
Backpropagating in time-discretized multi-spike spiking neural networks
How are the training accuracy and training speed (in epochs and time) of a spiking neural network affected

when numerically integrating with the forward-Euler and Parker-Sochacki methods?

Max Guichard

Supervisor(s): Nergis Tömen, Aurora Micheli, Olaf Booij

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Max Guichard
Final project course: CSE3000 Research Project
Thesis committee: Nergis Tömen, Aurora Micheli, Evangelia Anna Markatou

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Spiking neural networks have gained traction as
both a tool for neuroscience research and a new
frontier in machine learning. A plethora of neu-
roscience literature exists exploring the realistic
simulation of neurons, with complex models re-
quiring the formulation and integration of ordinary
differential equations. Overcoming this challenge
has led to the exploration of various numerical in-
tegration techniques with the goal of highly sta-
ble and accurate simulations. In contrast, training
spiking neural networks is often done with sim-
ple leaky integrate-and-fire models and rudimen-
tary integration methods such as the forward-Euler
method. In this research we explore how more
complex numerical integration methods, borrowed
from neuroscience research, affect the training of
networks based on current-based leaky integrate-
and-fire neurons. We derive equations required
for the integration process and suggest the use of
spike time interpolation. Furthermore, we pro-
vide insights into applying backpropagation on nu-
merically integrated networks and highlight possi-
ble pitfalls of the process. We conclude that nu-
merically integrated networks can achieve train-
ing accuracies close to their theoretical limits, with
good convergence and training time characteristics.
Specifically, high order integrations achieve robust
and computationally viable training. Additionally,
we explore the effects of spike time interpolation
on network accuracy and use our findings to pro-
vide insights into the role of different integration
parameters on the effective training of spiking neu-
ral networks.

1 Introduction
Spiking neural networks have gained traction as a tool for
neuroscience research and a new frontier in machine learn-
ing. Neuroscience research using spiking neural networks fo-
cuses primarily on exploring biologically observed phenom-
ena such as critically in the visual cortex [1]. Machine learn-
ing research, on the other hand, focuses on training proce-
dures for spiking neural networks and how to transfer these
networks into hardware [2] [3]. Hardware implementations
in specific, such as [4], offer high energy efficiency for in-
ference tasks with spiking neural networks but are limited to
simulating neurons with discrete time steps.

The neuroscience literature offers a variety of neuron mod-
els for simulating networks, such as the leaky integrate-and-
fire, Izhikevich, and Hodgkin-Huxley models. Each model,
in turn, provides a higher degree of biophysical accuracy at
greater computational costs, leading to more complex dynam-
ics such as bursting, mixed mode firing patters and frequency
adapted spiking [5]. These models are described in terms of
ordinary differential equations, requiring numerical integra-
tion schemes to simulate the neuron dynamics. To this end, a
plethora of techniques have been borrowed from physics and

applied to these neural models with adaptations for disconti-
nuities in their dynamics . On the other hand, the machine
learning literature explores spiking neural networks with a
limited selection of neuron models, primarily leaky integrate-
and-fire derivatives, with the primary integration method be-
ing adaptations of forward-Euler [6].

We aim to close the gap between the two sides of the liter-
ature by exploring: How are the training accuracy and train-
ing speed (in epochs and time) of a spiking neural network
affected when numerically integrating with the forward-Euler
and Parker-Sochacki methods? To that end, we adapt the neu-
ron model introduced in [2], a current-based leaky integrate-
and-fire neuron, and apply spike time based backpropaga-
tion. This model is chosen since it is similar to models in
the training literature, as mentioned above, and can easily be
integrated analytically and using a variety of techniques from
the simulation literature. We stick to spike time based back-
propagation due to the analytical solution available in [2] for
our neuron model. It is hypothesized that higher-order inte-
grations will converge quicker, to higher accuracy solutions,
due to their inherently lower numerical errors. Furthermore,
due to the found importance of spike timing in biological net-
works, we hypothesize that spike time interpolation will as-
sists in the learning process, as further discussed in section
3.5. To explore this last point, the following question is also
addressed: How accurate is a numerically simulated spiking
neural network with spike time interpolation compared to its
analytical counterpart with the same weights when tested on
MNIST?

We contribute an analysis of the current-based leaky
integrate-and-fire neuron model under the forward-Euler and
Parker-Sochacki integration methods, as well as how to ap-
ply spike time interpolation to improve simulation fidelity.
We then derive effective backpropagation equations to train
the numerically integrated networks. We conclude that with
proper parameter choices, numerically simulated networks
perform on par with their analytical counterpart, with higher
order integrations generally performing better, resulting in
similar accuracies and training convergence. Spike time in-
terpolation makes training more lenient as it allows accurate
integrations over a wide range of parameters through its time
step adapations.

