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Summary 
 
Numerical modelling of multiphase multicomponent flow coupled with mass and energy transport in porous media 

is crucially important for many applications including oil recovery, carbon storage and geothermal. To deliver 

robust simulation results, a fully or adaptive implicit method is usually employed, creating a highly nonlinear 

system of equations. It is then solved with the Newton-Raphson method, which requires a linearization procedure 

to assemble a Jacobian matrix. Operator Based Linearization (OBL) approach allows detaching property 

computations from the linearization stage by using piece-wise multilinear approximations of state-dependent 

operators related to complex physics. The values of operators used for interpolation are computed adaptively in 

the parameter-space domain, which is uniformly discretized with the desired accuracy. As the result, the 

simulation performance does not depend on the cost of property computations, making it possible to use expensive 

equation-of-state formulations (e.g., fugacity-activity thermodynamic models) or even black-box chemical 

packages (e.g., PHREEQC) for an accurate representation of governing physics without penalizing runtime. On 

the other hand, the implementation of the simulation framework is significantly simplified, which allows 
improving the simulation performance further by executing the complete simulation loop on GPU architecture. 

The integrated open-source framework Delft Advanced Research Terra Simulator (DARTS) is built around the 

OBL concept and provides a flexible, modular and computationally efficient modelling package. In this work, we 

evaluate the computational performance of DARTS for various subsurface applications of practical interests on 

both CPU and GPU platforms. We provide a detailed performance comparison of particular workflow pieces 

composing Jacobian assembly and linear system solution, including both stages of Constrained Pressure Residual 

solver. 

 

 



Introduction

Numerical simulations are essential for the modern development of subsurface reservoirs (Aziz
and Settari, 1979; Dake, 1983; Peaceman, 2000). They are widely used for the evaluation of
oil recovery efficiency, performance analysis, and various optimization problems. Due to the
complexity of the underlying physical processes and considerable uncertainties in the geological
representation of reservoirs, there is a persistent demand for more accurate models.

Fully implicit methods (FIM) are conventionally used in reservoir simulation because of their
unconditional stability (Aziz and Settari, 1979). On the other hand, after discretization is
applied to governing Partial Differential Equations (PDE) of a problem, the resulting nonlinear
system represents different tightly coupled physical processes, which is difficult to solve. Usually,
a Newton-based iterative method is applied, which demands an assembly of the Jacobian and
the residual for the combined system of equations (i.e., linearization) at every iteration forming
a linear system of an equal size (often ill-conditioned). Precisely the solution of such systems
takes most of the simulation time in most practical applications.

Conventionally used in most practical applications Newton-based nonlinear solvers require lin-
earization. Several conventional linearization approaches exist, though neither of them is robust,
flexible, and computationally efficient all at once. Numerical derivatives provide flexibility in the
nonlinear formulation (see (Xu et al., 2011), for example), but a simulation based on numerical
derivatives may lack robustness and performance (Vanden and Orkwis, 1996). Straightforward
hand-differentiation is the state-of-the-art strategy in modern commercial simulators (Schlum-
berger, 2011; Cao et al., 2009). However, this approach requires an introduction of a compli-
cated framework for storing and evaluating derivatives for each physical property, which in turn
reduces the flexibility of a simulator to incorporate new physical models and increases the proba-
bility for potential errors. The development of Automatic Differentiation (AD) technique allows
preserving both flexibility and robustness in derivative computations. In reservoir simulation,
the Automatically Differentiable Expression Templates Library (ADETL) was introduced by
Younis (2011). Being attractive from the perspective of flexibility, the AD technique by design
inherits computational overhead, which affects the performance of reservoir simulation (Khait
and Voskov, 2017a).

Another linearization approach called Operator-Based Linearization (OBL) was proposed in
Voskov (2017). It could be seen as an extension of the idea to abstract the representation
of properties from the governing equations, suggested in Zaydullin et al. (2013) and Haugen
and Beckner (2015). In the OBL approach, the parameterization is performed based on the
conventional molar variables. The proposed approach was utilized for molar formulation. A
similar approach can be designed for the natural formulation, but it requires dealing with several
parameter spaces and switching between them.

In the OBL approach, all properties involved in the governing equations are lumped in a few
operators, which are parameterized in the physical space of the simulation problem either in
advance or adaptively during the simulation process. The control on the size of parameterization
hyperrectangle helps to preserve the balance between the accuracy of the approximation and
the performance of nonlinear solver (Khait and Voskov, 2017b). Note, that the OBL approach
does not require the reduction in the number of unknowns, and only employs the fact that
physical description (i.e., fluid properties) is approximated using piecewise linear interpolation.

Delft Advanced Research Terra Simulator (DARTS) was introduced and described in (Khait,
2019). It exploits the OBL approach to decouple the computations of physical properties from
the main simulator core. Jacobian assembly in DARTS is therefore simplified and generalized
increasing its portability to alternative computational architectures, such as GPU. In this work,
we evaluate the computational performance of DARTS for various subsurface applications of
practical interest on both CPU and GPU platforms. We provide a detailed performance com-
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parison of particular workflow pieces composing Jacobian assembly and linear system solution,
including both stages of Constraint Pressure Residual (CPR) preconditioner.

Method

Here, we briefly describe various ingredients of Delft Advanced Reservoir Terra Simulation
(DARTS, 2019) framework used in this study.

