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Abstract

The application of large language models (LLMs)
for programming tasks, such as automatic code
completion, has seen a significant upswing in re-
cent years. However, due to their computational
demands, they have to operate on servers. This both
requires users to have a steady internet connection
and raises potential privacy concerns. Therefore,
this study aims to explore the feasibility of com-
pressing LLMs for code using knowledge distilla-
tion (KD), thereby facilitating local usage of these
models. Existing research has primarily focused on
the efficacy of using KD to compress BERT models
for language tasks. Its application to GPT models
for coding tasks and the impact of implementing
KD in-training, as opposed to the pre-training, re-
main largely unexplored. To address these gaps we
adapted DistilBERT, a pre-training KD algorithm
for distilling BERT models for language tasks.
Our adapted model, Distil-CodeGPT, utilizes in-
training KD to compress LLMs for Python code.
The findings of this study suggest that a substan-
tial reduction in model size is achievable, albeit ac-
companied by a compromise in predictive accuracy.
Specifically, using 8 layers, instead of the original
12, resulted in a 24% reduction in disk size and a
28% speed increase, with an accompanying accu-
racy decrease of 11%. These results show that this
approach has potential and is a solid first step to-
ward smaller code models.

1 Introduction

Over the previous years, the use of Large Language Mod-
els (LLMs) for coding tasks has become increasingly pop-
ular among developers. A notable example of this trend is
the GitHub Copilot application, which grew a user base of
400,000 subscribers within a month of its launch in 2021
[18]. These tools have also, reportedly, contributed to more
productivity, user satisfaction, and operational efficiency for
developers [8].

However, a major problem with these applications is their
reliance on server-based operations. Their considerable size
and computational demands prevent them from running effi-
ciently on local machines. This situation potentially excludes
certain user demographics, such as those living in regions
with suboptimal internet connectivity or individuals working
with classified information. Additionally, the large electric-
ity consumption of these large models raises concerns about
their environmental impact.

One potential solution to this issue is compressing the
models, making them more suitable for local usage. Some
research has already shown promising results in utilizing
knowledge distillation (KD) to do this compression. Two
studies demonstrated significant speedups by decreasing
the size of the model, all while maintaining comparable
language-predicting abilities [13, 7]. However, these findings
predominantly focus on pre-training KD of BERT-type [3]

language models. The applicability of KD for code predic-
tions, in-training KD, and KD on GPT models [12] remains
largely unexplored.

To fill these gaps, the question this research will try to
answer is: what are the effects of compressing a CodeGPT
[10] model, regarding size, accuracy, and speed, through
the application of in-training KD? The way of answer-
ing it is by adapting the DistilBERT algorithm, as proposed
by Sanh et al. [13], to do in-training KD on CodeGPT models.

The main contributions of the paper are as follows:

* Using the algorithm, we show that it is feasible to use
KD for compressing code models, albeit with a larger
accuracy loss compared to its application in language
models. We also investigate the reasons for this discrep-
ancy and how to potentially resolve it.

* We provide some indication that in-training KD is less
efficient and uses more resources than pre-training KD.

* We also examine what the optimal configurations for ap-
plying KD to coding tasks are, focusing on the parameter
selection and the student-teacher model setup

Finally, our pre-trained models can be found on Hugging
Face!, under the name BRP-Malmsten-< MODEL_NAME >.
Our code base, alongside instructions on how to train and test
the different models, can be found on GitHub?.

2 Preliminaries

In this section, the terms and concepts which the reader may
not be familiar with will be explained.

2.1 Language Models

In this paper, two types of language models will be explored,
namely BERT (Bidirectional Encoder Representations from
Transformers) and GPT (Generative Pretrained Transformer).
Since they are both are using a transformer architecture, that
will first be explained.

Transformers

Transformer models, primarily used for natural language pro-
cessing (NLP) tasks, are a type of model architecture devel-
oped to deal with sequential data. They utilize an attention
mechanism that assigns varying degrees of importance to dif-
ferent parts of the input, enabling simultaneous processing of
all sequence steps and the ability to effectively capture long-
range dependencies. With their encoder-decoder architecture,
they map input sequences to output sequences, making them
suited for tasks like code prediction.

BERT

BERT is a transformer-based machine learning technique de-
veloped in 2018 by Devlin et al. [3]. BERT applies the bidi-
rectional training of the transformer to language modeling.
Unlike traditional language modeling, which predicts the next
word in a sequence, BERT makes use of a mechanism called

"https://huggingface.co/AISE-TUDelft
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”"Masked Language Model” (MLM) which randomly masks
words in the sentence and then tries to predict them. This al-
lows the model to understand the context in both directions
(left and right of the word), from there the term bidirec-
tional”.

