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Abstract

Deformable Mirror (DM) is the key part in the AO system. Characterization of DM is
important as it maps between input voltage signal and output mirror deformation. The
precision of characterization largely affects the control performance. While characterizing
the DM with wavefront sensors is easy and straightforward, there is very few research on
the characterizing the DM in a Wavefront sensorless (WFSless) setup. Existing research
focuses on using Phase Diversity Phase Retrieval (PDPR) methods to retrieve phase, while
introducing diversity phase by using various additional hardware.

This thesis tries to use PDPR methods to characterize the DM in a WFSless setup without
using any additional hardware. Diversity phase are introduced by the DM itself and calibrated
afterwards. Simulation results show that the proposed method is capable of characterizing
the DM. Experiments on the setup are also conducted and further validates the proposed
method, while unstable setup is accountable for the undesired results of the characterization.
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Chapter 1

Introduction

Adaptive Optics (AO) has been used in various fields including astronomy, microscopy, med-
ical imaging and lithography manufacturing Ref[1][2]. AO systems can be with or without
sensor for phase detection, while sensors can also be used for the calibration of DM actuators.
In a Wavefront sensorless (WFSless) setup, no direct wavefront sensor is used. Sensorless
AO is used more often than direct wavefront sensing in microscopy since the requirement of
point-like source of light is hardly met in such applications Ref[1]. The key element in an AO
setup is the Deformable Mirror (DM), which is used to correct aberrations and allow for high
resolution images.

DMs correct aberrations by altering the phase of propagating beam. It can be also seen as DM
generating a Wavefront (WF) that compensates for the original one. To control a DM, one
typically needs to obtain a control matrix that links input voltage to the output deformation
of the mirror surface Ref[3]. If the phase introduced by the DMs is known, it would be much
easier to determine the control input.

In a WFSless setting, it is more challenging to obtain such control matrices as no sensor is
used. One can of course bypass the problem of WF reconstruction by iteratively optimizing a
certain metric function as in Ref[4] to obtain good control inputs, but the long process time
and underlying nonlinearity are hard to tackle. A more recent model-based version of such
closed-loop control strategy is making use of the linear relationship of mean square of the
aberration gradient and the second moment of the image intensity distribution as in Ref[5].

By far, most DM control strategies heavily rely on the close-loop structure or iterative com-
putation. A more direct way of controlling the DM is to reconstruct the wavefront from
intensity measurements and then map between the change in wavefronts and DM inputs, so
as to "characterize" the DM. Such characterization would allow for fast, accurate and even
open-loop control of the DM. In this approach, phase reconstruction plays an important role
and multiple phase-retrieval methods have been developed in the past Ref[6].
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2 Introduction

1-1 Research Question

As mentioned above, the aim of this project is to characterize the DM using reconstructed
wavefronts. More specifically, let the phase of incoming aberrated wavefront be noted as ϕ,
the phase change introduced by DM be noted by ϕc and the residual wavefront after DM be
noted by ϕr, their relation can be described by:

ϕr = ϕ − ϕc. (1-1)

The only measurable output in the WFSless AO system is the point spread function(PSF)
measured by focal plane sensors:

I(ζ, ϕr) = |F(A(x)eiϕr(x))|2. (1-2)

where ζ, x ∈ R2 representing the image and pupil plane coordinates respectively and A rep-
resents the amplitude.
The change of phase introduced by DM is represented as:

ϕc = ΣN
i=1ciri(u). (1-3)

Where N is the number of actuators, ci the coefficient and ri(ui) the response function of
each actuator with input voltage ui.

The goal of this project can be formulated as: to identify a set of response functions ri, with
a series of PSFs as output measurement and control voltage ui as input.
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Chapter 2

Previous Work

In this chapter, the basic theory about light propagation and image formation used in this
thesis is introduced, along with a brief introduction to Adaptive Optics (AO) systems. Then,
the problem of Deformable Mirror (DM) characterization is stated, which pointed to the topic
of wavefront sensing. Wavefront sensing methods used in Wavefront sensorless (WFSless)
settings and phase retrieval problem are introduced at last, followed by a summary on relevant
works of DM characterization.

2-1 Basics of Adaptive Optics

2-1-1 Light Propagation and Image Formation

In physical optics, monochromatic light wave is represented by a complex function:

W (x, t) = A(x)Re[ei(ωt−ϕ(x))] = Re[A(x)e−iϕ(x)eiωt] = Re[a(x)eiωt]. (2-1)

where x = (x, y) is the spatial coordinate, A(x) the amplitude, a(x) ≜ A(x)e−iϕ(x) the
complex amplitude, ωt − ϕ(x) the phase, the angular frequency ω = 2πc

λ where c the speed of
light and λ the wavelength of this light.
When ω is determined, that is, for the monochromatic case, the time-dependent component
can be left out and the light can be fully determined by the complex amplitude:

a(x) = A(x)e−iϕ(x). (2-2)

A wavefront is defined as a surface with equal phase, that is:

ωt − ϕ(x) = const., (2-3)

and the distribution of optical phase in a plane ϕ(x) can very often approximate the whole
wavefrontw(x) Ref[7], that is:

w(x) ≈ ϕ(x). (2-4)
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4 Previous Work

Figure 2-1: Optical imaging system to illustrate the Abbe theory of image formation. The beam-
splitter M and lens L3 are used to form a separate image of the Fourier plane. Source: Ref[8]

Lens is a fundamental element in an optical system and can be viewed as a Fourier transformer
Ref[7]. In paraxial approximation the phase delay introduced by a lens with focal length f is
represented as:

∆ϕ(x) = e
ik
2f

(x2+y2)
. (2-5)

Using W0(x) = Ae−iϕ(x) with amplitude A and aberration ϕ(x) to represent an incident plane
wave, P (x) to represent the pupil function, the resulting wave is proportional to the Fourier
transform of the W0(x) multiplied by P (x) and phase term e

ik
2f

(u2+v2). That is, the wave
after a lens is represented as:

W (u, v) = e
ik
2f

(u2+v2)

iλf

∫∫
R2

W0(x)P (x)e−i 2π
λf

(xu+yv)
dx. (2-6)

Under diffraction theory of image formation, an optical image can be represented as the
Fourier transform of the Fourier transform of the object with phase delays Ref[8], as the im-
age formation is considered as a double process of diffraction and the Fraunhofer diffraction
pattern amplitude is described by the two-dimensional Fourier transform of the mask trans-
mission function under Abbe sine condition. As shown in Figure2-1, illumination observed in
the focal plane is the Fraunhofer diffraction pattern of the object and the image is the Fourier
transform of this diffraction pattern.
The image is the intensity part of the Fourier transform:

I(u, v) = A2

λ2f2 |
∫∫

R2
P (x)e−i 2π

λf
(xu+yv)

dx|2. (2-7)

Notice that the image only records the intensity and the phase is lost. To reconstruct a com-
plex field, the phase has to be determined. This is called the phase problem and is closely
related to the topic of this project and will be treated in the later parts of this chapter.
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2-1 Basics of Adaptive Optics 5

The far field diffraction pattern of a point source is called the Point Spread Function (PSF).
In an ideal telescope such pattern is described by an Airy disc:

p0(α) = πD2

4λ2 (2J1(πD|α|/λ)
πD|α|/λ

)2. (2-8)

where α is the angular coordinate, D the diameter of the aperture, J1 the Bessel function of
the first kind.
Extended object can be considered as a collection of point sources and each source produces
such PSF. The final image is the intensity of all the PSFs added, making it the convolution
of the object intensity and PSF.

i = p ∗ o. (2-9)

The image of a point source, such as laser source, is the convolution of its PSF and a δ-
function, making the image equivalent to the PSF itself.
Resolution describes an imaging system’s ability of distinguishing between two point sources.
If the central maximal of intensity of one PSF pattern lies outside the first minimum of the
other, the two point sources are considered distinguishable according to Rayleigh’s resolution
criterion. Rayleigh’s criterion is represented as:

θ = 1.22λ

D
. (2-10)

which is inherited from equation(2-8), as the radius of the first dark ring in the Airy pattern.
θ is called the minimal angular separation of two point sources. Equation(2-8), equation(2-9)
and equation(2-10) indicate that the image is a smoothed version of the object and aper-
ture size is responsible for the degradation of the image quality since PSF is determined by
aperture size. Such resolution degradation is called diffraction limited. We cannot get rid of
diffractive effects, the best we can do is to reach this diffraction limit Ref[9].

2-1-2 Adaptive Optics (AO) System and Compensation

Wavefront aberrations are the principle cause of degradation of image quality. Phase conju-
gation is the most common approach to correct for aberrations and is the basis for most forms
of adaptive optics Ref[9]. As is shown in Figure2-2, if a plane wave is distorted, there might
be a way to alter the mirror or lens such that the second passage has no distortion. Such
alteration in essence multiply the field if the plane wave |E|e−iϕ by its complex conjugate
e+iϕ, thus the name phase conjugation Ref[9].
Based on the idea of phase conjugation, many AO systems have been designed. Assuming an
incoming plane wave from a certain light source, change in optical path changes the phase of
the wave. AO system tries to cancel out such distortions by actively introducing optical path
length differences on the deformable mirror.
Typical functions of an AO system include basic optical beam propagating, wavefront sensing,
phase changing and imaging. Wavefront sensing can be done with or without a WF sensor,
such systems are referred to as Wavefront sensor (WFS) and Wavefront sensorless (WFSless)
AO systems respectively. DM is considered as the actuator and a crucial part of the system
and will be discussed in more detail in the following section.

Master of Science Thesis Dong Shen



6 Previous Work

Figure 2-2: Illustration of phase conjugation principle. Wavefront correction with deformable
mirror(left) and liquid-crystal phase modulator(right). Source: Ref[7]

2-2 Problem of Deformable Mirror (DM) Characterization

Deformable mirror performs a crucial role in controlling the wavefront. This section aims to
provide a general mathematical description of DM and use this to illustrate the characteriza-
tion problem.

2-2-1 Modeling Characterization of Deformable Mirror (DM)

Membrane DMs have many actuators, their response can be described by influence functions.
Theoretical forward modeling of influence function needs to consider physical parameters in-
cluding thickness, modulus of elasticity and Poisson’s ratio Ref[10][9].

Assuming each actuator to be independent and linear sum of influence functions represent
the mirror surface, given a set of actuator signals um ∈ RN , , N is the number of actuators
of the DM. The corresponding mirror deformation ϕc can be represented as:

ϕc = Amum, (2-11)

where Am is the influence matrix of the mirror, Am ∈ RM×M×N where M is the size of the
phase map. It can be used to generate a desired target wavefront ϕ0 by pseudo inverse using
singular value decomposition (SVD) Ref[11]:

Am = USV T , (2-12)
A−1

m = V S−1UT , (2-13)

the interpretation of each matrix in SVD is as follows, columns of U is a set of N spatial
modes of the mirror, diagonal elements of S are the gain of the modes, columns of V is an
orthogonal set of actuator signals. The smaller the gain the larger input signal is needed to
produce a same amount of the mode Ref[11].
Thus given a desired wavefront ϕ0, the control signal can be determined and the produced
wavefront can be represented:

um = f(V S−1UT ϕ0), (2-14)
ϕc = USV T f(V S−1UT ϕ0), (2-15)
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2-2 Problem of Deformable Mirror (DM) Characterization 7

where f(·) is a clipping function used to represent the limited stroke of the mirror actuators:

f =
{

xi for |xi| ≤ xmax,
xmax

xi
|xi| for |xi| ≥ xmax.

once the influence matrix and its inverse are known, the DM is characterized. Current meth-
ods for characterization of an DM are discussed in chapter 3.