Governing equations

First, we describe the conventional nonlinear formulation for a general purpose thermal com-
positional model. Mass and energy transport for a system with 𝑛𝑝 phases and 𝑛𝑐 components
is considered. For this model, the 𝑛𝑐 component mass and energy conservation equations can
be written as

𝜕𝑚𝑐(𝝃,𝝎)
𝜕𝑡 +div𝑓𝑐(𝝃,𝝎)+𝑞𝑐(𝝃,𝝎,𝒖) = 0, 𝑐 = 1,…,𝑛𝑐 +1. (1)

Here, 𝝃 are space-dependent parameters, 𝝎 are state-dependent parameters and 𝒖 are control
variables and

𝑚𝑐(𝝃,𝝎) = 𝜙
𝑛𝑝

∑
𝑗=1

𝑥𝑐𝑗𝜌𝑝𝑠𝑗, 𝑐 = 1,…,𝑛𝑐, (2)

and

𝑚𝑐(𝝃,𝝎) = 𝜙
𝑛𝑝

∑
𝑗=1

𝜌𝑝𝑠𝑗𝑢𝑗 +(1−𝜙)𝑢𝑟, 𝑐 = 𝑛𝑐 +1, (3)

where 𝑡 is time, 𝜙 is effective rock porosity, 𝑥𝑐𝑗 is component 𝑐 concentration in phase 𝑗, 𝜌𝑗
denotes phase 𝑗 molar density, 𝑠𝑗 is saturation of phase 𝑗 and 𝑢𝑗 is phase internal energy.
Similarly,

𝑓𝑐(𝝃,𝝎) =
𝑛𝑝

∑
𝑗=1

𝑥𝑐𝑗𝜌𝑗 ⃗𝑣𝑗, 𝑐 = 1,…,𝑛𝑐, (4)

and

𝑓𝑐(𝝃,𝝎) =
𝑛𝑝

∑
𝑗=1

ℎ𝑗𝜌𝑗 ⃗𝑣𝑗 −(𝜙
𝑛𝑝

∑
𝑗=1

𝜅𝑗𝑠𝑗 +(1−𝜙)𝜅𝑟)∇𝑇 , 𝑐 = 𝑛𝑐 +1, (5)

where ℎ𝑗 is the phase enthalpy, 𝜅𝑗 is phase thermal conduction and following Darcy’s law

⃗𝑣𝑗 = −(𝑲 𝑘𝑟𝑗
𝜇𝑗

(∇𝑝𝑗 −𝛾𝑗∇𝐷)). (6)

Here, 𝑲 is the effective permeability tensor, 𝑘𝑟𝑗 is relative permeability, 𝜇𝑗 is phase viscosity,
𝑝𝑗 is phase pressure, 𝛾𝑗 is hydrostatic gradient, and 𝐷 is depth.

Operator form of governing equations

According to the Operator Based Linearization (OBL) method proposed in (Voskov, 2017), all
terms in the Equation 1 are written as functions of a physical state 𝝎 and a spatial coordinate
𝝃. The physical state represents a unification of all state variables (i.e., nonlinear unknowns:
pressure, temperature/enthalpy, saturations/compositions, etc.) of a single control volume. In
the overall molar formulation, the nonlinear unknowns are pressure 𝑝, fluid enthalpy ℎ and
overall composition 𝑧𝑐, therefore the physical state 𝝎 is completely defined by these variables.
The spatial coordinate 𝝃 defines the location of a given control volume which reflects the dis-
tribution of heterogeneous rock properties (e.g., porosity, thermal conduction) and elements of
space discretization (e.g., transmissibility). Besides, well control variables 𝒖 are introduced to
represent various well management strategies.
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Equation 1 is discretized in space using finite-volume two-point flux approximation and in time
using backward Euler approximation. The applied Fully Implicit Method (FIM) yield that
the convective flux term depends on the values of nonlinear unknowns at the current time
step. Next, we rewrite Equation 1 neglecting for simplicity buoyancy and capillary forces (see
more general treatment in Khait and Voskov, 2018a), and represent each term as a product
space-dependent properties and of state-dependent operators (Khait and Voskov, 2018b). The
resulting conservation equations read

𝑉 𝜙0
Δ𝑡 (𝛼𝑐(𝝎)−𝛼𝑐(𝝎𝑛)) − ∑

𝑙
𝛽𝑙

𝑐(𝝎)Γ𝑙(𝝃)Δ𝑝𝑙

− 𝛽𝑤
𝑐 (𝝃,𝒖)Γ𝑤(𝝃)Δ𝑝𝑤 = 0, 𝑐 = 1,…,𝑛𝑐, (7)

and

𝑉
Δ𝑡[𝜙0 (𝛼𝑒(𝝎)−𝛼𝑒(𝝎𝑛))+(1−𝜙0)𝑢𝑟(𝝃)(𝛼𝑟(𝝎)−𝛼𝑟(𝝎𝑛))]−∑

𝑙
𝛽𝑙

ℎ(𝝎)Γ𝑙(𝝃)Δ𝑝𝑙 (8)

−∑
𝑙

Γ𝑙
𝑟(𝝃)[𝜙0𝛽𝑙

𝑒(𝝎)+(1−𝜙0)𝜅𝑟𝛼𝑟(𝝎)]Δ𝑇 𝑙 −𝛽𝑤
ℎ (𝝎,𝒖)Γ𝑤(𝝃)Δ𝑝𝑤 = 0,

where 𝑉 is the volume of mesh grid block, 𝜙0 is rock porosity at the reference pressure, Γ𝑙 and
Γ𝑙

𝑟 is the geometric part of convective and conductive transmissibility respectively, Δ𝑝𝑙 and Δ𝑇 𝑙

are pressure and temperature gradients at the interface 𝑙 (including wells). A state-dependent
operator is defined as a function of the physical state only. Therefore, it is independent of
spatial position and represents physical properties of fluids and rock

𝛼𝑐(𝝎) = (1+𝑐𝑟(𝑝 −𝑝0))
𝑛𝑝

∑
𝑗=1

𝑥𝑐𝑗𝜌𝑗𝑠𝑗, 𝑐 = 1,…,𝑛𝑐, (9)

𝛼𝑒(𝝎) = (1+𝑐𝑟(𝑝 −𝑝0))
𝑛𝑝

∑
𝑗=1

𝑢𝑗𝜌𝑗𝑠𝑗, (10)

𝛼𝑟(𝝎) = 1
1+𝑐𝑟(𝑝 −𝑝0) , (11)

𝛽𝑐(𝝎) =
𝑛𝑝

∑
𝑗=1

𝑥𝑐𝑗𝜌𝑗
𝑘𝑟𝑗
𝜇𝑗

, 𝑐 = 1,…,𝑛𝑐, (12)

𝛽ℎ(𝝎) =
𝑛𝑝

∑
𝑗=1

ℎ𝑗𝜌𝑗
𝑘𝑟𝑗
𝜇𝑗

, (13)

𝛽𝑒(𝝎) = (1+𝑐𝑟(𝑝 −𝑝0))
𝑛𝑝

∑
𝑗=1

𝑠𝑗𝜅𝑗. (14)

In the equations above, 𝜙0 - rock porosity at the reference pressure, 𝑐𝑟 is rock compressibility,
𝑝0 - reference pressure, while 𝝎 and 𝝎𝑛 represent the nonlinear state (unknowns of a single
reservoir block) at the current and previous time step respectively.