GPT

GPT, developed by OpenAl in 2018 by Radford et al. [12], is
another transformer-based model that utilizes unsupervised
learning for understanding natural language. Unlike BERT,
GPT is a unidirectional model. When GPT reads a sentence,
it reads from left to right and uses the previous words to pre-
dict the next word in the sequence. After GPTs initial train-
ing, to predict the next word, it can be fine-tuned on more
specific tasks such as question answering and summarization.

2.2 Knowledge Distillation

Knowledge distillation (KD) is a compression technique that
involves training a smaller model, or the ’student’, to emulate
the performance of a larger model referred to as the ’teacher’.
The primary focus is not necessarily on replicating the ex-
act classification predictions of the teacher model but on the
probability distribution over the classes that the teacher model
outputs. These probabilities carry valuable information about
the relationships between different classes, and this is part of
the ’knowledge’ that the teacher model can pass on to the stu-
dent model. To achieve this, we typically use two key com-
ponents: a “hard” loss and a “’soft” loss, these are explained
below. The total loss for KD is usually a weighted sum of
these two losses, where the weights can be adjusted to balance
the emphasis between matching the teacher’s predictions and
correctly classifying the training instances.

Hard Loss

The hard loss ensures that the student model correctly clas-
sifies instances in the training set. It is calculated between
the student model’s predictions and the actual ground-truth
labels in the training set, just like any standard training pro-
cess. Commonly used functions for calculating the hard loss
include Cross Entropy (CE) loss.

Soft Loss

The soft loss, on the other hand, encourages the student model
to mimic the output probability distribution of the teacher
model. The teacher model’s predictions are typically trans-
formed using a technique known as temperature scaling. The
aim is to make the model’s output probabilities more ’soft’ or
’smooth’, emphasizing the relative differences between class
probabilities. This smoothness provides additional informa-
tion about the class relationships, beyond what is in the hard
labels alone.

The method for calculating the loss is often CE loss,
between the teacher and student models’ outputs. Another
method is the cosine similarity loss which is used to ensure
that the student model’s intermediate representations align
closely with those of the teacher model. The cosine similarity
measures the cosine of the angle between the student’s and
teachers’ representation vectors and the aim is to maximize it.

Pre-training vs In-training Knowledge Distillation

KD can be performed both pre-training and in-training. Pre-
training KD means that the teacher is already fine-tuned be-
fore the KD and will not learn during the process. In-training
KD, or online KD, on the other hand, means that the teacher
does also learn during the process. Commonly the teacher is
not fine-tuned when doing in-training KD but this does not
necessarily have to be the case.

2.3 Other Compression Techniques

This paper will focus on the compression of language mod-
els using KD but other compression techniques have also had
promising results. The most prominent ones are pruning and
quantization.

Pruning

Pruning involves removing unnecessary weights or connec-
tions within the neural network. This is often done iteratively
with the least important being removed first. The pruning
usually continues until a desired sparsity level is reached, but
other termination conditions can also be applied.

Quantization

Quantization is a method used to compress neural networks
by representing weights and activation tensors with low-bit
representations like 8-bit. This has two benefits, firstly it
shrinks the model’s disk size and secondly, GPUs are faster
when doing fixed point arithmetic.

3 Related Work

Several studies have been conducted to understand the effects
of compressing language models using various techniques. In
this section, we will elaborate on their approaches and results.

3.1 Studies on Knowledge Distillation

As highlighted in section 1, the use of KD for compressing
language models has shown promising results. Two studies
that used only KD for compression, without pruning or quan-
tization are discussed below.

DistilBERT

The study by Sanh et al. [13] used a tripartite loss function, in-
tegrating a hard CE loss, a soft CE loss, and a cosine-distance
loss during the pre-training phase. This approach yielded a
60% performance improvement and a 40% resource reduc-
tion while preserving approximately 97% of the original lan-
guage understanding capabilities.

With the same model, they also conducted an experiment
on distilling a GPT2 model. This is not reported in the paper
but can be seen on their GitHub®. The results showed an in-
crease in accuracy by 30% despite decreasing the number of
layers from 12 to 6. However, one potential issue with these
results is that the student model was fine-tuned on the dataset
it was benchmarked on, but the teacher model (the baseline)
was not.