On the other side of the equation(2-11), ϕc is used to represent the wavefront generated by
the DM. Instead of driving the individual actuators directly, the usual approach is to use a
modal basis like Zernike polynomials, which can be generated by a certain combination of
control signals Ref[12]:

ϕc(r, θ) =
∞∑

i=1
aiZi(r, θ), (2-16)

where ai is the amplitude of Zernike mode Zi(r, θ). r, θ are the radius and angle used in polar
coordinates. Stacking the coefficients of Zernike polynomials to a vector a can be another
way to decompose the desired wavefront:

a = Bum. (2-17)

2-2-2 Wavefront Sensing

Wavefront sensing is the process of identifying the incoming wavefront to an AO system.
Sensor-based wavefront sensing uses setups like interferometers, curvature sensors, and Shack-
Hartmann sensors. In contrast, sensorless or "phase retrieval" wavefront sensing, which is
the focus of this project, does not rely on specific sensors. This thesis aims to solve DM
characterization problem in sensorless settings.

Phase Retrieval Problem

Following the image formation discussed in previous sections, phase retrieval problem can be
formulated. Supposing a monochromatic light field W in the pupil plane with amplitude A,
and unknown phase ϕ:

W = Ae−iϕ,

the intensity image I in the focal plane can be represented as:

I = |F(W )|2 ∗ δ = |F(W )|2.

I is also the PSF for the point source case. The phase retrieval problem is to determine phase
given the intensity measurement and knowledge of Fourier transform.

Master of Science Thesis Dong Shen



8 Previous Work

Phase retrieval problem can be more abstractly formulated as in Ref[13]:

Given function: a : R2 → R+

b : R2 → R+

Find function: W : R2 → C
satisfying: |W | = a and |F(W )| = b.

here R+ denotes the non-negative real numbers and the modulus the pointwise Euclidean
magnitude.

This problem is to find the phase of a complex-valued function, given its pointwise amplitude
and pointwise amplitude of its Fourier transform.

Phase Retrieval Methods

There are 3 major kinds of phase retrieval algorithms, i.e., alternating projection (AP),
semidefinite programming (SDP) and transport-of-intensity equation (TIE) Ref[6], while re-
cent developments including use of differential optical transfer function (dOTF) and deep
learning. Due to the large amount of appliance and variations, AP methods would be dis-
cussed in details.

Gerchberg and Saxton proposed a simple and practical method for determining phase, by
iteratively imposing constraints on real and Fourier plane Ref[14]. Fienup generalized the
Gerchberg-Saxton (GS) algorithm showing that the directions of projections are formally
similar to directions of steepest descent for a squared set distance metric Ref[15], and GS-like
methods are later viewed as a projection-type algorithm involves non-convex sets Ref[16].
Such methods take iterative steps, raising discussing on the convergence guarantee Ref[16]
and initialization Ref[17].

The original Gerchberg-Saxton algorithm takes iterative Fourier transformation back and
forth between the object and Fourier domains. In each iteration, the algorithm consists of 4
basic steps.

First, denoting the estimate of the field in the image plane at step k as gk(x), where x denotes
the image plane coordinates. Taking it’s Fourier transform yields:

Gk(u) =
√

|Gk(u)|eiϕk(u) = F [gk(x)], (2-18)

where u is the pupil plane coordinate and Gk(u) is the Fourier transform of the image plane
field and thus denotes the field in the pupil plane.

Second, for the field Gk(u) in the pupil plane, we replace its estimated amplitude with the
ground truth amplitude |F (u)|, which is the pupil function of the optical system:

G′
k(u) =

√
|F (u)|eiϕk(u). (2-19)

This amplitude replacement can be viewed as imposing constraint during projection from
image plane to pupil plane.
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2-3 Previous Works on Sensorless DM Characterization 9

Third, inverse Fourier transform the pupil plane field result in the updated image plane field
g′

k(x):

g′
k(x) =

√
|g′

k(x)|eiθ′
k(x) = F−1[Gk(u)]. (2-20)

Lastly, replace the amplitude with that of the measured image amplitude |f(x)| to get an
updated estimate of the image:

gk+1(x) =
√

|f(x)|eiθk+1(x) =
√

|f(x)|eiθ′
k(x). (2-21)

Equation(2-18) to equation(2-21) are the iteration steps for the Gerchberg-Saxton algorithm.
A list of symbols are summarized in table2-1.

Notation Meaning
x Image plane coordinates
u Pupil plane coordinates

gk(x) Complex field in the image plane
Gk(u) Complex field in the pupil plane
F (u) Ground truth pupil function of the optical system
|F (u)| Amplitude in the focal plane, usually an aperture function.
f(x) Ground truth field in the image plane
|f(x)| Intensity measurement in the image plane.

Table 2-1: Notations used for Gerchberg-Saxton (GS) algorithm

Such algorithms can be generalized to any problem where partial constraints are known in
each of two domains, in this case image and Fourier domains.

2-3 Previous Works on Sensorless DM Characterization

Previous work on DM characterization mainly focuses on the use of various sensors, such as
interferometers, Shack-Hartmann Wavefront Sensor (SHWFS), and even wavefront generators
as discussed in Ref[12, 18, 3, 19, 20, 21]. The advantages of using wavefront sensors include the
accuracy of calibration results and smaller processing time, while their drawbacks include the
extra hardware and alignment needed, as well as accuracy limited by reconstruction modes.

This thesis focuses on the characterization of DM in WFSless setups. Relative works in this
setting is much less than in WFS-based settings. There nevertheless still exists several works
including Ref[22, 23, 24, 25, 26, 5, 27, 28]. Majority of the characterization works took the
model-based path, which exploiting the theoretical model of the DM or the second moment
of intensity measurement, while some focused on using phase diversity methods.
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10 Previous Work

2-3-1 Model-based DM Characterization

In Ref[22] a model-based data-driven method for DM calibration is proposed, where the AO
system is first modeled based on the intensity measurements and then identified for aberrations
using SDP, the control law is obtained by solving an optimization problem.

In Ref[26]. a calibration scheme using optimal modes which are insensitive to misalignments
and the shape of illumination profile is proposed. However this work assumes known response
functions and decompose it to form "optimal modes" for better control performance. This
work does not focus on the acquisition of response functions but does give an example for
how to refine the approximate control laws.

In Ref[5], a model-based DM calibration method is proposed. The model makes use of a
linear relationship between mean square of aberration gradients and the second moment of
the image intensity distribution. But still, this work assumes a known theoretical response
functions of DM.

It can be seen that model-based methods for DM calibration in sensorless settings are usually
more focused on the refined tuning of response functions instead of acquisition of such response
functions. However, this thesis aims to obtain a series of response functions in the first place.

2-3-2 Phase Diversity Based DM Characterization

In Ref[25], a modal based DM calibration process for WFSless AO system is proposed. An
approximately characterized mapping between input voltage and Zernike coefficients is first
obtained. Denote such control matrix as Am, input voltage as um and wavefront coefficients
as α which are determined by phase diversity methods. The acquisition of control matrix is
based on the following:

um = Amα, (2-22)
Am = pinv(E+), (2-23)

E+
i,j = ∂αi

∂umj
. (2-24)

where Am can be represented as a pseudo-inverse of a matrix E+, and thus α = E+um.
E+ in equation(2-24) denotes the mirror’s wavefront response to input voltages, where αi is
the wavefront coefficient determined by Phase Diversity (PD). Thus the control matrix is
measured.
After this, the control matrix is further calibrated in a closed-loop. The results of the control
matrix measurement is used to generate flat wavefronts. Strehl Ratio (SR) and wavefront
Rooted Mean Square (RMS) are used as quality measurement for the calibration loop.

In Ref[23], a more straight forward method is proposed. In this work, phase diversity is
introduced by a piezo stage moving back and forth to create axial displacement. After this,
Phase Diversity Phase Retrieval is used to retrieve phase for each actuator’s steps. However,
this method also uses an extra hardware of piezo stage, which is convenient for lab microscopes
but not ideal if DM alone needs to be calibrated.
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2-4 Conclusion 11

2-4 Conclusion

In this chapter, basics of AO and DM calibration is introduced and relative work on DM
characterization is also discussed.

It can be seen that the characterization of DM using WFSless method is possible but there is
not so many work on this topic. Current studies mainly focus on the fine-tuning of existing
response function and implicitly assumes a known theoretical response function. Only limited
number of works focuses on the acquisition of original response function and majority of them
uses phase diversity based methods.In these researches, phase diversity is usually introduced
by additional hardware such as piezo motors or beam splitters.

This chapter intends to present basic knowledge of AO and current status of relevant research.
Based on this, a characterization scheme would be proposed in the next chapter.
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Chapter 3

Calibration Scheme

In this chapter, issues of DM calibration are discussed, including the setup available for the
experiment, methods of generating diversity phase and the proposed method of characterizing
the DM.

3-1 Considerations of DM Characterization

3-1-1 DM Characterization Using DM Generated Diversity

As discussed in the previous chapter, the characterization of DM in WFSless settings is
possible in principle. Results of literature review indicates that there are now 2 mainstream
paths of doing this, one is through model-based methods which assumes theoretical response
functions available, the other is through phase diversity phase retrieval to obtain response
function from measurement.

Characterization of a DM is to determine its response functions purely from measurement.
Such characterization is useful when the theoretical model of a DM is not available or there
are large discrepancies between actual and theoretical response functions. This thesis aims
to characterize the DM, obtaining the response functions even when the theoretical models
are not available.

Since response function in essence is a mapping between input voltage and DM shape, it might
seem that performing phase retrieval to intensity measurement of all input signals would be
enough. However, as will be shown in later chapters, primitive phase retrieval method of
Gerchberg-Saxton will not be sufficient due to issues including twin phase and spinning phase.
This is also part of the reasons why most works adapt phase diversity methods.

To introduce a phase diversity in an optical system, a common way is using extra hardware
to change the optical light path and take multiple intensity measurement for phase retrieval
algorithm.
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14 Calibration Scheme

However, it is often not noticed that the DM itself can introduce a phase diversity. If we can
use the diversity generated by the DM itself to run the characterization, the whole process
would be largely simplified. This would then be the idea of this thesis, i.e., based on the
phase diversity path of characterization, using DM generated phase diversity to characterize
the DM.

To validate this idea, a set of simulations and experiments are designed and will be treated
in the following chapters. In the next section, hardware setup available in the laboratory
will be introduced, after this the phase retrieval method to be used in this project would be
discussed. The characterization scheme for the DM would be introduced at last.