The physical meaning of mass accumulation operator 𝛼𝑐 is the molar mass of component 𝑐 per
unit pore volume of uncompressed rock under physical state 𝝎. The physical meaning of the
mass flux operator for component 𝑐 is the total mobile molar mass of that component in all
phases of the mixture under physical state 𝝎 per unit time, pressure gradient, and constant
geometrical part of transmissibility. This representation allows us to identify and distinguish
the physical state-dependent operators in the governing conservation equations 7 and 8.
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DARTS Structure

From the perspective of the simulation nonlinear loop, the operator interpolation replaces prop-
erties calculations in equations 9-14 during the Jacobian assembly step following the idea of
operator-based linearization (Voskov, 2017). In addition, it also ’shadows’ physical phenom-
ena behind the operators, leaving out only the values of supporting points, which are rarely
computed but utilized all the time during interpolation for Jacobian evaluation. This allows
to detach fluid and rock properties calculations (now only performed during operator evalua-
tion at supporting points) from the main nonlinear loop, as well as to relax the performance
requirements for such calculations.

The Jacobian assembly depends on the choice of the nonlinear variables and the governing
physical mechanisms which are taken into account. The former determine the dimensionality
of parameter space, while the latter define the operators required for the assembly. Once the
choice is made, the Jacobian assembly becomes simply a combination of interpolated operator
values and their partial derivatives with spatial properties, encapsulated in a simulation engine.
It is connected with an interpolator which is responsible for computing interpolated operator
values and derivatives. This connection represents the major data workflow occurring during a
simulation. Finally, the interpolator is connected to a specific set of properties (i.e., operator
set) which are used for the simulation. Operator sets must be chosen in agreement with the
selected engine. They are only invoked when a new supporting point is needed to perform the
interpolation.

Figure 1 Delft Advanced Research Terra Simulator (DARTS) modular structure

The structure of DARTS is summarized in Figure 1. On the left, four simulation multiphase
multi-component engines are shown:

• engine_pz – mass flow and transport, 𝝎 = {𝑝,𝑧1,…,𝑧𝑛𝑐−1};

• engine_pz_gc – mass flow and transport with gravity and capillarity, 𝝎 = {𝑝,𝑧1,…,𝑧𝑛𝑐−1};

• engine_ptz – mass and energy flow and transport, 𝝎 = {𝑝,𝑇 ,𝑧1,…,𝑧𝑛𝑐−1};
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• engine_phz – mass and energy flow and transport, 𝝎 = {𝑝,ℎ,𝑧1,…,𝑧𝑛𝑐−1}.

All engines are written in a general manner for 𝑛𝑐 components (and 𝑛𝑝 phases for engine_pz_gc).
Notion < 𝑁𝐶 > here indicates that the variable represents integer template parameter of the
corresponding class, known at compile time. This approach allows to maximize various compiler
optimizations (e.g., loop unrolling).

Next, two interpolators are available (Figure 1, middle):

• static_itor – pre-computes all supporting points in advance, and can be useful for coarse
physical representation and low-dimensional parameter space;

• adaptive_itor – adaptively computes supporting points along with the simulation (see
Khait and Voskov, 2018a, for details).

Both interpolators are written in a general way for 𝑛𝑑 degrees of freedom and 𝑛𝑜 operators. All
operator values are stored together to benefit from faster search and interpolation. Moreover,
operator values computed during simulation can be stored into a file and loaded before subse-
quent simulation, which can be extremely beneficial in case of running multiple models with
the same physical properties common for inverse modelling or optimization.

Finally, several operator sets are present (see Figure 1, right):

• Dead-oil – water and oil components, water and oil phases, 𝝎 = {𝑝,𝑧𝑤};

• Black-oil – water, oil, and gas components, water, oil, and gas phases, 𝝎 = {𝑝,𝑧𝑔,𝑧𝑜};

• Compositional – 𝑛𝑐 components, liquid and vapor phases, 𝝎 = {𝑝,𝑧1,…,𝑧𝑛𝑐−1};

• Thermal-compositional – 𝑛𝑐 components, liquid and vapor phases, 𝝎 = {𝑝,𝑇 ,𝑧1,…,𝑧𝑛𝑐−1};

• Geothermal – water component, liquid and vapor phases, 𝝎 = {𝑝,ℎ}.

GPU implementation has been developed for engine_pz, engine_phz and static_itor. Therefore,
dead-oil, black-oil, geothermal and even compositional models for a low number of components
and OBL resolution can be simulated in DARTS entirely on GPU. The requirement of low
parameter space resolution comes from the fact that only static interpolator has been ported to
GPU. Since it computes all supporting points in advance, their amount is limited by available
dynamic memory and initialization time. The rest of the engines (as well as the same engine
with adaptive_itor) have a possibility to utilize GPU-based linear solver, which still occupies
the overwhelming majority of total simulation time.

Compared to our previous work on this topic described in (Khait and Voskov, 2017a), several
major improvements have been made:

• GPU implementation has been embedded into the DARTS framework;

• Jacobian assembly and static interpolation GPU kernels have been generalized for 𝑛𝑐
components, 𝑛𝑑 degrees of freedom and 𝑛𝑜 operators;

• Linear solver on GPU has been written using a two-stage CPR preconditioning technique.

ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 
14–17 September 2020, Online Event



Jacobian Assembly on GPU

DARTS has the same initialization scheme for both GPU and CPU versions, which are developed
as interchangeable parts. The GPU version first loads the required initial data to GPU memory
and then performs all major computations on the device. In order to initialize the GPU version of
static interpolator, all supporting points are first computed on CPU and then copied to device
memory. Alternatively, they can be loaded from a file if one was created during a previous
simulation and the fluid properties and physical space parameterization settings have not been
changed since then. In particular, for Jacobian assembly, this data includes a connection list,
pore volume and initial reservoir state arrays. The Jacobian structure is assumed to be fixed
during simulation, so it is also initialized once and copied to the device memory prior to the
run.

