiplied by α, would not allow us to obtain (5.13) due to the interference
coming from Ψ2. Instead considering these two functions separately with separate
multiplicative constants, allows us to establish the important inequality in (5.13).
Note that an argument like the one carried out in this proof does not seem directly
applicable in the context of mass-action kinetics. In particular, if one allows transi-
tions leading to a jumps in the rescaled dynamics of the type n−1 (δc + δd − δa − δb),
one gets instead of (5.13) a statement of the type

α1(µ̂α,ε(a) − µα,ε(a)) + α1(µ̂α,ε(b) − µα,ε(b))→∞.
From such a statement, one cannot derive that µ̂α,ε(a) > µα,ε(a) and µ̂α,ε(a) >
µα,ε(b) for large α. This makes it impossible to proceed with the present argument.
It seems that a new type of penalization procedure is needed.

6 Convergence of operators, exponential tightness
and the variational representation of the rate
function

6.1 Convergence of operators
We proceed with the verification of (c) of Theorem 4.4, namely that there exists an
operator H such that H ⊆ ex− LIMHn.
Proposition 6.1. Consider the setting of Theorem 3.3. Let H be the operator with
domain D(H) = C2b(E) satisfying Hf(x) = H(x,∇f(x)) with H as in (3.4):

H((µ,w), p) =
∑

(a,b)∈Γ

µ(a)r(a, b, µ)
[
exp
{
pb − pa + p(a,b)

}
− 1
]
. (6.1)

Then we have H ⊆ ex− LIMHn.
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To recall the definition of ex−LIM: we will prove that for each f ∈ C2b(E) there are
fn ∈ Cb(R+ × En) such that

LIM fn = f, (6.2)
LIMHnfn = Hf. (6.3)

The proof of this proposition will be carried out in three steps.

• In Lemma 6.2, we will establish the convergence of operators in the context
where the time dependence is essentially removed by working along a time
sequence sn = sγ−1n . In this context we will show that for any function f and
small perturbation hn we have Hn[γ−1n s](f+ hn)→ H0[s]f.

• In Lemma 6.3, we will introduce a sequence of functions that are periodic over
the respective intervals on which the jump-rates rn oscillate. These functions
will satisfy the conditions for the small perturbations hn of the previous step.

• We prove Proposition 6.1 by showing that the perturbations hn have the effect
that Hn(f+ hn) are constant in time.

We first introduce some auxiliary notation.
Let H0[t] be the operators with domain C2b(E) satisfying for f ∈ C2b(E): H0[t]f(x) =
H0[t](x,∇f(x)) and where

H0[t]((µ,w), p) =
∑

(a,b)∈Γ

µ(a)r(t, a, b, µ)
[
exp
{
pb − pa + p(a,b)

}
− 1
]
. (6.4)

Following (4.2), we find that for f with enf ∈ D(~An) that

Hnf(t, µ,w) :=
1

n
e−nf(t,µ,w) · ~Anenf(t, µ,w)

= ∂tf(t, µ,w) +Hn[t]f(t, µ,w). (6.5)

We similarly define the Hamiltonian Hn[t] at time t in terms of the generator An[t]
at time t. For f such that enf ∈ D(An[t]), set

Hn[t]f(t, µ,w) :=
1

n
e−nf(t,µ,w)·An[t]enf(t, µ,w), =

1

n
e−nf(t,µ,w)·(An[t]enf(t, ·, ·))(µ,w).

Finally, denote for (â, b̂) ∈ Γ the measure µâ,b̂ = µ + 1
n

(
δb̂ − δâ

)
and flux wâ,b̂ =

w+ 1
n
δ(â,b̂).

Lemma 6.2. Consider the setting of Proposition 6.1. Let f ∈ C2b(E) and let hn :

R+ × En → R be functions such that

lim
n→∞ sup

s∈R+,(µ,w)∈En
sup

(â,b̂):µ(â)>0

n
∣∣∣hn(s, µâ,b̂, wâ,b̂) − hn(s, µ,w)∣∣∣ = 0. (6.6)

We then have that supn sups ||Hn[s](f+ hn)|| <∞ and

lim
n→∞Hn[γ−1n s](f+ hn)(s, µn, wn) = H0[s]f(µ,w) (6.7)

for any sequence (µn, wn) ∈ En such that (µn, wn)→ (µ,w) uniformly in s > 0.

