

Delft University of Technology

How Is Video Game Development Different from Software Development in Open Source?

Pascarella, Luca; Palomba, Fabio; Di Penta, Massimiliano; Bacchelli, Alberto

DOI
10.1145/3196398.3196418
Publication date
2018
Document Version
Accepted author manuscript
Published in
Proceedings of the 15th International Conference on Mining Software Repositories, MSR. ACM, New York,
NY

Citation (APA)
Pascarella, L., Palomba, F., Di Penta, M., & Bacchelli, A. (2018). How Is Video Game Development
Different from Software Development in Open Source? In Proceedings of the 15th International Conference
on Mining Software Repositories, MSR. ACM, New York, NY (pp. 392-402)
https://doi.org/10.1145/3196398.3196418
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3196398.3196418
https://doi.org/10.1145/3196398.3196418

Delft University of Technology
Software Engineering Research Group

Technical Report Series

How Is Video Game Development
Different from Software Development in

Open Source?

Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and
Alberto Bacchelli

Report TUD-SERG-2018-009

SERG

TUD-SERG-2018-009

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Van Mourik Broekmanweg 6
2628 XE Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
https://se.ewi.tudelft.nl/tr.html

For more information about the Software Engineering Research Group:
https://se.ewi.tudelft.nl/

This paper is a pre-print of: Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bac-
chelli – How Is Video Game Development Different from Software Development in Open Source?.
In Proceedings of the 15th International Conference on Mining Software Repositories (MSR-2018), May
27-28 2018 — Gothenburg, Sweden.
doi: https://doi.org/10.1145/3196398.3196418

Acknowledgments. This project has received funding from the European Unions’ Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642954 and the Swiss
National Science Foundation through the SNF Project No. PP00P2 170529.

c© 2018 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1145/3196398.3196418

How Is Video Game Development Different from Software
Development in Open Source?

Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2
1Delft University of Technology, The Netherlands — 2University of Zurich, Switzerland — 3University of Sannio, Italy

l.pascarella@tudelft.nl,palomba@ifi.uzh.ch,dipenta@unisannio.it,bacchelli@ifi.uzh.ch

ABSTRACT
Recent research has provided evidence that, in the industrial con-
text, developing video games diverges from developing software
systems in other domains, such as office suites and system utilities.

In this paper, we consider video game development in the open
source system (OSS) context. Specifically, we investigate how de-
velopers contribute to video games vs. non-games by working on
different kinds of artifacts, how they handle malfunctions, and how
they perceive the development process of their projects. To this pur-
pose, we conducted a mixed, qualitative and quantitative study on a
broad suite of 60 OSS projects. Our results confirm the existence of
significant differences between game and non-game development,
in terms of how project resources are organized and in the diversity
of developers’ specializations. Moreover, game developers respond-
ing to our survey perceive more difficulties than other developers
when reusing code as well as performing automated testing, and
they lack a clear overview of their system’s requirements.

KEYWORDS
Video Games; Mining Software Repositories; Empirical Studies
ACM Reference Format:
Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto
Bacchelli2. 2018. How Is Video Game Development Different from Software
Development in Open Source?. In Proceedings of MSR ’18: 15th International
Conference on Mining Software Repositories , Gothenburg, Sweden, May 28–29,
2018 (MSR ’18), 11 pages.
https://doi.org/10.1145/3196398.3196418

1 INTRODUCTION
In the last decades, several human activities (e.g., financial trans-
actions, methods of defense, healthcare, and scientific research)
have started to rely more and more on software systems to run
efficiently [20, 46]. Entertainment activities have also followed this
trend and video games are one of its most prominent outcomes [21].
Nowadays, the video game industry has reached an estimated yearly
revenue of more than $90 billion dollars [45].

Despite being a domain of software systems and being so success-
ful, video games (from hereon, games) have attracted the interest
of software engineering researchers only in the last decade. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196418

example, among the first is the work by Tschang [48] and Tschang
& Szczypula [49] who hypothesized that game development re-
quires developers with uncommon knowledge. In the same vein,
Kultima & Alha conducted interviews reporting how game devel-
opers perceive differences in the development of their projects [28]
and Ampatzoglou & Stamelos provided an overview of the concerns
in software engineering for games, indicating that the game domain
had received little attention from software engineering research [4].

Murphy-Hill et al. are the first who conducted a “broad-based em-
pirical study to explicitly contrast traditional software engineering
and ... game development” [33] in an industrial context. Murphy-
Hill et al. conducted interviews with software engineers expert in
game development from different companies, followed by a sur-
vey sent to selected developers at Microsoft [2]. They found that
game developers perceive their development process to followAgile
methodologies more often, to require a more diverse team, and to
require better communication skills with non-engineers, compared
to non-game developers. Murphy-Hill et al. discussed compelling
implications of these findings for software engineering research,
practice, and education, thus also highlighting the importance of
conducting this kind of studies.

In this paper, we continue on the line of research on game de-
velopment, by shifting our focus to open source software (OSS)
systems. We investigate how developing OSS games is different
from developing non-game OSS systems, such as system utilities
and office suites. The know-how about practical solutions adopted
by video game developers is crucial to lead future research aimed
at improving the quality of software and at increasing developers’
productivity with practical support. From a high-level perspective,
our work is in the direction of increasing our empirical understand-
ing of how and to what extent software development is influenced
by its target (e.g., games, office suites, and system utilities) and how
research should be tailored accordingly.

Specifically, we conducted an exploratory investigation aimed at
reproducing the findings of Murphy-Hill et al. [33] and complement-
ing it through the mining of OSS repositories and the analysis of
the perception of OSS developers. We (1) mined 30 OSS games and
30 traditional OSS systems, (2) analyzed how developers commit
versioned resources, (3) measured the authorship and ownership for
specific categories, (4) analyzed the diversity in malfunctions, and
(5) challenged our findings with a survey involving 81 respondents
among the most productive developers of the chosen projects.

Our results show that developers of OSS games tend to diverge
from strict software engineering rules. They autonomously split
into teams specialized in specific tasks, yet they manage to col-
laborate with each other to achieve common goals. Moreover, the
investigation suggests that preventing malfunctions is an even

SERG L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source?

TUD-SERG-2018-009 1

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

harder task in this domain, due to the difficulty in automating test-
ing. Finally, our results, on the one hand, confirm some findings
achieved about game development in industry [33], such as less
clear requirements, while on the other hand highlights some differ-
ences that were not found to be significant previously, such as the
likelihood that developed code is included in future releases and the
difficulty in writing automated (unit) tests. Overall, our evidence
indicates that the domain specific issues that game development
poses encompass both the industrial vs. OSS context.

2 RESEARCH GOALS AND SUBJECT
This section defines the goal of our empirical study in terms of
research questions and the subject systems we consider.

2.1 Research Questions
The final goal of our study is to explore the (potential) differences
between the development practices for games vs. non-game systems
in OSS. A great source of inspiration for us comes from the work
by Murphy-Hill et al. [33], who conducted a similarly targeted
study in the industrial context. We complement their work and
hope to be able to generalize it, by (1) considering the OSS context,
thus reaching a different set of developers and projects, and by (2)
conducting quantitative analysis on software repositories.

We start our investigation by focusing on the software reposito-
ries. In particular, we structure our first research question around
one of the six findings that was confirmed in both interviews and
survey of the study by Murphy-Hill et al.: “Game development
requires a more diverse team” [33]. Therefore, we investigate the
diversity of resources that exist in game vs. non-game source code
repositories, how prominent each type of resource is in the two
domains, and whether game developers show a higher degree of
specialization on certain resources, thus indicating the existence of
a more diverse team. This leads to our first research question:

RQ1: How do developers of OSS games vs. OSS non-game sys-
tems contribute to their projects?