3https://github.com/huggingface/transformers/tree/main
/examples/research_projects/distillation
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TinyBERT

Another study achieved even better compression by also in-
cluding losses from the hidden attention and embedding lay-
ers [7]. This work introduced a two-stage learning framework
that performed transformer distillation during the pre-training
and task-specific learning stages. The model was reduced to
13.3% of its original size and had a speed increase of 9.4x
while retaining 96.8% of its performance.

3.2 Studies on Pruning and Quantization

Pruning

There are several notable studies that have explored the effec-
tiveness of pruning. One example examines the use of Opti-
mal BERT Surgeon (0oBERT) [9]. The method leverages ap-
proximate second-order information and enables the pruning
of blocks of weights. This achieved a 10-fold reduction in
size while preserving nearly identical performance compared
to the dense BERT-base. Pruning has also been successfully
employed on GPT models, as demonstrated by Frantar and
Alistarh [4]. They showed that it was possible to discard over
100 billion weights during inference, culminating in a 50%
decrease in model size.

Quantization

Quantization has also shown promising outcomes. One
study demonstrated a group-wise quantization scheme to-
gether with a Hessian-based mixed-precision method to com-
press a BERT model [15]. The approach resulted in a mere
2.3% performance loss while reducing precision quantization
to 2-bits.

Combining the Techniques

A different approach combined KD with quantization and
pruning, seeking to optimize model efficiency on CPUs, as
opposed to the conventional reliance on GPUs [14]. The strat-
egy involved pruning for speed augmentation, KD for accu-
racy enhancement during fine-tuning, and post-training quan-
tization for further model optimization without additional
training steps. The result was near-perfect accuracy reten-
tion and a 50% performance improvement compared to the
state-of-the-art (of when the paper was written).

3.3 Studies on Compressing Code Models

Concurrent with this study, three other works have explored
code compression, all employing slightly different tech-
niques.

CodeGPT on XTC

This study, by de Moor [2], compressed a CodeGPT model
utilizing the XTC (eXTreme Compression) pipeline. This
entailed using KD to reduce the layers and also employing
quantization. The compressed model, a 6-layer one with 1-
bit weight and 8-bit activation quantization, signifies a 15-
fold reduction in size while preserving a fair amount of the
original accuracy.

MP and PEG PTQ on CodeGPT

In their work, Storti [17] applied various Post Training Quan-
tization (PTQ) techniques on a CodeGPT model. One such
technique is PEG, which involves splitting activation tensors

into equal-sized sets, each encompassing similar activation
ranges. This is done in order to minimize the decrease in ac-
curacy attributed to quantization. Using this technique, the
authors managed to compress a CodeGPT model to 25% of
the original size while maintaining almost all their accuracy.

CodeGPT on Intel

The work by Sochirca [16] employs the Intel-extension-for-
transformers toolkit [6] to prune and quantize the CodeGPT
model post-training. They do this to enable running the model
efficiently on a CPU. Their model achieves a 60% size reduc-
tion while maintaining an acceptable accuracy level, scoring
30.5% on ES and 9.0% on EM. However, the study did not
record improvements in memory usage or inference time.

4 Method

Our research method involved adapting DistilBERT, a pre-
training KD algorithm for distilling language models. The
study on DistilBERT and the results of it can be found in sec-
tion 3. Our changes turned DistilBERT into an in-training
KD algorithm for compressing code models. The decision to
leverage this approach stemmed from DistilBERT’s demon-
strated success with BERT language models. Moreover, al-
tering an existing model was deemed more efficient than de-
vising entirely new KD methods.

4.1 Training and Distilling

The data preparation and training processes are both fairly
standard ones for neural networks. There are, however, a few
differences since KD is performed during the training. Firstly,
both a soft and a hard loss are used. The hard loss contributes
to 33% of the total student loss. The remaining 67% is a soft
loss, equally divided between the CE loss and cosine simi-
larity loss. This process is exactly the same as DistilBERT
used.

The major difference between Distil-CodeGPT and Distil-
BERT is that the teacher model undergoes training alongside
the student model since it uses in-training KD. The teacher’s
loss comprises solely of the hard CE loss. Another differ-
ence is that our model works for code while DistilBERT on
language. This adaptation was simply a matter of selecting
a different teacher and student model configuration and tok-
enizer.

We also took a slightly different approach in the research
by benchmarking different models, all with slight modifica-
tions regarding parameters or student-teacher setup. A de-
tailed description of the different models can be found below.
The intention of doing this is to aid future research by provid-
ing insights into which setup performs best.