Further discussion of related works is discussed in section
2, giving an overview of the relevant literature. Background
for this research is introduced in section 3, which outlines the
neuron and network model used in the rest of the paper, as
well as the numerical integration techniques explored. Sec-
tion 4 expands on the methodology of the exploration, includ-
ing the equations for backpropagation. Section 5 discusses
the results obtained from training using the techniques intro-
duced in section 3, on the MNIST dataset. Section 6 will dis-
cuss and compare the results in section 5, and highlights limi-
tations of our research. Section 7 will summarize the findings
of this paper and suggest avenues for further research into
training spiking neural networks. Finally section 8 reflects on
the ethics of the results and production of this paper.

1



2 Related Works
The study of numerical methods for solving ordinary differ-
ential equations offers a variety of algorithms, broadly cat-
egorized into explicit and implicit methods. Explicit tech-
niques, which include the forward-Euler method, Runge-
Kutta methods and the Parker-Sochacki methods, are com-
mon place for neuron simulations [7; 8] - [7] compares the
errors introduced in a Izhikevich neuron model in fixed-
step simulation with the forward-Euler, Runge-Kutta 2 and
Runge-Kutta 4 methods, finding that the errors were simi-
lar in form, but became lower as the order of integration in-
creased. [9] looks at trainig leaky integrate-and-fire, Izhike-
vich, FitzHugh-Nagumo and Hodgkin-Huxley neurons for
simple function regression, with one network layer, using
the forward-Euler and Runge-Kutta 4 methods. Training
was done through automatic differentiation. Similarly to
[7], they find increases in overall simulation accuracy with
higher order explicit integrators and observe that more bio-
logically plausible neuron models produce better predictions,
with lower spike counts, at high computational costs. Given
the prominence of the leaky integrate-and-fire model in the
training literature, and its more manageable computational
costs, it will be our focus.

Implicit integration algorithms such as the Backward Dif-
ferential Formula family of methods find use in simulating
complex neuron systems, where they provide better stability
guarantees than explicit methods [10]. This follows from the
stiffness of neurons’ dynamics, where explicit methods may
require prohibitively small time steps in order to accurately
capture transiently large gradients induced by events (such as
the input or output of a spike). Implicit solvers solve implicit
functions at every simulation step, which don’t often afford
closed-form solutions. Backpropagating on their outputs gen-
erally requires more advanced analysis, discussed in section
7.1, or generating large computational graphs which demand
higher compute resources. Is is primarily for this reason that
we explore explicit methods.

Specialized integration techniques adapted to neuron be-
haviour have also been proposed, principally quantized state
system methods which handle transient behaviours well at
low computational costs [11; 12].

3 Background
In this section, we introduce the network models and inte-
gration methods used in this paper. The integration methods
are then applied to the selected model to derive the neural
dynamic equations.

3.1 Current-Based Leaky Integrate-and-Fire
neuron

This paper adapts the neuron model introduced in [2]. The
Current-Based Leaky Integrate-and-Fire (CuBa LIF) neuron
has a closed-form solution for the membrane potential, which
can be analytically solved for the spike times depending on
the choice of time constants.

The governing equations of the CuBa LIF given in [2] as
follows:

du

dt
= − 1

τm
u(t) + g(t)− ϑδ(u(t)− ϑ) (1)

dg

dt
= − 1

τs
g(t) +

∑
i

wi

∑
ti

δ(t− ti) (2)

Where u(t) is the membrane potential, τm is the membrane
time constant, g(t) is the post-synaptic current, ϑ is the spik-
ing threshold, τs is the synaptic time constant and wi is the
synaptic efficacy from the pre-synaptic neuron i to the current
neuron. δ(·) denotes the dirac-delta function.

By integrating (1) and (2), a closed-form solution for u(t)
can be derived with the Spike-Response-Model formulation
[13]. By setting τm = 2τs, this form can be factorized to
produce an analytical solution for the neuron’s spike times.
A full derivation is presented in [2], along with a simulation
framework.

It’s worth noting that this neuron model uses a ”soft” re-
set mechanism, whereby the membrane potential decreases
by the spiking threshold, rather than being set to a pre-
determined reset value. In [14], this was demonstrated to
partially reduce integration errors.

3.2 Network model and Training
The network trained in this paper consist of densely con-
nected feed-forward architectures with implicit recurrence in
the reset dynamics of the neurons.

Spike-time based backpropagation, introduced by [15], is
used to train the networks, with errors are decomposed into
both inter-neuron and intra-neuron components in order to
deal with the reset dynamics [2; 16]. For some loss function
L the following equations are used for weight updates:

∆w
(l)
i,j =

∑
t
(l,j)
k

∂L
∂t

(l,j)
k

∂t
(l,j)
k

∂w
(l)
i,j

=
∑
t
(l,j)
k

δ
(l,j)
k

∂t
(l,j)
k

∂w
(l)
i,j

(3)

Where i is the pre-synaptic neuron, j is the post-synaptic
neuron and l is the layer j belongs to. δ

(l,j)
k is further re-

written as the inter-neuron error ϕ(l,j)
k and intra-neuron error

µ
(l,j)
k for a spike tk, such that δ(l,j)k = ϕ

(l,j)
k + µ

(l,j)
k . These

equations are mirrored from [2].