We continue our quantitative investigation exploiting software
repositories by focusing on testing and malfunctions. In fact, the
sample of developers surveyed and interviewed by Murphy-Hill et
al. [33] perceived testing as another significant difference in game
vs. non-game software development; testing was reported to be
more difficult when developing games because of, e.g., the high
coupling with the user interface, the size of the state space, and
the inherent non-determinism. It is reasonable to think that this
difference may lead to how malfunctions manifest themselves in
games. We investigate this aspect in the repositories of the selected
systems, by analyzing which faults occur in games vs. non-games.
This leads to our second research question:

RQ2: How do developers of OSS games vs. OSS non-game sys-
tems prevent and handle malfunctions in their projects?

Finally, we conclude our investigation by turning to OSS devel-
opers to gather their opinions on the development process in the
projects to which they are contributing. We do this by means of an
online survey. Our aim is to compare and contrast the perceptions

of OSS developers to those of the industrial developers sampled
by Murphy-Hill et al. [33], in order to understand what are the
themes that are common across these two different settings and
what, instead, differs. This leads to our last research question:

RQ3: How do developers of OSS games vs. OSS non-game sys-
tems perceive the development process of their projects?

Table 1: Overview of the analyzed software systems

Projects Genre Language(s) LOC Contributors
0 A.D. 3D game JavaScript, C, C++ 5.57M 16
Arx Libertatis 3D game C, C++ 118k 3
AssaultCube 3D game C, C++ 126k 5
Battle for Wesnoth 2D game C++ 701k 67
Blender 3D 3D game C, C++, Python 1.83M 98
Cataclysm-DDA 2D game C++ 251k 168
Chaotic Rage 3D game C++ 84k 3
Cyberdojo 2D game Objective-C and C 263k 8
Dolphin-emu 3D game C, C++ 1.23M 109
Dungeon Crawl
Stone Soup 2D game C, C++ 372k 57

FlightGear 3D game C++ 838k 23
FreeSpace 3D game C, C++ 1.13M 8
Frogatto 2D game Python, Ruby, C++ 7.4k 9
Hedgewars 2D game Pascal, Lua, C, C++ 165k 17
MAME 2D game C++ 9.14M 164
ManaPlus 2D game C++ 270k 5
MegaGlest 3D game C++ 304k 8
Minetest 3D game C, C++ 203k 163
Multitheftauto 3D game C, C++ 2.73M 24
Oolite 3D game C, Objective-C 263k 8
OpenArena 3D game C 500k 6
OpenClonk 2D game C++ 360k 16
OpenDungeons 2D game C++ 73.7k 6
OpenMW 3D game C++ 226k 48
OpenSimulator 3D game C# 1.28M 8
Orxonox 3D game Lua, C, C++ 9.28M 12
Pioneer 3D game C++ 479k 30
SuperTuxKart 3D game C, C++ 732k 29
Thousand Parsec 2D game C++ 3.7k 2

Ga
m
e
So
ftw

ar
e
Sy

st
em

Warzone 2100 3D game C, C++ 667k 22
Calligra Suite Office suite C, C++ 1.15M 18
Chromium Browser C, C++ 18.1M 2,695
Cppcheck Utility C++ 241k 61
Doxygen Doc system C++ 275k 38
Firebird Database C, C++ 1.27M 33
GIMP Image editor C 833k 71
Gparted System utility C, C++ 44.5k 36
Iptables System utility C 52.8k 27
K3b Utility C++ 106k 17
Kate Text editor C++ 403k 56
KiCad CAD C, C++ 872k 74
Ktorrent Application C++ 102k 17
Libre Office Office suite Java, C++ 9.15M 234
Mbed SDK C 3.82M 187
MongoDB Database C++ 1.28M 133
MySQL Database JavaScript, C, C++ 3.35M 132
Node.js Framework C, C++ 3.87M 868
Notepad++ Text editor C++ 338k 64
Open-Xchang Email Java, C 3.33M 53
OpenSSL Library C 488k 124
OpenVPN System utility C 291k 28
OpenWrt Embedded Kernel C 842k 205
PowerDNS DNS deamon C++ 216k 58
Programmer’s
Notepad Text editor C, C++ 1.35M 2

Scilab Scientific C, C++ 2.29M 18
Sumatra PDF PDF viewer C, C++ 569k 11
Synergy Application C, C++ 113k 5
TortoiseGit Version system C, C++ 368k 7
Umbrello UML Modeller C++ 264k 8

N
on

-g
am

e
So
ftw

ar
e
Sy

st
em

VLC Media player C, C++ 628k 82

L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source? SERG

2 TUD-SERG-2018-009

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

2.2 Selection Of The Subject Systems
To conduct our study, we consider the most popular programming
languages used for desktop video game applications (i.e., C, C++,
and Objective-C [14]) and on projects whose source code is pub-
licly available i.e., open-source software (OSS) projects. To select a
representative sample of game and non-game systems we rely on
OpenHub [1], which is an online platform that indexes open-source
projects, providing basic information (e.g., application domain) as
well as data on developers’ activities (e.g., number of commits)
and statistics on popularity (e.g., number of stargazers). We use
OpenHub to select heterogeneous projects having different charac-
teristics in terms of (i) development environment, (ii) number of
contributors, and (iii) project size, thus mitigating some threats to
external validity. We only consider active projects to be able to get
responses to our online survey.

Thus, using OpenHub, we rank projects by popularity and select
30 desktop video game systems and 30 heterogeneous non-game
applications. Table 1 reports the chosen projects describing genre,
programming language(s), size in LOC, and number of contributors.

3 RQ1 – DEVELOPMENT ACTIVITIES
Our first research question aims at studying how game and non-
game developers contribute to their projects.

3.1 RQ1 - Research Method
To answer RQ1, we start by classifying the resources (i.e., files)
contained in a repository into categories that reasonably require
different expertise and specialization (e.g., source code files and
images). Subsequently, we investigate differences between game
vs. non-games in terms of (1) the prevalence of the categories (we
expect non-games to have less multimedia files, audio, video, and
images), (2) the specialization of contributors (we expect games to
have more diverse and specialized contributors, as emerging from
the study of Murphy-Hill et al. [33]) considering authorship as well
as ownership, and (3) the evolution of categories.

Classifying the resources. Given the number of investigated
projects, a manual categorization of all the files is prohibitively
expensive. For this reason, we apply a two-step approach: (i) first,
we execute an iterative content analysis approach [30] on a subset
of six projects to let categories of files emerge and identify features
that can be used to automatically classify files; (ii) second, we devise
a tool to automatically categorize the files of the studied projects
based on the identified features.