4.2 Parameters

The teacher model used was the CodeGPT-py-adapted model
from Microsoft, as first introduced in [10]. Its training archi-
tecture closely mirrored that of GPT2. This teacher model is
already fine-tuned on Python code. The student model had
the same configuration but without the pre-trained weights.
The reason it was used is that it was state-of-the-art at the
time.



During the experiment, there were several options for the
parameters but we stuck with the defaults as seen in the
GitHub 3 associated with the paper by Sanh et al. [13]. The
reason for this was that DistilBERT did have good results
with those parameters and we saw no apparent reason to
change it. This basically meant that we used a temperature
of 2, the soft CE-loss, cosine loss, and hard CE-loss all took
the value 0.33. The only exception we made was to change
the number of epochs to 1, down from 3, to decrease, the al-
ready long, training time.

4.3 Experimental Configuration

In order to identify potential causal factors of the observed
outcomes and to propose future improvements for distillation,
several variant models were systematically benchmarked.
The Standard Model was subjected to trials with layer counts
of 4, 6, 8, 10, and 12, whereas the alternative models were
benchmarked specifically with a layer count of 8. Instruc-
tions for running each model are provided on our GitHub 2.

Standard Model

The Standard Model has the teacher model, parameters, etc.
as presented earlier in this section.

Not-Adapted Model

With this experiment, we explore the difference the teacher
models make by using the CodeGPT-py model instead of the
modified CodeGPT-py-adapted model as the teacher. The key
distinguishing factor between these models is that CodeGPT-
py is trained from scratch, whereas Code GPT-py-adapted be-
gins the training with identical weights and biases as GPT2.

Non-Fine-Tuned Teacher Model

As previously highlighted, the teacher model in our experi-
ments is typically fine-tuned on code. However, in one exper-
imental variation, we utilized a non-fine-tuned version of the
teacher model. This variant is denoted as the NFTT Model
(Non-Fine-Tuned Teacher Model). This experiment was per-
formed to see the impact of not having to fine-tune the teacher
before distillation.

Altered-Parameter Model

On the GitHub repository? for the adapted model, default val-
ues for parameters were provided which we used in our exper-
iments. However, the repository also detailed an alternative
set of parameters. These encompassed other values for the
soft CE-loss (5.0), cosine loss (1.0), and hard CE-loss (2.0).
This test thus aimed to determine the influence of the param-
eters.

8-Epoch Model

The Standard Model is typically trained over a single epoch
over the entire dataset. Conversely, the Extended-Epoch
Model is trained over 8 epochs, but on a smaller subset of
the data. This subset comprises the 50% shortest sequences,
which is done to decrease the training time. The experiment
was performed to see how additional training data would im-
pact the results.

Pretrained-Weights Model

This model had the student using the pre-trained weights from
the CodeGPT-py-adapted model. The student thus has some
capabilities in predicting code before the distillation. The ex-
periment aimed to explore the worth of pre-training the stu-
dent.

S Setup

The details of the setup illustrate the research questions we
aim to answer and provide guidance on how the research can
be replicated.

5.1 Research Questions

In this research, we answer the question: what are the effects
of compressing a CodeGPT model, regarding size, accuracy,
and speed, through the application of in-training KD? To aid
in answering this question we also answer these subquestions:

1. What factors contribute to better/worse accuracy of the
distilled model? We try different models, as outlined in
subsection 4.3, in order to see which has the highest ac-
curacy. Thereafter we draw conclusions based on these
findings.

2. What is the effect on the accuracy of the model as the
layer count decreases? We try a standard model with
several different layer counts to discover how decreasing
it changes the accuracy.

3. How does in-training KD compare to pre-training KD?
We compare our results, which use in-training KD, to
those of DistilBERT which uses pre-training KD. We
also benchmark a model which uses in-training, but
without a fine-tuned teacher, to see the differences.

5.2 Implementation Details

Environment

The benchmarks were run on an AMD EPYC 7402 24C 2.80
GHz 4x NVIDIA Tesla V100S 32GB GPU. The training was
done on an RTX A6000 48GB GPU. The operating system
is Red Hat Enterprise Linux 8 and the project was run with
Python 7.12. The packages and libraries used can be seen in
the environment.yml on our GitHub?. These can be installed
using Conda for running on a Linux machine.

Packages

There were several libraries used but the one having the most
impact was Pytorch* 1.13 since it provided the necessary deep
learning functionalities and GPU support to efficiently train
this model on large-scale language datasets.