ϕ
(l,j)
k =

∑
i

∑
t
(l−1,i)
z

∂L
∂t

(l+1,i)
z

∂t
(l+1,i)
z

∂t
(l,j)
k

(4)

µ
(l,j)
k =

∑
t
(l,j)
z ∈{t(l,j)z >t

(l,j)
k }

∂L
t
(l,j)
z

∂t
(l,j)
z

∂t
(l,j)
k

(5)

Terms which require the derivative of spike time t
(l,j)
k by

some variable affecting the membrane potential u can be
rewritten through the chain rule and the linear approximation

from [15]. For example, t
(l,j)
k

∂w
(l)
i,j

can be rewritten as:

2



∂t
(l,j)
k

∂w
(l)
i,j

=
∂t

(l,j)
k

∂u
(
t
(l,j)
k

) ∂u
(
t
(l,j)
k

)
∂w

(l)
i,j

=
−1

∂u
(
t
(l,j)
k

)
∂t

(l,j)
k

∂u
(
t
(l,j)
k

)
∂w

(l)
i,j

(6)
As shown by [17], this is mathematically sound for mul-

tiple spiking neural networks and yields the same results as
[2].

3.3 Forward-Euler method
The forward Euler method is an explicit first-order integrator
commonly used in the simulation of spiking neural networks.
For training it is often adapted by applying non-physiological
assumptions to simplify its equations [6]; a naive treatment is
applied for this paper. For an ordinary differential equation in
the form:

dy

dt
= f(t, y(t))

We can estimate the dynamics with time step ∆t as fol-
lows:

y[t+∆t]− y[t] =

∫ t+∆t

t

f(t, y(t)) dt

Which can be approximated to be:

y[t+∆t] = y[t] + ∆tf(t, y[t])

But for t < ti < t+∆t,∫ t+∆t

t

δ(t− ti) = 1

This is is the basis of the forward-Euler method, which we
apply in turn to our chosen neuron model. Using (1) and (2),
we derive:

u[t+∆t] = u[t] + ∆t

(
g[t]− u[t]

τm

)
− ϑS[t+∆t]

g[t+∆t] = g[t]− ∆t

τs
g[t] +

∑
i

wiSi[t+∆t]

Where S[t] is either 0 (no spike) or 1 (spike). And S[t] =
Θ(U [t]− ϑ), Θ(·) being the Heaviside step function.

3.4 Parker-Sochacki method
The Parker-Sochacki method is a variable-order iterative ex-
plicit integration method introduced by [18]. It can pro-
vide high integration accuracies with reasonable simulation
times and computational costs, but has seen little application
to neural networks [8]. In [8], the method yields accurate
simulations of Izhikevich and Hodgkin-Huxley models with
an adaptive ordering and spike time interpolation schemes.
This section will follow a similar methodology, but applied
to the CuBa LIF neuron introduced in subsection 3.1. The
Parker-Sochacki method can be seen as a generalization of
the forward-Euler method, where they are equal when the in-
tegration order is one.

In the Parker-Sochacki method, a Maclaurin series is first
defined for each model variable. For variable y:

y(t) =

∞∑
p=0

ypt
p (7)

Where yp = ∂py(t)
∂tp

1
p! . yp+1 =

∂yp

∂t
1

p+1
[19], a result which

will not be derived here.
For ∂y

∂t = f(t, y(t), g(t), . . .), ∂yp

∂t = f(t, yp, gp, . . .).
Finally when simulating, a truncated version of (7) is used

up to order n:

y(t+∆t) = y(t) +

n∑
p=1

y(t)p(∆t)
p (8)

Applying (8) to (1) and (2), and assuming we start at t = 0,
we derive for our model:

u[t+∆t] = u[t] +

n∑
p=1

u[t]p(∆t)
p − ϑS[t+∆t] (9)

u[t]p+1 =
−u[t]p

τm(p+ 1)
+

g[t]p
p+ 1

(10)

g[t+∆t] = g[t] +

n∑
p=1

g[t]p(∆t)
p
+
∑
i

wiSi[t+∆t] (11)

g[t]p+1 = − g[t]p
τs(p+ 1)

(12)

Unlike in [8], all simulations in this paper will be done with
a fixed integration order n.

3.5 Spike time interpolation
Spike time interpolation is the use of sub-steps during inte-
gration to accurately capture event timings in a neuron, such
as output spikes. Due to the importance of spike timings
in backpropagation and overall information transfer, spike
time interpolation is applied to the forward Euler and Parker-
Sochacki methods used in this paper. [20] shows that apply-
ing a linear interpolation to the forward Euler method ”greatly
improves integration performance”, due to the elimination of
the ∆t global order errors in the spike times. Spike time in-
terpolation facilitates the comparison of integration methods
by eliminating the method agnostic effects of global errors.

Given that the forward-Euler method is an order one
Parker-Sochacki integration, interpolation will described us-
ing a procedure provided by [8], with modifications. Whereas
they allow one intermediate step per global step, we allow ar-
bitarily many to capture event bursts. The events we consider
are input spikes, output spikes and a global time step when
the prior do not occur. This global time step is not necessar-
ily aligned with respect to the starting time of the simulation.