3-1-2 The setup available

To characterize a DM, a set of basic AO system is enough. A setup is used for this thesis is
shown in Figure3-1.

(a) Initial setup available. (b) Scheme of initial setup.

Figure 3-1: Initial setup available in the lab.

In this setup, there are 4 lenses of 20cm focus. The laser is of 632nm wavelength. The DM
used is a 96-channel membrane mirror from Flexible Optics.B.V. Ref[29], as shown in Figure3-
2. The camera is an 8-bit mono color IDS UI-154xLE-M Ref[30] with 1280×1024 pixels and
pixel size of 5.6nm. Apart from this, a SHWFS is on the other arm of the beamspliter, this
SHWFS is used by another person. Detailed parameters of the setup would be given later in
section4-1.

Dong Shen Master of Science Thesis



3-1 Considerations of DM Characterization 15

Figure 3-2: The Deformable Mirror used in this project and its layout.

To test the imaging quality of this setup, a PSF is taken after an optimization program is
complete. This program uses Nelder-Mead algorithm to optimize image metric of multiplica-
tion of distance of each pixel to center of gravity and pixel value. After 3000 iterations the
PSF is as shown in Figure3-3a.

(a) PSF of initial setup.
The size of the PSF is approximately 10

pixels across.

(b) PSF of modified setup.
The size of the PSF is approximately 100

pixels across.

Figure 3-3: PSF of setup before and after modification. After the modification the size of the
PSF is 10 times larger. Both figures are captured on the camera of 1280×1024 pixels, cropped
to central part of 20 and 200 pixels respectively. PSF on the right has more details and allows

for finer phase retrieval results.

It can be seen that this PSF is small in size, with merely ∼ 10 pixels across in the central part.
This size is close to the size from theoretical calculation but still too small for image-based
characterization. Also some stray light is observed in the area far from center, this indicates
that the setup needs to be modified and re-aligned. This is because alternative projection
phase retrieval methods are heavily dependent on the intensity measurement used, artifacts
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16 Calibration Scheme

in the PSF may cause phase retrieval being non-converging and invalid.

To enlarge the visible PSF area, an microscope objective of 10× is added between beam
splitter and camera, as is shown in Figure3-4. The resulting PSF is shown in Figure3-3b, it
can be seen that the diameter of the pattern increased 10 times and the PSF pattern is now
large and clear.

(a) Setup after modification. Realigned
and with added microscope objective.

(b) Scheme of the setup after
modification.

Figure 3-4: Setup after modification. A microscope objective of 10× is added in front of the
camera, resulting in a 10× larger PSF.

The setup shown in Figure3-4b is now suitable for characterizing the DM, as it has all the
essential part of an AO system, as well as a SHWFS which is initially used by another person
but can still be used for validation of results.

3-1-3 Generating Diversity Phase

As discussed before, using DM to generate a diversity phase would largely simplify the DM
characterization process. This subsection discusses the possible ways of generating and cali-
brating a diversity phase using the DM, i.e., how to use the un-calibrated DM to produce a
known and stable diversity phase. To obtain a calibrated phase diversity, two methods have
been tried.

Diversity phase generation using unified input

Denote a unified input signal ud as:

ud(p, q) = [ p, ..., p︸ ︷︷ ︸
q inputs with value p

, 0, ..., 0︸ ︷︷ ︸
N−q inputs with value 0

].

This signal gives a same value p for the first q actuators and 0 input for all other actuators.

The first is a straightforward methods, as long as a constant input signal is sent to the DM,
the DM would generate a same phase. Based on this and superposition principle, a diversity
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3-1 Considerations of DM Characterization 17

phase can be obtained by subtracting two different phase, it’s corresponding input signal is
also obtained by subtracting two different input signals.

Denote the intensity measurement of input signal u1 as I1, the corresponding phase at this
time is ϕ1. Using GS algorithm ϕ1 can be retrieved:

ϕ1 = GS(I1). (3-1)

For another input signal u2 = u1 + ud, denote its intensity measurement as I2 and corre-
sponding phase ϕ2, we have:

ϕ2 = GS(I2). (3-2)

We can establish a link between input signal ud and diversity phase ϕd as:

ϕd = ϕ2 − ϕ1, (3-3)
ud = u2 − u1. (3-4)

Hence a link between DM signal and DM shape (ϕd, ud) has been established. Use this
phase-DM signal relation, phase diversity phase retrieval can be performed in anytime during
characterization.

Diversity phase generation based on PSF Optimization

The other method is to generate a defocus phase via optimizing PSF. Considering defocus
is one of the most used diversity in PDPR, also considering that the DM is mounted in a
bowl-shape manner, which corresponds to defocus when no input voltage is given, it would
be sensible to have DM generate a defocus phase as diversity phase.

Denote the analytical phase of defocus as ϕdefocus, use forward model to simulate the PSF
the setup would produce and denote it as Isim:

Isim = Simulation(ϕdefocus). (3-5)

For an input signal u, denote the PSF measurement of the setup as a function of input
signals: Imeasure(u). Use input signal as manipulating variables and error between simulated
and measured PSF as cost function, we can get a input signal û:

ûd = arg min
u

|Isim − Imeasure(u)|. (3-6)

This input signal ûd is a signal that make the DM produce a shape that generates a PSF as
close to Isim as possible.

Denote the phase of the setup as ϕd, which is retrieved by GS:

ϕd = GS(Imeasure(ûd)). (3-7)
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18 Calibration Scheme

Ideally ϕd ≈ ϕdefocus, thus we can use ϕdefocus as initial guess for the GS. The idea behind
this is that when the 2 PSFs are close enough, the phase from the setup would be close to
the analytical defocus phase.

Imeasure(ûd) → Isim, (3-8)
ϕd → ϕdefocus. (3-9)

Of course this is not always true since there is no one-to-one correspondence between phase
and intensity. But use this as an prior information and setting the initial guess of GS to be
ϕdefocus, there is a large chance that the GS converge to a correct phase quickly.

In conclusion, both methods can be used to obtain diversity phase. The latter method
presumably would be more accurate than the first one, as starting point of GS can be set to
the defocus phase, and this starting point would be very close to the real phase. However in
the first method the DM could end up in a totally unknown state and multiple starting point
might need to be tried. A drawback of the latter method would be the extra time needed for
the PSF optimization.

3-2 The Proposed DM Characterization Scheme

Using Phase Diversity Phase Retrieval to characterize the DM, the process can be straight-
forward, as shown in Figure3-5.

Figure 3-5: Simulated Deformable Mirror Calibration Process. PDPR is used for each
actuator’s each input change. For each PDPR round, zero initial input signal u0, imported

diversity phase ϕd and imported diversity signal ûd or ud are used. To update the input signal,
u∆(k) as described in equation(3-10) is used. For actuator k, input step i, step response ϕc(k)i

is obtained by subtracting 2 retrieved phase maps as ϕc(k)i = ϕ(k,i)−ϕ(k,0)
i .

In this approach, phase retrieval methods are used to determine wavefront phase, which is
then used to map between actuator input and DM response. The phase retrieval method
could vary and PDPR-GS algorithm is taken for example at present and would be discussed
in the next chapter.
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3-3 Conclusion 19

Initialization This step aims to make the DM as flat as possible, so that the first GS iteration
can start with a flat phase map as initial position.

1. Use Nelder-Mead and the metric function to flatten the DM.
2. Store the corresponding DM input as u0 ∈ R96

Actuator Calibration This step aims to create a mapping between input voltage and re-
sulting phase. This step is repeated for each actuator.

1. Send u0 to make the DM flat.
2. For actuator k(1 ≤ k ≤ 96):

(a) For step i(1 ≤ i ≤ M), where M is the step number of choice:
i. Update input signal:

u′
0 = u0 + u∆(k), (3-10)

where u(k,i) denotes the input signal of i-th step when characterizing k-th
actuator. u∆(k) ∈ R96×1 denotes the step-wise change in input signal, it
is a vector of all zeros except for the k-th element of 0.1, the step size of
choice.

ii. Send the input signal u(k,i) and take the PSF measurement I0.
iii. Send the diversity signal uD = u(k,i) + ûd and take the PSF measurement

Id, where ud is the input signal corresponding to diversity phase ϕd as
introduced in section3-1-3.

iv. Run the PDPR algorithm for phase retrieval:

ϕ(k,i) = PDPR(I, Id, ϕd). (3-11)

(b) Obtain response functions for actuator k:

ϕk
c (i) =

ϕ(k,i) − ϕ(k,0)
i

. (3-12)

DM Calibration Repeat actuator calibration process for each actuator to calibrate the
whole DM.

1. A total of 96 × M mappings between input voltage and resulting wavefront would
be created, i.e., for all 96 actuators, M mappings are created for each actuator.

2. Under the assumption for equation(2-11) that the DM has a linear input-output
model, M phase maps can be averaged and only 1 mapping for each actuator, thus
only 96 response functions should be obtained.

3-3 Conclusion

In this chapter, based on the literature review results, a primitive scheme for characterizing
the DM and two methods for obtaining the calibrated diversity phase has been proposed. In
the next chapter, simulation models and phase retrieval algorithms based on these schemes
would be constructed.
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Chapter 4

Numerical Simulation

In this chapter, numerical counterparts of the proposed calibration scheme is implemented,
including the forward model of the setup and alternative-projection based phase retrieval
methods. A simulated DM characterization using theoretical response functions is also im-
plemented and simulation results could reach a RMSE around 0.02 for most of the actuators.

4-1 Forward Modeling of the Setup

The forward model is a realistic simulation of PSF registering process. The setup used for this
project is shown in Figure3-4b. The PSF registered is formed with a 17mm lens with focal
length of 200mm, at 632nm wavelength, with IDS UI-1540 camera. The camera quantizes the
PSF with 8-bits or 256 gray scales resolution. It’s of 1280 × 1024 pixels large and the pixel
pitch is 5.2µm. Some of the key parameters of the setup is summarized in table4-1.

Notation Meaning Value
λ Wavelength 0.632e-6m
f Focal length 0.20m
D Aperture diameter 0.017m
∆x Pixel pitch 5.2e-6m

Table 4-1: Parameters in Forward Model

4-1-1 Implementation of Forward Model

The input and output of the forward model are phases and corresponding PSFs. Denote the
input phase map as Φ0, aperture mask of the AO system as Apt, the phase on the pupil plane
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can be represented as:

Φp = Apt · Φ0,

the complex wave field at the aperture is thus:

E = Apt · exp (Φp · 1j),

the PSF on the image plane can thus be calculated using Fourier transform:

PSF = |F(E)|2.

The above modeling is in continuous domain. However the PSF registering process uses a
digital camera. Aperture mask Apt would serve an important role in discretization of the
phase maps, as will be shown later in Figure4-2. To determine the aperture mask, a more
detailed discussion on sampling is provided below and the final forward model would be given
in the last part of this section.