Also, the transformers library from Hugging Face® played
an important role in downloading the datasets, models, and
configurations. This was useful for both benchmarking and
training. The version used was 4.27.4.

A full list of packages and versions can be found in the
environment.yml file on our GitHub?.

“https://pytorch.org/
Shttps://huggingface.co/transformers
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Dataset

The dataset used for this study was CodeXGlue [10]. The
dataset consisted of 150k lines of Python code, with 95k des-
ignated for training, 50k for testing, and Sk for validation.
To protect privacy, uncommon string literals and numbers are
masked with the tags <STR LIT> and <NUM LIT> respec-
tively.

5.3 Evaluation

The Benchmarks

The evaluation of the results involved comparing the output
of the teacher model with that of the student model. The pri-
mary metrics used for testing the accuracy are Edit Similarity
(ES) and Exact Match (EM). ES calculates the likeness be-
tween two strings or data sequences, determined by the min-
imum number of edits (insertions, deletions, or substitutions)
needed to transform one string into the other. EM is used to
evaluate if the predicted output exactly matched the reference
output, with no discrepancies.

When discussing the results mostly the ES metric is used
since it is more representative of what we want to achieve,
good predictions. Since EM only gives a score when the test
set is perfectly matched, it is less indicative of a good predic-
tion. For example, say the test set contains this snippet:

for i in range(10):
X 4= 1

If the model were to predict the same code but with another
number instead of 10 the EM score would be 0 although it
is still a useful prediction. Es, however, would give almost
100%.

The disparity in size between the models was assessed by
comparing their parameter counts, their sizes on disk, and the
amount of memory they used on the processing unit in ques-
tion. The difference in efficiency was determined by measur-
ing the relative time taken by each model to generate predic-
tions. We did this by measuring the number of predictions
that could be made in one second.

All evaluations were first done on GPU for nine evenly
distributed checkpoints. These checkpoints represented how
many percent of the dataset the model was trained on (10%,
20%.,..,90%). The final model was benchmarked on both CPU
and GPU. The ES and EM were measured from the final
model, and the size and inference were taken as the mean
over all the checkpoints + the final model.

Exceptions

There were a few exceptions made to the benchmarks that,
according to us, have no impact on the results. For repro-
ducibility and integrity reasons, we will naturally still share
them.

¢ For the 4-layer model, the tests were made on 6 check-
points instead of 9, due to a calculation error. We de-
cided not to run the model again since this problem only
introduces a bit more variance in the average speed and
size of the 4-layer model.

¢ For the 4-layer model, the inference of the first check-
point was tossed because it was over 50% slower than

Model Params | Size | Inf. | ES | EM
Baseline | 124 510 | 26 | 39.1 | 145
12 Layers | 124 510 | 24 | 303 | 64
10 Layers | 110 450 | 27 | 295 6.1
8 Layers | 96 390 | 31 29.6 | 6.3
6 Layers | 82 340 | 36 | 28.7 | 64
4 Layers | 68 280 |43 | 27659

Table 1: The results on the standard models with different amounts
of layers. Inf. stands for inference and is measured in samples per
second

the average of the rest. Since it was the first benchmark
performed, we believe that it had to do with the dataset
not being cached at the time of running it.

In the dataset, there was one sequence, number 655 in
seed 42, which caused an error. Therefore, this single
sample was swapped with another one. Since it was one,
out of a thousand, we believe that it does not affect the
results. It might, however, be an indication of a larger
underlying problem but we also deem this unlikely.

On the 8-Epoch model, we only benchmarked on the fi-
nal model, not every single epoch. This is because the
only relevant results are the ES and EM.

On all the alternative models, we did not run tests on the
CPU since they are expected to be very similar to the
ones of the standard 8-layer model. Furthermore, they
are not relevant to answering the research question.

6 Results

Several benchmarks were performed over the different mod-
els to test their accuracy, speed, and size. The most notable
observations and results will follow below.

6.1 Performance of the Standard Models

As shown in Table 1, both the number of parameters (shown
in the ’params’ column) and the model’s size on the GPU
(shown in the ’size’ column) decrease linearly. Specifically,
we see a decrease of around 14M parameters or 60 MB of
disk size for every 2 layers we remove. The inference speed
(shown in the ’inf.” column) also decreases as the model gets
smaller, but the rate of decrease slows down over time. These
findings meet our initial expectations. However, the accuracy
of the model is not as high as hoped for. Even the 12-layer
model performed about 9 points worse in terms of ES and 8
points worse in terms of EM compared to the baseline, which
has the same amount of layers.