In the first step, the first author of this paper (a software en-
gineering researcher with ten years of programming experience)
analyzed the files contained in three game and three non-game
systems. The task was to analyze the path of each file and identify
the file category, also considering the directory organization as an
additional clue, how emerged from a study of Jones et al. where
computer users use “divide and conquer” problem decomposition
[25]. Generally, the researcher was able to identify keywords in
the path that can be used to discriminate the type of file are iden-
tified (e.g., the presence of src likely indicates that the file is a
source file); in the case of ambiguities (e.g., the term image may
be related to pictures, but also to high-level system models, such
as UML diagrams), the researcher also considered the extension of

Table 2: Overview of the categories of resources

Category Description Keywords in
file path

File extension

Code Source code files, such
as sources, headers, as-
sembly files

source, src, tool,
include, etc.

cpp, cc, h,hpp, in

Utility Scripts, makefiles, build
configurations, etc.

util, test, src,
source, include,
build, comp,
etc.

py, pl, js,lua,
mk,cmake, m4

D
ev

el
op

m
en

t

Library Archives and libraries lib, data, os,
arch, etc.

a, so, lib, dll, so, zip,
rar, 7z, gz, bz2

Language Translation-related files language, lng,
i18n, transla-
tion.

po, pot, i18n, txt,
xml

Docs Documentation doc, man, li-
cense, guide,
package

tex, txt, html, htm,
xml, css, pdf, jpg,
png, ico, gif

Audio Audio files wav, ogg, mp3, dsp
Image Image files image, icon,

model, scenery,
texture,
graphic, planet,
font, etc.

png, rgb, ttf, cfg,
map, jpg, gif, ico,
svg, dds, xcf, 3ds,
txf, eff

M
ul
ti
m
ed

ia

Data Domain modeling files
or configurations files.

image, icon,
model, scenery,
texture,
graphic, planet,
etc.

properties, xml,
canvas, effects, in,
commands, elec-
trical, extensions,
desktop

Misc. General purpose config-
urations

misc, other,
tool, install, etc.

xml, conf, list, cfg,
txt, ocm, lo

No ext. Files with no extensions

O
th
er

Discarded Every discarded re-
source not in the above
categories

the file. With this approach, the researcher was able to classify the
vast majority (≃ 95%) of files in the six analyzed systems. Table 2
shows the resulting list of categories. The columns ‘Keywords in
File Path’ and ‘File extension’ report the specific keywords used to
automatically categorize files. The ‘Discarded’ category collects the
files for which it is not possible to assign any of the other categories
identified.

The process was repeated to ensure the completeness of the
categories. The iterations terminated when the category ‘Discarded’
contained less than 5% of all the considered files. The output con-
sisted of ten file categories, which could be grouped into three
higher-level categories: ‘development’, ‘multimedia’, and ‘other’
(first column in Table 2).

Once we identified the categories and the discriminating features
(keywords in paths and extensions), we created a Python script
to parse each file of the remaining repositories and automatically
classify them into the categories.

Determining the specialization of authors and owners. To
measure the extent towhich authors are specialized in the categories
we identified, we mine the commits performed by each developer
over the history of a project to identify the set of files each developer
worked on the most.

In addition, we consider the role of ownership. In particular, we
take into account the findings by Bird et al. [7], who reported that
even if a file may be committed by many authors, it is most of the
times touched by a single author. In other words, the ownership

SERG L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source?

TUD-SERG-2018-009 3

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

of an author on a file describes the degree of responsibility of a
certain contributor on that file. Thus, we want to measure what
extent it is possible to identify owners specialized in contributing
to single file categories. To this purpose, we divided the analysis
into two steps. In the first step we re-implement the approach by
Bird et al. [7]: For every file, we (1) count the number of changes,
(2) associate an author to each change, (3) rank the authors by
contribution frequency, and (4) discard files without a unique author
contribution. The cutting threshold is experimentally defined to
consider only files in which an author contributes more than 75%.
In the second step, we count the number of files each developer
mainly contributed to, thus marking each developer’s ownership.

Evolution of file categories over time. To understand how
the development activities performed on each of the identified
categories evolve over time we adopt two complementary strategies
to split the time. The first strategy splits each project’s history into
fixed intervals of three months, while the second strategy splits the
history by release. The latter strategy leads to intervals of different
duration, yet better accounts for the actual volume of performed
development, since OSS projects tend to be more erratic in the
amount of work developers produce in a given time period [19].

With both strategies, for each file category fc identified, we
compute the frequency of commits that modified a file belonging
to fc for every snapshot taken in the time window considered.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

development

multimedia

other

code

utility

library

language

docs

audio

image

data

misc.

no ext.

discarded

game non-game

Figure 1: Distribution of files in categories, by domain.

3.2 RQ1 - Results
We present the results according to different angles we investigated:
(i) how systems’ files are distributed across the different kinds
of categories in games vs. non-games, (ii) how contributors are

specialized in changing and owning files in these categories, and
(iii) how categories evolve over time.

Distribution of files across categories. Figure 1 details how
files are distributed in (grouped) categories (grouped categories
show the sum of the values for the inner categories). On average
non-game projects have 80% of files related to the Development
category, while a lower percentage (15%) of files related to the
Other category and an even lower percentage (less than 5%) related
to Multimedia. Conversely, game projects have only 30% of files on
average belonging to the Development category. Furthermore, there
is a remarkable amount of files belonging to Multimedia (up to 70%
for OpenClonk project). This result gives an initial indication that
the resources game developers deal with are observably different
from those worked on by non-game developers, and regard the
management of audio, images, and game scenarios.

0% 20% 40% 60% 80% 100%

2009-05
2009-08
2009-11
2010-02
2010-05
2010-08
2010-10
2011-01
2011-04
2011-07
2011-10
2012-01
2012-04
2012-07
2012-10
2013-01
2013-04
2013-07
2013-10
2014-01
2014-04
2014-07
2014-10
2015-01
2015-04

Open Clonk 3-m
onth tim

e w
indow

, grouped categories

OtherMultimediaDevelopment
Development Multimedia Other

Figure 2: Evolution of changes to files in grouped categories,
for OpenClonk, a game project, in 3-month time windows.

Specialization of authors and owners. We observe the spe-
cialization in terms of authorship by counting the number of
changes in each file category; since this analysis implies creating
a change graph for every developer of every project, we limit the
analysis to the most active developers. The results do not highlight
particular trends. For example, one of the most active developers
of the game Chaotic Rage had contributed with more than 2, 000
commits (at the time of analysis), but the contributions are spread
over each category without highlighting a specialization. Similar
discussion for the two top contributors of the VLC Media Player
project, who performed more than 12, 000 and 6, 000 commits, re-
spectively, touching all categories of files.

Conversely, we obtain different results when considering special-
izations in terms of ownership. In fact, in games, we could identify

L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source? SERG

4 TUD-SERG-2018-009

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

specific sub-teams working on different files belonging to non-
development categories. For example, in Battle for Wesnoth
four developers mainly focused their activities on Multimedia. Re-
sults are consistent when considering the other games. Instead,
when analyzing the non-games, we clearly identify only sub-team
specialized on categories related to code files. This result corrob-
orates the statement that game development is based on a more
diverse team than non-game software development since different
game developers are in charge of the evolution of different aspects
of the game.

Evolution of the categories. In addition to analyzing the files
in the latest version of the project and the history of changes to
compute authorship and ownership, we also explore whether ob-
servable trends of changes occur in different categories of files. In
fact, one of the interviewees in the study by Murphy-Hill et al.
stated: “[In general software development,] you might be building
Word or Excel or something like that [and use] some zip... tool or
something. But you’re building... video games, you are sometimes
building the resource compiling tools or tools that are intended to
extract 3D assets from other software like Maya or Max and then
convert it into a native format that then your engine can load and
render and process. So the tool pipeline is incredibly important
to video game development and it’s probably I would say almost
larger than the game itself.” [33], but this was not confirmed by
the differences developers’ perceptions in their survey. We turn to
the source code repositories to look at this in OSS systems; if the
aforementioned statement was true, we would expect to see more
work on the source code in the first period of development, and
then more activity on the game scenarios/data (e.g., committing
more changes belonging to Audio, Image, and Data).