Focal Plane Considerations

Supposing a focused beam with wavelength λ crossing an aperture with diameter D and focal
length f , denoting focal plane sampling pitch as T , as shown in Figure4-1:

Figure 4-1: Illustration of geometry of aperture and focal plane

according to the geometry, we have:

tan α = D/2
f

, (4-1)

sin α = λ

f
. (4-2)
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4-1 Forward Modeling of the Setup 23

Supposing that the angle α is small enough and thus tan α ≈ α, and sin α ≈ α, we thus have:

T = fλ

D/2 , (4-3)

thus the frequency of incoming wave on the focal plane is

νfield,img = 1
T

= D

2fλ
. (4-4)

This frequency νfield,img is the maximum frequency of a field in the focal plane one can get
from a plane wave behind the aperture.
On the other hand, with Nyquist sampling theorem, the frequency given by the sampling is:

νsample,img ≥ 2νfield,img = D

fλ
. (4-5)

Pupil Plane Considerations

In the pupil plane, the aperture itself should be sampled to simulate the imaging process.
The frequency of wavefield at pupil plane is naturally:

νfield,pupil = 1
λ

, (4-6)

while sampling frequency of the pupil is determined by the camera pixel pitch ∆x:

νsample,pupil = 1
∆x

. (4-7)

Denote the ratio of pupil and image plane sampling frequency as Q, we have:

Q = νsample,pupil

νsample,img
≥

1
∆x
D
fλ

= fλ

D∆x
. (4-8)

Ratio Q defines the relative size of the aperture in the discrete representation used as input
for discrete Fourier transform to calculate the PSF, as will be shown in the next subsection.
It can be seen that this ratio is only dependent on D, f, λ and pupil plane sampling, i.e.,
Q(D, f, λ, ∆x). That is to say, for a given optical system, with wavelength, focal length,
aperture diameter all known, Q is only dependent on pupil plane sampling pitch.

Aperture Mask Considerations

In the forward model, given a aperture picture of certain pixels, it’s necessary to determine
how larger should the aperture take in this picture so as to keep in line with the real setup.
Supposing the PSF and aperture mask picture are both of M × M pixels, the focal plane
sampling frequency of this configuration is thus 1/M . Denoting the number of pixels of
aperture diameter in this picture as N , the spatial frequency is thus 1/N . Following the
modeling in Ref[31], we have:

Q = 1/N

1/M
= M

N
. (4-9)
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The Forward Model

Having considered the above issues, the forward modeling in discrete domain can be derived.
Given a phase map Φ0 of size L×L pixels, the corresponding aperture function is determined
by Q value as described in equation(4-9). The radius of the aperture mask would be:

Rapt = L

2Q
. (4-10)

The aperture mask can then be constructed as:

Apt = np.zeros([L,L]),

Apt[x2 + y2 < Rapt] = 1,

Apt[x2 + y2 > Rapt] = 0.

An example of aperture mask of size 201×201 with different Q values are shown in Figure4-2.

Figure 4-2: Aperture mask of size 201 × 201, with different Q values. This example is used to
show how would choice of Q influence the aperture and forward model configuration.

The simulated PSF is thus:

Isim = |FFT(Apt* exp (Apt ∗ Φ0 ∗ 1j))|2

where the aperture function Apt is a function of Q:

Apt(Q),

which is a function of several parameters of the setup:

Q(D, f, λ, ∆x).

Packing all variables together we arrived at a compact description of the forward model

Isim = FWsim(D, f, λ, ∆x, Φ0),

where:

FWsim : = |FFT(Apt(D, f, λ, ∆x) ∗ exp (Apt(D, f, λ, ∆x) ∗ Φ0 ∗ 1j))|2

= |FFT(Apt(Q) exp (Apt(Q) ∗ Φ0 ∗ 1j))|2.

Thus the forward modeling of the AO system without the DM is complete, a Python code of
the forward model is given in appendixB-1.
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4-2 Alternative-Projection Based Phase Retrieval Methods 25

4-1-2 Forward Model Validation

The forward model takes phase map as input and returns PSF of corresponding system as
output. To validate the forward model, simply tune the DM on setup to be flat, then compare
the registered PSF with the simulated PSF from the forward model.

(a) Simulated PSF of flat
phase.

(b) Measured PSF of flat
mirror.

Figure 4-3: PSFs of flat phase, from simulation model(left) and setup(right). The flat mirror
of setup is obtained using BeamTuner software which optimizes the input signals. Two PSFs
match with each other and corresponds with the Airy pattern given by equation(2-8), which

validates the built forward model.

As is shown in Figure4-3, both PSFs are approximately in the same shape as given by Airy
pattern formula described in equation(2-8), the first edge has a radius of ∼ 20 pixels. The
measured PSF is in a more irregular shape, this is normal since there is always some aberra-
tions cannot be eliminated in the setup either by aligning or optimizing DM. This suggests
that the forward modeling of the setup is correct.

4-2 Alternative-Projection Based Phase Retrieval Methods

As discussed in previous sections, alternative-projection based phase retrieval methods such
as Gerchberg-Saxton (GS) algorithm are commonly used in the field of AO. In this section,
implementation of GS algorithm, as well as GS based PDPR are shown.

4-2-1 Gerchberg-Saxton (GS) Algorithm

As described in section2-2-2, the GS algorithm can be easy as few lines of codes. As shown in
Figure4-4, GS basically project the complex field back and forth between image plane(spatial
domain) and pupil plane(Fourier domain), while keeping the amplitude the corresponding to
the ground truth. When the phase term converge, the phase is retrieved. It’s worth noticing
that there is no convergence guarantee for this method and even if the phase converges, there
is no guarantee that the phase is actually the ground truth phase, since the phase retrieval
problem is ill-posed in its nature.
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Figure 4-4: Illustration GS process as described in Algorithm1. Notations are followed from
table2-1, implementation is listed in AppendixB-2.

An overview of such algorithm shown in Algorithm1 and implementation in Appendix, where
x indicates image plane coordinates, u indicates pupil plane coordinates, gk(x) indicates the
complex field in the image plane at k-th iteration, Gk(u) indicates the field in the focal plane
field at k-th iteration and f(x), F (u) indicates the intensity distribution in the image and
focal plane respectively.

Algorithm 1 Gerchberg-Saxton (GS) Algorithm
Given: measured intensity |f(x)|, Fourier plane intensity(aperture mask) |F (u)|, initial
guess phase phi_0

p_0 = sqrt(|f(x)|): Square root of intensity measurement.
a = sqrt(|F(u)|): Square root of aperture mask.
g_k(x) = a * exp(phi_0 * 1j): Initial guess of field in the image plane.
while k < max_iter do

G_k(u) = fft2d(g_k(x)))
g_k(x) = p_0 * exp(angle(G_k(u))
GS_phase = angle(G_k(x))
g_k(x) = ifft2d(g_k(x))

end while
Return: GS_phase

To test the performance of GS algorithm, a PSF is simulated using forward model and artificial
lower order phase. The lower order phase is a combination of several Zernike modes, for
example, Zernike mode number 6 and 12:

Ground_truth_phase = 0.5*Z_mod[6]+0.5*Z_mod[12].

Simulate the PSF using the forward model described in previous section, choose sampling
coefficient Q = 2 with 201 × 201 figure size,:

PSF = FWsim(figure_size=200, Q=2, Ground_truth_phase).
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No noise is added at this point, as the purpose of this simulation is to check the feasibility
of the method in the most ideal case possible. For the initial phases, 10 rounds of random
phases would be been tried and the seed with best performance would be chosen, so as to
minimize the influence of twin phase and residue phases, as will be discussed later in this
section.

The setups for GS are shown in Figure4-5, and results are shown in Figure4-6. After ∼ 4500
iterations the retrieved phase converges and RMSE with ground truth phase reaches 0.0815.

Figure 4-5: Setups for GS testing. Left: Aperture mask of 200 × 200 pixels with radius of 50
pixels; middle: Analytical ground truth phase; Right: Simulated PSF of ground truth phase,

cropped from 200 × 200 to 50 × 50 pixels size

Figure 4-6: Retrieved phase of GS testing, RMSE error between restored and ground truth
phase is 0.081. Left: Retrieved phase from GS algorithm; Middle: Restoration error between

retrieved and ground truth phase; Right: Plot of iterative field error. This figure shows that the
GS can restore the phase correctly.

We can now conclude that the implemented GS algorithm is functional in retrieving lower
order phase. However the actual performance is subject to initial phase chosen. Some initial
phase may result in poor retrieval performances, causing issues such as twin phase and some-
times residue phase when noise is present. These issues are partly because of no constraint is
imposed in the alternative projection process, while phase retrieval itself is ill-posed and no
unique solution is guaranteed, thus more than one phase can correspond to a intensity image.
A few examples of such issues are shown in Figure4-7.
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Figure 4-7: Examples of twin phases. Both phases are results from GS algorithm but with
different initial guess. Both phases can reproduce a same PSF as input but far from ground

truth phase, this is because of the non-uniqueness of the phase-intensity relation. This example
shows the limits of GS algorithm and its dependency on initial guess.

4-2-2 PDPR-GS Algorithm

As discussed in section2-2-2 and shown in Figure4-7, GS algorithm along is not sufficient
for the calibration of DM. To overcome some of its drawbacks, PDPR-GS is implemented.
The process of PDPR-GS is shown in Figure4-8, similar to original GS algorithm, it projects
field between 2 domains, with an extra information of known defocus phase ϕd added in the
process.

Figure 4-8: Illustration PDPR process as described in Algorithm2. Notations are followed from
table2-1, implementation is listed in AppendixB-3.

For PDPR-GS, only a few more lines are needed compared to algorithm1, as shown in algo-
rithm2.

To test the performance of PDPR-GS algorithm, we use a ground truth phase that is a
combination of lower order Zernike mods and a response function of one actuator, and simulate
the PSF as in the previous section. In able to compare the PDPR and pure GS algorithm,
both methods are used to retrieve this phase. In addition to this, a defocus phase with
maximum value of 0.75π is used as diversity phase in PDPR-GS. An PSF of ground truth
phase added with this defocus phase is also simulated, as shown in Figure4-9.
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Algorithm 2 PDPR-GS Algorithm
Given: measured intensity |f(x)|, measured diversity intensity |f(x)_d| Fourier plane
intensity(aperture mask) |F (u)|, initial guess phase phi_0 and diversity phase phi_d.

p_0 = sqrt(|f(x)|): Square root of intensity measurement.
p_d = sqrt(|f(x)_d|): Square root of intensity measurement with diversity phase added.
a = sqrt(|F(u)|): Square root of aperture mask.
g_k(x) = a * exp(phi_0 * 1j): Initial guess of field in the image plane.
while k < max_iter do

G_k(u) = fft2d(g_k(x)))
G_k(u)_d = fft2d(g_k(x) * exp(phi_d * 1j)))
g_k(x) = p_0 * exp(angle(G_k(u))
g_k(x)_d = p_d * exp(angle(G_k(u)_d)
G_k’(u) = ifft2d(g_k(x))
G_k’(u)_d = ifft2d(g_k(x)_d * exp(-1j * phi_d))
PDPR_phase = angle((G_k’(u) + G_k’(u)_d)/2)
g_k(x) = ifft2d((g_k(x) + g_k(x)_d)/2)

end while
Return: PDPR_phase

(a) Aperture mask used for
PDPR and GS algorithm

(b) Ground truth phase for
phase retrieval.