The simulation procedure is described in the psuedo code
of algorithm 1.

3



Algorithm 1 Spike time interpolation applied to the Parker-
Sochacki method for a CuBa LIF neuron.
Input: f(u[t], g[t],∆t) the Parker-Sochacki solver returning
u[t+∆t] and g[t+∆t].

Input: u[0] and g[0] the initial states.
Input: tin the sorted input spikes array.
Input: ∆t the global time step.
Input: ϑ the spiking threshold.
Input: max simulation the maximum simulation time.
Output: tout the interpolated output spikes.

u[t]← u[0]
g[t]← g[0]
simulation time← 0
while simulation time < max simulation do

∆t0 ← min
(
∆t, next

(
tin

))
u[t+∆t0], g[t+∆t0]← f(u[t], g[t],∆t0)
if (t+∆t0) ∈ tin then

g[t+∆t] = g[t+∆t0]+ weight(t+∆t0)
end if
if u[t+∆t0] ≥ ϑ then

∆t0 ← newton raphson(u[t], g[t])
tout ← put

(
t+∆t0, tout

)
u[t+∆t0], g[t+∆t0]← f(u[t], g[t],∆t0)

end if
simulation time← simulation time +∆t0
u[t], g[t]← u[t+∆t0], g[t+∆t0]

end while

The Newton Raphson method is applied to find the exact
point that the threshold was crossed during simulation. More
specfically, we find the root of the function:

f(∆tpre) = u[t] +

n∑
p=1

u[t]p(∆tpre)
p − ϑ

Where ∆tpre is the time from t to the spike. The derivative
of f(∆tpre) with respect to ∆tpre is as follows:

df(∆tpre)

d∆tpre
=

du[t]

d∆tpre
+

n∑
p=1

u[t]p
d(∆tpre)

p

d∆tpre
− dϑ

d∆tpre

(13)

=

n∑
p=0

u[t](p+1)(p+ 1)(∆tpre)
p

Starting with an initial guess of 0, the Newton Raphson will
converge to the first ∆tpre such that f(∆tpre) = 0. There are
caveats to this however, which will be discussed in section 5.

4 Methodology
This section will present the steps carried out to explore the
effects of spike time interpolation on network dynamics and
will introduce and explain an event-based approach to back-
propagation for discrete simulations based on the general for-
mulas from subsection 3.2. The general form is similar to
backpropagation through time, but only events contribute to
the error. We also note that all experiments were carried out
with Numpy seed 42801237 and Cupy seed 526457712.

Figure 1: Example integration comparing the forward-Euler method
with and without interpolation. The black line represents the thresh-
old ϑ. Interestingly, the interpolated version does not always per-
form better, which can be seen with how early it fires for the last
spike with respect to the the blue reference solution.

Figure 2: Example integration where a third order Parker-Sochacki
integration with interpolation now consistently outperforms the
forward-Euler method, tracing the reference solution perfectly.

Figure 3: Example integration of stiff neuron dynamics, with a large
time step. The forward-Euler method no longer exhibits A-stability,
resulting in infinite oscillation. The interpolated version still man-
ages to converge to the referenec solution, indicating that interpo-
lation may help alleviate instability problems during simulation by
providing adaptive time stepping around critical regions.

4



4.1 Weight transfer
To aid the analysis of training data, we first look at the ef-
fects of different numerical integrations on network accuracy
during inference. An analytical network with a 784-800-
10 feedforward architecture is first pre-trained for 20 epochs
on MNIST, and its weights are transferred to networks of
the same morphology simulated using the Parker-Sochacki
method in the forward pass. Similar to [2], we test on a sub-
set of 10,000 images not used during training.

4.2 Parker-Sochacki backpropagation
Backpropagation for the forward-Euler and Parker-Sochacki
methods with spike time interpolation are simpler to ana-
lyze than fixed step integrations due to the continous spike
times, but require careful treatment. We derive equations for:
∂u[t

(l,j)
k ]

∂w
(l)
i,j

, ∂u[t
(l,j)
k ]

∂t
(l−1,i)
z

, ∂u[t
(l,j)
k ]

∂t
(l,j)
z

and ∂u[t
(l,j)
k ]

∂t
(l,j)
k

. In order to sim-

plify notation, we introduce fu(u[t], g[t],∆t) to be an inte-
gration step of the Parker-Sochacki method for u, and sim-
ilarly fg(g[t],∆t) for g. The methods derived generalize to
other explicit integration methods however.

Gradients are accumulated forward, meaning we first dif-
ferentiate at the origin of the gradients and then derive an
second equation that propagates this forward through time.