Figure 2 is an exemplification of the results we obtained through
this analysis. The Figure shows the trend in changes for Open-
Clonk, a game project, considering the observation interval of 3
months. In the first interval (about 18 months) developers focus
more on the source code and project development artifacts (e.g.,
build automation) and only after they spend effort on improving
the game scenarios (e.g., game worlds and audio). These results
are consistent across all games and also considering a release-by-
release observation interval. Conversely, this trend does not hold
for non-games, even considering the broad heterogeneity of the
selected projects: In this case, the vast majority of changes fall in
the Development category in every time period, while other types
of changes are a minority. This result seems to corroborate the
statement by the interviewee in the study of Murphy-Hill et al. [33],
at least in the OSS context: The development of games vs. non-
games is different and follows different trends in terms of the files
modified during the system evolution.

Result 1: Developing games involves activities on more diverse
resources than developing non-game systems. The evolution is
different: In games a ramp-up period of changes on source code
is followed by a steady work on other categories of files; in non-
games the evolution consistently involves the same categories.
The teams are different: Only in games we could identify special-
ized owners who apply changes to non-code related categories,
thus highlighting the presence of more diverse expertise.

4 RQ2 – MALFUNCTION HANDLING
The second research question aims at investigating the ways devel-
opers in the two domains of projects handle malfunctions.

Table 3: Overview of bug categories considered in our study.

Category Bug description Search keywords/phrases

Algorithm Algorithmic or logical errors
algorithm, logic, rendering, calcula,
procedure, problem solving, math,
stack size, bench script, mistake, defect

Concurrency
Multi-threading or
multi-processing
related issues

race condition, synchronization error,
deadlock

Failure Crash or hang

reboot, crash, hang, restart, fault,
return failure, segfault, dump,
executable file, error message,
segmentation, stable, exception,
not run, not start

Graphic Graphic issues such as
overlap or rendering problems

graphic, resize, overlap, render,
shadow, gui object, frame, ground,
window, zoom, water, weapon

Memory Incorrect memory handling

memory leak, null pointer,
heap overflow, buffer overflow,
dangling pointer, double free,
segmentation fault, buf,
memleak, memory leak,
overflow, alloc

Performance Correctly runs with
delayed response

optimization, performance,
slow, fast, busy

Programming Generic programming errors

exception handling, error handling,
type error, typo, compilation error,
copy-paste error, pasting, refactoring,
missing switch case, missing check,
faulty initialization, default value,
match error, compil, autotools, build,
undefined pointer, syntax error,
instruction, 64bit, overloaded function,
translation, engine, not iniatializ

Security Exposure to dangerous
attackers

buffer overflow, security, password,
auth, ssl, exploit, injection, aes,
3des, rc4, access

Unknown Not part of the
above categories

4.1 RQ2 - Research Method
To understand how malfunctions (i.e., faults) are treated in game vs.
non-game systems in OSS, we combinedmining project repositories
and surveying expert developers. In this subsection, we report the
mining method, while the survey part is presented in Section 5.1,
together with the other questions asked to developers.

Categories of malfunctions. The categories of malfunctions
analyzed are reported in Table 3, together with a short description
and the keywords that can be used for assigning a fault to that
category. Generally, the categories reflect the ones defined by Ray
et al. [41], who studied the effect of programming languages on
software quality and proposed a catalog of malfunctions that may
appear in a software project. We add a new category, i.e., ‘graphic’,
to better distinguish issues related to the user interface (potentially
prominent in games) from other types of malfunctions (e.g., per-
formance bottlenecks). Despite the same keywords may belong
to different categories (e.g., memory leak may be part of Graphic
and Memory) we prevent this issue by defining a specific set of
keywords for each category.

Identification and classification of malfunction fixes. Be-
fore categorizing malfunctions according to the taxonomy in Ta-
ble 3, we (i) identify commits reporting faults and (ii) link them,

SERG L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source?

TUD-SERG-2018-009 5

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

where possible, to the issue tracker to extract the note explaining
the type of fault.

To identify commits reporting faults, we follow an approach
similar to that proposed by Mockus and Votta [32] and Fischer et
al. [16], which was also followed in the studies by Ray et al. [40, 41].
This approach looks in the commit message for the existence of spe-
cific keywords (e.g., ‘error’, ‘bug’, ‘fix’, ‘issue’, ‘mistake’, ‘incorrect’,
‘fault’, ‘defect’, and ‘flaw’) and accordingly mark the commit as
fault repairing. Since the commit message may contain only a short
description of the fault fixing activity performed by a developer
(e.g., “fix bug #276”) rather than presenting the information needed
to properly categorize it, we use the issue tracker to retrieve more
detailed data on faults. To this aim, we use the explicit references
contained in a commit message to identify the issue related to it.
Afterwards, we extract the message note of the issue and apply the
categorization using the keywords reported in Table 3. However,
for projects lacking issue trackers we classify the commit messages
only. The set of keywords belonging to each category was itera-
tively improved: Starting from an initial set of keywords, the first
author of this paper manually checked whether the malfunctions
that are not possible to categorize contain additional keywords that
can be used to assign it to one of the categories considered. This
refinement reduced the risk of misclassification.

0% 10% 20% 30% 40% 50% 60% 70%

0% 10% 20% 30% 40% 50% 60% 70%

algorithm

concurrency

failure

graphic

memory

performance

programming

security

unknown

game non-game

Figure 3: Distribution of faults, by domain.

4.2 RQ2 - Results
Figure 3 reports the comparative distribution of malfunctions. The
first observation is that the category Graphic related to game
projects absorbs about three times more malfunctions with respect
to traditional software. However, this may be only a confirmation
that systems with a massive use of the Graphical User Interface
(GUI) tends to have more problems in the components implement-
ing it than any other system. Similarly, the result might be also
reflect the higher number of changes performed by developers on

files involving the Multimedia category, i.e., the higher the num-
ber of changes, the higher the likelihood to introduce faults [24].
Games have also fewer problems in components related to Pro-
gramming than non-games. Also, in this case, this might be due to
the lower activity performed on such components. Perhaps more
interesting, the number of faults are spread in several categories
when considering games, while traditional systems reach up to
62% of the problems related to the Programming category. The re-
sult for Security is quite unexpected: We observe a higher number
of security issues in games rather than non-games. This possibly
reveals the lack of awareness of game developers with respect to
vulnerabilities or, even worse, the lack of testing activities in games:
the latter conjecture is supported by (i) the higher number of Fail-
ures than traditional systems and (ii) the absence of test cases in
the considered projects. Another observation is that in the case of
games we have a minor capability to classify malfunctions using
the same set of keywords used for traditional software. Indeed, the
Unknown category for games is about one third higher than the
same category in the opposite software domain.

Result 2:Malfunctions are differently distributed in games and
non-games; while faults in games are more spread across dif-
ferent categories, in non-games faults are mainly related to the
Programming category. We also confirm that games have more
problem of Graphic than non-game systems.

5 RQ3 – DEVELOPERS’ PERCEPTIONS
The third research question of our study aims at gathering the
developers’ point of view concerning the development process
followed to develop the systems with which they are involved, with
the aim of exposing any different perceptions in game vs. non-game
developers, for aspects that could not be captured through mining
of repositories.

5.1 RQ3 - Research Method
To answer our third research question, we created an online sur-
vey and asked developers of the considered systems to participate.
As recommended by Flanigan et al. [17], we limit common issues
possibly affecting the response rate by keeping the survey short,
respecting the anonymity of participants, and preventing our in-
fluence in the answers. This part of the study is intended to be a
replication of the study by Murphy-Hill et al. [33], but in the OSS
context. In addition, the survey aims at challenging the results of
the first two research questions.