In Figure 1 it seems that the performance of the models,
unrelated to their amount of layers, follows the same curve.
As the layer count increases, the models have slightly bet-
ter performance throughout the training. It is however only
slightly better as the difference between the smallest model
(4 Layers) and the largest model (12 Layers) is a mere 2.7
points.

6.2 Performance of the Alternative Models

The performance of the alternative models can be seen in
the legend of Figure 1. The data suggest that the Not-
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Figure 1: The increase in ES as the models with different layers are
trained. The darker the shade of green, the more layers the model
has. The parenthesis after the model name is the final ES score

Adapted model performs the worst among the models and
the Pretrained-Weights model by far the best. Also, both the
8-Epoch model and Tweaked-Params model perform better
than the standard 8-layer one.

As shown in Figure 2, there are minor differences in the
performance of the alternative models over time. The Not-
Adapted Model varies more, while the others show major
improvement at first to then stabilize. Another interesting
observation is that the Tweaked-Params model stabilizes af-
ter being trained on about 70% of the training set and the
Pretrained-Weights one just after 20%. The Not Adapted
model and the 8-Epoch model seem to not even have stabi-
lized after training on all the data. However, none of the mod-
els seem to be able to reach the baseline even if they were to
get more training.

7 Discussion

The results of the study are a bit worse than expected and in
this section, we will try to discern the reasons for this. We
will also talk about the threats to the validity of the study and
explore the potential studies that could further our effort of
compressing code models in the future.

7.1 Comparison with DistiiBERT

DistilBERT demonstrated moderately better accuracy reten-
tion in comparison to our results. It achieved a compression
rate of 40% and an inference speedup of 60% while preserv-
ing 97% of the original accuracy. In contrast, our 8-layer
model demonstrated an approximate speedup of 20%, on both
CPU and GPU, a size reduction of 24%, while preserving
only 89% of its language understanding capacity.

The size discrepancy can be attributed to the number of
layers used. Our 4-layer model was closer in size and speed
to what they used, with a size reduction of 65% and speed en-
hancement of 40%. However, the underlying reasons behind
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Figure 2: The increase in ES as the different model are trained. The
parenthesis after the model name is the final ES score

the accuracy difference between the models are more difficult
to discern. Below are some of the explanations that we find
most plausible.

The Student Model

The aim of DistilBERT is to distill a natural language model,
and subsequently, they also used a student model pre-trained
on language. Our aim is to predict Python code but we started
with a model that was only pre-trained on language, not code.
This decision may have inadvertently compromised our re-
sults since a base model with some level of code understand-
ing could have offered a more suitable starting point. This
thesis is supported by the superior results of the Pretrained-
Weights model, which was the model pre-trained on code.

Number of Epochs

The underperformance of our Distil-CodeGPT compared to
DistilBERT could also be attributed to the fewer epochs used
in training. This claim is backed by the fact that the 8-
Epoch model had superior performance compared to the other
8-layer models, it even outperformed the standard 12-layer
model. If the model were to be trained over the entire dataset
for more epochs, we could come to see an even larger increase
in performance, although this could also lead to overfitting.
Hence, additional experiments are required to ascertain the
optimal training duration.

This explanation does, however, have some counterargu-
ments. As earlier mentioned, only the 8-Epoch model and
the Not-Adapted model seem to have the potential to in-
crease their accuracy with more training. All the other mod-
els, including all the standard ones, seem to plateau after be-
ing trained on 70-80% of the dataset. The Pretrain-Weights
model even plateaus after 20%. At the least, this means that
some other measures, except merely training the models for
more epochs, must be taken to achieve more accuracy. Es-
pecially if the goal is to reach the accuracy baseline, which
neither of the models seem close to achieving.



Parameter Selection

Given that the authors of DistilBERT did not elaborate on
their parameter selection, there is uncertainty about whether
the default parameters from their GitHub repository match
those in their study. We used the default ones provided on
their GitHub, so if they used different ones for their study,
this could partly explain the performance difference between
our model and theirs. A marginal accuracy improvement
observed in our Tweaked-Params model suggests that vary-
ing parameter values may influence model efficacy. For that
model, only the weights of the loss functions were altered but
modifications to parameters such as temperature and learning
rate might potentially enhance accuracy even further.