Proof. Fix f ∈ C2b(E) and hn satisfying (6.6). We will prove that supn sups ||Hn[s](f+ hn)|| <∞ and that for any sequence (µn, wn) ∈ En such that (µn, wn)→ (µ,w), we have

lim
n→∞Hn[γ−1n s](f+ hn)(tn, µn, wn) = H0[s]f(µ,w) (6.8)
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uniformly in s. We consider the left-hand side:

Hn[γ
−1
n s](f+ hn)(µn, wn)

=
∑

(a,b)∈Γ

µn(a)rn(γ
−1
n s, a, b, µn)

×
[
en(f(µ

a,b
n ,wa,bn −f(µn,wn)+hn(µ

a,b
n ,wa,bn )−h(µn,wn)) − 1

]
=
∑

(a,b)∈Γ

µn(a)rn(γ
−1
n s, a, b, µn)

[
en(f(µ

a,b
n ,wa,bn −f(µn,wn))+o(1) − 1

]
,

where o(1) is a term that vanishes in n uniformly in all parameters by (6.6). As
f ∈ Cb(E), a first order Taylor expansion of f around (µn, wn), using Assumption
3.1 (b) and that (µn, wn)→ (µ,w), we find indeed that (6.8) holds uniformly in s.
Note that the first order expansion of f in the exponent can also be used to establish
that supn sups ||Hn[s](f+ hn)|| <∞.

Next, we take care of the fluctuating rates. Note that to prove H ⊆ ex − LIMHn,
we need to find for each f ∈ D(H) a sequence fn ∈ D(Hn) such that LIM fn =

f and LIMHnfn = Hf. By definition, we have each f ∈ D(H) that LIM f = f.
This, combined with the argument in the proof of Lemma 6.2 would be sufficient
to establish the convergence of operators if there were no time periodicity. Our
context, however, is more difficult. We will modify the functions f ∈ D(Hn) with a
perturbative term, itself oscillating, that will cancel out the oscillatory behaviour
of the jump rates.

Lemma 6.3. Consider the setting of Proposition 6.1. Fix f ∈ C2b(E). For each n,
define Ff,n : R+ × En as

Ff,n(t, µ,w) :=

∫t
0

Hn[s]f(µ,w)ds−
t

γ−1n T0

∫γ−1
n T0

0

Hn[s]f(µ,w)ds.

Then

(a) Ff,n(t+ γ−1n T0, µ,w) = Ff,n(t, µ,w) for all n and (t, µ,w),

(b) We have limn ||Ff,n|| = 0.

(c) The functions Ff,n satisfy the following Lipschitz estimate

lim
n→∞ sup

s∈R+,(µ,w)∈En
sup

(â,b̂):µ(â)>0

n
∣∣∣Ff,n(µâ,b̂, wâ,b̂) − Ff,n(µ,w)∣∣∣ = 0. (6.9)

Proof. Property (a) is immediate as Fn(γ−1n T0, µ,w) = 0 and the γ−1n t0 periodicity
of the jump-rates of Assumption 3.1 (a). Due to this periodicity, it suffices for (b)
to establish

sup
t∈[0,γ−1

n T0],(µ,w)∈En
|Fn(t, µ,w)|→ 0.

By a change of variables u = γns, we find

Fn(t, µ,w) = γ
−1
n

∫γnt
0

Hn[γ
−1
n u]f(µ,w)du−

t

T0

∫T0
0

Hn[γ
−1
n u]f(µ,w)du.