Protocol.We created an anonymous online survey (requiring
approximately 10 minutes to be filled out), extensively inspired by
that of Murphy-Hill et al. [33], to assess differences in developers’
perception of games vs. non-game software development.

The survey is organized into five sections, each of them com-
posed of three or four statements that developers are requested to
rate using 5-levels Likert Scale [35] ranging from ‘Strongly Disagree’
to ‘Strongly Agree’. The first part aims at gathering demographic
information on the expertise of participants as well as their back-
ground. The second part asks the participant opinions on software
design aspects such as the facility to reuse source code or skills

L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source? SERG

6 TUD-SERG-2018-009

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

required to develop the underlying software system. The third part
investigates the development processes asking opinions on sim-
plicity to define requirements and common support tools adopted.
The fourth part examines the developer organizations and required
skills (e.g., is creativity a requirement?), while the last part empha-
sizes the bug prevention and the testing procedure. In addition, we
left a free field to collect suggestions, opinions, and experiences.

Participants. To gather responses from developers who are ac-
tually experts of the subject systems, we considered the top ten con-
tributors of each project. We selected the name and email address
of these developers by mining the 60 studied software repositories.
When the email address of the contributor was not reported or
the service returned a delivery error, we selected the next expert
developer of the project, to try to achieve at least ten working
email addresses for each project, for a total of 600 invitations. We
received answers from 45 game developers (15% resp. rate) and
36 non-game ones (12% resp. rate); the response rate is above the
suggested minimum response rate for survey studies [5].

5.2 RQ3 - Results
Figure 4 summarizes the results for our survey, by reporting for each
statement a pair of bars: the first one refers to answers from game
developers, the second one to answers from non-game developers.
Each bar chart depicts the number of answers for each possible rate
(i.e., the 5-points Likert scale). Figure 4 also reports results of the
statistical comparison, performed using theWilcoxon rank sum test
[12], between the distributions of response values (mapped on the
1-5 ordinal scale) for games and non-games. Note that since we test
the null hypothesis "there is no significant difference between games
and non games" multiple times, we adjust the p-values using the
Benjamini-Hochberg correction [6]. Such a correction procedure
adjusts p-values by ranking them in ascending order and then
multiplying each p-value by the total number of p-values divided
by the rank. Finally, we also report the Cliff’s delta effect size [23].

Generally, the results tend to confirm what found by Murphy-
Hill et al. [33] in the industrial context: Developers perceive the
development of games to be different than non-game development.
Looking at Figure 4 we see that: (1) difficulties in reusing their code
(Q1). Murphy-Hill et al. found that game developers have more
difficulties in reusing code than non-game developers, although the
difference was not statistically significant. In our case, the differ-
ence is even less evident. This could possibly depend on the OSS
context. (2) Game developers have a less clear view of the project
requirements (Q5). This result can be explained with the findings
by Kultima and Alha [28], who showed that requirements in game
projects are imposed by end users that are more prone to call for
new requirements. (3) Games are tested manually by external testers
(Q10), as much as non-games. This result is aligned with the findings
reported by Murphy-Hill et al., in which the difference between
games and non-games was not significant in their survey nor in
ours. (4) Game developers perceive less pressure on the evolution
of the software architecture (Q6). This is in line with the results
reported by Murphy-Hill et al.: The motivation is that game de-
velopers do not spend time in evolving the architecture of one-off
games that will be not updated anymore. (5) Game developers have

22128

Q01: From a technical perspective, it is easy
to reuse other's code in my software.

315144
3

2282

Q02: Most of the code I wrote is
included in next release.

2312
13

1

16

Q03: Developing software requires very specific
knowledge that not all developers have.

1022
13124

31

7

Q04: The requirements of the software I
developed were clear to me since the beginning.

11
29207

3994

18

Q05: Whether requirements are
met in my software is highly subjective.

9
7515

4192 2

15

Q06: My software's architecture evolves
significantly when the software gets more mature.

19
1982

5
1

84

24

Q07: Creativity is highly important
when developing traditional software.

19
146

9
1

431

17

Q08: Creating my software requires
people with a broad set of skills.

18
312

4851
121

24

Q09: Creating my software requires
people with specific skills.

22
99

68
3

13

Q10: My software is mainly
tested manually by external testers.

7
44

27
1410

1010

10

Q11: My software is mainly
tested by manual simulation.

10
10

55
1510

87

8

Q12: My software is mainly
tested by unit tests.

10
9

48
1810

122

19

Q13: Users contribute
finding bugs.

11
5

612
3
33

171

14

Q14: Importance of
the beta testing.

11 9933
198

2

22

Strongly disagree Disagree Borderline Agree Strongly Agree

Medium-0.4120.008

MagnitudeDp-value

Negligible0.0030.984

MagnitudeDp-value

Small-0.1670.238

MagnitudeDp-value

Small-0.2560.097

MagnitudeDp-value

Small0.3130.037

MagnitudeDp-value

Small0.2680.082

MagnitudeDp-value

Negligible0.1100.448

MagnitudeDp-value

Small-0.1910.189

MagnitudeDp-value

Negligible-0.0260.891

MagnitudeDp-value

Negligible0.0990.505

MagnitudeDp-value

Small-0.2280.185

MagnitudeDp-value

Medium-0.3430.029

MagnitudeDp-value

Small0.3150.029

MagnitudeDp-value

Negligible0.1880.154

MagnitudeDp-value

Game

Strongly disagree Disagree Borderline Agree Strongly AgreeNon-game

Figure 4: Likert Distributions of survey results.

difficulties in performing unit tests (Q12). This can be due to the char-
acteristics of games as well as the massive presence of GUI-related
components that are more difficult to test [42]. This is significant in
our OSS study, but it was not for the industrial context investigated
of Murphy-Hill et al. [33].

SERG L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source?

TUD-SERG-2018-009 7

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

The results of our RQ1 about the presence of specialized sub-
teams composing game systems seem aligned with the developers’
perception. For instance, one of the game developer surveyed stated:
“I should note that most of my experience comes from modding
rather than developing games from scratch. Therefore I’m usually
bound to the engine and things available. This includes reading a lot
of code to understand how things work. Furthermore, it’s usually
small teams, therefore it helps a lot to be able to tackle problems
in multiple divisions (graphics, actual code, ...).” In other words,
this comment suggests that building a game from scratch may
be complex, however, the organization of specialized sub-teams
facilitates developers in designing and developing a game.

A similar idea comes from another game developer: “You can
kind of draw a continuum between cloning games and creating
completely new games. The first one requires relatively little it-
eration and understanding of game design, and the second one
requires a lot of iteration and understanding of game design.”

We conclude the analysis of the results by reporting the comment
left by a game developer who reports his/her experience as an OSS
game programmer: “Video game development is a specific project
type and thus needs a specific experience. Without speaking of
deadlines that aren’t existing in Open source development. The
design goals have to be refined every mid-milestone development
cycle to the least. All this makes Agile development and extreme
programming fit that kind of development well. And with such
development management type, a dynamic and proactive team is
also a must. Also, on open source projects, whenever the team is
unable to commit itself to make compromise and find common
acceptable goals, the project is hampered and is threatened to die
or stall.”

Result 3: Game developers find it difficult to reuse their code,
have less pressure on evolving their systems’ architecture, and
are less able to properly have an overview of the requirements
of a project. Furthermore, they report more difficulties in per-
forming automated unit tests than non-game developers.