∂u[tpost]

∂w
(l)
i,j

= (14)

∂fu

(
u[t

(l,j)
k ], g[t

(l,j)
k ] + w

(l)
i,j , tpost − t

(l,j)
k

)
∂tpost − t

(l,j)
k

∂tpost − t
(l,j)
k

∂w
(l)
i,j

+

∂fu

∂u[t
(l,j)
k ]

∂u[t
(l,j)
k ]

∂w
(l)
i,j

+
∂fu

∂g[t
(l,j)
k ] + w

(l)
i,j

∂g[t
(l,j)
k ] + w

(l)
i,j

∂w
(l)
i,j

=
∂fu

∂u[t
(l,j)
k ]

∂u[t
(l,j)
k ]

∂w
(l)
i,j

+
∂fu

∂g[t
(l,j)
k ] + w

(l)
i,j

∂g[t
(l,j)
k ] + w

(l)
i,j

∂w
(l)
i,j

Where tpost is the integration point following an input
spike. Since the ODEs used by the Parker-Socachki method
are linear, the last equation above is the same as doing a for-

ward step with ∂u[t
(l,j)
k ]

∂w
(l)
i,j

and
∂g[t

(l,j)
k ]+w

(l)
i,j

∂w
(l)
i,j

as the membrane

potential and current, with time step tpost − t
(l,j)
k . When

propagating from a non-input spike forward, the weight term
is removed in the derivative i.e. ∂g[t]

∂w
(l)
i,j

is used instead. For an

input spike we get:

∂u[tpost]

∂t
(l,j)
k

= (15)

∂fu

(
u[t

(l,j)
k ], g[t

(l,j)
k ] + w

(l)
i,j , tpost − t

(l,j)
k

)
∂tpost − t

(l,j)
k

∂tpost − t
(l,j)
k

∂t
(l,j)
k

+

∂fu

∂u[t
(l,j)
k ]

∂u[t
(l,j)
k ]

∂t
(l,j)
k

+
∂fu

∂g[t
(l,j)
k ] + w

(l)
i,j

∂g[t
(l,j)
k ] + w

(l)
i,j

∂t
(l,j)
k

(a)

(b)

Figure 4: Sample integration of membrane potential from 0s to 0.5s
with 2 steps. The different lines show the integration path with vary-
ing times for the intermediate integration point. Ideally the results
are identical, but in 4a there are large discrepencies. This subsides in
the higher order integration of 4b. Practically, this means the deriva-
tive of the result with respect to the intermediate integration point is
not zero, introducing noise into the training process.

This first derivation is naive as is does not account for noise
introduced by the integration process as illustrated in Fig. 4.
This noise is characterized by ∂u[tpost]

∂t
(l,j)
k

without taking into ac-

count the weight term. When subtracted from (15), the result
is:

∂u[tpost]

∂t
(l,j)
k

= −
∂fu

(
0, w

(l)
i,j , tpost − t

(l,j)
k

)
∂tpost − t

(l,j)
k

(16)

Both the naive and adjusted versions of the backpropaga-

tion equations were tested. For brevity, the ∂u[t
(l,j)
k ]

∂t
(l,j)
z

term
is not derived, but follows the same form as (15). Finally,
∂u[t

(l,j)
k ]

∂t
(l,j)
k

is identical to (13).

5 Experimental Setup and Results
5.1 Weight transfer
Two experiments were run with the weight transfer method
for MNIST. The first one is run on the original MNIST dataset
where pixel values range from 0 to 255 and a linear latency
encoding is used. The second experiment thresholds all val-
ues to either 0 or 255, with the threshold at 128. The baseline
performances are 98.79 and 98.55 respectively.

5



Figure 5: Accuracies at different integration orders on the original
MNIST dataset with weights transferred from an analytical network.
All orders perform similarly across different time steps, with the
largest differences being 0.04%.

The thresholded test eliminates the effects of spike time
interpolation for input spikes in the first layer since they all
occur at t = 0.

Figure 6: Accuracies at different integration orders on a thresholded
MNIST dataset with weights transferred from an analytical network.
Higher orders perform similarly with increasing time steps, but the
forward-Euler method sees gradual performance degredation.

Figures 5 and 6 both demonstrate how numerically simu-
lated networks with spike time interpolation can achieve on-
par accuracies with their analytical counterpart. Furthermore,
minimizing spike time interpolation at the first layer leads to
greater relative accuracy variations across time steps.

5.2 Training
Training experiments were done under the same condiitons
as the weight transfer experiments, but the numerically sim-
ulated networks were trained directly through backpropaga-
tion. Three time steps (0.1, 0.05, and 0.01) were explored
across three orders of integration (1, 3, 5). Data was collected
related to the accuracy of the networks during training, their
spike counts, and real training time. The experiments were
run on an NVIDIA GeForce RTX 4070 mobile graphics card,
which represented the main bottleneck during training. The
first three graphs are for the naive backpropagation, and the
last for the adjusted backpropagation.

Figures 7 and 10 both confirm that higher order integra-
tions converge quicker and to higher accuracies as predicted.

Figure 7: Test accuracies across different ∆t and integration or-
ders with naive backpropagation. No results were recorded for
∆t = 0.01 and order 5. As ∆t decreases, the discreprencies be-
tween higher orders begins to close.