Interpolation of operator values and derivatives is performed as a preparatory step before Ja-
cobian assembly. The kernel is implemented on a thread-per-cell basis, such that every GPU
thread is responsible for computation of all operators and their derivatives for a given state 𝝎.
The data layout is analogous to the one used for CPU interpolator version, where values corre-
sponding to a given cell are grouped together, so coalesced memory access does not take place.
However, global memory accesses are minimized as the interpolation uses a workspace array
placed in register memory (unless register spill occurs, which is possible for high-dimensional
parameter space and a large number of operators).

The GPU version of DARTS includes only static interpolator. It is much easier for parallel exe-
cution: all operator values are generated in advance, during the initialization stage. Therefore,
interpolation becomes an embarrassingly parallel procedure in this case. On the other hand,
for an adaptive interpolator, there is a necessity to synchronize threads when new operator
values are requested for the interpolation. Even for the CPU version, when there is no need
to send generated operator values to device memory, there are different ways how to organize
such synchronization. The implementation of adaptive interpolator for the GPU version is even
more complicated, as the data exchange between GPU and CPU, required for the generation of
new operator values, would preferably need to be overlapped with interpolation computations.
In order to provide a direct comparison, we used static interpolator for both CPU and GPU
versions of DARTS.

The Jacobian assembly GPU kernel, as well as all components of GPU-based linear solver (ex-
cept AMG), is based on classical Block CSR matrix format. It is known that this format is
not the best in terms of performance (Bell and Garland, 2009). However, it was chosen out
of compatibility considerations: both with DARTS code base and available linear solver imple-
mentations on GPU. This kernel is also implemented on a thread-per-cell basis, and therefore
global memory accesses are not coalesced here similarly to the interpolation kernel. In order to
minimize those, the diagonal entry of Jacobian, as well as corresponding right-hand side block,
are accumulated in register memory. Once the matrix row is completely processed, final values
are written to corresponding global memory arrays. As opposed to diagonal entries of Jacobian,
off-diagonal ones depend only on a single connection and their values are written directly to
global memory.

The well part of Jacobian is first formed on a host system and then sent to a device after the
assembly for the reservoir part is complete. Usually, the size of the well part is negligible com-
pared to that of the full system, therefore the overhead is small even with synchronous memory
operations. It is, however, possible to reduce the overhead to a minimum using asynchronous
memory routines and CUDA streams or even recently introduced CUDA graphs. Those instru-
ments allow overlapping of kernel execution and memory transfer. In that scenario, while the
reservoir part is assembling on GPU during corresponding kernel invocation, the well part is
computed on CPU and transferred to device memory. While the size of the well part is small,
its computations and transfer can be hidden behind the assembly of the reservoir part almost
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entirely.

Linear Solver on GPU

Khait and Voskov (2017a) used a simple configuration of GPU linear solver based on a Krylov
subspace iteration method with ILU(0) preconditioner. It has limited applicability to highly
heterogeneous reservoir simulation problems requiring many iterations for convergence. Sig-
nificantly more robust and efficient preconditioning scheme is based on the CPR technique.
Wallis (1983); Wallis et al. (1985) designed it for efficient treatment of linear systems with
mixed elliptic-hyperbolic equations. Such systems arise, in particular, from FIM discretiza-
tion scheme for reservoir simulation problem. They are comprised of a near-elliptic pressure
equation, a near-hyperbolic composition (saturation) equation, while the temperature equa-
tion can be either type depending on whether the process is conduction- (thermal diffusion) or
convection-dominated.

The CPR method is a two-stage preconditioner, where at the first stage, the pressure system is
decoupled from the full system and solved separately, usually with AMG-based solver. Often
a single V-cycle is enough for efficient preconditioning. At the second stage, the full system is
processed by an ILU(0) preconditioner using the pressure solution from the first stage. This
strategy has proved to be very robust and efficient even for highly heterogeneous reservoirs with
strong coupling between elliptic and hyperbolic parts of the linear system. This results in stable
convergence within a limited number of linear solver iterations even when simulation time steps
are very large.

The linear system in DARTS is solved either on CPU or entirely on GPU using the Flexible
Generalized Minimum Residual (FGMRES) iterative method (Saad, 1993) with CPR-based pre-
conditioner. All matrix operations are performed in native BCSR format. The pressure system
is decoupled from the FIM system using a True-IMPES reduction approach directly from the
BCSR storage. Then, a single V-cycle of the AMG solver is used to obtain an approxima-
tion of the pressure solution. Finally, it is substituted in the full system and a block ILU(0)
preconditioner is applied.

GPU implementation of FGMRES method is straightforward. All vectors with the linear system
size, as well as the matrix itself, reside on GPU, while the plane rotation procedure is kept
on CPU. Vector and matrix routines are taken from the cuBLAS (dot, scale, axpy) and the
cuSPARSE (bsrmv) libraries.

CPR preconditioner is implemented in DARTS analogously to the true-IMPES reduction in
AD-GPRS simulation framework described by Zhou (2012). Decoupling is performed by a
single kernel which fills out the values of the pressure matrix. Its structure is equivalent to
the Jacobian matrix with the only difference that the former is pointwise. Each GPU thread
is again assigned to a single matrix row. For the solution phase, we developed three simple
kernels (for right-hand side reduction, solution prolongation, and stage solutions summation)
and employed the matrix linear combination routine from cuSPARSE (bsrmv). To ensure
efficient multiprocessor occupancy, launch grid dimensions for all kernels are computed via
cudaOccupancyMaxPotentialBlockSize routine.

For the first stage of CPR preconditioner in the CPU version of DARTS linear solver, we
use proprietary AMG library. The GPU version is based on the open-source library AMGX
(Naumov et al., 2015) (specifically, the commit ID 0e32e35 was used). The second stage of
preconditioning uses block ILU(0) algorithm for both CPU and GPU. The GPU version of
linear solver relies on the bsrilu02 routine of the cuSPARSE library.

ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 
14–17 September 2020, Online Event



Results

The main idea behind this study was to figure out to what extent the numerical simulation can
be improved by using relatively simple GPU code (maximizing the use of available libraries)
and conventional hardware. For the latter, we performed our tests on a gaming workstation
with Intel Core i7-8086K CPU clocked at 4.2 GHz with 32 GB DDR4 memory clocked at 2.4
GHz with a peak memory bandwidth of 41.6 GB/s and NVidia GeForce RTX2080 Ti graphics
card with 11GB GDDR6 memory onboard with a peak memory bandwidth of 616 GB/s. For
such generally memory-bound problems as FIM reservoir simulation, in case of parallel execu-
tion, peak memory bandwidth is a key performance indicator, not the clock speed. Therefore,
the gaming card is expected to perform on the level of NVidia Tesla P100 GPU accelerator
having only 15% smaller peak memory bandwidth and newer microarchitecture. At the same
time, the gap between peak memory bandwidth for CPU and GPU hints the difference in the
performance capacity of these platforms for reservoir simulation. The software configuration
of the workstation included Ubuntu 18.04.3 operating system, GCC 7.5.0 compiler and CUDA
Toolkit 10.2.

Realizing that the workstation described above does not fully reflect the efficiency of the mul-
tithread code in terms of relative performance because of both relatively low peak memory
bandwidth and relatively high CPU clock frequency, we also performed additional tests on a
two-socket cluster node. The detailed description and discussion are provided in the Appendix.

SPE10

The SPE10 test case (Christie and Blunt, 2001), initially created to compare upscaling tech-
niques, is probably the most commonly used model to benchmark the performance of reservoir
simulators. Due to its highly heterogeneous permeability distribution, achieving 10 orders of
magnitude, and considerable size of 1.1 million cells, this model is quite challenging for both lin-
ear and nonlinear solvers. An extensive overview of the performance achievements by different
simulators on this model is given by Esler et al. (2014).

200 days 2000 days

Figure 2 Water composition distribution in SPE10 model at different timesteps.

Figure 2 demonstrates the heterogeneous behaviour of waterflooding process of this artificial
model scaled vertically by a factor of 3. Water displaces oil from the center, where the injection
well is located, to corners with producers, following various flow paths. Water injection is
performed at a high rate of 𝑄𝑖𝑛𝑗 = 794.93 m3 d−1 causing very fast breakthrough to all four
producers, as can be seen from Figure 3.

Various simulation parameters can significantly affect the total simulation time, while the dif-
ference in the final solution will be minimal. Moreover, by adjusting nonlinear and linear
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Producer 1 Producer 2

Producer 3 Producer 4

Figure 3 Watercut for production wells in SPE10. Almost exact match between solutions
obtained from simulation with high and low tolerance for both linear and nonlinear solvers.

tolerances, one can shift the distribution of simulation time over setup and solve phases of
linear solver, changing the number of linear iterations per nonlinear iterations. For the sake
of direct comparison, we adjusted the nonlinear and linear tolerance trying to match the total
amount of timesteps, nonlinear and linear iterations with the numbers specified by Esler et al.
(2014) for their SPE10 run - 68, 418 and 1678 accordingly. With these parameters, the total
runtime of their GPU simulator was reported to be 103 seconds.

Table 1 compares the overall performance of DARTS on SPE10 test for different platforms.
The first line corresponds to the CPU platform on the workstation with disabled OpenMP
clauses. Among all tests we have run, this configuration always leads to the fastest single-
thread simulation: enabling OpenMP instructions and limiting the number of threads to one
leads to a noticeable overhead of 10-15%. The second line corresponds to the multithread launch
with 6 threads, which is the fastest option if total simulation time normalized by the number
of linear iterations is taken into account. We tried to use 2, 4, 6, 8, 10 and 12 threads for the
simulation, but starting from 6 threads, simulation time stopped to improve and only fluctuated
around the same value. It is expected, since Intel Core i7-8086K processor has 6 hardware cores,
while additional logical cores (or Threads, introduced by Hyper-Threading) do not help in case
of memory-bound problems. The last line refers to the fully-offloaded GPU simulation on
the same workstation. All runs were performed with the same nonlinear tolerance of 5 ⋅ 10−2

and linear tolerance of 10−1. The columns 2-4 show the number of time steps, nonlinear and
linear iterations. The rest columns present the amount of time spent in initialization, Jacobian
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assembly, setup and solve phases of linear solver and total simulation time.

Table 1 Overall simulation performance of SPE10 on different platforms: CPU - Intel Core
i7-8086K; GPU - NVidia GeForce RTX2080 Ti. Sequential run is denoted by (s), multithread
run - with the amount of threads.

Platform TS NI LI Init, s Jacobian, s Setup, s Solve, s Total, s
CPU (s) 68 383 1767 7.36 124.70 363.31 534.46 1039.32
CPU (6) 68 389 1794 7.16 39.36 120.77 342.27 519.35
GPU 68 417 1925 7.47 10.47 43.80 39.11 120.80

As can be seen from Table 1, the overall CPU performance on the workstation was improved
twice using the multithread version with 6 threads, while some parts benefited from multithread
execution more than others. For example, Jacobian assembly and linear solver setup have been
improved thrice, while solving – only by a factor of 1.5.

The GPU version improves the total execution time by 8.6 times, compared to the fastest
sequential run. Note that the initialization stage consumes around the same amount of time,
compared to the CPU platform, but its contribution is much more significant for GPU since all
the rest stages have been substantially improved. Jacobian assembly is 11.9 times faster, linear
setup is 8.3 times faster, while linear solve – 13.7 times. Note that these speedups were achieved
even for a larger amount of both nonlinear and linear iterations (by around 10%) compared to
CPU version.

Compared to the result reported by (Esler et al., 2014), DARTS performance on GPU is only
around 15% slower, while the number of timesteps and nonlinear iterations matched closely,
and the number of linear iterations was around 15% higher. On the one hand, our result has
been shown 6 years later on a more modern GPU device. On the other hand, we have not spent
many efforts on the GPU version, using available linear solver pieces as much as possible and
keeping simple (compatible with CPU) GPU data structure.