Using (6.7) with hn = 0, we can replace, up to uniform errors cn that satisfy cn → 0,
the integrands by H[u]f(µ,w). This implies

Fn(t, µ,w) = cn + γ−1n

∫γnt
0

H[u]f(µ,w)du−
t

T0

∫T0
0

H[u](µ,w)du
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which gives
sup

t∈[0,γ−1
n T0],(µ,w)∈En

|Fn(t, µ,w)| 6 cn + γ−1n C

concluding the proof of (b). For the proof of (c), we will first establish that here is
a constant Cf such that for any n, any (µ,w) ∈ En, (â, b̂) ∈ Γ such that µ(â) > 0
and s > 0 we have

n

∣∣∣∣Hn[s]f(µ+
1

n
(δb̂ − δâ), w+

1

n
δ(â,b̂)

)
−Hn[s]f(µ,w)

∣∣∣∣ 6 Cf. (6.10)

Applying the definition of Hn yields

Hn[s]f
(
µâ,b̂, wâ,b̂

)
−Hn[s]f(µ,w)

=
∑

(a,b)∈Γ

µâ,b̂(a)rn(s, a, b, µ
â,b̂)

[
e
1
n

(
f(µâ,b̂+ 1

n
(δb−δa),w

â,b̂+ 1
n
δ(a,b))

)
− 1

]
−
∑

(a,b)∈Γ

µ(a)rn(s, a, b, µ)
[
e
1
n (f(µ+

1
n
(δb−δa),w+ 1

n
δ(a,b))) − 1

]
.

Standard arguments for obtaining Lipschitz estimates using Assumption 3.1 (d) and
f ∈ C2b(E) yield (6.10). Using (6.10) in line 5, we find

sup
t>0

n
∣∣∣Ff,n(t, µâ,b̂, wâ,b̂) − Ff,n(t, µ,w)∣∣∣

sup
t∈[0,γ−1

n T0]

n
∣∣∣Ff,n(t, µâ,b̂, wâ,b̂) − Ff,n(t, µ,w)∣∣∣

= sup
t∈[0,γ−1

n T0]

n

∣∣∣∣∫t
0

Hn[s]f(µ
â,b̂, wâ,b̂) −Hn[s]f(µ,w)ds

∣∣∣∣
6 sup
t∈[0,γ−1

n T0]

n

∫t
0

∣∣∣Hn[s]f(µâ,b̂, wâ,b̂) −Hn[s]f(µ,w)∣∣∣ ds
6 sup
t∈[0,γ−1

n T0]

∫t
0

Cfds

6 γ−1n Ĉf

establishing (c).

Proof of Proposition 6.1. Recall that for each f ∈ D(H) = C2b(E), we need to estab-
lish the existence of fn ∈ Cb(R+ × En) such that

LIM fn = f, (6.11)
LIMHnfn = Hf. (6.12)

Fix f ∈ C2b(E). Using the functions Ff,n from Lemma 6.3, we define a suitable
collection of functions fn that approximate f and which take care of the periodic
behaviour in the Hamiltonian:

fn(t, µ,w) := f(µ,w) −

(∫t
0

Hn[s]f(µ,w)ds−
t

γ−1n T0

∫γ−1
n T0

0

Hn[s]f(µ,w)ds
)

= f(µ,w) − Ff,n(t, µ,w).

By Lemma 6.3, we have (6.11). We proceed with establishing (6.12). We use the
form in (6.5) to establish this result.
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Let (tn, µn, wn) ∈ R+ × En be such that µn, wn → (µ,w) and supn tn < ∞. Note
that the application of Hn[tn] to f− Ff,n and the application of the time derivative
to the first integral term of −Ff,n yield

Hn[tn](f− Ff,n)(tn, µn, wn) −Hn[tn]f(µn, wn)

which converges to 0 by Lemma 6.2 as (6.9) implies (6.6). We thus obtain the final
expression

Hn(fn − Ff,n)(tn, µn, wn) =
1

γnT0

∫γ−1
n T0

0

Hn[s]r(s, µn, wn)ds+ o(1),

=
1

T0

∫T0
0

Hn[γ
−1
n u]f(µn, wn)du+ o(1), (6.13)

which does not depend on tn. Using (6.7) of Lemma 6.2 and the dominated con-
vergence theorem, this yields

lim
n
Hn(fn − Ff,n)(tn, µn, wn) = Hf(µ,w)

establishing (6.12).

6.2 Verifying exponential tightness
The next condition in Theorem 4.4 is exponential tightness.

Proposition 6.4. The processes t 7→ (t0 + t, µn(t), wn(t)) started in a compact set
are exponentially tight on DE(R+).