In-training vs Pre-training

One major difference between Distil-CodeGPT and Distil-
BERT is that ours utilizes in-training KD, as opposed to pre-
training KD. This factor could contribute to our model be-
ing less accurate. This is further supported by the fact that
the NFTT model, which used a more classical in-training al-
gorithm since the teacher was not fine-tuned, had a slightly
worse performance than the standard 8-layer model. More-
over, using in-training KD also slowed the training process.
Training two models simultaneously on the GPU means that
smaller batch sizes have to be chosen (due to VRAM memory
limits) and backtracking had to be done twice as often.

7.2 Potential of Compressing Code Models

Results of studies on compressing code models, which ran in
parallel to this one, indicate that code model compression is
not inherently more challenging than language model com-
pression. They adapted algorithms for compressing language
models to instead compress code models and managed to get
equivalent results. Both de Moor [2] and Storti [17] were able
to significantly compress their models while retaining almost
all the original accuracy.

We also believe that our results do not necessarily indicate
that compressing code models is more difficult than language
models. This is supported by the inferior performance of our
12-layer model relative to the baseline. It suggests that the
reduced accuracy is not due to the smaller model size, but
other factors. Further evidence of this is that both the 8-Epoch
and the Tweaked-Params models have slightly better accuracy
than the 12-layer standard one, and the Pretrained-Weights
model is far better.

7.3 Other Observations

It is interesting to note, in Figure 1, that all the standard mod-
els seem to have a similar training curve, disregarding some
random noise. This seems to imply that the amount of train-
ing needed might remain constant regardless of model size.

The configuration and pre-trained weights of the teacher
model also have significance it seems, even though it trains
during the distillation. This can be concluded by observing
the poor performance of the Not-Adapted model which re-
ceives worse results than the 4-layer model.

7.4 Threats to Validity

Internal

One internal threat to the validity is the evaluation metrics
employed. The problem is that it may not accurately reflect
the true performance of the model, especially if the goal is
to give useful predictions. For instance, a model which re-
ceives a high ES score could still generate unreliable code.
Consider an example where the model predicts a function but
misrepresents one character, for example altering a less-than
operator to a greater-than operator. Despite the majority of
the prediction being correct, yielding a high ES, such a minor
bug could be challenging for the user to find.

On the other hand, it could also give a score that is low
compared to the usability of the generated code. If the ground
truth is an expression like x = X + y and the model gives the
prediction x +=y, it will not provide 100% ES while the pre-
diction is equivalent.

Another internal threat to the validity is the inherent qual-
ity of the code from the dataset. If the dataset has buggy
code, deprecated code, or code employing bad practices, it
is likely that the model will generate predictions having the
same issues. The reason for this is that the model does not
know what is considered good code, it is simply trained to
predict code based on what it has learned from the training
data. This concern also links back to the discussion on the
evaluation metrics used, a model that generates suboptimal
code is undesirable even though it receives a high ES score.

External

An external threat to the validity is that our results may not
generalize to other GPT models. Our testing was confined to
CodeGPT-py and CodeGPT-adapted-py. It is plausible that
other models might experience a larger/smaller performance
decline during distillation. For example, some research sug-
gests that higher-accuracy teachers perform less effectively
during distillation [1]. It is also conceivable that some mod-
els are already optimized to their smallest feasible size or they
may possess inherent structural characteristics that impede
effective KD. Naturally, the opposite may also be the case,
that some models are significantly larger than necessary and
therefore can be distilled more effectively.

7.5 Future Work

There are several directions that future research on KD may
take. One approach is to pre-train the student model on code-
related tasks before learning from the teacher, as we did for
the Pretrained-Weights model. This could provide a good
starting point and therefore potentially better performance.
Fine-tuning the student on the dataset after the teacher-led
training might also provide improvements.

Our findings also underscore the potential benefits of iden-
tifying the optimal parameters for distilling code models.
This could be done by performing more experiments with pa-
rameter changes, and identifying which have the largest im-
pact. Similarly, longer training with more epochs covering
the entire dataset, instead of just the 50% shortest sequences
like the 8-Epoch model, could result in better performance.
Both these approaches do, however, call for substantial GPU



resources. In our study, training a single epoch on a 48GB
RTX A6000 required approximately 17 hours.

Finally, the adaptation of other KD techniques for code
models, such as those proposed by Jiao et al. [7], could yield
intriguing results. It would also be interesting to explore the
potential of further refining methods like that of de Moor [2],
which blends KD with quantization. Using the methods that
performed best in compressing language models seems like a
good starting point for compressing code models.