The choice of relatively low nonlinear and linear tolerances impacted simulation performance
without significant influence on accuracy. For example, using the same nonlinear tolerance, with
restricted to 10−3 linear tolerance reduces the total number of nonlinear iterations almost twice
resulting in a total simulation time of just 102 seconds, 12 of which is spent on initialization.
Given that the solve phase is improved more efficiently than setup, this improvement was
expected since the restriction of linear tolerance shifts the focus from the setup phase to the
solve phase.

To verify that the relaxed tolerances did not impact the final solution, we also performed a
simulation with high tolerances of 10−5 for nonlinear and 10−6 for linear iterative processes.
Figure 3 demonstrates that there is no noticeable difference between the final results, while the
overall simulation time doubles.

Table 2 Detailed simulation performance of SPE10 on different platforms: CPU - Intel Core
i7-8086K; GPU - NVidia GeForce RTX2080 Ti. Sequential run is denoted by ′𝑠′ in brackets,
multithread run - with the amount of threads.

Platform setup, s solve, s
CPR AMG ILU(0) GMRES SPMV CPR AMG ILU(0)

CPU (s) 23.39 313.29 26.62 102.75 103.35 66.86 279.87 84.98
CPU (6) 23.45 70.29 27.04 71.22 58.45 43.20 144.26 83.60
GPU 2.13 28.67 12.99 6.57 4.39 2.62 5.55 24.37

From Table 2, one can see detailed information about the performance of all components of the
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linear solver on different platforms, all times are exclusive. For example, CPR setup column
shows only time spent on the construction of the pressure matrix, without taking into account
time spent on subsequent calls of AMG and ILU(0) preconditioning steps. The only exception is
GMRES column - it includes time spent on sparse matrix-vector multiplication (SPMV, which
is also shown separately), but excludes CPR solve time.

First of all, it is easy to see that some parts of the linear solver do not speed up during the
parallel run on CPU: CPR setup and both ILU(0) stages. These procedures were not made
parallel, so they run sequentially in multithread execution. The acceleration of most of the
paralleled code portions of linear solver lies in the range between 1.5 and 2 times with an
exception for AMG setup, which is 4.4 times faster on 6 threads.

At the same time, various parts of the linear solver for GPU demonstrate different speedup
ranging from 50x for AMG solve stage down to 2x for ILU(0) setup. Our CPR preconditioner
setup phase shows only 10x improvement indicating that that kernel can be improved, while
its solve phase shows solid 25x speedup. However, overall, the obvious weak link in the current
GPU linear solver configuration is the implementation of ILU(0). It now occupies almost 50%
of total linear solver time and is a first candidate on further improvement. The bsrilu02 routine
of cuSPARSE library is based on the multilevel parallel approach providing an accurate solution
but having a limited parallel resource. A different approach based on the multi-coloring strategy
will work better here, which is one of the directions of our future research.

Realistic geothermal model

The reservoir under investigation is located in the West Netherlands Basin (WNB), which is
an inverted rift basin in the Netherlands. The reservoir properties of Delft Sandstone have
been extensively studied before by Willems et al. (2016, 2017). Figure 4,a shows the porosity
distribution at the geological resolution of the target reservoir scaled vertically by a factor
of 3. The model includes intersections of sandstone and shale facies. The facies distribution
corresponds to circa 0.8 million grid blocks for the sandstone and 2.4 million blocks for shale
facies.

a. Model initial porosity b.Temperature distribution after 100 years

Figure 4 Geological model of aqueous reservoir with two geothermal doublets.

Even though the water mainly flows through the sandstone formation, for thermal simulation it
is crucially important to take shale facies into account too, as was shown in the recent benchmark
study by Wang et al. (2020). The presence of the shale layers in the simulation allows the use of
higher discharge rates that result in higher energy production for an equivalent system lifetime.
The predicted lifetime of both doublets is significantly extended when the shale layers are
included in the model. As the injected cold water transports through the sandstone layers,
it is re-heated, extracting energy from the sandstone layers. As time evolves, a temperature

ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 
14–17 September 2020, Online Event



gradient is built up between the sandstone bodies and the neighbouring shale layers with the
shales providing thermal recharge by heat conduction. The spatial intercalation of the sandstone
and shale facies increases the contact area between them and amplifies the effect of the thermal
recharge.

Using the full model with 3.2 mln cells, we computed the forecast for 100 years of two geothermal
doublets production with the maximum time step of 365 days. The simulation results (cold
water plums distribution) can be seen in Figure 4,b. The overall simulation performance of this
model is shown in Table 3. It is structured the same way as Table 1. This time, the overall
performance on the workstation CPU was improved by a factor of 1.7, which is lower than for
SPE10. Again, the setup phase benefited more from the multithread execution than the solve
phase.

The initialization stage takes significantly more time than for SPE10. It is explained by both
larger model size and higher amount of rock properties required for a geothermal model. Also,
the generation of operator values for the entire parameter space, which is included in initializa-
tion, takes more time because in this case, the properties are computed by an external Python
library, which is noticeably less efficient than property calculations based on C++. Neverthe-
less, in the scenarios where the simulation runtime matters the most (e.g., inverse modeling,
uncertainty quantification or optimization), the fluid properties most likely to be constant, al-
lowing to store calculated values of OBL operators during the first run and load them in the
subsequent ones.

The speedups for Jacobian assembly, setup and solve phases on CPU amounted to 2.8, 2.8
and 1.55 respectively. Lower speedup of the latter along with its larger contribution to the
total simulation time explain decreased overall speedup. Analogously to the previous model, it
took around 10% more linear iterations for the linear solver on GPU to converge to the same
tolerance. Nevertheless, overall simulation time, compared to the fastest sequential run, was
reduced by a factor of 10.3. At the same time, the sequential initialization stage contributes
more than 15% of the total time. It can be entirely neglected in the computationally intensive
scenarios mentioned above, so the overall simulation performance of this geothermal model can
be improved on GPU by a factor of 12.

Table 3 Overall simulation performance of geothermal model on different platforms: CPU -
Intel Core i7-8086K; GPU - NVidia GeForce RTX2080 Ti. Sequential run is denoted by ′𝑠′ in
brackets, multithread run - with the amount of threads.