Figure 8: Average test accuracies across different ∆t with naive
backpropagation. Lower ∆ts train marginally better, but the influ-
ence of the parameter is low.

The difference is most notable between orders 1 and 5. In
Fig.8 and 11, we see how ∆t has little effect on training when
employing spike time interpolation, which is most clear in
the similarities of the subfigures in Fig. 10. This pattern
does not hold for order 3 in Fig. 7. The overall final accu-
racies after training are on par with the analytical network,
which achieved 98.63% accuracy. In comparison, the order 5
network with ∆t = 0.1 achieved 98.54% accuracy with the
adjusted backpropagation. Training time is the largest differ-
ence between the two experiments. In Fig. 9, the training time
increases as high as 500 seconds per epoch, with a hidden
layer spike count of 4000. This is expected due backprop-
agation being quadratic with respect to output spike counts.
With the modified backpropagation rule, Fig.12, we see at
most a training time of 210 seconds, with fluctuations peak-

6



Figure 9: Training times across different ∆t and integration orders
with naive backpropagation. The dashed and solid lines represent
the time and hidden layer spike count respectively. They are highly
positively correlated. First order integrations tend toward lower hid-
den layer spike counts, whilst higher ones tend toward higher ones.

Figure 10: Test accuracies across different ∆t and integration orders
with adjusted backpropagation. Higher orders onverge quicker to
better accuracies, but there is little difference to be noted between
order 3 and 5.

ing at 40 seconds. The trend is flatter in general and more
closely resembles the consistent training times of the analyti-
cal network.

6 Discussion
In this paper we tested how numerically simulating spik-
ing neural networks affects their training accuracy and speed
(both in epochs and time), and how spike time interpolation
techniques may have contributed to this observed behaviour.

In section 5.1, the performance of numerically simulated
networks with spike time interpolation were close to those
of an analytical network across different integration orders
and time steps. A general downward trend was expected

Figure 11: Average test accuracies across different ∆t with adjusted
backpropagation. Lower ∆ts converge faster, but they all achieve a
similar accuracy after 30 epochs.

Figure 12: Training times across different ∆t and integration orders
with adjusted backpropagation. The dashed and solid lines represent
the time and hidden layer spike count respectively. Training times
stay relatively consistent throughout, despite fluctuations in the hid-
den spike count.

with step size, but was only observed in Fig. 6 for a first
order integration. The corresponding experiment was de-
signed to minimize the impact of spike time interpolation
by increasing the input sparsity, suggesting two conclusions;
spike time interpolation helps stabilize network activity and
accuracy when activity is regular, and; higher order integra-
tions can provide accurate results over wide ranges of time
deltas, meaning they are more stable with low event sparsity
than the forward-Euler method. The main challenges faced
by the implementation of spike time interpolation are more
sophisticated hardware requirements, potentially infeasible in
architectures such as [4], due to use of the Newton-Raphson
method, and floating point spike times and integration calcu-
lations. We also note that despite higher order integrations

7



showing stability with a ∆t as high as 0.1 for a simulation
time of 0.2, excessive ∆ts will cause large overestimations
of the membrane potential, leading to ghost spikes or back-
ward time travelling spike times due to the initial conditions
of the Newton-Raphson method. We guard agains this in our
implementation through generous use of assert statements.

In section 3.2, we proceed to train numerically simulated
networks and find they approach the accuracy of their analyt-
ical counterpart. Training time becomes a key issue. Conver-
gence with respect to epochs remains consistent for an inte-
gration order over different ∆ts, but an interesting exception
occurs for ∆t = 0.01 and order 1 in Fig. 10. As the delta
time is very small, the forward-Euler method can still per-
form similarly to high-order ones, as demonstrated by look-
ing at Fig. 5 and 6, due to having more integration points.
The lower computational cost also results in lower training
times, despite having more spikes in the hidden layer, which
is seen in Fig. 12. The latter result conflicts with Fig. 9 due
to the relative magnitude of the spike count changes; changes
of a couple hundred spikes will not make a noticeable dif-
ference to performance, presumably since the GPU is not yet
bottlenecked. This suggests that with low time deltas, the
integration order does not have much effect on the training
accuracy and convergence of the model, but does negatively
affect training times. If we instead consider network sparsity
in Fig. 12, the higher order integrators find sparser solutions
with equivalent accuracy, a result which agrees with the anal-
ysis in [9]. This latter point is important for neuromorphic
hardware where spike counts are directly correlated to energy
consumption.

In 3.2, a distinction has been made between a naive and
modified backpropagation procedure, the latter of which ac-
counts for noise in the derivatives introduced by the integra-
tion process. We hypothesize that the network tries to min-
imize the influence of this noise in the naive solution by in-
creasing network activity. In tandem with spike time interpo-
lation, this decreases the effective time delta of the network,
thereby making the output of the integration less reliant on
any specific event. This effect needs further exploration to be
substantiated, however. Regardless, the effect is antagonis-
tic to the goal of achieving reasonable training times. In au-
tomatic differentiation engines, a naive backpropagation can
therefore lead to such issues without the awareness of the pro-
grammer. A possible fix is discussed in the future works sec-
tion.