(c) Simulated PSF of ground
truth phase.

(d) Simulated PSF of ground
truth phase with diversity.

Figure 4-9: Setups for PDPR and GS testing. The new ground truth phase will be retrieved by
PDPR and GS method for comparison.
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The results of PDPR-GS are shown in Figure4-10, along with results from pure GS, both
algorithms use a same initial phase. Error analysis of both phase retrieval methods are shown
in Figure4-11. It can be seen that PDPR-GS has a higher accuracy and free from twin
phase issues compared to pure GS. PDPR-GS sometimes converges faster than pure GS and
sometimes not, depending on the initial phase and amount of defocus diversity used.

(a) Phase retrieved by GS
algorithm. Twin phase.

(b) Phase retrieved by
PDPR algorithm

(c) Restoration error
between GS retrieved and

ground truth phase.

(d) Restoration error
between PDPR retrieved and

ground truth phase.

Figure 4-10: Phase retrieval results from GS and PDPR method. In GS method the phase is
restored with larger error compared to PDPR reuslt. The GS retrieved phase is a twin phase in

wrong direction, while PDPR retrieved phase is close to the ground truth. PDPR retrieved
phase has RMSE of 0.082 while GS phase has an RMSE of 0.086. PDPR outperforms the GS in

this case.
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(a) Phase retrieved by GS algorithm.
Twin phase.

(b) Phase retrieved by GS algorithm.
Twin phase.

Figure 4-11: Iterative field error and RMSE between retrieved phase and ground truth phase. It
can be seen that PDPR could converge faster than GS method, and has a higher accuracy than
the GS method. It’s worth noticing that the convergence rate of PDPR method largely depends
on the diversity phase used while the accuracy of PDPR is always higher than GS. From this we

conclude PDPR outperforms GS in terms of accuracy.

We can now conclude that the PDPR-GS algorithm performs better than GS in phase retrieval
in the sense of accuracy and convergence rate. This motivates us to choose PDPR over GS for
this project. Thus we have all the components needed for the simulation of DM calibration.

4-3 DM Calibration Simulation

To test the feasibility of proposed DM calibration scheme, a series of simulated calibrations
are performed. This set of calibration makes use of the forward model and phase retrieval
methods described above, as well as theoretical response functions of the DM provided by the
manufacturer.

4-3-1 Theoretical Response Functions of DM

Theoretical response functions of DM is given by the manufacturer in the format of array of
200×200 size. Some of such response functions are shown in Figure4-12.
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Figure 4-12: Examples of theoretical response functions (actuator#1-10). Obtained from
manufacturer with size of 200 × 200 pixels.

To further check the response functions, add all the response functions with a same coefficient,
extract all the non-zero points from this summed phase and use paraboloid curve fitting for
it, as described in the following Algorithm3.

Algorithm 3 Analysis for response functions
Given: Theoretical response function of actuator #i RFi

phase_map =
∑96

i=0 RFi

def analytical_function = ax2 + by2 + c
analytical_surface = curvefit(analytical_function,phase_map)
Error = analytical_surface - phase_map
Return : Error
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(a) Finding analytical surface of sum of response functions. Left: Sum of
all response functions; Middle: extracted points from sum of response

functions; Right: Analytical surface obtained by curve fitting the extracted
points.

(b) Error between sum of RFs and analytical surface. Left: Analytical
surface obtained by curve fitting; Middle: Sum of response functions;

Right: Error between the two, shown the layout of actuators on the DM.

Figure 4-13: Print-through error.

The process and figures of Algorithm3 can be seen in Figure4-13, where the error between sum
of response functions and analytical surface is shown. It can be seen that the error pattern
corresponds to the layout of the actuators of the DM, as was shown in Figure3-2. This error
is often referred to as "print-through" errors of the DM.

4-3-2 DM Calibration Simulation Process

The DM calibration simulation aims to reproduce the process of DM calibration on hardware
setup as described in section3-1-3 from equation(3-5) to equation(3-9). Theoretical response
functions for the DM added with noise are used to simulate the hardware DM performances.
The simulation process is shown in Figure4-14.

Master of Science Thesis Dong Shen



34 Numerical Simulation

Figure 4-14: Simulated defocus calibration process that reproduces the defocus calibration as
described in section3-1-3, using theoretical response function to replace real setup. Detailed

explanation of this process can be found in section4-3-2.

Diversity Phase Calibration

First, an analytical defocus phase (Z0
2 ) is generated. This phase is then padded to 1024×1024

which corresponds to the real setup. Denote this phase as ϕdefocus as in section3-1-3. Then,
forward simulate ϕdefocus gives Isim as in equation(3-5), results are shown in Figure4-15. This
is the ideal PSF which the setup should give.

After this, a set of theoretical response functions is used to simulate the performance of DM.
Denote the input signal and response function of actuator i as ui and ri, equation(4-11) gives
the output phase ϕDM of DM. The initial values of ui are set to zeros, which corresponds to
zero input to the DM. Note that the theoretical response functions ris are used here only to
simulate the DM, and are regarded as unknown for all other cases.

ϕDM =
N∑
i

ui · ri. (4-11)

We then use forward model again to get the simulated "measured" PSF, as described in
equation(4-12):

Imeasure = Simulation(ϕDM ). (4-12)

Then, as denoted by equation(3-6), an optimization program based on Nelder-Mead and min-
imizes the spot width of the error PSF between simulated and ’measured’ PSFs is performed.
This iterative process manipulates the DM inputs u until a signal û that generates a PSF
that is closest to Isim is obtained. The optimization results are shown in Figure4-16.

Having obtained û from optimization, use GS to retrieve the diversity phase ϕd of the
Imeasure(û) as in equation(3-7).

Having obtained the optimized input signal û, the configuration of simulation is then changed.
With phase map size changed from 1024 × 1024 to 201 × 201, and aperture radius of 50. The
reasons for this change are as followed. Firstly, a larger (padded) phase map would give a
finer PSF image, which is good for PSF based optimization, since the input signal û is now
obtained, the necessity of using a high-resolution PSF drops. Secondly, using a 1024 × 1024
phase map requires long computation time for phase retrieval, while 201×201 size phase map
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(a) Analytical defocus phase
ϕdefocus, padded in

accordance with the setup.

(b) Analytical defocus phase,
padded in accordance with

the setup, zoomed.

(c) PSF of analytical defocus
Isim, simulated by forward

model.

(d) PSF of analytical
defocus, simulated by forward

model, zoomed.

Figure 4-15: Analytical defocus phase ϕdefocus and simulated PSF Isim of it. Simulated using
forward model corresponding to modified setup as shown in Figure3-4b, with padding size of

1024 × 1024 and Q-factor of 20.

takes shorter time with acceptable results. Since the aim of this numerical simulation is to
validate feasibility of the proposed characterization method, it is more desirable to get the
results faster than finer.
The GS retrieved phase ϕd from PSF Imeasure(û) is shown in Figure4-17. It can be seen
that the reconstructed ϕd has lots of noise, ϕd is close to ϕDM but not so close to ϕdefoucs

as desired. The RMSE between phid and ϕDM and ϕdefocus are 0.20 and 0.57 respectively.
However, the ϕd can still be used in the phase diversity algorithm since its fully known and
has a corresponding input signal.

DM Calibration

With diversity phase and corresponding input signal obtained, we are ready for calibrating
the deformable mirror using Phase Diversity Phase Retrieval (PDPR) method. The process
of simulated DM calibration is shown in Figure3-5 and as described in section3-2.
The simulated characterization results are shown in Figure4-18 at the end of this chapter.
Here theoretical response functions as well as step response of each step of each actuator is
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(a) DM surface with û
as input, corresponds to

ϕDM = û · r

(b) ϕDM − ϕdefocus

aperture mask enforced,
zoomed.

(c) Obtained input
signal û from
optimization.

(d) PSF of obtained
input signals,
Imeasure(û).

(e) PSF of obtained
input signals Imeasure

zoomed.

(f) PSF optimization
error. Isim(ϕdefocus) −

Imeasure(û).

Figure 4-16: Results of PSF optimization for generating diversity. In Figure4-16a the whole
surface of DM is shown while only the central working aperture part is used, as in Figure4-16b.
The results indicate that the PSF optimization can obtain a û that reproduce ϕdefocus to some
extend but not entirely same. Changes in input signal û is very limited especially for actuators

in inner rings.

shown. The analysis of the characterization results will be presented in the next section.

4-3-3 DM Calibration Simulation Results

To take a closer look at the obtained response functions in Figure4-18, we choose one actuator
as an example. As shown in Figure4-19a the simulated characterization results for actuator
#8. Step 1-5 indicates the characterization results for each step number.
It can be seen that the characterization results are in line with the theoretical response
functions. The error between the obtained ϕ8

c and theoretical r8 is small.
However in steps such as 1,4,5, there are obvious fish-scale patterns while others not. This
is because GS is heavily dependent on the starting point and some starting point would
give better convergence results and some not. Such patterns are expected in the GS-class
phase retrieval methods. If one were to get rid of such patterns, one can use several different
starting phase and choose the one with best result, however this would make the simulation
time significantly longer.
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(a) ϕd, GS retrieved
phase from

Imeasure(û).

(b) Error phase
ϕd − ϕDM ,

RMSE=0.05.

(c) Error phase
ϕd − ϕdefocus,
RMSE=0.07.

Figure 4-17: The GS retrieved phase ϕd from PSF Imeasure(û). To reduce computation time,
the simulation configuration in this figure is slightly different from that in Figure4-16. The
phase retrieval result is not optimal but can still be further used for DM characterization.

(a) Simulated characterization results(Actuator#8). Step number i corresponds to that in
equation(3-12) as ϕ8

c(i). Theoretical response function r8 is shown in the last figure.

(b) Error of between obtained and normalized theoretical response functions. ϕ8
c(i) − r̄8(i). Theoretical

response function is normalized to the maximal value of each ϕ8
c(i).

Figure 4-19: Simulated characterization results(For actuator#8). Despite of the presence of
noise, characterization result matches that in theoretical response functions.

In Figure4-20a, the average of RMSE between theoretical response function and each step
response is shown. The average RMSE value for each actuator is calculated as shown in
equation(4-13): first calculate the RMSE between obtained step response ϕk

c (i) and theoretical
response function rk, repeat for all M steps, then calculate the mean of RMSE of all steps.

RMSEk =
∑M

i RMSE(ϕk
c (i), rk)

M
. (4-13)
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(a) RMSE between obtained and
theoretical RFs. The stair pattern in the
plot matches the distribution of actuator
layout on DM: wherever the drop in plot
happens, the actuator shifted to another

ring in DM.

(b) RMSE between obtained and
normalized theoretical RFs. rk are

normalised to the maximum value of
obtained ϕk

c (i). The stair pattern in
Figure4-20a disappears and values

decreased significantly.