6 DISCUSSION & IMPLICATIONS
After presenting the results of our study, in this section we focus
on (i) a discussion of the results also comparing our findings with
those reported by Murphy-Hill et al. [33] and on (ii) an analysis
of the direct implications that our study has for both practitioners
and researchers. Table 4 presents a summary of the comparison
between our findings and those of Murphy-Hill et al. [33].

6.1 Discussion
Our results highlighted a number of points to be further discussed,
and in particular:

The development of games is different. While the differences
between the two types of software were already pointed out by
Murphy-Hill et al. through surveys and interviews, we extended
existing knowledge by tracking developers’ activities on files. We
observed that programmers involved in the two types of software
mainly perform activities on different categories of resources,

Table 4: Our findings and those achieved by Murphy-Hill et
al. [33]. ‘✓✓’ stands for strong differences measured in the
study, ‘✓’ for modest differences, ‘—’ for irrelevant/absent
differences, and no mark for a not comparable task.

Murphy-Hill et al.
(industry)

This study
(OSS)

Interviews Survey Repositories Survey
Software requirements ✓✓ ✓✓ ✓✓

Software design ✓ — ✓ ✓✓
Software construction,

tools, and methods ✓ — — —

Software testing and quality ✓ ✓ ✓✓ ✓
Software maintenance ✓ ✓ — ✓
Software configuration

management ✓ ✓ — ✓
Problem solving
and skill variety ✓✓ ✓✓ ✓

Distribution of files ✓✓
Specialization of authors ✓
Specialization of owners ✓✓

Categorization of malfunctions ✓✓
Planning of releases ✓ ✓ — ✓✓

with files related to Multimedia mainly modified by game devel-
opers and files associated with the Development category as the
main target of non-game developers.

The way resources evolve is different. Differently from previ-
ous analyses [33], we could observe the artifacts evolution during
the history of software projects. Game developers focus more
on the underlying code base during the first development phase,
while they have more work later on the maintenance and evo-
lution activities of audio, images, and multimedia-related data.
Conversely, non-gamed developers equally evolve the code dur-
ing the entire software lifecycle. More importantly, our survey let
emerge statistically significant differences between the two types
of systems with respect to the amount of code usually included
in future releases of the system: Game developers report to spend
more effort in code that is not directly put into production.

The game teams have more diverse expertise. We could cor-
roborate quantitatively, observing the ways game and non-game
developers apply changes on their systems, the qualitative finding
reported by Murphy-Hill et al.: The teams are different. Specifi-
cally, in game systems, we could detect specialized developers
who apply changes to non-code related categories; in non-games,
instead, we could not identify developers specializing on a spe-
cific non-code category.

Game development and testing. Our survey respondents re-
ported that that games are mainly tested by relying on external
people that manually exercise the system. While Murphy-Hill
et al. already identified some alarm signals on the way game
developers perform testing, we found statistically significant dif-
ferences between games and non-games when considering the
difficulties of game developers to write automated tests.

Malfunctions are handled differently. Faults are located in dif-
ferent areas of game and non-game systems. Our quantitative
analysis on the systems’ repositories showed that: On the one
hand, games exhibit malfunctions in different file categories; on
the other hand, non-games have a notably higher percentage of
bug fixes in the Programming category.

L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source? SERG

8 TUD-SERG-2018-009

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Less clear release planning. For games, it is less clear whether
developed features will be included in the next release than for
non-games. This can be due to a more evident proneness to ex-
perimenting new features (including changing the game story or
users’ experience) that may or may not turn out to be success-
ful. Interestingly this seems to be more evident for OSS projects,
where we observe significant differences with respect to non-
games. This could be because in industrial context there is a
stricter or more anticipated release planning.

More difficulties in handling requirements. OSS game devel-
opers report to not being able to easily manage the evolution of
the requirements. As a consequence, they cannot properly assess
whether they have been met or not. Also in this case, this is some-
thing common between open source and industrial projects [33],
however we identified statistical significant differences between
the two domains.

6.2 Implications
The aforementioned findings have a number of implications for
researchers, practitioners, and education. The former are called to
the definition of a new, ad-hoc branch of software engineering, i.e.,
game-oriented software engineering. More specifically:

(1) Specializing requirement engineering for games.
Given the different audience and different expectations
that end users have for games, new methodologies should
be investigated to better support the activities of game
developers during the management and the evolution of
such user-driven requirements.

(2) Game-specific source code reuse patterns. Our results
reported that developers are not able to reuse the source
code of a game, likely because of system-dependent factors
that make it hard to move in other projects. This represents
an opportunity for researchers with respect to the definition
of novel design patterns and methodologies that game de-
velopers can adopt to make the source code more extensible
and reusable.

(3) Game-specific fault localization. Current approaches for
detecting faults mainly target source code artifacts [13, 24,
36], while game development calls for different approaches
in order to properly support developers in preventively adopt
corrective actions.

(4) Game-specific testing. The use of manual testing and the
challenges with automated testing in game systems highlight
the need for a new set of methodologies to ease the develop-
ers’ ability to identify malfunctions and to enable automatic
testing activities for games. Studies could be conducted to
investigate new generation record-replay tools, automated
test data generators, etc.

Practitioners need to find appropriate ways to handle require-
ments, possibly closely involving end users during the whole soft-
ware lifecycle, e.g., by finding ways to ease communication with
them as also mandated by Agile methodologies. Similarly, practi-
tioners must be aware that faults can be not only hidden in the
source code, but also in other types of resources: they are therefore
called to adopt suitable tools supporting their activities.

Finally—confirming previous results of Murphy-Hill et al. [33]—
our results suggest that game development requires skills that are
strongly different from those required for the development of tradi-
tional software. Developers are indeed called to be more creative
and able to work on a different variety of resources, e.g., domain
modeling files. Thus, it would be beneficial for students to have
dedicated courses where gathering the required skills to approach
game development.

7 THREATS TO VALIDITY
In this section we discuss possible threats to the validity of our
study and how we mitigated them.

File and bug classification validity. A first threat might be
related to howwe identified the file categories in the context of RQ1.
To ensure the comprehensiveness of the taxonomy, we adopted
an iterative content analysis approach [30] on six projects of the
dataset. However, we cannot exclude themissing analysis of specific
file types out of the categories identified. For what concerns fault
classification, we rely on a taxonomy by Ray et al. [41] and verified
that, besides the need for adding one category (Algorithmic faults),
such a taxonomy fits with the range of faults found in the analyzed
projects.

Survey validity. Although maintaining high response rates is
always desirable in a survey, research evidence indicates that open-
source developers are massively assailed by interview and survey
requests, therefore the response rate is lower than other contexts,
e.g., industrial participants [33]. Another considerable factor is
that the response ratio decreases year by year how highlighted
by Bartel [44]. In our study we tried to mitigate a low response
rate typical of the open-source context reaching the most active
developers of each project for a total of 600 invitations. Furthermore,
as recommended by Flanigan et al. [17], we kept the survey as short
as possible, so that participants could fill out it in no more than ten
minutes. As a result, we obtained a response rate up to 15%, which
is satisfactory for a study conducted with open-source subjects
and in line with the minimum response rate suggested for survey
studies [5].

Sample validity. A potential threat to validity of a research
study conducted on a small sample of subjects is that it could de-
liver little knowledge. Even if there are historical evidence that
shows otherwise (e.g., Flyvbjerg [18] gave many examples where
singular entity contributes to important discoveries in physics, eco-
nomics, and social science) we selected a considerable amount of
projects creating a sample of 60 heterogeneous open-source sys-
tems. Precisely, we selected 30 open-source games and 30 non-game
projects with more than 1, 000 active contributors per month for
games and more than 4, 000 active contributors per month for non-
games. Moreover, these projects involve a representative population
up to 40 millions of source lines for game projects and up to 45
millions of source lines for non-game projects.