Platform TS NI LI Init, s Jacobian, s Setup, s Solve, s Total, s
CPU (s) 107 287 4819 78.88 219.99 819.40 3885.12 5019.17
CPU (6) 107 288 4854 73.18 76.22 297.27 2494.92 2957.04
GPU 107 288 5161 78.72 18.03 78.51 276.98 486.60

The detailed simulation performance of the linear solver for this model is shown in Table 4. It
is structured the same way as Table 2. Once again, the AMG setup phase benefits substantially
more from multithread execution on the workstation than other phases. It runs 3.7 times faster,
while other parallel stages improve only by a factor of 1.5-2 - possible because they are more
memory-bound, while AMG setup is more compute-bound.

AMG solve phase, being the main contributor to the total time for sequential simulation, is
boosted on GPU by a factor of 58. The other parts of linear solver expose smaller, wide-spread
speedup factors, ranging from 2 to 26. Compared to the situation on CPU, this underlines the
potential of further improvement of simulation on GPU.

ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 
14–17 September 2020, Online Event



Table 4 Detailed simulation performance of geothermal model on different platforms: CPU -
Intel Core i7-8086K; GPU - NVidia GeForce RTX2080 Ti. Sequential run is denoted by ′𝑠′ in
brackets, multithread run - with the amount of threads.

Platform setup, s solve, s
CPR AMG ILU(0) GMRES SPMV CPR AMG ILU(0)

CPU (s) 47.30 716.40 55.70 984.31 639.01 448.76 1885.87 566.18
CPU (6) 47.87 193.32 56.07 632.63 362.83 301.82 993.34 567.13
GPU 4.04 49.53 24.93 43.95 25.94 16.66 31.93 184.45

Conclusions

Delft Advanced Research Terra Simulator (DARTS) framework is built on top of the Operator-
Based Linearization approach. It substantially simplifies Jacobian construction and reduces
the time required for porting simulation code to different architectures, such as GPU. Proving
this claim, we demonstrated two different examples of fully-offloaded to GPU simulations: the
classical hydrocarbon production SPE10 case and a realistic model of geothermal energy pro-
duction. To the best of our knowledge, this is the first simulation of a geothermal field fully
offloaded to a GPU device. Compared to sequential CPU execution, the multithread version
reduces simulation time almost twice on a workstation with a single socket. At the same time,
the GPU version demonstrated overall improvement in the range of 8x-10x (10x-12x without
sequential initialization stage). The GPU version of DARTS provides a forecast for 100 years
with 3.2 million grid blocks geological model in only 7 minutes. The performance of DARTS on
the full SPE10 problem is around 100 seconds which is comparable to industrial-grade simula-
tors. All results were achieved on a regular workstation equipped with a gaming GPU graphics
card.

The developed GPU linear solver uses available open-source codes as much as possible and
is based on the standard BCSR matrix format. This minimized the development time and
maximized the applicability of the linear solver. It can be immediately used for the whole variety
of problems which can be solved in DARTS: hydrocarbon and geothermal energy production,
subsurface storage and CO2 sequestration, modeling of chemical reactions with dissolution and
precipitation at reservoirs and lab scales, simulation of flow with geomechanics etc. Based on
the speedup of professionally-tuned individual parts of the linear solver, its overall performance
can be improved even more. The same stands for Jacobian assembly. Revision of underlying
storage structures and access patterns is required to increase the simulation efficiency further
and will be the focus of our future research.
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Appendix

The cluster node included two Intel Xeon E5-2640 v4 CPU processors clocked at 2.4 GHz with
256 Gb memory with a peak memory bandwidth of 136.6 GB/s for the two-socket system.
The software configuration of the cluster node included CentOS Linux 7 operating system
and GCC 4.8.5 compiler. We also used Intel C++ Compiler 16.0 as an alternative to seeing
whether it provides better quality of parallel code compilation. As opposed to the workstation,
the cluster node is a system with non-uniform memory access (NUMA). For such systems, it
is important to prevent OpenMP threads from moving between processors to achieve higher
memory bandwidth (provided that the implementation is also NUMA-aware). We performed
our tests with OMP_PLACES=cores and OMP_PROC_BIND=spread environment variables
achieving noticeable improvement in multithread performance in case of the cluster node. For
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the workstation, thread affinity did not have a substantial effect on simulation time. Lastly,
compilation flags can significantly affect the performance and there is a lot of possible options
here. We limited ourselves here to a simple set ”-O3 -march=native” for both compilers.

SPE10

Table 5 compares the overall performance of DARTS on SPE10 test for CPU platform on the
workstation (denoted as CPU1) and on the cluster node (denoted as CPU2). We show the
result for 6 threads to compare directly with the workstation, while 20 threads correspond to
the total amount of hardware cores on the node.

Table 5 Overall simulation performance of SPE10 on different platforms: CPU1 - Intel Core
i7-8086K; CPU2 - 2 x Intel Xeon E5-2640 v4. Sequential run is denoted by ′𝑠′ in brackets,
multithread run - with the amount of threads. gcc represents GNU Compiler Collection 4.8.5,
icc - Intel C++ Compiler 16.0

Platform TS NI LI Init, s Jacobian, s Setup, s Solve, s Total, s
CPU1 (s) 68 383 1767 7.36 124.70 363.31 534.46 1039.32
CPU1 (6) 68 389 1794 7.16 39.36 120.77 342.27 519.35
CPU2 (s), gcc 68 383 1767 10.78 148.73 445.79 658.91 1276.76
CPU2 (6), gcc 68 389 1794 12.33 54.26 203.04 336.97 622.22
CPU2 (20), gcc 68 376 1751 14.82 22.00 128.16 215.74 394.88
CPU2 (6), icc 68 389 1794 10.87 33.67 175.45 275.22 509.93
CPU2 (20), icc 68 381 1773 11.11 15.85 137.35 221.83 401.64

As can be seen from Table 5, the sequential run on the cluster node is slower than that on the
workstation by a factor of 1.2. Using only 6 threads, the overall simulation time was improved
twice by GGC and 2.5 times by Intel C++ Compiler. Despite the cluster node has a slower
processor (in terms of sequential code runtime), the total time with 6 threads is nevertheless
faster here than on the workstation thanks to higher memory bandwidth. Using 20 threads, both
compilers speed up the simulation thrice. In particular, Jacobian assembly time was improved
9.3 times on the cluster node with 20 threads. The performance improvement of both linear
setup and linear solve phases on the cluster was around 3 times for both compilers.