8 Conclusions

In our study, we adapted DistilBERT, a pre-training KD al-
gorithm developed by Sanh et al. [13] for compressing LLMs
for natural language tasks. The adapted model, which we call
Distil-CodeGPT, makes use of in-training KD to compress
LLMs made for predicting Python code.

The findings demonstrated that while Distil-CodeGPT en-
abled significant model compression, it did also reduce the
language-comprehension capabilities moderately. One of our
compressed models, with just one-third of the original layers,
retained about 70% of its language understanding ability. An-
other, with two-thirds of the layers, saw a 90% retention. We
noted that in-training did not offer significant benefits com-
pared to pre-training KD, but this conclusion requires further
confirmation through additional research. We also saw that
pre-training the student model on code before the distillation
had significant benefits.

The outcomes suggest that our method needs further refine-
ment. Nevertheless, this initial effort to condense language
models and the explicit acknowledgment of its potential con-
straints can provide value for future studies. Such future stud-
ies could include the modification of model parameters, like
epochs and loss functions, and the potential benefits of us-
ing a student model pre-trained on code. We also believe that
using other algorithms than DistilBERT as the basis for the
compression has potential.

9 Responsible Research

Scientific research demands a high degree of responsibility
and ethical consideration. It is also necessary to ensure that
future researchers can follow what has been, both to build
upon and to verify it. Therefore, this section will be aimed
at discussing the ethical considerations and reproducibility of
the study.

9.1 Ethical Considerations

Copyright and Privacy

The datasets usage, for training these models, is a point that
may raise ethical and legal issues if not appropriately ad-
dressed. For example, a class action lawsuit has already been
directed towards GitHub Copilot for copyright infringement,
though no decision has yet been rendered [5]. This shows
the importance of taking the right precautions when working
with data.

To ensure that we adhered to copyright laws and princi-
ples, our datasets were sourced from open-access platforms.
We believe that the use of open-source information not only
ensures ethical conduct but also promotes transparency and

collaborative research in Al. Furthermore, to mitigate pri-
vacy concerns, our dataset contains only the most common
numbers and strings. The remaining ones are in the format
<STR LIT> and <NUM LIT> depending on whether it is a
string or number, respectively. This approach ensures that our
datasets are sufficiently generic while significantly reducing
the risk of any inadvertent release of personal information.

Environmental Impact

LLMs require substantial amounts of energy. For instance,
training GPT-3, which has 175B parameters, is estimated to
require 1,287MWh of energy, leading to an estimated carbon
emission of 500 tonnes [11]. Running it daily for millions of
users is not included in this calculation.

From this, it could be argued that it is unethical to re-
search these models. Our experimental approach used mul-
tiple rounds of training, and when people use these models
even more emissions would follow. However, we believe this
study to be ethical as the aim is to compress these models,
making them use less energy. Since the results of these stud-
ies could lead to vast amounts of users running queries on
small efficient models instead of unnecessarily large ones,
emissions could be heavily reduced. Furthermore, our ex-
periments were done on relatively small models and we took
care not to run experiments unnecessarily.

Al Tools

ChatGPT served as a tool in various stages of this study. Pri-
marily, it was used to refine grammar and fix spelling mis-
takes. It also provided clarifications on some of the princi-
ples of KD. However, it should be noted that no text within
this paper was composed originally by ChatGPT, nor was it
used as a source for any information.

We believe that using it in this manner poses no ethical con-
cern. Employing it for writing merely ensures better readabil-
ity, without infringing upon any copyright or privacy regula-
tions. Furthermore, using it for learning about specific sub-
jects is simply a form of research, especially since the infor-
mation was not used directly in the paper.

The prompt we used for writing was: Highlight the parts
of this text that do not use academic language and give sug-
gestions on how it can be improved. Be concise and pre-
cise. Keep the citations and other latex-related text as is. The
prompt for learning about some concepts within KD was: ex-
plain in simple language how X works, where X was words
such as attention or temperature.

We also used Grammarly, another tool powered by Al tech-
nology. This tool was also used in order to better readability
and avoid spelling and grammar mistakes.

9.2 Reproducibility of the Study

The reproducibility of scientific research is paramount to
maintaining integrity and fostering progress in the field. Our
study was conducted with these values at its core. For in-
stance, the code developed for this research is made publicly
available on GitHub footnote 2 and the pre-trained models on
Hugging Face footnote 1. This approach not only ensures that
our research can be independently verified but also promotes
collaborative development and refinement of the techniques
we employ.
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