Conclusion validity. Whenever appropriate, we support our
claims with suitable statistical procedures. While in RQ1 and RQ2
we mainly report and discuss results through descriptive statistics,
in RQ3 we corroborate the comparisons depicted with asymmetric
stacked bar charts withWilcoxon sum rank tests (adjusting p-values

SERG L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source?

TUD-SERG-2018-009 9

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Luca Pascarella1, Fabio Palomba2, Massimiliano Di Penta3, Alberto Bacchelli2

using the Benjamini-Hochberg procedure [6]) and Cliff’s delta effect
size.

8 RELATEDWORK
In the past, researchers have studied software development method-
ologies with the aim of improving the software development process
and software quality in general. In the specific area of game devel-
opment, researchers mainly focused on two aspects, (i) productivity
[15, 26, 50] and (ii) social interaction [11, 22, 51].

Video games productivity. In the first direction, Kultima and
Alha [28] explored how developers perceive the development pro-
cess, interviewing 28 expert game programmers. They found that
in this kind of software practitioners have different priorities than
traditional systems, which are mainly imposed by end-users. This
directly impacts on software requirements, enforcing engineers to
work more on non-functional attributes than functional.

Another study aimed at understanding how developers build
computer games has been conducted by Stacy and Nandhaku-
mar [47]. Relying on the responses achieved conducting 20 in-
terviews, they found that games are perceived as “special” kind of
software. Therefore, applying traditional development processes to
a game project may be dangerous with the consequence of having
a low productivity. Callele et al. [10] investigated 50 dead projects,
finding the reasons of their failure, discovering the issues that
should be addressed with formal processes (e.g., the transition from
game design to formal requirements). Cristiano et al. [39] investi-
gated the processes of software engineering in game development
by analyzing 20 postmortem games. They discovered that iterative
processes are the common techniques (such as Agile and Waterfall)
adopted in game development.

Kasurinen et al. [27] interviewed 27 game developers to under-
stand what are their expectations on tools aimed at supporting
productivity. Even if many developers are concerned about the
adaptability of development supporting tools, they are generally
pleased with such instruments. Musil et al. [34] found that the Agile
model is the most popular solution to support productivity. Fábio
et al. [37] confirm the same findings on the Agile model.

A different perspective is given in the study by Lewis et al. [29],
who aimed at producing a hierarchical taxonomy of faults that
can appear in a game project. Differently from the taxonomy of
malfunctions used in our study, Lewis et al. mainly focused on
faults occurring in the Graphical User Interface rather than on
the application logic. Therefore, we preferred the use of the more
comprehensive taxonomy proposed by Ray et al. [41].

Lin et al. [31] studied the phenomenon of 0-day updates, i.e.,
updates aimed at fixing bugs immediately after issuing a release,
in the context of games present on the Steam platform. As a key
result, they found that 0-day updates are more frequent in games
having a frequent update release strategy. Fábio et al. [38] surveyed
game developers to understand the common problems emerged
during game development.

Video games as a social interaction. Burger-Helmchen and
Cohendet [9] explored the mutual relationship between expert
developers of industrial companies and communities of players.
They found that games benefit of deep collaborations between firms
and end users more than other software. Amin and Cohendet [3]

conducted a large study having as object the importance for firms to
recognize internal communities and derivable profit when members
of different communities share knowledge. Similarly, Brown and
Duguid [8] described how internal communities are viewed as
suppliers of sense and collective beliefs for employees of firms.

Scacchi [43] investigated how free and open-source (FOSS) soft-
ware communities interact to develop complex game projects. How-
ever, he found that FOSS community tend to ignore modern soft-
ware engineering processes.

A different perspective is followed in the study by Murphy-Hill
et al. [33]. They combined two studies to find possible gaps that
are present in the development of games. In the first part of the
study they interviewed 14 expert game developers, while in the
second part they analyzed 364 surveys conducted in Microsoft.
The results showed that developers recognize themselves in cate-
gories and such categories are defined based on their background.
This observation somehow confirms previous findings about the
creation of community with specialized background.

Our study has differences and commonalities with the work by
Murphy-Hill et al. [33]. On the one hand, our qualitative analysis
has the goal to compare the findings achieved in an industrial
context with those obtained when considering open-source games.
On the other hand, our study performs an additional quantitative
analysis of 60 projects with the aim of looking at change and bug
fixing activities performed by developers and comparing games
with other kinds of software.

9 CONCLUSION
Game development has been shown as different with respect to that
of non-game development for the industrial context [33]. In this
paper, we further investigate this line of research by providing a
large-scale empirical analysis on whether and how game developers
perform different activities in the OSS context. We started with a
software repository mining analysis involving 60 systems, aimed
at measuring (i) how developers working in game and traditional
software development contribute to their projects and (ii) how they
handle malfunctions. Subsequently, we performed a survey target-
ing a total of 81 developers (45 developing games and 36 working
on non-game systems), aimed at evaluating the developers’ percep-
tion of their development process and activities, and differences
between game vs. non-game systems.

Our findings highlight a number of points that can inspire the
research community to define a new generation of software engi-
neering tools, which explicitly target games and can help developers
with the development, maintenance, and evolution of this special
and widespread type of software systems.

ACKNOWLEDGMENTS
Bacchelli and Palomba gratefully acknowledges the support of the
Swiss National Science Foundation through the SNF Project No.
PP00P2 170529.

L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source? SERG

10 TUD-SERG-2018-009

On Video Game Development in Open Source MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] [n. d.]. Black Duck Open Hub. https://www.openhub.net. ([n. d.]). [Online;

accessed 30-Jan-2019].
[2] [n. d.]. Microsoft Corporation. https://www.microsoft.com. ([n. d.]). [Online;

accessed 30-Jan-2019].
[3] Ash Amin and Patrick Cohendet. 2004. Architectures of knowledge: Firms, capa-

bilities, and communities. Oxford University Press on Demand.
[4] Apostolos Ampatzoglou and Ioannis Stamelos. 2010. Software engineering re-

search for computer games: A systematic review. Information and Software
Technology 52, 9 (2010), 888–901.

[5] Yehuda Baruch. 1999. Response rate in academic studies—A comparative analysis.
Human relations 52, 4 (1999), 421–438.

[6] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological) 57, 1 (1995), 289–300.

[7] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’t touch my code!: examining the effects of
ownership on software quality. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering.
ACM, 4–14.

[8] John Seely Brown and Paul Duguid. 2001. Knowledge and organization: A social-
practice perspective. Organization science 12, 2 (2001), 198–213.

[9] Thierry Burger-Helmchen and Patrick Cohendet. 2011. User communities and
social software in the video game industry. Long Range Planning 44, 5 (2011),
317–343.

[10] David Callele, Eric Neufeld, and Kevin Schneider. 2005. Requirements engineering
and the creative process in the video game industry. In Requirements Engineering,
2005. Proceedings. 13th IEEE International Conference on. IEEE, 240–250.

[11] Philip A Chan and Terry Rabinowitz. 2006. A cross-sectional analysis of video
games and attention deficit hyperactivity disorder symptoms in adolescents.
Annals of General Psychiatry 5, 1 (2006), 16.

[12] W. J. Conover. 1998. Practical Nonparametric Statistics (3rd edition ed.). Wiley.
[13] Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco Oliveto,

and Andrea De Lucia. 2018. A developer centered bug prediction model. IEEE
Transactions on Software Engineering 44, 1 (2018), 5–24.