Figure 4-20: RMSE between obtained ϕk
c s and theoretical rks. Left: RMSE plot of each

actuator without rk normalization. Right: RMSE plot of each actuator with normalized rk.

As is shown in Figure4-20a, the RMSE between obtained and theoretical response function
drops as actuator number increases. The drop happens only when the actuator is further from
the center, i.e., RMSE stays the same for all actuators on the same ring. This matches the
layout of the actuators on the DM. The cause for such trend is the scale of theoretical response
functions are not normalized, as all response functions are obtained using the same voltage
step difference, the further the actuator is from the center, the smaller scale of deformation
per unit step difference can make.

In Figure4-20b where the theoretical response functions are normalized to the scale of obtained
step response, the trend disappeared and RMSE values dropped significantly.

As is shown by the results, the proposed PDPR based characterization process is in principle
attainable. The RMSE could reach ≤ 0.04, depending on the choice of initial guess of phase,
while for the majority of the actuators the RMSE is well below 0.02.

4-4 Conclusion

In this chapter, all the essential parts of carrying out the characterization have been built, in-
cluding a forward model, Gerchberg-Saxton based Phase Diversity Phase Retrieval algorithm
and theoretical response functions have been inspected, a simulated characterization process
is also demonstrated.

The forward model built is capable of reproducing image formation process of the setup as
simulated Airy disc pattern matches that in the setup measurement. The GS algorithm is
also functional for phase retrieval and its performance is dependent on initial guess of phase.
The GS based phase diversity phase retrieval algorithm is also functional and out performs
the original GS as it eliminates the possibility of twin phase.
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A simulation based DM characterization is also performed in this chapter. Using theoretical
response functions as the simulated setup with Gaussian noise added to the PSF registering
step, the proposed scheme is capable of retrieve phase for each step of input and obtain
response functions of each step. The RMSE error between retrieved response functions and
theoretical values could reach approximately 0.02 for most of the actuators.

It is then argued that the proposed characterization scheme is capable of characterizing the
DM. In the next chapter, the characterization scheme will be tested on the experimental
setup.
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(a) Simulated characterization results(Actuator#1-48).

(b) Simulated characterization results(Actuator#49-96).

Figure 4-18: Simulated characterization results. For figures with higher resolution see Appendix
FigureA-1, A-2 and A-3.
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Chapter 5

DM Calibration on Hardware

To test the performance of the proposed calibration method even further, a set of experiments
on a AO setup is performed. In this chapter, the experimental setup is first introduced,
following a description of the experiment procedures, and then the calibration results and
analysis.

5-1 Experimental Setup

The setup used for experiments is introduced in section3-1-2 and Figure3-4. Apart from the
hardware, there are more to be specified including the PSF registration and alignment issues,
which would be treated in this section.

5-1-1 PSF Registration

For a PSF taken from the camera, it is desirable that the image patterns to be bright and clear
and with minimum noise. The image should also not be overexposed otherwise information
would be lost.

For this purpose, the PSF registration process is designed to have the pixel value between
180-240 gray scales. An example of PSF registration is shown in Figure5-1a.

After taking the PSF from the camera, a few steps are taken to make the image more suitable
for phase retrieval algorithm. The measures taken are summarized as follows.

Cropping : The camera image is of 1280 × 1024 pixels, which is usually too large for a PSF.
To reduce noise in edge areas the camera image is cropped around the brightest point.

Normalizing : The camera image is of 8-bits or 255 gray scales. To normalize the image
between 0 and 1, all pixel values are divided by 255.
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(a) Example of PSF registration.
Upper left: camera image; upper right:
camera image in logarithm scale; lower
left: histogram of camera image; lower

right: DM input signal.

(b) Example of processed PSF.
Upper left: processed camera image;

upper right: processed camera image in
logarithm scale; lower left: histogram of

processed camera image.

Figure 5-1: Example of PSF registration and process. Left: raw camera measurement; right:
processed camera measurement. PSF process measures include cropping, normalizing and

thresholding.

Thresholding : The camera image would be used for GS based algorithms which are sensi-
tive to intensity noise. To reduce the noise and improve the phase retrieval performance,
a threshold of 0.03 is used. This empirical threshold would filter out most high frequency
noise while not losing too much information.

Another method that could be adapted is to take several PSFs and then average them as the
final PSF. However this does not always ends in better performance and has little influence
on the phase retrieval results and thus not adapted.

An example of processed PSF is shown in Figure5-1b. It can be seen that the noise in the
logarithm figures are significantly less while the original PSF pattern is preserved.

5-1-2 Alignment

Another issue to be addressed is the alignment. Ideally the DM would compensate for the
initial aberrations in the setup thus lower the requirements for alignment. However, as shown
by experiment, DM cannot compensate for any arbitrary aberrations. Especially when the
setup is misaligned, no matter how many iterations were performed, the PSF pattern is always
highly aberrated.

A direct result of un-removable aberration is the difficulty in phase retrieval. As shown in
Figure5-2, when the PSF is highly aberrated, the retrieved phase is full of artifacts and noise.
No matter what PSF pre-process measures are taken, the phase retrieval results are still
invalid.
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Figure 5-2: An extreme example of PSF from misaligned setup.
Left: processed PSF; right: retrieved phase. This example is used to emphasize the importance

of good alignment.

During alignment, it is important to ensure the camera is properly located in the focus of
incoming light. An empirical metric for this is to check the input signal that makes the DM
"flat." A "flat" signal is obtained using BeamTuner software from Flexible Optical.B.V., where
irregular simplex and Nelder-Mead are used to minimize the spot width. When the central
actuators in the obtained "flat" signal have almost 0 voltage, the camera is in focus, when the
central actuators have large inputs, the camera is not. As shown in Figure5-3.

Figure 5-3: "Flat" signals for different camera position.
Left: camera out of focus; right: camera in focus.

When the input value of central actuators in "flat" signal is approximately 0, we conclude that
the camera is in focus of incoming beam.

5-2 Diversity Phase Calibration

In this section, the acquisition of diversity phase to be used in Phase Diversity Phase Retrieval
(PDPR) would be presented. Following from section3-1-3, there are 2 ways of generating and
calibrating a diversity, i.e., via PSF optimization and unified DM input. In this section, both
method have been tested and the unified input method is chosen at last.
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5-2-1 Diversity Phase Acquisition via PSF Optimization

The process of diversity acquisition via PSF optimization is introduced in section3-1-3. A
simulation of this method is given in section4-3-2. In this subsection, the diversity acquisition
is performed on the real setup. The optimization results after 5000 iterations are shown in
Figure5-4.

(a) Processed camera measurement of
flat DM input. I0(u0)

(b) Processed camera measurement of
defocused DM.Imeasure(û)

(c) Difference in input signals between
"flat" and "defocused" PSF: diversity

signal ud = û − u0.

Figure 5-4: Results of PSF optimization. It can be seen that the optimized input signal û is
not so different from the flat mirror input. This is inline with the simulation results as shown in

Figure4-16d in section4-3-2.

As is shown in Figure5-4, the resulting diversity signal(û − u0) is similar to that in the
simulation case, as was shown in Figure4-16 in section4-3-2.

Then, followed from equation(3-3) and equation(3-4), the diversity phase can be determined.
As shown in Figure5-5. Saving the pair of phase input signal ϕd, ud, we are ready to use
PDPR for characterization. This method of obtaining a known diversity phase seems to be
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Figure 5-5: GS results on measured PSFs.
Left: GS retrieved flat phase ϕ0; middle: GS retrieved defocused phase ϕdefocus; right: diversity

phase ϕd = ϕ0 − ϕdefocus.

functional and gives proper results. However this method is not adapted at last due to a series
of issues including instability of the setup which would be treated in later section5-4. The
diversity phase is obtained using unified actuator input as discussed in the next subsection.

5-2-2 Diversity Phase Acquisition via Unified Actuator Input

As shown in the previous section, PSF optimization is a possible way to obtain a diver-
sity phase. However this path is not chosen, partly because it takes long time to run PSF
optimization and the resulting phase is not strictly defocus.

Knowing that as long as a diversity phase is constant and known, it can be used in PDPR
algorithm. Following the steps in section3-1-3, unified actuator input is used for diversity
phase calibration.

The unified actuator input ud should be neither too large nor too small, so that the PSF can
be retrieved properly. Set 0.05 for all actuators inside a certain ring and 0 for all others, as
shown in Figure5-6. The phase retrieval results ud and ϕd to be used in PDPR are also shown
in the last column of this figure.

5-3 DM Characterization Results

In this section, the first round of DM characterization is carried out following the procedures
described in section3-2. After a brief analysis of the results, another round of characterization
is performed again with updated settings.

5-3-1 First Characterization Results

The characterization results

Using all the components and process mentioned above the first 32 actuators characterization
results are shown in Figure5-7.
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Figure 5-6: Input signals and retrieved phase for diversity phase calibration.
Upper left: flat signal u0; upper middle: flat signal added by diversity signal u1 = u0 + ud;

upper right: diversity signal ud

Lower left: GS retrieved phase ϕ0 for flat signal u1; lower middle: GS retrieved phase ϕ1 for
signal u1; lower right: diversity phase ϕd = ϕ1 − ϕ0

Results analysis

As is seen in Figure5-7, the characterization results in general match the theoretical response
functions. However there are a few issues to be noticed. Having a closer look at, for example,
actuator #24, as shown in Figure5-8, for all steps the obtained response functions have a
similar pattern in a similar position as the theoretical response function.

However in some steps there are more obvious noise or artifacts. The possible cause for such
differences between each steps are various, including the noise in the measurement which
influence the phase retrieval process, the non-linearity of DM’s deformation with linearly
changing input signal, and instability of the laser source.

Indications for misalignment

Noticing that there is always difference in position of the patterns from characterization and
theoretical response function, as shown in Figure5-9. Such discrepancy in position indicates
that the DM is not posed strictly in the center of incoming light beam, indicating presence
of misalignment. Given more time, such positional displacement can be further verified using
correlations between obtained and theoretical response functions.

Time consumption

It is worth mentioning that the actual time used is significantly shorter than expected. Start-
ing from a random initial phase, PDPR algorithm can converge in approximately 300 it-
erations, then, use phase retrieval result of previous step as initial guess in next step, the
algorithm can converge within 50 iterations. Using an average PC with i7-4790 3.6GHz CPU,
GS speed for an 512×512 figure is approximately 4 iterations per second, for 1024×1024 figure
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Figure 5-7: Characterization results on setup, for actuator#1-24. For higher resolution figures
and remaining actuators see Appendix FigureA-4.The characterization results visually match

that in the theoretical response functions.

Figure 5-8: Characterization results for actuator #24. This example is used to show the
characterization result matches theoretical response function, with acceptable level of noise and

position mismatch.

approximately 1.5 iteration per second. Supposing 10 input steps are used, this means that
for a smaller figure, characterization time could reach ∼ 4min per actuator and ∼ 10min for
larger figure. Besides, the PSF registration and PDPR can happen asynchronously, allowing
for using computers with higher performance to run the phase retrieval program.