Despite compelling results, we note that this research is
limited in its analysis, in several regards. Due to bugs encoun-
tered whilst developing the simulation software, and time
constraints, few experiments were run. Only 10 experiments
are shown in section 5.1 and 17 experiments in section 5.2.
The limited set of data points may be flawed in their gen-
erality but do show consistent trends. We also note that the
dataset used, MNIST, is trivially solved by most neural net-
work architectures to high accuracies and may not provide
insight into the more complex dynamics of numerically in-
tegrating spiking neural networks. More datasets could not
be explored due to time constraints. Finally, we note that we
combine an analysis of numerical integration methods and
spike time interpolation, but do not do an ablation study. We

provide numerous suggestions for their interplay, but have lit-
tle empirical evidence for them.

7 Conclusions and Future Work

We aimed to address two questions:
How accurate is a numerically simulated spiking neural

network with spike time interpolation compared to its an-
alytical counterpart with the same weights when tested on
MNIST?

How are the training accuracy and training speed (in
epochs and time) of a spiking neural network affected when
numerically integrating with the forward-Euler and Parker-
Sochacki methods?

By exploring a CuBa LIF based spiking neural network,
we provided methods for the application and analysis of spike
time interpolation and backpropagation when numerically in-
tegrating neuron dyanmics. We conclude that networks with
spike time interpolation perform similarly to their analyt-
ical counterparts during inference on MNIST with shared
weights. Furthermore, spike time interpolation provides sta-
bility to networks with regular activity. With this result in
mind, we conclude that numerically integrated networks have
similar characteristics, overall network accuracy, and con-
vergence rate to their analytical counterparts, as long as the
backpropagation is properly treated. We provide insight into
how to do the latter by demonstrating that integrations can in-
troduce noise into backpropagation equations. Our research
shows that higher order integrations will generally perform
better, but this depeends on your time delta and network ac-
tivity.

7.1 Future Work

Our analysis focused on the CuBa LIF neuron model, but as
discussed in the introduction, there are many more available.
Future work can investigate training models with a wider
range of neuron models, on deeper tasks to expand upon our
work, and the work of [9]. Furthermore, spike time interpo-
lation is applied in this paper, but no ablation study is per-
formed without it. Further insight into its effects are use-
ful due to the added hardware complexity and computational
costs of its implementation.

This paper solely explores explicit integration methods
with transparent implementations where backpropagation can
be directly applied. In the case of implicit methods or black-
box integrators in general, this analysis is not as useful. At-
tention has recently been given to models such as Nueral
ODEs, where solving the ODE and backpropagation are made
independent through adjoint sensitivity analysis techniques
[21]. A similar concept has been applied in conjunction with
hybrid system analysis in the EventProp algorithm, which
allows exact backpropagation on simple spiking neural net-
works with arbitrary integrators [22]. The paper only does
analytical integration, so further research of its method ap-
plied to numerically integrated networks is suggested. This
also opens the door to more efficient backpropagation ap-
proaches.

8



8 Responsible Research
8.1 Reproducibility
All the code use for experiments can be found on GitLab. Hy-
perparameters are the same as found in the Parker-Sochacki
spike count training files in the MNIST experiment. By fixing
and providing the seed in the experimental setup section, the
experiments are deterministically reproducible. The code for
data processing is also provided, along with the experiments
used in this paper. Some experiments may require changing
high level variables, such as integration orders, which should
be clear from the context of the graphs they produce. It could
however be that some changes have not been systematically
recorded and would require more effort to reproduce.

8.2 Experimental data
All experimental data is included in the analysis provided by
the paper. Any data removed represents incomplete training
runs, results from buggy code or data which didn’t affect the
final analysis.

8.3 Programming
It would be prudent that researchers using our code check for
bugs. One particular issue related to backpropagating errors
to input spikes triggered assert statements under unknown
conditions. As it was not easily reproducible this particular
bug has not been addressed yet. When not crashing, these
assertions also guarantee the correctness of the experimental
results. If any inconsistencies have been found between our
descriptions and the code, please contact our primary author.

8.4 Environmental impact
Training and simulating neural networks can be computa-
tional expensive and energy intensive. This research focuses
on shallower networks with low computational costs, but still
considers the effects of training methods on network effi-
ciency. The study of spiking neural networks may also be
beneficial in the long term by providing low power alterna-
tives to traditional deep neural networks. Further research
should keep in mind the balance of their contributions’ effect
on the environment.

References
[1] Nergis Tomen and Udo Ernst. The role of criticality in

flexible visual information processing. The functional
role of critical dynamics in neural systems, pages 233–
264, 2019.

[2] Florian Bacho and Dominique Chu. Exploring Trade-
Offs in Spiking Neural Networks. Neural Computation,
35(10):1627–1656, 09 2023.