It is well known in the context of weak convergence that tightness follows from
compact containment and the convergence of generators. The same holds in the
context of large deviations. The following proposition is the exponential compact
containment condition. This property, combined with the convergence of operators
established in Proposition 6.1 yields the result by [16, Corollary 4.19] or [19, Propo-
sition 7.12].

Proposition 6.5. For each compact set K ⊆ (R+)Γ , T0 > 0, T > 0 and a > 0, there
is a compact set K̂ ⊆ (R+)Γ depending on K, T, a such that

lim sup
n→∞ sup

(t0,µ0,w0):t06T0,w∈K

1

n
logP

[
wn(t) /∈ K̂

∣∣∣ (t(0), µn(0), wn(0)) = (t0, µ0, w0)
]
6 −a.

The proof is based on a standard martingale argument and is given for completeness,
see e.g. Section 4.6 of [16].

Proof. Recall that containment function Υ(µ,w) = Υ(w) =
∑

(a,b)∈Γ log(1+w(a,b))

introduced in Lemma 5.8 and that the argument in its proof also yields

sup
µ,w

sup
t

H[t]((µ,w),∇Υ(µ,w)) =: c0,Υ <∞.
Choose β > 0 such that Tc0,Υ + 1 − β 6 −a. As Υ has compact sublevel sets, we
can choose a c such that

K ⊆ {(µ,w) |Υ(µ,w) 6 c}

Next, set G := {w |Υ(w) < c+ β} and let K̂ be the closure of G (which is a compact
set). Let f(x) := ι ◦ Υ where ι is some smooth increasing function such that

ι(r) =

{
r if r 6 c+ β,
c+ β+ 1 if r > c+ β+ 2.
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Set gn := Hnf. By definition it follows that LIM f = f. We now bound Hnf from
above using that f is derived from Υ.
By (6.5), we find

sup
µ,w,t

Hnf(t, µ,w) = sup
µ,w,t

Hn[t]f(t, µ,w)

= sup
µ,w,t

Hn[t]f(γ
−1
n t, µ,w).

Noting that g(µ,w) = H(µ,w,∇Υ(µ,w)) 6 c0,Υ if w ∈ K̂, we find by Lemma 6.2
that

lim sup
n

sup
t,µ,w

Hnf(t, µ,w) 6 sup
t,µ,w

H0[t]f(µ,w) 6 c0,Υ. (6.14)

We now define a martingale that we will use to control the probability of leaving
the set G. let

Mn(t) := exp
{
n

(
f(µn(t), wn(t))) − f(µn(0), wn(0)) −

∫t
0

gn(s, ~Xn(s),Wn(s))ds
)}

.

Let τ be the stopping time τ := inf {t > 0 |wn(t) /∈ G)}.
By construction Mn is a martingale and by the optional stopping theorem t 7→
Mn(t∧τ) is a martingale also. We obtain that if the process is started at (t0, µ0, w0)
such that w0 ∈ K:

P
[
wn(t) /∈ K̂ for some t ∈ [0, T ]

]
6 P [wn(t) /∈ G for some t ∈ [0, T ]]

= E
[
1{wn(t)/∈G for some t∈[0,T ]}Mn(t∧ τ)Mn(t∧ τ)

−1
]

6 exp
{
−n

(
inf
w/∈G

Υ(w) − sup
w∈K

Υ(w)

−T sup
(µ,w)∈Pn(1,...,q)×G

sup
t
gn(t, µ,w)

)}
× E

[
1{wn(t)/∈G for some t∈[0,T ]}Mn(t∧ τ)

]
.

Using (6.14), we obtain that the term in the exponential is bounded by n (c0,ΥT − β) 6
−na for sufficiently large n. The final expectation is bounded by 1 due to the mar-
tingale property of Mn(t∧ τ). This establishes the claim.

6.3 Establishing the Lagrangian form of the rate function
Proposition 6.6. The rate function of Theorem 4.4 can be re-expressed in varia-
tional form as in Theorem 3.3.

Proof. The result follows from a combination of the outcomes of Theorem 4.4 with
Theorem [16, Theorem 8.27] and [16, Theorem 8.14]. We argue in three steps.

(1) We come up with a new solution R(λ)h to the Hamilton-Jacobi equation
f− λHf = h and a new semigroup V(t) using control methods.