Second derivative analysis

To further inspects the characterization results, Laplacian of obtained response functions is
calculated. Ideally, the Laplacian of a response function could show the shape of the actuator,
as shown by the second derivative of theoretical functions in Figure5-10.

As is shown, Laplacian of obtained response functions follows the trend of that in theoretical
ones. However in obtained response functions, there are more artifacts than that in theoretical
ones. There is not only the shape of desired actuator, but also shape of other actuators, as
if not only the desired actuator is given an input step, but all actuators on the same ring is
given an input step.

The current characterization results are too small in size and a lot of details are lost. To
compensate for this, another round of characterization, with padding size doubled from 512
to 1024 pixels has been performed. It will be treated in the following section.
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(a) Obtained response function ϕ1
c(6),

normalized theoretical response function
r̄1 and error in between ϕ1

c(6) − r̄1.

(b) Obtained response function ϕ7
c(6),

normalized theoretical response function
r̄1 and error in between ϕ7

c(6) − r̄7.

Figure 5-9: Error between theoretical and characterization results. For all other actuators see
AppendixA-5. Error between characterization results and theoretical functions indicate the

presence of misalignment. The pattern in error phase map, especially in Figure5-9b, are because
of DM not in the center of incoming beam.

5-3-2 Characterization Using Modified Settings

Using updated characterization settings of larger image/padding size, a new round of char-
acterization has been performed, results for the first 2 rings(actuator#1-6) are shown in
Figure5-11.

It can be seen that the characterization results are of higher resolution compared to previous
one. Results also match the patterns in theoretical ones. However it can also be seen that
there are even more noise and artifacts when compared to smaller padding settings.

This is more obvious in the second derivative figures. For example in actuator15 as shown in
Figure5-12, for the second derivatives, it is quiet obvious that there is a pattern matches that
in the theoretical response function, but there are also lots of other artifacts that seemingly
like shapes of other actuators. Such situation is present in results of all actuators being
characterized. The possible cause for such unexpected patterns and artifacts are discussed in
the next section.

5-4 Results Analysis

5-4-1 Further characterization attempts

In previous characterization results, it often happens that in the second derivative there
seems to be more than one actuator acting, or that the setup is not behave as commanded.
To further investigate this, we first use a same set of configurations to characterize a single
actuator multiple times and check whether the results are in line with each other.

As shown in Figure5-13, the characterization results are not the same for different rounds.
For instance in the number of artifacts are different in each round, as well as. This is not as
expected and indicates that there might be some issue with the setup itself. In an ideal case,
no matter how many time a certain actuator is characterized using a same configuration, the
characterization results should stay the same.

To further analysis the properties of the setup, we tried to characterize the DM per ring, i.e.,
to run the characterization procedure not to a single actuator, but to all actuators that are
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in the same ring. Results are shown in Figure5-14. It can be seen that the results are quiet
noisy and the shape of rings are vague. For ring#3, the second derivative pattern are closer
to the shape of ring of actuators, however there is always a bright spot in the center.

5-4-2 Investigating setup performance

DM Stability Issues

The characterization results suggest that the setup might not be stable. An observation of
instability of the setup is related to "flat mirror" optimization mentioned earlier. Ideally the
input signal that makes the DM flat would be almost the same throughout time, however
in reality it’s not like this. As shown in Figure5-15, throughout time, for the very same
setup with same settings and same BeamTuner software that does the optimization job, the
resulting input signal changes a lot. Especially for the actuators in the first ring(actuator#1-
6), the deviation can be as high as 0.25. This is a very large scale for input signals, as they
are normalized between -1 and 1, and in characterization the step size is usually no more than
0.15.

This observation means that to obtain a same DM shape, the control signal has to change
over time and vice versa. This suggests that the position of DM’s central actuators might
move and thus the performance of a same control input would vary.

Humidity Issues

Another possible influencing factor is the humidity level near the setup. It was not noticed
until the later part of this thesis that the humidity level in the laboratory varies a lot. An
example of the varying humidity level is shown in Figure5-16, the humidity level is far from
stable and can change up to ∼ 40%. Though the influence of environmental factors is out
of the scope of this thesis, as suggested by Ref[32], humidity level would largely influence
the performance of the DM, as membrane could take water vapor from air and reduce the
tension in the membrane and thus changing the spring constant restoring force. In other
words, changes in humidity level would result in changes DM’s response function.

Laser-Camera Issues

To investigate all possible issues that might lead to the undesired setup performance, the
camera and laser are also checked. To perform this check, the DM is shut off to exclude any
possible fluctuation the DM could make. Then, take a series of shots with time interval of
0.5s. Subtracting two consequent shots and the results are shown in Figure5-17.

It can be seen that there is an obvious PSF pattern, which indicates that each time the camera
read out is different. Such pattern is small in scale in the beginning and gets larger and larger
as time passes. This means the lasercamera is also not constant overtime, which could lead
to undesired characterization results.
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5-5 Conclusion

In this chapter, the implemented characterization scheme is tested on real setup. Initial steps
include carefully align the setup, set camera exposure to a proper range and using an extra
unified actuator input to generate diversity phase and calibrate it using GS algorithm.

After this, the first characterization results are obtained, which showed the response functions
of first 32 actuators. The shape of response function matches that in the theoretical response
functions, this shows that the proposed characterization scheme is attainable and promising.
Second derivative of phase is used to validate the results. Analysis of the results shows that
during alignment the DM is not put strictly in the center of the light beam. However in this
round of characterization the padding used is too small and we could not see too much details
in the results.

For this reason another characterization is carried out with padding size doubled. In this
characterization, the results still matches that in the theoretical ones, but there are much
more noise and artifacts in the response functions retrieved. In some results the shape of
artifacts are similar to the response of nearby actuators. The results deteriorates compared
to previous ones.

It is later found out the the humidity level around the setup is not stable and varies a lot,
which would change the ground truth response function of the setup. Another observation is
that the laser-camera is also not stable as the error image between shots fluctuates even if
the DM is shut off. These factors may lead to the poor performance of the characterization,
however it is still up to discussion that each of these factors would infect the characterization
to what extend.

A conclusion of this chapter is that, despite the noise and artifacts caused by the unstable
setup, the proposed characterization scheme and implemented phase diversity phase retrieval
algorithm is capable of characterize a Deformable Mirror (DM). Results of characterization
match the theoretical response functions and computation time is shorter than expected.

Dong Shen Master of Science Thesis



5-5 Conclusion 51

(a) First row: characterization result ϕ1
c ; second row: its second derivative ∇2ϕ1

c . Theoretical response
function r1 and ∇2r1 are also shown in the last column.

(b) First row: characterization result ϕ8
c ; second row: its second derivative ∇2ϕ8

c . Theoretical response
function r8 and ∇2r8 are also shown in the last column.

(c) First row: characterization result ϕ8
c ; second row: thresholded ∇2ϕ8

c with threshold value of
12% × max(∇2ϕ8

c). Threshold is used to make the shape of actuator clearer.

Figure 5-10: Second derivative of response functions for actuator #1 and 8. For all other
actuators see AppendixA-6 and AppendixA-7.

The second derivative of response function should reveal the shape of corresponding actuator, as
shown by theoretical functions rk and ∇2rk. In characterization results there are artifacts apart

from the expected patterns.
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Figure 5-11: Characterization results and second derivative of response functions for
actuator#1-17. Actuator #1-17 are the actuators in the first 2 rings of DM. For higher

resolution figures see Appendix FigureA-8.

Figure 5-12: Characterization results ϕ15
c , theoretical function r15 and second derivatives

∇2ϕ15
c , ∇2r15 of actuator#15.

This example is used to show that with updated configurations, the results are of higher
resolution but there are even more noise and artifacts present.
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(a) Characterization results actuator #10, run for 3 times with the same configuration and the
same initial guess.

(b) Characterization results for actuator #11, run for 3 times with the same configuration and
the same initial guess.

Figure 5-13: Example characterizing a same actuator for 3 times.
Ideally the characterization results should remain almost the same for each time. However the

obtained response functions vary a lot each time. This indicates that the setup may not be
stable.

Figure 5-14: Characterization results and second derivative for a whole
ring#2(actuator#2-6)(left) and ring#3(actuator#7-17)(right). The shape of rings are vague in

the second derivative figures.
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Figure 5-15: Different input signals obtained from optimization that makes the mirror flat.
Ideally the "flat" signal should remain almost the same as time changes. However as shown

here, the flat signal varies a lot, especially for the first few actuators which are most influential.

Figure 5-16: Varying humidity level around the setup. Humidity is desirable to remain constant
across the characterization process, but it can change up to 40% in a week’s time.

(a) Error between 2 neighbouring
camera shots, with DM shut off.

(b) Error between camera shots, with
DM shut off.

Figure 5-17: Error of camera shots with DM shut off. There should not be any constant
patterns for a single mode laser while here the patterns are present.
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Chapter 6

Conclusion

From the literature survey it follows that a combination of alternative projection and phase
diversity techniques would improve and simplify the WFSless DM characterization process.

Thus, a characterization scheme using GS-based PDPR algorithm, with DM generated phase
diversity is proposed. This scheme features using DM to introduce phase diversity and does
not require any additional hardware.

To investigate the feasibility of the proposed method, numerical simulations were carried out.
A simulation model of the AO setup as well as phase retrieval algorithms are implemented.
Using theoretical response functions given by the manufacturer as ground truth, the char-
acterization is performed in simulation. The characterization gives response functions very
close to the theoretical ones with RMSE value smaller than 0.02 for most of the actuators.
This validates the proposed method and leads to the experiments on a real setup.

Then, in the experimental setup, the characterization is performed for the first 32 actuators.
It is then found out that the proposed method is capable of obtain response functions in a
much shorter time than expected. However the quality of obtained results are sub-optimal,
since there are noise and artifacts present in the response functions.

Seeking results with higher resolutions, the characterization configuration is then modified as
padding size for phase increased from 512 to 1024 pixels. Using this configuration the char-
acterization is performed again. However the result of this attempt is worse than expected.
More noise and artifacts are presented, which nearly spoiled the results.

It is observed during the characterization that the setup may not be stable, which might
be accountable for the sub-optimal results. Issues including DM stability, environmental
humidity and unstable laser are addressed and discussed in the end.

In conclusion, the proposed method is capable of characterizing a DM on condition that the
setup used is stable throughout time. Simulation results reach an accuracy of ∼ 0.02 RMSE
for most actuators. Experimental results further validate the method while setup issues are
accountable for the sub-optimal performance.
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Appendix A

Characterization Results

Phase maps including retrieved response functions and their second derivatives obtained dur-
ing the thesis.
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58 Characterization Results

(a) Simulated characterization results for
actuator 1-16.

(b) Simulated Characterization Results for
actuator 17-32.

Figure A-1: Simulated characterization results for actuator 1-32.
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(a) Simulated characterization results for
actuator 33-48.

(b) Simulated Characterization Results for
actuator 49-64.

Figure A-2: Simulated characterization results for actuator 33-64.