Table 6 Detailed simulation performance of SPE10 on different platforms: CPU1 - Intel Core
i7-8086K; CPU2 - 2 x Intel Xeon E5-2640 v4. Sequential run is denoted by ′𝑠′ in brackets,
multithread run - with the amount of threads. gcc represents GNU Compiler Collection 4.8.5,
icc - Intel C++ Compiler 16.0

Platform setup, s solve, s
CPR AMG ILU(0) GMRES SPMV CPR AMG ILU(0)

CPU1 (s) 23.39 313.29 26.62 102.75 103.35 66.86 279.87 84.98
CPU1 (6) 23.45 70.29 27.04 71.22 58.45 43.20 144.26 83.60
CPU2 (s), gcc 28.99 381.00 35.77 134.28 126.80 89.70 325.02 109.91
CPU2 (6), gcc 42.38 120.92 39.73 56.63 47.81 26.45 136.07 117.81
CPU2 (20), gcc 35.76 54.54 37.85 27.86 21.83 13.61 60.50 113.76
CPU2 (6), icc 31.62 96.06 47.77 38.03 32.26 22.21 92.16 122.82
CPU2 (20), icc 32.88 53.14 51.32 20.87 19.48 12.73 48.99 139.24

From Table 6, it is easy to spot sequential parts of linear solver - CPR setup and both ILU(0)
stages. Interestingly, the NUMA memory design makes parallel code faster but interferes se-
quential code. This effect is more pronounced for Intel C++ compiler. These sequential sections
are also the reason behind similar overall performance of multithread execution for both compil-
ers on cluster node: GCC provided faster execution of sequential components while Intel C++
compiler - for parallel ones. The acceleration of paralleled code portions of the linear solver is in
the range of 6 to 7 times on the cluster node for 20 threads with Intel C++ Compiler. Impor-
tantly, some of those sections were sometimes significantly faster with 6 threads on the cluster
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node than on the workstation. For example, CPR solve took 43 seconds on the workstation and
22 seconds on the cluster node. Other stages, like AMG setup, were, on the opposite, slower.
This confirms our assumption about the balance between compute-bound and memory-bound
for specific linear solver parts.

Realistic geothermal model

The overall performance on the workstation was improved by a factor of 1.7, while on the cluster
node with 20 threads the improvement factor reached 2.5 - which is lower than that for SPE10
for both systems (see Table 7). The cluster node again was faster than the workstation even
with 6 threads (in case of Intel C++ Compiler).

On the contrary to SPE10, the best result overall on CPU for this model is provided by GCC
compiler. The speedups achieved for Jacobian assembly, setup and solve phases amounted to
7.5, 3.5 and 3.4, while with Intel C++ Compiler - 9.6, 3.2 and 2.7. Despite better parallel
performance during Jacobian assembly, the time loss on sequential parts of the linear solver for
Intel C++ Compiler overweighted time gain on parallel parts.

Table 7 Overall simulation performance of geothermal model on different platforms: CPU1 -
Intel Core i7-8086K; CPU2 - 2 x Intel Xeon E5-2640 v4. Sequential run is denoted by ′𝑠′ in
brackets, multithread run - with the amount of threads. gcc represents GNU Compiler Collection
4.8.5, icc - Intel C++ Compiler 16.0

Platform TS NI LI Init, s Jacobian, s Setup, s Solve, s Total, s
CPU1 (s) 107 287 4819 78.88 219.99 819.40 3885.12 5019.17
CPU1 (6) 107 288 4854 73.18 76.22 297.27 2494.92 2957.04
CPU2 (s), gcc 107 286 4803 99.46 266.95 1082.38 5073.58 6544.14
CPU2 (6), gcc 107 290 4870 98.98 89.91 513.81 2541.99 3272.76
CPU2 (20), gcc 107 291 4916 103.04 35.21 305.41 1506.01 1976.64
CPU2 (6), icc 107 291 4884 90.48 60.91 449.27 2075.36 2702.21
CPU2 (20), icc 107 294 4959 89.56 27.69 332.53 1892.83 2370.72

Table 8 yet again demonstrates different speedup behaviour for various linear solver components
on different systems. On the workstation, AMG setup runs 3.7 times faster, while other parallel
stages improve only by a factor of 1.5-2. On the cluster node, it is the opposite: AMG setup
is improved there only by a factor of 3.3 (6 threads, Intel C++ Compiler), while other kernels
- by factors ranging from 3.5 to 4.4. Surprisingly, for 20 threads Intel C++ Compiler does not
demonstrate the better performance of parallel sections and is still slower in sequential ones.
The best speedups of parallel phases for the geothermal model on the cluster node provided by
GCC compiler are ranging from 5.9 to 6.7.

Table 8 Detailed simulation performance of geothermal model on different platforms: CPU1 -
Intel Core i7-8086K; CPU2 - 2 x Intel Xeon E5-2640 v4. Sequential run is denoted by ′𝑠′ in
brackets, multithread run - with the amount of threads. gcc represents GNU Compiler Collection
4.8.5, icc - Intel C++ Compiler 16.0

Platform setup, s solve, s
CPR AMG ILU(0) GMRES SPMV CPR AMG ILU(0)

CPU1 (s) 47.30 716.40 55.70 984.31 639.01 448.76 1885.87 566.18
CPU1 (6) 47.87 193.32 56.07 632.63 362.83 301.82 993.34 567.13
CPU2 (s), gcc 60.11 946.23 76.04 1386.92 796.25 617.85 2330.57 738.24
CPU2 (6), gcc 80.89 345.51 87.41 479.66 285.95 190.50 878.12 993.70
CPU2 (20), gcc 80.23 141.41 83.77 221.20 120.91 97.44 395.57 791.80
CPU2 (6), icc 67.12 282.99 99.15 328.43 180.24 165.78 665.32 915.82
CPU2 (20), icc 70.73 161.11 100.69 247.99 132.74 134.99 463.85 1046.00
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