(2) Using uniqueness of solutions, we infer that the new solution must equal R(λ)h
from Theorem 4.4. Similarly we find that the new semigroup V(t) must equal
V(t). This leads to a new representation of the rate-function in terms of a
Lagrangian L̂ given by the Legendre transform of H.

(3) We show that L̂ = L.
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Step 1: We start with the application of [16, Theorem 8.27]. We use this result
taking H = H† = H‡ (in the terminology of [16]) all equal to the the operator H of
our paper defined in (6.1). We furthermore use

L̂((µ,w), (µ̇, ẇ)) = sup
p

∑
a

paµ̇a +
∑

(a,b)∈Γ

p(a,b)ẇ(a,b) −H((µ,w), p)

 , (6.15)

and
Af((µ,w), (µ̇, ẇ))

∑
a

∇af(µ,w) · µ̇a +
∑

(a,b)∈Γ

∇(a,b)f(µ,w) · ẇ(a,b).

Note that by convex-duality (with respect to the velocity-momentum variables) H is
the Legendre transform of L̂. The conditions for [16, Theorem 8.27] are Conditions
8.9, 8.10 and 8.11 in [16], which can be checked in a straightforward way, following
the methods of e.g. [8,18], or Section 10.3.5 of [16] with ψ = 1. The final condition
for [16, Theorem 8.27] is the comparison principle, which is the result of Theorem
3.8.
We obtain from [16, Theorem 8.27] that there are two families of operators R(λ),
λ > 0 and V(t), t > 0 given in variational form

R(λ)h(x) := sup
γ∈AC(E),γ(0)=x

∫∞
0

λ−1e−λ
−1t

(
h(γ(t)) −

∫t
0

L̂(γ(s), γ̇(s))ds
)
dt,

V(t)f(x) := sup
γ∈AC(E),γ(0)=x

f(γ(t)) −

∫t
0

L̂(γ(s), γ̇(s))ds,

where x = (µ,w). Similarly as in Theorem 4.4 the results of [16, Theorem 8.27 and
Section 8] yield

V(t)f(x) = lim
m→∞Rm

(
t

m

)
f(x). (6.16)

and such that for λ > 0 and h ∈ Cb(E), the function R(λ)h is the unique function
that is a viscosity solution to f− λHf = h.
Step 2: We rewrite the rate function in Lagrangian form.
As both R(λ)h and R(λ)h are viscosity solutions to f − λHf = h, the comparison
principle of Theorem 3.8 yields that they are equal. By (4.3) and (6.16) we also
find V(t) = V(t).
By a duality argument, performed in e.g. [16, Theorem 8.14] it follows that the
rate function in Theorem 4.4 can be rewritten in Lagrangian form, with Lagrangian
given in (6.15).
Step 3: Finally, we show that L̂ = L. Note that∑
a

paµ̇a +
∑

(a,b)∈Γ

p(a,b)ẇ(a,b)

=
∑
a

pa

µ̇a −
∑

b:(a,b)∈Γ

(
ẇ(b,a) − ẇ(a,b)

)+
∑

(a,b)∈Γ

ẇ(a,b)

(
p(a,b) − pa + pb

)
.

The map H only depends on the combinations p(a,b) − pa + pb. Therefore, taking
the Legendre transform of H, we find that L̂ equals infinity if there is some a
such that µ̇a 6=

∑
b:(a,b)∈Γ

(
ẇ(b,a) − ẇ(a,b)

)
. In the case that for all a we have

µ̇a =
∑
b:(a,b)∈Γ

(
ẇ(b,a) − ẇ(a,b)

)
, the Legendre transform reduces to a supremum

over the combinations p(a,b)−pa+pb. By computing the straightforward Legendre
transform of the function r 7→ a [er − 1] with a > 0 we find that indeed L = L̂.
Thus, in both cases L = L̂, establishing the result of Theorem 3.3
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A Viscosity solutions, auxiliary arguments
In Section 5.1, we refer at two points to results from [8]. We repeat these arguments
here for sake completeness. The setting is as in Section 5.1 .
We start by establishing that we can replace our Hamiltonian H by a proper upper
bound H† and lower bound H‡.