Master of Science Thesis Dong Shen



60 Characterization Results

(a) Simulated characterization results for
actuator 65-80.

(b) Simulated characterization results for
actuator 81-96.

Figure A-3: Simulated characterization results for actuator 65-96.
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(a) Characterization results for actuator
1-16.

(b) Characterization results for actuator
17-32.

Figure A-4: Characterization results for actuator 1-32.
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Figure A-5: Errors between obtained response functions ϕk
c (6) and normalized theoretical

response r̄k functions for actuator#1-32. Error phase map shows the misalignment in the setup,
as the center of ϕk

c sometimes deviates from that in rk.
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(a) Characterization results and second
derivatives of actuator#1-8.

(b) Characterization results and second
derivatives of actuator#9-16.

Figure A-6: Characterization results and second derivatives of actuator#1-16.
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64 Characterization Results

(a) Characterization results and second
derivatives of actuator#17-24.

(b) Characterization results and second
derivatives of actuator#25-32.

Figure A-7: Characterization results and second derivatives of actuator#17-32.

Dong Shen Master of Science Thesis



65

Figure A-8: Characterization results for actuator 1-17, using larger paddings.
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Appendix B

Codes and Algorithms

B-1 Building forward model

1 def fun_FWsim ( input_phasemap , apt , Q ) :
2 """
3 Forward Model with fixed auto generated aperture mask for PSF

simulation
4 I/O data:
5 input: phasemap , aperture mask, Q value for sampling
6 output: Simulated PSF
7 """
8 # Paramerters from real setup
9 psf_sampling = 5.2 e−6

10 wavelength = 0.632 e−6
11 aperture_diameter = 0.017
12 focal_length = 0.20
13
14 # Q: the ratio of #(pixels in pupil)/#(pixels of aperture)
15 # Q = (focal_length * wavelength) / (aperture_diameter * psf_sampling

)
16
17 # Input phase map
18 input_phasemap [ np . isnan ( input_phasemap ) ] = 0
19 input_phasemap = fun_wrap ( input_phasemap )
20 img_size = np . shape ( input_phasemap )
21
22 # Making pupil plane grids and aperture
23
24 N_pupil = img_size [ 0 ]
25
26 # Pixel numer of aperture radius in current configuration
27 R_aperture = ( N_pupil ∗ Q ) /2
28
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29
30 X_pupil = np . arange(−np . fix ( N_pupil /2) , np . fix ( ( N_pupil+1)/2) , dtype=

float )
31 Y_pupil = np . arange(−np . fix ( N_pupil /2) , np . fix ( ( N_pupil+1)/2) , dtype=

float )
32
33 [ X , Y ] = np . meshgrid ( X_pupil , Y_pupil )
34
35 R_pupil = np . sqrt ( X∗∗2 + Y∗∗2)
36
37 WF = np . zeros ( ( int ( N_pupil ) , int ( N_pupil ) ) )
38 h , w = input_phasemap . shape
39 WF [ int ( np . floor ( N_pupil/2−h /2) ) : int ( np . floor ( N_pupil/2+h /2) ) , int ( np .

floor ( N_pupil/2−w /2) ) : int ( np . floor ( N_pupil/2+w /2) ) ] =
input_phasemap

40 WF = WF∗apt
41
42 E = np . exp (1 j∗WF )
43 E [ R_pupil>R_aperture ]=0
44
45 psf = abs ( fft . fftshift ( fft . fft2 ( E ) ) ) ∗∗2
46 # Normalize
47 psf = ( psf/np . max ( psf ) )
48
49 return psf

B-2 Gerchberg-Saxton (GS) algorithm

1 def fun_GS ( apt , psf_0 , max_iter , init_guess , error_threshold ) :
2 """
3 Gerchberg -Saxton phase retrieval algorithm
4 Input: aperture mask, PSF, maxiter , initial phase guess , error

threshold
5 output: GS_phase , iter_error , iter_RMSE
6 """
7 p0 = psf_0
8 p0 = np . fft . ifftshift ( np . sqrt ( p0 ) )
9

10 a = apt
11 a = np . fft . ifftshift ( np . sqrt ( a ) )
12
13 # phi = copy.deepcopy(init_guess)
14 phi = init_guess
15 phi = np . fft . ifftshift ( phi )
16 # plt.figure(),plt.imshow(np.fft.fftshift(phi)),plt.colorbar(),plt.

title("Initial Guess")
17
18 phi_0 = np . zeros ( np . shape ( phi ) )
19 phi_0 = np . fft . ifftshift ( phi_0 )
20
21 iter_error = [ ]
22 GS_phase = [ ]
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23 window = 50
24
25 xx = a ∗ np . exp ( phi ∗ 1j )
26
27 iter_RMSE = [ ]
28
29 for iter in tqdm . trange ( max_iter ) :
30
31 X_0 = np . fft . fft2 ( xx ∗ np . exp ( phi_0 ∗ 1j ) )
32
33 Y_0 = p0 ∗ np . exp ( np . angle ( X_0 ) ∗ 1j )
34
35 y_0 = np . fft . ifft2 ( Y_0 )
36
37 xx = y_0
38
39 iter_error . append ( np . linalg . norm ( apt ∗ np . exp ( phi ∗ 1j ) − apt ∗

np . exp ( np . angle ( xx ) ∗ 1j ) ) )
40
41 iter_RMSE . append ( ( np . sqrt ( mean_squared_error ( fun_crop_fig ( phi∗apt

, 2 01 ) , fun_crop_fig ( np . angle ( xx ) ∗apt , 2 01 ) ) ) ) )
42
43 phi = np . angle ( xx )
44
45 xx = a ∗ np . exp ( np . angle ( xx ) ∗ 1j )
46
47 if iter <= window :
48 if iter_error [ iter ] < error_threshold :
49 print ( ’GS algorithm stopped because error threshold has

been reached’ )
50 print ( str ( iter ) + ’ iterations with error threshold of ’

+ str ( error_threshold ) )
51 GS_phase . append ( np . fft . ifftshift ( phi ) ∗apt )
52 return GS_phase , iter_error , iter_RMSE
53
54 if iter > window :
55 if np . mean ( iter_error [ ( iter − window ) : iter ] ) <

error_threshold :
56 print ( ’GS algorithm stopped because small improvements in

the past 50 iterations’ )
57 print ( str ( iter ) + ’ iterations with error threshold of ’

+ str ( error_threshold ) )
58 GS_phase . append ( np . fft . ifftshift ( phi ) ∗apt )
59 return GS_phase , iter_error , iter_RMSE
60
61
62 GS_phase . append ( np . fft . ifftshift ( phi ) ∗apt )
63
64 return GS_phase , iter_error , iter_RMSE
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B-3 Phase Diversity Phase Retrieval (PDPR) Gerchberg-Saxton
(GS) algorithm

1 def fun_PDPRGS ( apt , psf_0 , psf_d , phase_d , max_iter , init_guess ,
error_threshold ) :

2
3 p0 = psf_0
4 p0 = np . fft . ifftshift ( np . sqrt ( p0 ) )
5
6 pd = psf_d
7 pd = np . fft . ifftshift ( np . sqrt ( pd ) )
8
9 a = apt

10 a = np . fft . ifftshift ( np . sqrt ( a ) )
11
12 phi = init_guess
13 phi = np . fft . ifftshift ( phi )
14 plt . figure ( ) , plt . imshow ( np . fft . fftshift ( phi ) ) , plt . colorbar ( ) , plt .

title ( "Initial Guess" )
15
16 phi_0 = np . zeros ( np . shape ( phi ) )
17 phi_0 = np . fft . ifftshift ( phi_0 )
18
19 phi_d = phase_d
20 phi_d = np . fft . ifftshift ( phi_d )
21
22
23 PDPR_phase = [ ]
24 # window = 50
25 window = 10
26
27 xx = a ∗ np . exp ( phi ∗ 1j )
28 iter_RMSE = [ ]
29 iter_error = [ ]
30
31 for iter in tqdm . trange ( max_iter ) :
32
33 X_0 = np . fft . fft2 ( xx ∗ np . exp ( phi_0 ∗ 1j ) )
34 X_d = np . fft . fft2 ( xx ∗ np . exp ( phi_d ∗ 1j ) )
35
36 Y_0 = p0 ∗ np . exp ( np . angle ( X_0 ) ∗ 1j )
37 # Y_0 = p0 * np.exp((X_0/abs(X_0)) * 1j)
38
39 Y_d = pd ∗ np . exp ( np . angle ( X_d ) ∗ 1j )
40 # Y_d = pd * np.exp((X_d/abs(X_d)) * 1j)
41
42
43 y_0 = np . fft . ifft2 ( Y_0 ) ∗ np . exp(−1j ∗ phi_0 )
44 y_d = np . fft . ifft2 ( Y_d ) ∗ np . exp(−1j ∗ phi_d )
45
46 xx = ( y_0+y_d ) /2
47
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48 # error count , do not change order
49 iter_error . append ( np . linalg . norm ( apt ∗ np . exp ( phi ∗ 1j ) − apt ∗

np . exp ( np . angle ( xx ) ∗ 1j ) ) )
50 iter_RMSE . append ( ( np . sqrt ( mean_squared_error ( fun_crop_fig ( phi∗apt

, 2 01 ) , fun_crop_fig ( np . angle ( xx ) ∗apt , 2 01 ) ) ) ) )
51 phi = np . angle ( xx )
52 xx = a ∗ np . exp ( np . angle ( xx ) ∗ 1j )
53
54 if iter <= window :
55 if iter_error [ iter ] < error_threshold :
56 print ( ’GS algorithm stopped because error threshold has

been reached’ )
57 print ( str ( iter ) + ’ iterations with error threshold of ’

+ str ( error_threshold ) )
58 PDPR_phase . append ( np . fft . fftshift ( phi ) ∗apt )
59 return PDPR_phase , iter_error , iter_RMSE
60
61 if iter > window :
62 if np . mean ( iter_error [ ( iter − window ) : iter ] ) <

error_threshold :
63 print ( ’GS algorithm stopped because small improvements in

the past ’+str ( window )+’ iterations’ )
64 print ( str ( iter ) + ’ iterations with error threshold of ’

+ str ( error_threshold ) )
65 PDPR_phase . append ( np . fft . fftshift ( phi ) ∗apt )
66 return PDPR_phase , iter_error , iter_RMSE
67
68
69 PDPR_phase . append ( np . fft . fftshift ( phi ) ∗apt )
70
71 return PDPR_phase , iter_error , iter_RMSE
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Glossary

List of Acronyms

DM Deformable Mirror
WF Wavefront
AO Adaptive Optics
PSF Point Spread Function
WFSless Wavefront sensorless
WFS Wavefront sensor
SVD singular value decomposition
AP alternating projection
SDP semidefinite programming
TIE transport-of-intensity equation
GS Gerchberg-Saxton
dOTF differential optical transfer function
SHWFS Shack-Hartmann Wavefront Sensor
PD Phase Diversity
PDPR Phase Diversity Phase Retrieval
RMS Rooted Mean Square
SR Strehl Ratio
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