[3] Julian Göltz, Laura Kriener, Andreas Baumbach, Sebas-
tian Billaudelle, Oliver Breitwieser, Benjamin Cramer,
Dominik Dold, Akos Ferenc Kungl, Walter Senn, Jo-
hannes Schemmel, et al. Fast and energy-efficient neu-
romorphic deep learning with first-spike times. Nature
machine intelligence, 3(9):823–835, 2021.

[4] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gau-
tham Chinya, Prasad Joshi, Andrew Lines, Andreas
Wild, Hong Wang, and Deepak Mathaikutty. Loihi: A
neuromorphic manycore processor with on-chip learn-
ing. IEEE Micro, PP:1–1, 01 2018.

[5] Eugene M Izhikevich. Simple model of spiking neurons.
IEEE Transactions on neural networks, 14(6):1569–
1572, 2003.

[6] Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin
Wang, Gregor Lenz, Girish Dwivedi, Mohammed Ben-
namoun, Doo Seok Jeong, and Wei D Lu. Training spik-
ing neural networks using lessons from deep learning.
Proceedings of the IEEE, 2023.

[7] Giuseppe de Alteriis and Calogero Maria Oddo. Trade-
off between accuracy and computational cost of euler
and runge kutta ode solvers for the izhikevich spiking
neuron model. In 2021 10th International IEEE/EMBS
Conference on Neural Engineering (NER), pages 730–
733, 2021.

[8] Robert D Stewart and Wyeth Bair. Spiking neural net-
work simulation: numerical integration with the parker-
sochacki method. Journal of Computational Neuro-
science, 27:115–133, 2009.

[9] Mario De Florio, Adar Kahana, and George Em Karni-
adakis. Analysis of biologically plausible neuron mod-
els for regression with spiking neural networks. arXiv
preprint arXiv:2401.00369, 2023.

[10] Bruno Magalhães, Michael Hines, Thomas Sterling, and
Felix Schürmann. Fully-asynchronous fully-implicit
variable-order variable-timestep simulation of neural
networks. In Computational Science–ICCS 2020:
20th International Conference, Amsterdam, The Nether-
lands, June 3–5, 2020, Proceedings, Part V 20, pages
94–108. Springer, 2020.

[11] Gang Zheng, Arnaud Tonnelier, and Dominique Mar-
tinez. Voltage-stepping schemes for the simulation of
spiking neural networks. Journal of computational neu-
roscience, 26:409–423, 2009.

[12] Guillermo L Grinblat, Hernán Ahumada, and Ernesto
Kofman. Quantized state simulation of spiking neural
networks. Simulation, 88(3):299–313, 2012.

[13] Wulfram Gerstner and Werner M Kistler. Spiking neu-
ron models: Single neurons, populations, plasticity.
Cambridge university press, 2002.

[14] Yufei Guo, Yuanpei Chen, Liwen Zhang, YingLei
Wang, Xiaode Liu, Xinyi Tong, Yuanyuan Ou, Xuhui
Huang, and Zhe Ma. Reducing information loss for
spiking neural networks. In European Conference on
Computer Vision, pages 36–52. Springer, 2022.

[15] Sander M. Bohté, Joost N. Kok, and Han La Poutré.
Spikeprop: backpropagation for networks of spiking
neurons. In The European Symposium on Artificial Neu-
ral Networks, 2000.

[16] Wenrui Zhang and Peng Li. Temporal spike sequence
learning via backpropagation for deep spiking neural

9

https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Tomen_Micheli/mguichard-Adapting-unconstrained-spiking-neural-networks-to


networks. Advances in neural information processing
systems, 33:12022–12033, 2020.

[17] Wenyu Yang, Dakun Yang, and Yetian Fan. A proof of
a key formula in the error-backpropagation learning al-
gorithm for multiple spiking neural networks. In Inter-
national Symposium on Neural Networks, pages 19–26.
Springer, 2014.

[18] G Edgar Parker and James S Sochacki. Implementing
the picard iteration. Neural, Parallel & Scientific Com-
putations, 4(1):97–112, 1996.

[19] Joseph W Rudmin. Numerical solution of differen-
tial equations by the parker-sochacki method. arXiv
preprint arXiv:1007.1677, 2010.

[20] David Hansel, Germán Mato, Claude Meunier, and
L Neltner. On numerical simulations of integrate-and-
fire neural networks. Neural Computation, 10(2):467–
483, 1998.

[21] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equa-
tions. Advances in neural information processing sys-
tems, 31, 2018.

[22] Timo C Wunderlich and Christian Pehle. Event-based
backpropagation can compute exact gradients for spik-
ing neural networks. Scientific Reports, 11(1):12829,
2021.

10


	Introduction
	Related Works
	Background
	Current-Based Leaky Integrate-and-Fire neuron
	Network model and Training
	Forward-Euler method
	Parker-Sochacki method
	Spike time interpolation

	Methodology
	Weight transfer
	Parker-Sochacki backpropagation

	Experimental Setup and Results
	Weight transfer
	Training

	Discussion
	Conclusions and Future Work
	Future Work

	Responsible Research
	Reproducibility
	Experimental data
	Programming
	Environmental impact