Definition A.1. We say that H† : D(H†) ⊆ C(E)→ C(E) is a viscosity sub-extension
of H if H ⊆ H† (as a graph) and if for every λ > 0 and h ∈ Cb(E) a viscosity
subsolution to f− λHf = h is also a viscosity subsolution to f− λH†f = h. Similarly,
we define a viscosity super-extension.

The H†, H‡ that we will consider are constructed by introducing the unbounded
containment function Υ into the domain:

D(H†) := C
1
b(E) ∪ {x 7→ (1− ε)Ψα(x, y) + εΥ(x) + c |α, ε > 0, c ∈ R} ,

D(H‡) := C
1
b(E) ∪ {y 7→ −(1+ ε)Ψα(x, y) − εΥ(y) + c |α, ε > 0, c ∈ R} .

Here we write Ψα for the function α1Ψ1+α2Ψ2. The introduction of the containment
function in the domain will allow us to work on compact sets rather than on the
full space.
For f ∈ D(H†), set H†f(x) = H(x,∇f(x)) and for f ∈ D(H‡), set H‡f(x) = H(x,∇f(x)).

Lemma A.2. The operator (H†,D(H†)) is a viscosity sub-extension of H and (H‡,D(H‡))

is a viscosity super-extension of H.

In the proof we need Lemma 7.7 from [16]. We recall it here for the sake of read-
ability.

Lemma A.3 (Lemma 7.7 in [16]). Let H and H† : D(H†) ⊆ C(E) → C(E) be two
operators. Suppose that for all (f, g) ∈ H† there exist {(fn, gn)} ⊆ H† that satisfy the
following conditions:

(a) For all n, the function fn is lower semi-continuous.

(b) For all n, we have fn 6 fn+1 and fn → f point-wise.

(c) Suppose xn ∈ E is a sequence such that supn fn(xn) < ∞ and infn gn(xn) >
−∞, then {xn}n>1 is relatively compact and if a subsequence xn(k) converges
to x ∈ E, then

lim sup
k→∞ gn(k)(xn(k)) 6 g(x).

Then H† is a viscosity sub-extension of H.
An analogous result holds for super-extensions H‡ by taking fn a decreasing sequence
of upper semi-continuous functions and by replacing requirement (c) with

(c′) Suppose xn ∈ E is a sequence such that infn fn(xn) > −∞ and supn gn(xn) <∞, then {xn}n>1 is relatively compact and if a subsequence xn(k) converges to
x ∈ E, then

lim inf
k→∞ gn(k)(xn(k)) > g(x).

Proof of Lemma A.2. We only prove the sub-extension part.
Consider a collection of smooth functions φn : R→ R defined as φn(x) = x if x 6 n
and φn(x) = n+ 1 for x > n+ 1. Note that φn+1 > φn for all n.
Fix a function f ∈ D(H†) of the type f(x) = (1 − ε)Ψα(x, y) + εΥ(x) + c and write
g = H†f. Moreover set fn := φn ◦ f. Since f is bounded from below, fn ∈ C2c(E)
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for all n and as n 7→ φn is increasing also n 7→ fn is increasing and limn fn = f

point-wise.
As fn ∈ C2c(E), we have fn ∈ D(H) and we can write gn = Hfn.
We verify conditions of Lemma A.3 for (fn, gn) and (f, g). (a) and (b) have already
been verified above. For (c), let {xn}n>1 be a sequence such that supn fn(xn) =

M < ∞. It follows by the compactness of the level sets of Υ and the positivity of
Ψα that the sequence {xn}n>1 is contained in the compact set

K := {z ∈ E | f(z) 6M+ 1}.

Note that K has non-empty interior by the assumptions on Ψα and Υ. In particular,
if h1, h2 are continuously differentiable and if h1(z) = h2(z) for z ∈ K, then ∇h1(z) =
∇h2(z) for z ∈ K.
Suppose xn(k) is a subsequence converging to some point x. As f is bounded on
K, there exists a sufficiently large N such that for all n > N and y ∈ K, we have
fn(y) = f(y) and

gn(y) = H(y,∇fn(y)) = H(y,∇f(y)) = g(y).