[14] Nick Diakopoulos and Stephen Cass. 2017. The Top Program-
ming Languages 2017. IEEE Spectrum http://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2017 (Jul 2017).

[15] Melissa A Federoff. 2002. Heuristics and usability guidelines for the creation
and evaluation of fun in video games. Ph.D. Dissertation. Indiana University
Bloomington.

[16] Michael Fischer, Martin Pinzger, and Harald C. Gall. 2003. Populating a Release
History Database from Version Control and Bug Tracking Systems. In 19th
International Conference on Software Maintenance (ICSM 2003), The Architecture
of Existing Systems, 22-26 September 2003, Amsterdam, The Netherlands. 23.

[17] Timothy S Flanigan, Emily McFarlane, and Sarah Cook. 2008. Conducting survey
research among physicians and other medical professionals: a review of cur-
rent literature. In Proceedings of the Survey Research Methods Section, American
Statistical Association, Vol. 1. 4136–47.

[18] Bent Flyvbjerg. 2006. Five misunderstandings about case-study research. Quali-
tative inquiry 12, 2 (2006), 219–245.

[19] Karl Fogel. 2005. Producing open source software: How to run a successful free
software project. " O’Reilly Media, Inc.".

[20] Joseph F Francois and Kenneth A Reinert. 1997. Applied methods for trade policy
analysis: a handbook. Cambridge University Press.

[21] Jeanne B Funk. 1993. Reevaluating the impact of video games. Clinical pediatrics
32, 2 (1993), 86–90.

[22] Tobias Greitemeyer. 2014. Intense acts of violence during video game play make
daily life aggression appear innocuous: A new mechanism why violent video
games increase aggression. Journal of Experimental Social Psychology 50 (2014),
52–56.

[23] Robert J. Grissom and John J. Kim. 2005. Effect sizes for research: A broad practical
approach (2nd edition ed.). Lawrence Earlbaum Associates.

[24] Ahmed E Hassan. 2009. Predicting faults using the complexity of code changes.
In Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on.
IEEE, 78–88.

[25] William Jones, Ammy Jiranida Phuwanartnurak, Rajdeep Gill, and Harry Bruce.
2005. Don’t take my folders away!: organizing personal information to get ghings
done. In CHI’05 extended abstracts on Human factors in computing systems. ACM,
1505–1508.

[26] Jesper Juul. 2011. Half-real: Video games between real rules and fictional worlds.
MIT press.

[27] Jussi Kasurinen, Jukka-Pekka Strandén, and Kari Smolander. 2013. What do game
developers expect from development and design tools?. In Proceedings of the 17th
International Conference on Evaluation and Assessment in Software Engineering.
ACM, 36–41.

[28] Annakaisa Kultima and Kati Alha. 2010. “Hopefully everything I’m doing has
to do with innovation”: Games industry professionals on innovation in 2009.
In Games Innovations Conference (ICE-GIC), 2010 International IEEE Consumer
Electronics Society’s. IEEE, 1–8.

[29] Chris Lewis, JimWhitehead, and NoahWardrip-Fruin. 2010. What went wrong: a
taxonomy of video game bugs. In Proceedings of the fifth international conference
on the foundations of digital games. ACM, 108–115.

[30] William Lidwell, Kritina Holden, and Jill Butler. 2010. Universal Principles of
Design, Revised and Updated: 125 Ways to Enhance Usability, Influence Perception,
Increase Appeal, Make Better Design Decisions, and Teach through Design (2nd ed.).
Rockport Publishers.

[31] Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Hassan. 2017. Studying the urgent
updates of popular games on the Steam platform. Empirical Software Engineering
22, 4 (2017), 2095–2126.

[32] A Mockus and LG Votta. 2000. Identifying reasons for software changes us-
ing historic databases. In Software Maintenance, 2000. Proceedings. International
Conference on. 120–130.

[33] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. 2014.
Cowboys, ankle sprains, and keepers of quality: How is video game development
different from software development?. In Proceedings of the 36th International
Conference on Software Engineering. ACM, 1–11.

[34] J Musil, A Schweda, D Winkler, and S Biffl. 2010. A Survey on a State of the
Practice in Video Game Development. Technical report, QSE-IFS-10/04 (2010).

[35] A. N. Oppenheim. 1992. Questionnaire Design, Interviewing and Attitude Measure-
ment. Pinter Publishers.

[36] Fabio Palomba, Marco Zanoni, Francesca Arcelli Fontana, Andrea De Lucia,
and Rocco Oliveto. 2017. Toward a Smell-aware Bug Prediction Model. IEEE
Transactions on Software Engineering (2017).

[37] Fabio Petrillo and Marcelo Pimenta. 2010. Is agility out there?: agile practices in
game development. In Proceedings of the 28th ACM International Conference on
Design of Communication. ACM, 9–15.

[38] Fábio Petrillo, Marcelo Pimenta, Francisco Trindade, and Carlos Dietrich. 2009.
What went wrong? A survey of problems in game development. Computers in
Entertainment (CIE) 7, 1 (2009), 13.

[39] Cristiano Politowski, Lisandra Fontoura, Fabio Petrillo, and Yann-Gaël
Guéhéneuc. 2016. Are the Old Days Gone? A Survey on Actual Software Engi-
neering Processes in Video Game Industry. In Games and Software Engineering
(GAS), 2016 IEEE/ACM 5th International Workshop on. IEEE, 22–28.

[40] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the naturalness of buggy code. In
Proceedings of the 38th International Conference on Software Engineering. ACM,
428–439.

[41] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 155–165.

[42] Per Runeson. 2006. A survey of unit testing practices. IEEE software 23, 4 (2006),
22–29.

[43] Walt Scacchi. 2004. Free and open source development practices in the game
community. IEEE software 21, 1 (2004), 59–66.

[44] Kim Bartel Sheehan. 2001. E-mail survey response rates: A review. Journal of
Computer-Mediated Communication 6, 2 (2001), 0–0.

[45] Brendan Sinclair. 2015. Gaming will hit $91.5 bil-
lion this year. http://www.gamesindustry.biz/articles/
2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo (2015).

[46] Michael G Stabin. 1996. MIRDOSE: personal computer software for internal
dose assessment in nuclear medicine. Journal of Nuclear Medicine 37, 3 (1996),
538–546.

[47] Patrick Stacey and Joe Nandhakumar. 2009. A temporal perspective of the
computer game development process. Information Systems Journal 19, 5 (2009),
479–497.

[48] F Ted Tschang. 2007. Balancing the tensions between rationalization and creativ-
ity in the video games industry. Organization Science 18, 6 (2007), 989–1005.

[49] F Ted Tschang and Janusz Szczypula. 2006. Idea creation, constructivism and evo-
lution as key characteristics in the videogame artifact design process. European
Management Journal 24, 4 (2006), 270–287.

[50] MichaelWashburn Jr, Pavithra Sathiyanarayanan, Meiyappan Nagappan, Thomas
Zimmermann, and Christian Bird. 2016. What went right and what went wrong:
an analysis of 155 postmortems from game development. In Proceedings of the
38th International Conference on Software Engineering Companion. ACM, 280–289.

[51] Dmitri Williams, Nicole Martins, Mia Consalvo, and James D Ivory. 2009. The
virtual census: Representations of gender, race and age in video games. New
Media & Society 11, 5 (2009), 815–834.

SERG L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source?

TUD-SERG-2018-009 11

L. Pascarella et al. – How Is Video Game Development Different from Software Development in Open Source? SERG

12 TUD-SERG-2018-009

TUD-SERG-2018-009
ISSN 1872-5392 SERG