Thus, we have lim supk gn(k)(xn(k)) 6 g(x).

We proceed with a standard argument that is needed for the proof of Proposition
5.6. It is a copy of the argument of Proposition A.9 of [8].

Lemma A.4. Consider the setting of Proposition 5.6. Then it holds that

sup
x
u(x) − v(x)

6
h(xα,ε)

1− ε
−
h(yα,ε)

1+ ε

+
ε

1− ε
H(xα,ε,∇Υ(xα,ε)) +

ε

1+ ε
H(yα,ε,∇Υ(yα,ε))

+ λ

[
H

(
xα,ε,

2∑
i=1

αi∇Ψi(·, yα,ε)(xα,ε)

)
−H

(
yα,ε,−

2∑
i=1

αi∇Ψi(xα,ε, ·)(yα,ε)

)]

Proof. For sake of readability, we write Ψα = α1Ψ1 + α2Ψ2.
By Lemma A.2 we get immediately that u is a subsolution to f− λH†f = h and v is
a supersolution to f−λH‡f = h . Thus, it suffices to verify the comparison principle
for the equations involving the extensions H† and H‡.
By Remark 2.5, we can find xα,ε, yα,ε ∈ E such that (5.2) is satisfied and such that

u(xα,ε) − λH (xα,ε, (1− ε)∇Ψα(·, yα,ε)(xα,ε) + ε∇Υ(xα,ε)) 6 h(xα,ε), (A.1)
v(yα,ε) − λH (yα,ε,−(1+ ε)∇Ψα(xα,ε, ·)(yα,ε) − ε∇Υ(yα,ε)) > h(yα,ε). (A.2)

For all α we have

sup
x
u(x) − v(x)

= lim
ε→0

sup
x

u(x)

1− ε
−
v(x)

1+ ε

6 lim inf
ε→0

sup
x,y

u(x)

1− ε
−
v(y)

1+ ε
− Ψα(x, y) −

ε

1− ε
Υ(x) −

ε

1+ ε
Υ(y)

= lim inf
ε→0

u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
− Ψα(xα,ε, yα,ε) −

ε

1− ε
Υ(xα,ε) −

ε

1+ ε
Υ(yα,ε)

6 lim inf
ε→0

u(xα,ε)

1− ε
−
v(yα,ε)

1+ ε
, (A.3)
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as Υ and Ψα are non-negative functions. We now aim to use that u and v are
viscosity sub- and supersolutions. For all z ∈ E, the map p 7→ H(z, p) is convex.
Thus, (A.1) implies that

u(xα,ε) 6 h(xα,ε) + (1− ε)λH(xα,ε,∇Ψα(·, yα,ε)(xα,ε))
+ ελH(xα,ε,∇Υ(xα,ε)). (A.4)

We aim for a complementary inequality for v. First note that because Ψ1, Ψ2 are such
that −(∇Ψα(xα,ε, ·))(yα,ε) = ∇Ψα(·, yα,ε)(xα,ε). Next, we need a more sophisticated
bound using the convexity of H:

H(yα,ε,∇Ψα(·, yα,ε)(xα,ε))

6
1

1+ ε
H(yα,ε, (1+ ε)∇Ψα(·, yα,ε)(xα,ε) − ε∇Υ(yα,ε)) +

ε

1+ ε
H(yα,ε,∇Υ(yα,ε)).

Thus, (A.2) gives us

v(yα,ε) > h(yα,ε)+λ(1+ε)H(yα,ε,∇Ψα(·, yα,ε)(xα,ε))−ελH(yα,ε,∇Υ(yα,ε)). (A.5)

By combining (A.3) with (A.4) and (A.5), we find

sup
x
u(x) − v(x)

6 lim inf
ε→0

lim inf
α→∞

{
h(xα,ε)

1− ε
−
h(yα,ε)

1+ ε

+
ε

1− ε
H(xα,ε,∇Υ(xα,ε)) +

ε

1+ ε
H(yα,ε,∇Υ(yα,ε))

+λ [H(xα,ε,∇Ψα(·, yα,ε)(xα,ε)) −H(yα,ε,∇Ψα(·, yα,ε)(xα,ε))]
}
.

This establishes the claim.
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